JP4737803B2 - 圧力センサ、出力装置及び圧力検出出力装置 - Google Patents

圧力センサ、出力装置及び圧力検出出力装置 Download PDF

Info

Publication number
JP4737803B2
JP4737803B2 JP2000200980A JP2000200980A JP4737803B2 JP 4737803 B2 JP4737803 B2 JP 4737803B2 JP 2000200980 A JP2000200980 A JP 2000200980A JP 2000200980 A JP2000200980 A JP 2000200980A JP 4737803 B2 JP4737803 B2 JP 4737803B2
Authority
JP
Japan
Prior art keywords
pressure
pressure sensor
output
signal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000200980A
Other languages
English (en)
Other versions
JP2002022582A (ja
Inventor
徳秀 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2000200980A priority Critical patent/JP4737803B2/ja
Publication of JP2002022582A publication Critical patent/JP2002022582A/ja
Application granted granted Critical
Publication of JP4737803B2 publication Critical patent/JP4737803B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体の圧力を検出し、その検出結果に基づく検出信号を出力する圧力センサ、該圧力センサと接続されて圧力センサが出力する検出信号に基づいた検出結果を所定の出力形態で出力する出力装置、前記圧力センサと出力装置を備えた圧力検出出力装置を含む技術分野に属するものである。
【0002】
【従来の技術】
圧力検出出力装置は、流体等の圧力を検出する圧力センサと、該圧力センサが検出する圧力に基づいて所定の出力を行う出力装置とが別々に用意され、その上で両者を信号線で接続して構成したものが知られている。かかる圧力検出出力装置では、圧力センサと出力装置とを個別に構成するものであるため、以下に示すような利点がある。
【0003】
即ち、検出する流体圧力の大きさに応じて適切な検出圧力範囲の圧力センサを選定して交換することができ、しかもその際に圧力センサと出力装置とを一体に構成したもののように全体の交換や大きな仕様変更を行う必要がない。また、出力装置として例えば圧力を表示する圧力表示装置を用いることに限定されず、例えば工業用ロボットや管理コンピュータ等とすることもでき、同じ圧力センサでも接続される相手方の出力装置を任意のものとすることができる。
【0004】
このように、圧力センサと出力装置とを別体のものとして構成することで、両者の組合せの自由度が大幅に高く現場の状況に応じた組合せ形態を容易に実現でき、しかも表示機能や指令機能等を出力装置に持たせることで圧力センサ自体を非常に簡易かつ安価なものとすることができるという利点も生じる。
【0005】
【発明が解決しようとする課題】
しかしながら、圧力センサを交換する場合には、個々の圧力センサに付記された型番等からその種類を作業者が目視により判別し、圧力表示装置等の出力装置側で新たに接続する圧力センサに応じた設定を手作業で行わなければならない。
このため、圧力センサの交換作業が面倒である。
【0006】
上記設定は、圧力センサの検出圧力範囲等の検出特性の相違に起因して行われるものであるが、かかる設定を怠ったり或いは設定を間違えた場合には、出力装置が所望の動作を行うことができないという不都合も生じる。
【0007】
本発明は、上記問題点を解決するためのものであり、圧力センサの検出特性を出力装置側で手作業によっていちいち設定しなくても済む圧力センサ、出力装置及び圧力検出出力装置を提供することを主たる目的の一つとしている。
【0008】
【課題を解決するための手段及び発明の効果】
上記目的を達成し得る特徴的手段について以下に説明する。また、各手段につき、特徴的な作用及び効果を必要に応じて記載する。
【0009】
手段1.異なる検出特性を持ち、その検出特性に基づいて流体の圧力を検出し、その検出結果を検出信号として出力する複数種類の圧力センサのうちから選択された所定の圧力センサと、前記各種圧力センサに対応し、該各種圧力センサのうちの1つと選択的に接続されるとともに、前記検出信号に基づいて前記圧力センサの検出結果を所定の出力形態で出力する出力装置とを備えた圧力検出出力装置において、前記圧力センサは、該圧力センサの持つ検出特性を前記出力装置に識別させるための識別信号を出力する識別信号出力手段を備え、前記出力装置は、前記識別信号に基づいて前記圧力センサの検出特性を識別する圧力センサ識別手段を備えたことを特徴とする圧力検出出力装置。
【0010】
上記手段1によれば、圧力センサは、自身が有する特性に応じた識別信号を出力する。また、出力装置は識別信号に基づき圧力センサの有する特性を識別することができる。このため、作業者が圧力センサの型番等により圧力センサの特性を認識しなくとも、圧力センサを接続した出力装置は、その圧力センサの特性を認識できる。結果として、出力装置側での圧力センサの特性に応じた各種設定を機械的に行うことが可能となる。なお、圧力センサと出力装置とは別体に構成され、両者が例えば信号線を含む配線によって接続されるものである。
【0011】
手段2.手段1において、前記出力装置は、前記圧力センサの検出結果を出力するに際して、前記圧力センサ識別手段の識別結果に基づき、前記圧力センサの検出特性に応じた出力設定を行うことを特徴とする圧力検出出力装置。
【0012】
上記手段2によれば、出力装置は、圧力センサ識別手段の識別結果に基づいて、圧力センサにおける検出結果の出力設定を自動的に行うことができる。結果として、出力装置においての圧力センサに関する各種設定を人為的に行わなくともよい。
【0013】
手段3.手段1又は手段2において、前記識別信号出力手段は、前記各種圧力センサの検出特性に応じた異なる電圧信号を、識別信号として出力することを特徴とする圧力検出出力装置。
【0014】
上記手段3によれば、圧力センサは、その検出特性に応じて、異なる電圧信号を出力する。これにより、出力装置は、電圧信号の違いにより圧力センサの検出特性の違いを識別することができる。結果として、作業者が圧力センサの特性に応じた各種設定を出力装置側において人為的に行わなくともよい。
【0015】
手段4.手段1乃至手段3のいずれかにおいて、前記圧力センサは、流体の圧力を検出可能な所定の検出圧力範囲を有し、該検出圧力範囲は少なくとも前記検出特性に含まれることを特徴とする圧力検出出力装置。
【0016】
上記手段4によれば、圧力センサは、自身の検出圧力範囲に応じた識別信号を出力する。このため、出力装置は圧力センサの検出圧力範囲を識別することができる。結果として、作業者が圧力センサの検出圧力範囲に応じた各種設定を出力装置側において人為的に行わなくともよい。
【0017】
手段5.手段4において、前記検出圧力範囲は、正圧力範囲、負圧力範囲及び正負両圧力域を含んだ連成圧力範囲の少なくとも1つであることを特徴とする圧力検出出力装置。
【0018】
上記手段5によれば、いかなる検出圧力範囲の圧力センサを取り付けても、出力装置は圧力センサの検出圧力範囲を識別することができる。結果として、作業者が圧力センサの検出圧力範囲に応じた各種設定を出力装置側において人為的に行わなくともよい。
【0019】
手段6.手段4又は手段5において、前記識別信号出力手段は、前記検出圧力範囲の基準値に対応した所定の基準信号を発生させ、該基準信号を前記識別信号として出力することを特徴とする圧力検出出力装置。
【0020】
上記手段6によれば、圧力センサが識別信号として基準信号を出力することにより、出力装置は圧力センサの識別を行うことができるとともに、検出信号と基準信号とを比較し、実圧力値の算出が可能となる。また、検出信号と基準信号の差をとることで、圧力センサから出力装置の間で入り込むコモンモードノイズ等をキャンセルすることができる。
【0021】
なお、連成圧用圧力センサにおいは、連成圧の0点として出力される基準信号を識別信号として利用するのが好ましい。このような構成にすれば、新たに識別信号を発生させる回路を設ける必要がなくなり、圧力センサの回路の簡略化を図ることができる。また、連成圧の0点とは別に基準となる検出圧力値を定めるとともに、その検出信号出力値を各連成圧用圧力センサ共通のものとして出力すことが好ましい。このようにすれば、出力装置側において検出圧力値を算出するに際して、各圧力センサに対応する変換係数をわざわざ記憶しておかなくても、共通の検出信号出力値と各圧力センサの基準信号出力値の違いから、その出力特性を判別し、検出圧力値を算出することができる。また、圧力センサが精密定電圧発生回路を備えている場合には、そこから発生する精密定電圧から基準電圧を生成することが好ましい。このようにすれば、他の回路部から基準電圧を生成するより、さらに精密かつ安定した基準信号を生成することができ、出力装置側における基準信号の誤識別を極力回避することができる。
【0022】
手段7.流体の圧力を検出し、その検出結果を検出信号として出力する圧力センサにおいて、該圧力センサを識別させるための識別信号を出力する識別信号出力手段を備えたことを特徴とする圧力センサ。
【0023】
上記手段7によれば、前記圧力センサは、自身を出力装置に識別させるための識別信号を出力する。このため、前記圧力センサを取り付けた所定の出力装置に、前記識別信号に基づいて、圧力センサを識別させることができる。結果として、作業者が圧力センサを取り付ける際の各種設定を出力装置側において人為的に行わなくともよい。
【0024】
手段8.手段7において、前記識別信号出力手段は、前記圧力センサの特性に応じた異なる電圧信号を、識別信号として出力することを特徴とする圧力センサ。
【0025】
上記手段8によれば、圧力センサは、その特性に応じて、異なる電圧信号を出力する。このため、前記圧力センサを取り付けた所定の出力装置に、電圧信号の違いにより圧力センサの特性の違いを識別させることができる。結果として、作業者が圧力センサの特性に応じた各種設定を出力装置側において人為的に行わなくともよい。
【0026】
手段9.手段8において、流体の圧力を検出可能な所定の検出圧力範囲を有し、該検出圧力範囲は少なくとも前記特性に含まれることを特徴とする圧力センサ。
【0027】
上記手段9によれば、圧力センサは、自身の検出圧力範囲に応じた識別信号を出力する。このため、前記圧力センサを取り付けた所定の出力装置に圧力センサの検出圧力範囲を識別させることができる。結果として、作業者が圧力センサの検出圧力範囲に応じた各種設定を出力装置側において人為的に行わなくともよい。
【0028】
手段10.手段9において、前記識別信号出力手段は、前記検出圧力範囲の基準値に対応した所定の基準信号を発生させ、該基準信号を前記識別信号として出力することを特徴とする圧力センサ。
【0029】
上記手段10によれば、圧力センサが識別信号として基準信号を出力することにより、前記圧力センサを取り付けた所定の出力装置は圧力センサの識別を行うことができるとともに、検出信号と基準信号とを比較し、実圧力値の算出が可能となる。
【0030】
手段11.異なる検出特性を持ち、その検出特性に基づいて流体の圧力を検出し、その検出結果を検出信号として出力する複数種類の圧力センサのうちから選択された所定の圧力センサと接続されて使用されるものであり、その接続状態において前記検出信号に基づいて前記圧力センサの検出結果を所定の出力形態で出力する出力装置において、前記圧力センサからの該圧力センサの種類を識別させるための識別信号を入力し、当該識別信号に基づいて、前記圧力センサの種類を識別する圧力センサ識別手段を備えたことを特徴とする出力装置。
【0031】
上記手段11によれば、出力装置は、その出力装置と接続される圧力センサからの識別信号に基づいて、圧力センサの種類を識別することができる。このため、作業者が圧力センサを取り付ける際の各種設定を出力装置側において人為的に行わなくともよい。
【0032】
手段12.手段11において、前記圧力センサの検出結果を出力するに際して、前記圧力センサ識別手段の識別結果に基づき、前記圧力センサの種類に応じた出力設定を行うことを特徴とする出力装置。
【0033】
上記手段12よれば、圧力センサ識別手段の識別結果に基づいて、圧力検出装置における検出結果の出力設定を機械的に行うことができる。結果として、作業者が圧力センサに関する各種設定を出力装置側において人為的に行わなくともよい。
【0034】
手段13.手段11又は手段12において、前記圧力センサが検出した圧力値を数値化し、その圧力数値を表示可能な表示手段を備えたことを特徴とする出力装置。
【0035】
上記手段13によれば、出力装置において、圧力センサに関する各種設定を人為的に行わなくとも、予定した通りの圧力数値を表示することができる。
【0036】
【発明の実施の形態】
〔第1の実施の形態〕
以下、第1の実施の形態について、図1及び図3を参照しつつ説明する。
【0037】
図1は圧力センサ1と、出力装置としての圧力表示装置2とを接続した圧力検出出力装置の電気的構成を示すブロック図である。即ち、この実施の形態は、圧力検出出力装置として、圧力検出表示装置を例示したものである。
【0038】
圧力センサ1は、電源回路3、精密定電圧発生回路4、定電流駆動回路5、半導体圧力センサ6、差動増幅器7及び識別信号出力手段としての圧力レンジ・機種電圧源8から構成されている。
【0039】
電源回路3は、圧力表示装置2から電源線L1を介して供給される直流電源(例えば24V)を降圧し、所定の直流電圧(例えば8V)を生成する回路である。電源回路3は、各種抵抗器及びコンデンサから構成され、その出力側は精密定電圧発生回路4に所定電圧を印加するよう接続されている。
【0040】
精密定電圧発生回路4は、電源回路3から印加された直流電圧をその内部の抵抗器及びOPアンプ等により分圧し、精密定電圧(例えば5V)を生成して出力するものである。精密定電圧発生回路4の出力側は定電流駆動回路5及び圧力レンジ・機種電圧源8に精密定電圧を印加するよう接続されている。なお、図示しないが精密定電圧発生回路4は他の各回路部へも精密定電圧を出力する。
【0041】
定電流駆動回路5は、精密定電圧発生回路4から印加された精密定電圧を抵抗器及びOPアンプ等により分圧し、所定の駆動電流を生成し出力するためのものである。定電流駆動回路5の出力側は駆動電流を半導体圧力センサ6に出力するよう接続されている。
【0042】
半導体圧力センサ6は、印加される流体の圧力に応じた検出信号を差動増幅器7に出力するものである。半導体圧力センサ5は、流体に接するシリコン樹脂製等のダイヤフラムを備えており、そのダイヤフラムには歪み抵抗器等から構成されたブリッジ回路が設けられている。そして、半導体圧力センサ5は、流体圧力により生じるブリッジ回路の変形(歪み抵抗器の抵抗値の変化)に基づき、流体圧力を電気信号に変換し、その電気信号を差動増幅器7に出力する。
【0043】
差動増幅器7は、複数のOPアンプを用いた差動増幅回路により、半導体圧力センサ6から出力された信号を増幅し、増幅された信号をアナログ電圧信号として出力するものである。また、差動増幅器7には、図示しないゼロ調整及びスパン調整用の可変抵抗器が接続されており、ここでゼロ調整及びスパン調整を行うことができるようになっている。差動増幅器7の出力側は信号線L2に接続されており、信号線L2を介して圧力表示装置2に前記アナログ電圧信号を出力する。
【0044】
圧力レンジ・機種電圧源8は、精密定電圧発生回路4から印加された精密定電圧に基づき、圧力レンジ(検出圧力範囲)に対応した機種固有の所定電圧(圧力レンジ・機種電圧信号)を生成し出力するものである。具体的には、圧力レンジ・機種電圧源8は分圧抵抗を備えており、その分圧抵抗によって精密定電圧(5V)を圧力センサ1の機種や特性に応じた所定の電圧値に分圧することにより、前記圧力レンジ・機種電圧信号を生成している。圧力レンジ・機種電圧源8の出力側は、信号線L3に接続されており、信号線L3を介して圧力表示装置2に圧力レンジ・機種電圧信号を出力する。
【0045】
圧力表示装置2は、電源回路10、圧力センサ識別手段としてのマイコン部11、アナログ電圧変換器12、圧力レンジ・機種電圧変換器13、A/D変換器14、数値表示器15等から構成されている。
【0046】
電源回路10は、交流商用電源から所定の直流電圧(例えば24V)を前記圧力センサ1に供給し、かつ、交流商用電源から所定の直流電圧(例えば5V)を生成しマイコン部11に供給するものである。
【0047】
アナログ電圧変換器12は、差動増幅器7から出力されたアナログ電圧信号を信号線L2を介して入力し、マイコン部11に適した所定のアナログ電圧信号に変換するものである。又、圧力レンジ・機種電圧変換器13は、圧力レンジ・機種電圧源8から出力された圧力レンジ・機種電圧信号を信号線L3を介して入力し、マイコン部11に適した所定のアナログ電圧信号に変換するものである。
【0048】
A/D変換器14は、アナログ電圧変換器12、圧力レンジ・機種電圧変換器13で変換された各アナログ電圧信号をデジタル信号に変換し、そのデジタル信号をマイコン部11に出力するものである。
【0049】
マイコン部11は、A/D変換器14からの入力デジタル信号に基づいて、実圧力を演算し、演算結果を数値表示器15に表示可能なように変換し、その変換結果を数値表示器15に出力するものである。マイコン部11は、制御プログラム等を記憶させておくROM、その制御プログラムに従って演算処理を行うためのCPU及びその演算結果を記憶するRAMによって構成される。前記ROMには各種圧力センサ情報等が予め記憶されており、前記CPUはこの圧力センサ情報を参照し、圧力レンジ・機種電圧信号から接続された圧力センサ1を識別する。また、前記圧力センサ情報には各圧力センサの出力特性情報も含まれており、マイコン部11は、この特性情報を参照し、アナログ電圧信号に基づいた実圧力値を算出する。
【0050】
数値表示器15は、例えば複数桁の数値を表示可能な7セグメントLEDから構成され、マイコン部11から出力された変換結果に基づいて実圧力数値を表示するものである。なお、実圧力数値以外にも、所定の設定圧力値を越えた場合にその旨を表示するといった各種表示機能をもたせてもよい。
【0051】
さて、前記圧力検出装置は、圧力センサ1と圧力表示装置2とが別々に構成されているため、圧力表示装置2に対して圧力センサ1が交換可能となっている。
【0052】
従って、検出する流体の圧力に応じて、圧力センサ1の検出圧力範囲が適切なものに変更できる。例えば、圧力センサ1には、正圧力範囲(例えば、0〜1,000kPa、0〜300kPaといった圧力範囲)のみを測定可能なもの、負圧力範囲(例えば、0〜−100kPaといった圧力範囲)のみを測定可能なもの等がある。
【0053】
しかし、上記のような異なる検出圧力範囲をもつ各種圧力センサ1の出力側では、その出力電圧が所定の出力範囲(例えば1V〜5V)で固定されている。つまり、各圧力センサ1のアナログ電圧信号のもつ出力特性は、圧力センサ1の圧力レンジによって異なるものとなっている。
【0054】
ここで、圧力表示装置2に例えば図3(a)〜(c)のグラフにてその特性を示した3種類の異なる圧力レンジをもつ圧力センサ1A,1B,1Cを接続する場合における、そのアナログ電圧信号出力特性について、圧力センサ1A,1B,1Cを比較しながら説明する。
【0055】
なお、図3(a)〜(c)は、横軸に流体の実圧力値(kPa)、縦軸に差動増幅器7から出力されるアナログ電圧信号の電圧値(V)を設定し、圧力値とアナログ電圧信号の電圧値との関係(アナログ電圧出力特性)を示した図である。
【0056】
図3(a)は圧力レンジが0〜1,000kPaの正圧用圧力センサ1A、図3(b)は圧力レンジが0〜300kPaの正圧用圧力センサ1B、図3(c)は圧力レンジが0〜−100kPaの負圧用圧力センサ1Cの出力特性を示したものである。また、各圧力センサ1A〜1Cから出力されるアナログ電圧信号はそれぞれ1V〜5Vの範囲で出力されるよう構成されている。
【0057】
詳しくは、アナログ電圧信号の出力値が1Vの場合、各圧力センサ1A〜1Cの検出した圧力値は0kPaを示す。アナログ電圧信号の出力値が5Vの場合、圧力センサ1Aでは1,000kPaの圧力値を示し、圧力センサ1Bでは300kPaの圧力値を示し、圧力センサ1Cでは−100kPaの圧力値を示す。なお、各圧力センサ1A〜1Cの示す圧力値とアナログ電圧信号の出力値とは正比例関係にある。つまり、各圧力センサ1A〜1Cでは、アナログ電圧信号が同じ出力値でも、異なる検出圧力値を示すこととなる。
【0058】
これに対して、各圧力センサ1A,1B,1Cは、圧力センサ自身の特性を識別させるために圧力レンジ・機種電圧源8からそれぞれ3V,2V,1Vの互いに異なる圧力レンジ・機種電圧信号を出力するように構成されている。即ち、本実施の形態では、精密定電圧発生回路4からは5Vの精密定電圧が圧力レンジ・機種電圧源8に供給されているので、圧力センサ1Aにおいては圧力レンジ・機種電圧源8において精密定電圧である5Vを分圧して3Vの圧力レンジ・機種電圧信号を生成し、同様に圧力センサ1B,1Cでは圧力レンジ・機種電圧源8において分圧比率を変更することでそれぞれ2V,1Vの圧力レンジ・機種電圧信号を生成している。
【0059】
さて、圧力表示装置2に例えば上記圧力センサ1Aを接続する場合について説明する。
【0060】
圧力表示装置2に圧力センサ1Aを接続すると、圧力センサ1Aの圧力レンジ・機種電圧源8は、精密定電圧発生回路4から印加された精密定電圧に基づき、3Vの圧力レンジ・機種電圧信号を生成し、信号線L3を介して圧力表示装置2に出力する。
【0061】
また、半導体圧力センサ6に実圧力が印加されると、その圧力が所定の電圧値に変換され、差動増幅器7に出力される。差動増幅器7では、その電圧信号を1V〜5Vの電圧信号に増幅し、信号線L2を介して圧力表示装置2にアナログ出力する。
【0062】
圧力表示装置2側では、前記各電圧信号が各電圧変換器12,13及びA/D変換器14を介してマイコン部11に適した所定のデジタル信号に変換され、マイコン部11に入力される。
【0063】
マイコン部11は、圧力レンジ・機種電圧信号に基づいたデジタル信号から圧力表示装置2に接続された圧力センサが圧力センサ1Aであることを識別する。続いて、マイコン部11は、圧力センサ1Aのアナログ電圧特性を考慮し、アナログ電圧信号に基づいたデジタル信号から実圧力を演算する。そして、演算結果を数値表示器15に表示できるように変換し、その変換結果を数値表示器15に出力する。
【0064】
また、圧力表示装置2に上記圧力センサ1B,1Cを接続した場合、各圧力センサ1B,1Cの圧力レンジ・機種電圧源8からは、精密定電圧発生回路4から印加された精密定電圧に基づき、それぞれ2V,1Vの圧力レンジ・機種電圧信号が生成され、信号線L3を介して圧力表示装置2に出力される。そして、圧力表示装置2のマイコン部11は、圧力レンジ・機種電圧信号に基づいたデジタル信号から圧力表示装置2に接続された圧力センサが圧力センサ1B,1Cであることを識別する。
【0065】
従って、圧力表示装置2は、各圧力センサ1A〜1Cの出力する圧力レンジ・機種電圧信号の違いから、各圧力センサ1A〜1Cの違いを識別し、各圧力センサ1A〜1Cに応じた設定処理を行う。このため、作業者は圧力表示装置2に取り付けた圧力センサ1に関する設定作業を圧力表示装置2側において人為的に行う必要がない。その結果、各種圧力センサ1に対応した圧力表示装置2における圧力センサ1の交換作業が簡素化される。
【0066】
また、圧力レンジ・機種電圧源8は、精密定電圧発生回路4からの精密定電圧を分圧して圧力レンジ・機種電圧信号を生成するものであるため、他の回路から圧力レンジ・機種電圧信号を生成する場合に比べて当該電圧信号が安定した値を示すこととなる。その結果、圧力レンジ・機種電圧信号に基づくマイコン部11での圧力センサ1A〜1Cの誤識別を極力回避することができる。
【0067】
〔第2の実施の形態〕
以下、第2の実施の形態について、図2及び図4を参照しつつ説明する。
【0068】
図2は圧力センサ21と、出力装置としての圧力表示装置2とを接続した圧力検出出力装置の電気的構成を示すブロック図である。なお、圧力表示装置2の構成において、第1の実施の形態と同一部分についての説明は省略する。
【0069】
圧力センサ21は、電源回路22、精密定電圧発生回路23、定電流駆動回路24、半導体圧力センサ25、差動増幅器26、識別信号出力手段としてのオフセット電圧回路27等から構成されている。
【0070】
電源回路22は、圧力表示装置2から電源線L1を介して供給される直流電源(例えば24V)を降圧し、所定の直流電圧(例えば8V)を生成する回路である。電源回路22は、各種抵抗器及びコンデンサから構成され、その出力側は精密定電圧発生回路23に所定電圧を印加するよう接続されている。
【0071】
精密定電圧発生回路23は、電源回路22から印加された直流電圧をその内部の抵抗器及びOPアンプ等により分圧し、精密定電圧(例えば5V)を生成して出力するものである。精密定電圧発生回路23の出力側は定電流駆動回路24及びオフセット電圧回路27に精密定電圧を印加するよう接続されている。なお、図示しないが精密定電圧発生回路23は他の各回路部へも精密定電圧を出力する。
【0072】
定電流駆動回路24は、精密定電圧発生回路23から印加された精密定電圧を抵抗器及びOPアンプ等により分圧し、所定の駆動電流を生成し出力するためのものである。定電流駆動回路24の出力側は駆動電流を半導体圧力センサ25に出力するよう接続されている。
【0073】
半導体圧力センサ25は、印加される流体の圧力に応じた検出信号を差動増幅器26に出力するものである。半導体圧力センサ26は、流体に接するシリコン樹脂製等のダイヤフラムを備えており、そのダイヤフラムには歪み抵抗器等から構成されたブリッジ回路が設けられている。そして、半導体圧力センサ25は、流体圧力により生じるブリッジ回路の変形(歪み抵抗器の抵抗値の変化)に基づき、流体圧力を電気信号に変換し、その電気信号を差動増幅器26に出力する。
【0074】
差動増幅器26は、複数のOPアンプを用いた差動増幅回路により、半導体圧力センサ25から出力された信号を増幅し、増幅された信号をアナログ電圧信号として出力するものである。また、差動増幅器26はオフセット電圧回路27に接続されており、ここからオフセット電圧が入力される。さらに、差動増幅器7には、図示しないゼロ調整及びスパン調整用の可変抵抗器が接続されており、ここでゼロ調整及びスパン調整を行うことができるようになっている。差動増幅器26の出力側は信号線L2に接続されており、信号線L2を介して圧力表示装置2に前記アナログ電圧信号を出力する。
【0075】
オフセット電圧回路27は、精密定電圧発生回路23から印加された精密定電圧を抵抗器により分圧し、大気圧に相当する所定電圧を生成し、この所定電圧を基にOPアンプ等により差動増幅器26に対するオフセット電圧(基準電圧)を生成し出力するものである。また、オフセット電圧回路27は、オフセット電圧を圧力レンジに対応した圧力センサの機種を判別する信号(圧力レンジ・機種電圧信号)として出力する。オフセット電圧回路27の出力側は信号線L3に接続されており、信号線L3を介して圧力表示装置2に圧力レンジ・機種電圧信号を出力する。ここで、圧力レンジ・機種電圧信号は、オフセット電圧回路27から差動増幅器26へ出力されるオフセット電圧(基準電圧)と同一のものが使用されており、圧力レンジ・機種電圧信号を専用のものとして生成しているのではない。
【0076】
さて、前記圧力検出出力装置は、圧力センサ21と圧力表示装置2とが別々に構成されているため、圧力表示装置2に対して圧力センサ21が交換可能となっている。
【0077】
従って、検出する流体の圧力に応じて、圧力センサ21の検出圧力範囲が適切なものに変更できる。例えば、圧力センサ21には、正圧力範囲(例えば、0〜1,000kPa、0〜300kPaといった圧力範囲)のみを測定可能なもの、負圧力範囲(例えば、0〜−100kPaといった圧力範囲)のみを測定可能なもの、正負両圧力範囲(例えば、−100〜1,000kPa、−100〜300kPa、−100〜100kPaといった連成圧力範囲)を測定可能なもの等がある。
【0078】
しかし、上記のような異なる検出圧力範囲をもつ各種圧力センサ21の出力側では、その出力電圧が所定の出力範囲(例えば1V〜5V)で固定されている。つまり、各圧力センサ21のアナログ電圧信号のもつ出力特性は、圧力センサ21の圧力レンジによって異なるものとなっている。
【0079】
ここで、圧力表示装置2に例えば図4(a)〜(c)のグラフにその特性を示した3種類の異なる圧力レンジをもつ圧力センサ21A,21B,21Cを接続し、そのアナログ電圧信号出力特性について、圧力センサ21A,21B,21Cを比較しながら説明する。
【0080】
なお、図4(a)〜(c)は、横軸に流体の実圧力値(kPa)、縦軸に差動増幅器26から出力されるアナログ電圧信号の電圧値(V)を設定し、圧力値とアナログ電圧信号の電圧値との関係(アナログ電圧出力特性)を示した図である。
【0081】
図4(a)は圧力レンジが−100〜1,000kPaの連成圧用圧力センサ21A、図4(b)は圧力レンジが−100〜300kPaの連成圧用圧力センサ21B、図4(c)は圧力レンジが−100〜100kPaの連成圧用圧力センサ21Cの出力特性を示したものである。また、各圧力センサ21A〜21Cから出力されるアナログ電圧信号はそれぞれ1V〜5Vの範囲で出力されるよう構成されいる。
【0082】
詳しくは、アナログ電圧信号の出力値が1Vの場合、各圧力センサ1A〜1Cの検出した圧力値は−100kPaを示す。アナログ電圧信号の出力値が5Vの場合、圧力センサ21Aでは1,000kPaの圧力値を示し、圧力センサ21Bでは300kPaの圧力値を示し、圧力センサ21Cでは100kPaの圧力値を示す。なお、各圧力センサ21A〜21Cの示す圧力値とアナログ電圧信号の出力値とは正比例関係にある。つまり、各圧力センサ21A〜21Cでは、アナログ電圧信号が同じ出力値でも、異なる検出圧力値を示すこととなる。
【0083】
これに対して、各圧力センサ21A,21B,21Cは、圧力センサ自身の特性を識別させるためにオフセット電圧回路27からそれぞれ1.36V,2V,3Vの互いに異なる圧力レンジ・機種電圧信号を出力するように構成されている。
【0084】
なお、図4に示した圧力センサ21A,21B,21Cは全て連成圧用であるが、これはオフセット電圧回路27を備えたものでは、基本的にはオフセット電圧(基準電圧)と同一電圧が差動増幅器26から出力されるポイントが、検出圧力の正負の反転ポイント、即ち0kPaとなるように設定されているのが普通だからである。
【0085】
さて、圧力表示装置2に例えば上記圧力センサ21Aを接続する場合について説明する。
【0086】
圧力表示装置2に圧力センサ21Aを接続すると、圧力センサ21Aのオフセット電圧回路27は、精密定電圧発生回路23から印加された精密定電圧に基づき、大気圧に対応する1.36Vのオフセット電圧及び圧力レンジ・機種電圧信号を生成し、オフセット電圧を差動増幅器26へ出力し、圧力レンジ・機種電圧信号を信号線L3を介して圧力表示装置2に出力する。
【0087】
また、半導体圧力センサ25に実圧力が印加されると、その圧力が所定の電圧値に変換され、差動増幅器26に出力される。差動増幅器26は、オフセット電圧回路27から入力したオフセット電圧を基にオフセットを行い、半導体圧力センサ25から入力された電圧信号を1V〜5Vの電圧信号に増幅し、信号線L2を介して圧力表示装置2にアナログ出力する。
【0088】
圧力表示装置2側では、前記各電圧信号が各電圧変換器12,13及びA/D変換器14を介してマイコン部11に適した所定のデジタル信号に変換され、マイコン部11に入力される。
【0089】
マイコン部11は、圧力レンジ・機種電圧信号に基づいたデジタル信号から圧力表示装置2に接続された圧力センサが圧力センサ21Aであることを識別する。続いて、マイコン部11は、圧力センサ21Aのアナログ電圧特性を考慮し、アナログ電圧信号に基づいたデジタル信号から実圧力を演算する。そして、演算結果を数値表示器15に表示可能なように変換し、その変換結果を数値表示器15に出力する。
【0090】
また、圧力表示装置2に上記圧力センサ21B,21Cを接続した場合、各圧力センサ21B,21Cのオフセット電圧回路27からは、精密定電圧発生回路23から印加された精密定電圧に基づき、それぞれ2V,3Vの圧力レンジ・機種電圧信号が生成され、信号線L3を介して圧力表示装置2に出力される。そして、圧力表示装置2のマイコン部11は、圧力レンジ・機種電圧信号に基づいたデジタル信号から圧力表示装置2に接続された圧力センサが圧力センサ21B,21Cであることを識別する。
【0091】
ここでは、マイコン部11はアナログ電圧信号と圧力レンジ・機種電圧信号の出力値の差に各圧力センサ21A〜21C固有の所定変換係数を掛けることにより実圧力値を算出している。例えば、アナログ電圧信号の電圧をEp1(V)、圧力レンジ・機種電圧信号の電圧をEp2(V)とすると、圧力数値Dp(kPa)は、次のような変換式で求めることができる。
【0092】
圧力センサ21Aの場合:Dp=(Ep1−Ep2)×275
圧力センサ21Bの場合:Dp=(Ep1−Ep2)×100
圧力センサ21Cの場合:Dp=(Ep1−Ep2)×50
従って、圧力表示装置2は、各圧力センサ21A〜21Cの出力する圧力レンジ・機種電圧信号の違いから、各圧力センサ21A〜21Cの違いを識別し、各圧力センサ21A〜21Cに応じた設定を内部処理によって自動的に行う。このため、作業者は圧力表示装置2に取り付けた圧力センサ21に関する設定作業を圧力表示装置2側において人為的に行う必要がない。その結果、各種圧力センサ21に対応した圧力表示装置2における圧力センサ21の交換作業が簡素化される。
【0093】
また、オフセット電圧回路27は、精密定電圧発生回路4からの精密定電圧を分圧して圧力レンジ・機種電圧信号を生成するものであるため、他の回路から圧力レンジ・機種電圧信号を生成する場合に比べて当該電圧信号が安定した値を示すこととなる。その結果、圧力レンジ・機種電圧信号に基づくマイコン部11での圧力センサ21A〜21Cの誤識別を極力回避することができる。
【0094】
また、オフセット電圧回路27は、本来はオフセット電圧(基準電圧)を生成して連成圧の0点となるポイントを示すために用いられるが、このオフセット電圧が圧力センサ21A〜21Cの圧力レンジ等の特性に応じて異なることに着目して、そのまま圧力レンジ・機種電圧信号としてそのまま利用した。従って、圧力レンジ・機種電圧信号を専用に生成する回路が不要であって、回路構成の複雑化を極力防止することができる。
【0095】
更に、上記実圧力値を算出する変換式より明らかなように、オフセット電圧回路27からの圧力レンジ・機種電圧信号と、検出圧力に基づく差動増幅器26からのアナログ電圧信号との差をとって実圧力値を算出するものである。従って、圧力表示装置2における出力(表示)は、圧力センサ21と圧力表示装置2との間で入り込むコモンモードノイズをキャンセルしたものとなり、信号線L2及び信号線L3に共通に混入するノイズによって出力(表示)に悪影響を及ぼす不都合が解消される。なお、この効果を一層高めるには両信号線L2,L3を一体化しておくことが好ましく、更に接続コネクタで一括接続するようにしておけば接続作業も簡素化できる。
【0096】
以上説明した実施の形態において、例えば、次のように構成の一部を適宜変更して実施することも可能である。勿論、以下において例示しない他の変更例も当然可能である。
【0097】
本実施の形態においては、出力装置として圧力表示装置を使用したが、圧力制御機器等にスイッチ出力を行う圧力スイッチ等の出力装置を使用することとしてもよい。例えば、検出圧力が所定圧以上になった場合に動作を開始するための制御信号を出力する圧力スイッチ等である。
【0098】
また、圧力レンジ・機種電圧信号に代えて、又は、加えて圧力センサに関する所定の情報(例えば、機種、レンジ、精度、温度補償値、補正値、シリアル番号、点検管理番号、自己診断情報等)をシリアル信号として出力するシリアル出力手段を設けてもよい。このとき、前記圧力センサが接続される出力装置は前記シリアル信号を識別可能な識別手段を備えていることとする。
【0099】
第2の実施の形態において、オフセット電圧は大気圧基準としているが、絶対圧を測定する圧力センサの場合には、真空基準とするのが好ましい。
【0100】
また、上記第2の実施の形態において、圧力センサ21A〜21Cの検出圧力が0kPaとなるポイント以外に基準となる圧力値を定めるとともに、それに対応する基準となるアナログ電圧信号出力値を各圧力センサに共通のものとして設定し、かつ、各種圧力センサの圧力レンジ・機種電圧信号の出力値を大気圧に相当する出力電圧値として定めることとしてもよい。例えば、図4に示すように検出圧力値が−100kPaのとき出力されるアナログ電圧信号の出力値を各圧力センサに共通とした1Vに設定し、かつ、各圧力センサの圧力レンジ・機種電圧信号出力値を大気圧に相当する出力電圧値(検出圧力値が0kPaのとき出力されるアナログ電圧信号の出力電圧値)と定めことにより、圧力数値Dp(kPa)は、次のような変換式で求めることができる。ここで検出圧力値に対応するアナログ電圧信号の電圧をEp1(V)、圧力レンジ・機種電圧信号の電圧をEp2(V)とする。
【0101】
Dp=(Ep1−Ep2)×100/(Ep2−1)
このようにすれば、各出力値の関係から各圧力センサに対応する変換係数をマイコン部11が記憶していなくとも、各圧力センサのアナログ電圧信号出力値及び圧力レンジ・機種電圧信号出力値から実圧力値を算出することができる。
【図面の簡単な説明】
【図1】 第1の実施の形態に係る圧力検出出力装置(圧力センサ1と圧力表示装置2)の構成を示すブロック図である。
【図2】 第2の実施の形態に係る圧力検出出力装置(圧力センサ21と圧力表示装置2)の構成を示すブロック図である。
【図3】 第1の実施の形態に係り、(a)は圧力センサ1Aのアナログ電圧出力特性を示す図、(b)は圧力センサ1Bのアナログ電圧出力特性を示す図、(c)は圧力センサ1Cのアナログ電圧出力特性を示す図である。
【図4】 第2の実施の形態に係り、(a)は圧力センサ21Aのアナログ電圧出力特性を示す図、(b)は圧力センサ21Bのアナログ電圧出力特性を示す図、(c)は圧力センサ21Cのアナログ電圧出力特性を示す図である。
【符号の説明】
1,21…圧力センサ、2…出力装置としての圧力表示装置、6,24…半導体圧力センサ、7,26…差動増幅器、8…識別信号出力手段としての圧力レンジ・機種電圧源、11…圧力センサ識別手段としてのマイコン部、13…圧力レンジ・機種電圧変換器、15…表示手段としての数値表示器、27…識別信号出力手段としてのオフセット電圧回路。

Claims (3)

  1. 少なくとも異なる検出圧力範囲を持ち、その検出圧力範囲で流体の圧力を検出し、その検出圧力値を検出信号として出力する複数種類の圧力センサのうちから選択された所定の圧力センサと、前記各種圧力センサに対応し、該各種圧力センサのうちの1つと選択的に接続されるとともに、前記検出信号に基づいて前記圧力センサの検出圧力値を所定の出力形態で出力する出力装置とを備えた圧力検出出力装置において、
    前記圧力センサは、
    前記検出信号を出力する検出信号出力手段と、
    前記検出圧力範囲の基準値に対応した所定の基準電圧を、前記検出信号出力手段に対し出力すると共に、前記検出圧力範囲に対応した圧力センサの種別を前記出力装置に識別させるための識別信号として出力する基準電圧信号出力手段とを備え、
    前記出力装置は、
    前記識別信号に基づいて前記圧力センサの種別を識別する圧力センサ識別手段を備えると共に、
    前記検出信号と前記識別信号の出力値の差を基に、前記圧力センサの検出圧力値を算出可能としたことを特徴とする圧力検出出力装置。
  2. 所定の検出圧力範囲で流体の圧力を検出し、その検出圧力値を検出信号として出力する圧力センサにおいて、
    前記検出信号を出力する検出信号出力手段と、
    前記検出圧力範囲の基準値に対応した所定の基準電圧を、前記検出信号出力手段に対し出力すると共に、前記検出圧力範囲に対応した圧力センサの種別を識別させる識別信号を、前記検出信号と前記識別信号の出力値の差を元に、前記圧力センサの検出圧力値を算出可能とした出力装置に出力する基準電圧信号出力手段とを備えたことを特徴とする圧力センサ。
  3. 少なくとも異なる検出圧力範囲を持ち、その検出圧力範囲で流体の圧力を検出し、その検出圧力値を検出信号として出力する複数種類の圧力センサのうちから選択された所定の圧力センサと接続されて使用されるものであり、その接続状態において前記検出信号に基づいて前記圧力センサの検出圧力値を所定の出力形態で出力する出力装置において、
    前記圧力センサから前記検出圧力範囲の基準値に対応した所定の基準電圧を該圧力センサの種別を識別させるための識別信号として入力し、当該識別信号に基づいて、前記圧力センサの種別を識別する圧力センサ識別手段を備えると共に、
    前記検出信号と前記識別信号の出力値の差を基に、前記圧力センサの検出圧力値を算出可能としたことを特徴とする出力装置。
JP2000200980A 2000-07-03 2000-07-03 圧力センサ、出力装置及び圧力検出出力装置 Expired - Fee Related JP4737803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200980A JP4737803B2 (ja) 2000-07-03 2000-07-03 圧力センサ、出力装置及び圧力検出出力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200980A JP4737803B2 (ja) 2000-07-03 2000-07-03 圧力センサ、出力装置及び圧力検出出力装置

Publications (2)

Publication Number Publication Date
JP2002022582A JP2002022582A (ja) 2002-01-23
JP4737803B2 true JP4737803B2 (ja) 2011-08-03

Family

ID=18698758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200980A Expired - Fee Related JP4737803B2 (ja) 2000-07-03 2000-07-03 圧力センサ、出力装置及び圧力検出出力装置

Country Status (1)

Country Link
JP (1) JP4737803B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827244B2 (ja) * 2006-05-31 2011-11-30 パナソニック電工Sunx株式会社 検出センサ、そのセンサヘッド及びコントロールユニット
JP5311724B2 (ja) * 2006-06-27 2013-10-09 日本空圧システム株式会社 位置確認装置
JP2009154739A (ja) * 2007-12-27 2009-07-16 Denso Corp 車両用電子装置
JP5375184B2 (ja) * 2009-02-26 2013-12-25 日本精工株式会社 トルク検出装置及び電動パワーステアリング装置
JP2020027071A (ja) 2018-08-16 2020-02-20 株式会社ケーヒン 電圧検出装置及び電圧検出システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502570B2 (ja) * 1987-03-06 1996-05-29 株式会社日立製作所 エンジン制御装置
JPH02304662A (ja) * 1989-05-19 1990-12-18 Canon Inc 電子機器
JPH06100514B2 (ja) * 1990-05-25 1994-12-12 本田技研工業株式会社 圧力センサおよびその製造方法
JP3379002B2 (ja) * 1994-08-30 2003-02-17 長野計器株式会社 圧力計器校正装置
JPH1169645A (ja) * 1997-08-27 1999-03-09 Ryobi Ltd 電池パック、充電器および充電方法
JP2000066990A (ja) * 1998-08-20 2000-03-03 Nec Yonezawa Ltd 接続認識イベント回路

Also Published As

Publication number Publication date
JP2002022582A (ja) 2002-01-23

Similar Documents

Publication Publication Date Title
JP4949379B2 (ja) プロセス制御ループ電流検査装置および方法
US9063174B2 (en) Hall effect measurement instrument with temperature compensation
US9297865B2 (en) Hall effect measurement instrument with temperature compensation
WO2008047428A1 (fr) COMPTEUR ÉLECTRONIQUE DE kWh
CN88103246A (zh) 测定交流校准误差的方法和仪表以及采用有交流校准误差的器件的仪表
JP4737803B2 (ja) 圧力センサ、出力装置及び圧力検出出力装置
JP2579143B2 (ja) プロセス変数センサのディジタル補正の方法およびそのためのプロセス変数発信器
CN103698040A (zh) 利用emf检测和校正的过程变量变送器
WO2011147273A1 (zh) 测量电流型模数转换器的转换电阻的阻值的方法
JP3244212B2 (ja) ディジタル測定器
JP2013022110A (ja) ミシンの上糸テンション計測装置
JP3964037B2 (ja) 圧力計の較正方法及び装置
JPS6351488B2 (ja)
JP5033835B2 (ja) 温圧計
JP2540147Y2 (ja) センサの補正装置
JPH0868713A (ja) 圧力計器校正装置
JP4340883B2 (ja) 電空変換器あるいはバルブポジショナ
KR20070025245A (ko) 디지털 복합 센서를 적용한 2선 방식 전송기
WO2024047736A1 (ja) 温度測定装置および異常検知方法
JPH0449527Y2 (ja)
JPH10221127A (ja) センサ信号変換回路
JP4573403B2 (ja) 圧力スイッチ
RU74465U1 (ru) Датчик
KR200401691Y1 (ko) 디지털 복합 센서를 적용한 2선 방식 전송기
CN117906481A (zh) 光电传感器信号线性化处理方法及相关设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4737803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees