JP4660436B2 - 印刷装置および印刷方法 - Google Patents

印刷装置および印刷方法 Download PDF

Info

Publication number
JP4660436B2
JP4660436B2 JP2006204143A JP2006204143A JP4660436B2 JP 4660436 B2 JP4660436 B2 JP 4660436B2 JP 2006204143 A JP2006204143 A JP 2006204143A JP 2006204143 A JP2006204143 A JP 2006204143A JP 4660436 B2 JP4660436 B2 JP 4660436B2
Authority
JP
Japan
Prior art keywords
dot
image
dots
sub
forward movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006204143A
Other languages
English (en)
Other versions
JP2008030254A (ja
Inventor
繁明 角谷
郷志 山▲崎▼
和義 棚瀬
透 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006204143A priority Critical patent/JP4660436B2/ja
Priority to US11/881,186 priority patent/US20080024826A1/en
Priority to CNA2007101381180A priority patent/CN101112823A/zh
Publication of JP2008030254A publication Critical patent/JP2008030254A/ja
Application granted granted Critical
Publication of JP4660436B2 publication Critical patent/JP4660436B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size

Description

この発明は、印刷媒体上にドットを形成して画像を印刷する技術に関する。
近年、コンピュータの出力装置として、インクジェットプリンタが広く普及している。インクジェットプリンタでは、誤差拡散法その他のハーフトーン技術の向上や、インクドットの形成制御(ドット形成順序の工夫)といった種々の技術によって画質の向上が図られている(特許文献1)。
特開2002−11859号公報
しかし、従来は、ハーフトーン技術やインクドットの形成制御による画質向上は別個に検討されることが技術常識であったため、これらの技術を有機的に組み合わせることによる相乗的な画質向上については考慮されていなかった。
この発明は、従来の技術における上述した課題を解決するためになされたものであり、印刷媒体上に印刷を行う印刷装置において、ハーフトーン技術とインクドットの形成制御の有機的な組合せによって画質を向上させる技術を提供することを目的とする。
上述した課題の少なくとも一部を解決するために、本発明は、印刷媒体上に印刷を行う印刷装置を提供する。本印刷装置は、
主走査と副走査を行いつつ印刷媒体上に印刷を行う印刷装置であって、
同一色のドットを形成するための複数のノズルが前記副走査の方向に異なる位置に配置された1つ以上のノズル列を有する印刷ヘッドと、
前記印刷媒体と前記印刷ヘッドを相対的に前記主走査方向に移動させることによって主走査を行う主走査部と、
前記印刷媒体と印刷ヘッドを相対的に前記副走査方向に移動させることによって副走査を行う副走査部と、
前記印刷ヘッドの主走査の往動時に前記複数のノズルのうちの少なくとも一部のノズルを駆動して往動時ドットの形成を行わせると共に、前記印刷ヘッドの主走査の復動時に前記複数のノズルのうちの少なくとも一部のノズルを駆動して復動時ドットの形成を行わせるヘッド駆動部と、
元画像を構成する各画素の階調値を表す画像データに対してディザマトリックスを用いたハーフトーン処理を行うことによって、前記印刷媒体上に形成されるべき印刷画像の各印刷画素への前記往動時ドットおよび前記復動時ドットの形成状態を決定するとともに、前記決定された前記往動時ドットおよび前記復動時ドットの形成状態を表すドットデータを生成するドットデータ生成部と、
を備え、
前記ドットデータ生成部は、主走査方向に並んだドットによって形成される主走査ラインのそれぞれが、前記ノズル列内の一つのノズルにより形成される往動時ドットと、該往動時ドットとは前記副走査方向に異なる位置のノズルにより形成される復動時ドットとの双方で形成されるように前記ドットデータを生成し、
前記ディザマトリックスは、前記往動時ドットのみにより形成される第1の画像と、前記復動時ドットのみにより形成される第2の画像と、前記第1の画像と前記第2の画像とを重ねた印刷画像と、のいずれもが、ブルーノイズ特性を有するように、粒状性指数を規定する同一の評価指数を用いて設定されていること
を要旨としている。
本発明の印刷装置では、印刷ヘッドの往動時に形成される往動時ドットと印刷ヘッドの復動時に形成される復動時ドットの形成位置のズレに起因する画質の劣化を抑制するようにハーフトーン処理の条件が設定されるとともに、各主走査ラインを往動時ドットと復動時ドットの双方で形成することによって、粒状性やムラ、バンディングといった観点から画質を総合的に向上させることができる。
なお、このようなハーフトーン処理の条件の設定は、ディザマトリックスを用いてハーフトーン処理を行う場合に限られず、たとえば誤差拡散を利用してハーフトーン処理を行う場合にも本発明は適用することができる。誤差拡散の利用は、たとえば複数の画素位置のグループ毎に誤差拡散処理を行うようにして実現することができる。
具体的には、通常の誤差拡散に加えて複数の画素位置のグループ毎にも別途誤差を拡散する処理を行っても良いし、あるいは複数の画素位置のグループに属する画素に対して拡散される誤差の重み付けを大きくするようにしても良い。このように構成しても、誤差拡散法の本来的な特性によって、各階調値において、複数の画素グループの各々に属する印刷画素に形成されるドットパターンのいずれもが所定の特性を有するようにすることができるからである。
上記印刷装置において、
前記印刷部は、さらに、前記往動時ドットと前記復動時ドットのいずれかの連続数が主走査方向よりも副走査方向に長くなるように構成しても良い。こうすれば、バンディング抑制効果をより高めることができることが発明者の実験によって確認された。
上記印刷装置において、
前記印刷部は、さらに、各副走査ラインのいずれもが、前記往動時ドットと前記復動時ドットのいずれか一方のみによって構成しても良い。
上記印刷装置において、
前記印刷部は、さらに、前記印刷画素の副走査方向の長さをWPとするとき、WP×(N(N は負でない整数)+1/2)の一定の副走査送り量で副走査送りを行うようにしても良い。こうすれば、副操作送り量の誤差が発生し難い定則送りによって、各主走査ラインを双方向の主走査で形成するという記録を実現している。
上記印刷装置において、
前記第1の画素グループに形成されるドットおよび前記第2の画素グループに形成されるドットは、いずれもブルーノイズ特性とグリーンノイズ特性のいずれか一方を有するようにしても良い。なお、「ブルーノイズ特性」と「グリーンノイズ特性」は、本明細書では、文献「Digital halftoning」(Robert Ulichney著)によって定義されるものとする。
なお、本発明は、印刷方法、印刷物の生成方法といった種々の形態、あるいは、これらの方法または装置の機能をコンピュータに実現させるためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体、そのコンピュータプログラムを含み搬送波内に具現化されたデータ信号、等の種々の形態で実現することができる。
以下では、本発明の作用・効果をより明確に説明するために、本発明の実施の形態を、次のような順序に従って説明する。
A.実施例の概要:
B.装置構成:
C.画像印刷処理の概要:
D.ドットの位置ずれによる画質の悪化を抑制する原理:
E.ディザマトリックスの生成方法:
F.変形例:
A.実施例の概要 :
実施例の詳細な説明に入る前に、図1を参照しながら、実施例の概要について説明しておく。図1は、本実施例の印刷装置としての印刷システムの概要を示した説明図である。図示されているように、印刷システムは、画像処理装置としてのコンピュータ10と、コンピュータ10の制御の下で実際に画像を印刷するプリンタ20などから構成されており、全体が一体となって印刷装置として機能する。
コンピュータ10には、ドット形成有無決定モジュールとディザマトリックスとが設けられており、ドット形成有無決定モジュールは、印刷しようとする画像の画像データを受け取ると、ディザマトリックスを参照しながら、画素毎にドット形成の有無を表したデータ(ドットデータ)を生成し、得られたドットデータをプリンタ20に向かって出力する。
プリンタ20には、印刷媒体上を往復動しながらドットを形成するドット形成ヘッド21と、該ドット形成ヘッド21におけるドットの形成を制御するドット形成モジュールとが設けられている。ドット形成モジュールは、コンピュータ10から出力されたドットデータを受け取ると、ドット形成ヘッド21が往復動する動きに合わせてドットデータをヘッドに供給する。その結果、印刷媒体上で往復動するドット形成ヘッド21が適切なタイミングで駆動され、印刷媒体上の適切な位置にドットが形成されて、画像が印刷されることになる。
また、本実施例の印刷装置では、ドット形成ヘッド21の往動時だけでなく、復動時にもドットを形成する、いわゆる双方向印刷を行うことによって、画像の迅速な印刷を可能としている。もっとも、双方向印刷を行う場合、往動時に形成されるドットと、復動時に形成されるドットとで、ドットの形成位置にずれると画質が悪化してしまう。そこで、このようなプリンタには、往復動の一方のドット形成タイミングを他方のタイミングに対して高い精度で調整するための、特別な機構あるいは制御が搭載されていることが通常であり、このことが、プリンタの大型化あるいは複雑化を招く要因の一つとなっている。
こうした点に鑑みて、図1に示した本実施例の印刷装置では、画像データからドットデータを生成する際に参照するディザマトリックスとして、少なくとも次の2つの特性を有するマトリックスを使用する。すなわち、第1の特性としては、ディザマトリックスの画素位置を、第1の画素位置のグループと、第2の画素位置のグループとに分類することが可能なマトリックスである。ここで、第1の画素位置および第2の画素位置とは、一方が、往動時または復動時の何れかでドットが形成されるとき、他方では、それ以外でドットが形成されるような関係にある画素位置をいう。そして、第2の特性としては、ディザマトリックスと、該ディザマトリックスから第1の画素位置に設定されている閾値を抜き出したマトリックス(第1の画素位置のマトリックス)と、第2の画素位置に設定されている閾値を抜き出したマトリックス(第2の画素位置のマトリックス)とが、何れもブルーノイズ特性を有するマトリックスである。なお、本実施例では、第1の画素位置のグループと第2の画素位置のグループとは、それぞれ特許請求の範囲における「第1の画素グループ」と「第2の画素グループ」とに相当する。
ここで、詳細には後述するが、本願の発明者によって、次のような新たな知見が見出された。すなわち、往動時と復動時とでドットの形成位置がずれた画像の画質は、往動時に形成されるドットのみによる画像(元の画像から復動時に形成したドットのみを削除して得られる画像。以下では、「往動時の画像」と呼ぶ。)の画質、あるいは復動時に形成されるドットのみによる画像(元の画像から往動時に形成したドットのみを削除して得られる画像。以下では「復動時の画像」と呼ぶ。)の画質と、極めて強い相関がある。そして、往動時の画像の画質、あるいは復動時の画像の画質を改善しておけば、双方向印刷の往動時と復動時とでドットの形成位置がずれた場合でも、画質の悪化を抑制することが可能である。従って、ディザマトリックスが上記の特性、すなわち、第1の画素位置のマトリックスと第2の画素位置のマトリックスとに分類することが可能であり、かつ、これら3つのマトリックスが何れもブルーノイズ特性を有するようなディザマトリックスを用いてドットデータを生成しておけば、往動時の画像も復動時の画像も良好な画質の画像とすることができるので、双方向印刷時にドットの形成位置がずれた場合でも画質の悪化を最小限に抑制することが可能となる。その結果、往復動の一方のドット形成タイミングを他方のタイミングに対して調整するに際して、高い精度が要求されることがないので、調整のための機構や制御を簡素なものとすることができ、延いては、プリンタが大型化あるいは複雑化することを回避することが可能となる。以下では、このような実施例について詳しく説明する。
B.装置構成 :
図2は、本実施例の画像処理装置としてのコンピュータ100の構成を示す説明図である。コンピュータ100は、CPU102を中心に、ROM104やRAM106などを、バス116で互いに接続することによって構成された周知のコンピュータである。
コンピュータ100には、フレキシブルディスク124やコンパクトディスク126等のデータを読み込むためのディスクコントローラDDC109や、周辺機器とデータの授受を行うための周辺機器インターフェースPIF108、CRT114を駆動するためのビデオインターフェースVIF112等が接続されている。PIF108には、後述するカラープリンタ200や、ハードディスク118等が接続されている。また、デジタルカメラ120やカラースキャナ122等をPIF108に接続すれば、デジタルカメラ120やカラースキャナ122で取り込んだ画像に対して画像処理を施すことも可能である。また、ネットワークインターフェースカードNIC110を装着すれば、コンピュータ100を通信回線300に接続して、通信回線に接続された記憶装置310に記憶されているデータを取得することもできる。コンピュータ100は、印刷しようとする画像の画像データを取得すると、後述する所定の画像処理を行うことにより、画像データを、画素毎にドット形成の有無を表したデータ(ドットデータ)に変換して、カラープリンタ200に出力する。
図3は、本実施例のカラープリンタ200の概略構成を示す説明図である。カラープリンタ200はシアン,マゼンタ,イエロ,ブラックの4色インクのドットを形成可能なインクジェットプリンタである。もちろん、これら4色のインクに加えて、染料または顔料濃度の低いシアン(淡シアン)インクと、染料または顔料濃度の低いマゼンタ(淡マゼンタ)インクとを含めた合計6色のインクドットを形成可能なインクジェットプリンタを用いることもできる。尚、以下では場合によって、シアンインク,マゼンタインク,イエロインク,ブラックインク,淡シアンインク,淡マゼンタインクのそれぞれを、Cインク,Mインク,Yインク,Kインク,LCインク,LMインクと略称することがあるものとする。
カラープリンタ200は、図示するように、キャリッジ240に搭載された印字ヘッド241を駆動してインクの吐出およびドット形成を行う機構と、このキャリッジ240をキャリッジモータ230によってプラテン236の軸方向に往復動させる機構と、紙送りモータ235によって印刷用紙Pを搬送する機構と、ドットの形成やキャリッジ240の移動および印刷用紙の搬送を制御する制御回路260などから構成されている。
キャリッジ240には、Kインクを収納するインクカートリッジ242と、Cインク,Mインク,Yインクの各種インクを収納するインクカートリッジ243とが装着されている。インクカートリッジ242,243をキャリッジ240に装着すると、カートリッジ内の各インクは図示しない導入管を通じて、印字ヘッド241の下面に設けられた各色のインク吐出用ヘッド244ないし247に供給される。
図4は、インク吐出用ヘッド244ないし247におけるインクジェットノズルNzの配列を示す説明図である。図示するように、インク吐出用ヘッドの底面には、C,M,Y,Kの各色のインクを吐出する4組のノズル列が形成されており、1組のノズル列あたり48個のノズルNzが、一定のノズルピッチkで配列されている。
カラープリンタ200の制御回路260は、CPUや、ROM、RAM、PIF(周辺機器インターフェース)等がバスで相互に接続されて構成されており、キャリッジモータ230および紙送りモータ235の動作を制御することによってキャリッジ240の主走査動作および副走査動作の制御を行う。また、コンピュータ100から出力されたドットデータを受け取ると、キャリッジ240が主走査あるいは副走査する動きに合わせて、ドットデータをインク吐出用ヘッド244ないし247に供給することによって、これらヘッドを駆動するが可能となっている。
以上のようなハードウェア構成を有するカラープリンタ200は、キャリッジモータ230を駆動することによって、各色のインク吐出用ヘッド244ないし247を印刷用紙Pに対して主走査方向に往復動させ、また紙送りモータ235を駆動することによって、印刷用紙Pを副走査方向に移動させる。制御回路260は、キャリッジ240が往復動する動き(主走査)や、印刷媒体の紙送りの動き(副走査)に合わせて、ドットデータに基づいて適切なタイミングでノズルを駆動することにより、印刷媒体上の適切な位置に適切な色のインクドットを形成する。こうすることによって、カラープリンタ200は印刷用紙上にカラー画像を印刷することが可能となっている。
尚、本実施例のプリンタは、印刷媒体に向けてインク滴を吐出することにより、インクドットを形成する所謂インクジェットプリンタであるものとして説明するが、どのような手法を用いてドットを形成するプリンタであっても構わない。例えば、本願発明は、また、インク滴を吐出する代わりに、静電気を利用して各色のトナー粉を印刷媒体上に付着させることでドットを形成するプリンタや、いわゆるドットインパクト方式のプリンタに対しても好適に適用することが可能である。
図5は、比較例のドットの記録方式を示す説明図である。この記録方式は、ノズル個数Nが14個で、副走査送り量Lが7ドット(=7×ドットピッチk)の双方向印刷である。この記録方式においては、奇数パスでは、印字ヘッド241が往方向に主走査を行い、偶数パスでは、印字ヘッド241が復方向に主走査を行う。これにより、奇数パスでは、往方向の主走査で形成される往動時ドット(塗りつぶしていない丸印「○」)が形成され、復方向の主走査で形成される復動時ドット(塗りつぶされた丸印「●」)が形成されることになる。この記録方式は、各主走査ライン(主走査の方向に一列に並んだドットの集合として形成されるライン)が、同一方向の主走査のみで形成されることを特徴としている。たとえばラスタ番号1の主走査ラインは、往方向の主走査のみで形成され、ラスタ番号2の主走査ラインは、復方向の主走査のみで形成されている。
このような記録方式は、往方向走査と復方向走査の間で、主走査方向のドット形成位置のズレが発生しても、各主走査ライン単位でドットが主走査方向にずれるだけなので、ドットの重なり状況が変化することはほとんどない。たとえば図5において、ラスタ番号1の主走査ラインが主走査の往方向にズレとともに、ラスタ番号2の主走査ラインが主走査の復方向にズレたとしても、相互に重なり合ったり、離れたりしないので、ドットの重なり状況が変化し難いことが分かる。
一方、このような記録方式は、副走査方向のドット形成位置のズレが発生すると、画質劣化を生じやすいという性質がある。たとえば副走査送り量の誤差によって生ずる筋状のノイズであるバンディングや主走査中の印字ヘッド241の副走査方向の振動に起因する色むらといった画質劣化を生じやすいという性質がある。
図6は、本発明の第1実施例のドットの記録方式を示す説明図である。この記録方式は、ノズル個数Nが13個で、副走査送り量Lが7ドットと6ドットの交互繰り返し、すなわち7ドットと6ドットの変則送りの双方向印刷である。この記録方式は、各主走査ラインが、双方向の主走査で形成されることを特徴としている。すなわち、いずれの主走査ラインも、丸印「●」と丸印「○」の双方で構成されている。具体的には、パス1やパス3といった奇数パスでは、奇数カラムにドットが形成され、パス2やパス4といった偶数パスでは、偶数カラムにドットが形成されている。
このような記録方式は、比較例のドット記録方式とは、逆の性質を有している。すなわち、主走査方向のドット形成位置のズレによる画質の劣化、特に画像のざらつきとして認識される粒状性の劣化を生じやすい一方、バンディングや印字ヘッド241の副走査方向の振動に起因する色むらといった画質劣化を生じ難いという性質を有している。しかしながら、従来は、主走査方向のドット形成位置のズレによる画質の劣化が支配的であったため、特に双方向印刷においては、比較例のドット記録方式が粒状性の点では明らかに優れているというのが、技術常識であった。従って、最高画質を得るためには、比較例のドット記録方式を採用した上で、その欠点を補うために副走査方向の送り精度高め、ヘッドの副走査方向の振動も抑制するなどの対策を実施した高精度で高価なハードウェアとの組合わせが必須で、それでもなお、色むらやバンディングの点では多少の劣化を容認する必要があった。
しかし、本願の発明者は、主走査方向のドット形成位置のズレに起因する粒状性悪化や印字ヘッド241の副走査方向の振動に起因する色むらといった画質劣化を効果的に抑制するハーフトーン処理(後述)を開発するとともに、従来の技術常識を捨てて、このハーフトーン処理とドット記録方式の組み合わせについて解析と実験とを行った結果、後述のハーフトーン処理技術を用いると、往方向走査と復方向走査の間の主走査方向のドット形成位置のズレが発生しても、粒状性劣化がほとんど生じない上に、その効果は図5の比較例のドット記録方式でも、第1実施例のドット記録方式でもほとんど変わらない、という新しい事実を発見した。このような解析と実験の結果より、本願発明者は、バンディングや色むら抑制効果を有する第1実施例のドットの記録方式と上述の粒状性を抑制する後述のハーフトーン処理技術の組み合わせが、粒状性、色むら、バンディングの全ての面で最高画質を実現することを見出したのである。
図7は、本発明の第2実施例のドットの記録方式を示す説明図である。この記録方式は、ノズル個数Nが13個で、副走査送り量Lが6.5ドット(一定)の定則送りの双方向印刷である。この記録方式は、偶数カラム位置のドット形成位置が奇数カラム位置のドット形成位置に比べて副走査方向に半画素ピッチだけシフトしているという点と、副走査送り量Lが6.5ドットの定則送りであるという点で第1実施例と相違する。本実施例は、副操作送り量の誤差が発生し難い定則送りによって、各主走査ラインを双方向の主走査で形成するという記録を実現している。
なお、第1実施例や第2実施例の記録方式は、副走査ライン(副走査の方向に一列に並んだドットの集合として形成されるラインあるいは各カラムのドットの集合)が往方向と復方向のいずれか一方向の主走査でのみ形成されているという特徴を有している。たとえば第1実施例や第2実施例の記録方式においては、第1カラムは、往動時ドットのみが形成され、一方、第2カラムは、復動時ドットのみが形成されている。
図8は、本発明の第3実施例のドットの記録方式を示す説明図である。この記録方式は、ノズル個数Nが13個で、副走査送り量Lが7ドットと6ドットの交互繰り返し、すなわち7ドットと6ドットの変則送りの双方向印刷である点で第1実施例と共通する。ただし、パス1〜パス3、パス8では、偶数カラムにドットが形成され、パス4〜パス7では、奇数カラムにドットが形成されている。このような8回のパスを周期的に繰り返すことによって、各主走査ラインを双方向の主走査で形成するという記録を実現している。
この記録方式は、副走査ラインが往方向と復方向の双方で形成されているという点で第1実施例や第2実施例の記録方式と相違する。この記録方式も、後述のハーフトーン処理技術の組み合わせによって高画質を実現することが実証されたものである。このように、各主走査ラインを双方向の主走査で形成されるように構成されていれば、後述のハーフトーン処理技術の組み合わせによって高画質を実現することができる。ただし、往動時ドットと復動時ドットのいずれかの連続数が主走査方向よりも副走査方向に長くなるように構成されているようにすることが好ましい。こうすれば、バンディング抑制効果をより高めることができることが発明者の実験によって確認されたからである。この例では、往動時ドットと復動時ドットのいずれかの副走査方向の連続数が「2」で、往動時ドットと復動時ドットのいずれかの主走査方向の連続数が「1」である。
図9は、本発明の第4実施例のドットの記録方式を示す説明図である。この記録方式は、ノズル個数Nが10個で、副走査送り量Lが3ドットと2ドットの交互繰り返し、すなわち3ドットと2ドットの変則送りの双方向印刷である。この記録方式においては、パス1〜16では、それぞれカラム番号が「1+4N」「2+4N」「3+4N」「4+4N」「1+4N」「4+4N」「1+4N」「2+4N」「3+4N」「4+4N」「1+4N」「2+4N」「3+4N」「2+4N」「3+4N」「4+4N」の位置にドットが形成される。ここで、Nは負でない整数である。このような16回のパスを繰り返すことによってドットが記録される。
この記録方式は、各主走査ラインが往方向と復方向の双方を含む4回のパスで形成されているという特徴を有している。この記録方式も、後述のハーフトーン処理技術の組み合わせによって高画質を実現することが実証されたものである。このように、4回のパスで各主走査ラインを形成する記録方式においても、後述のハーフトーン処理技術の組み合わせによって高画質を実現することができる。
図10は、本発明の第5実施例のドットの記録方式を示す説明図である。この記録方式は、図9においてノズル個数Nを10個から8個に減らしたものである。この記録方式は、各主走査ラインごとにドットの形成を担当するパスの数が相違する点で上述の各記録方式と相違する。たとえばラスタ番号が(1+5×N、Nは負でない整数)の主走査ラインについては、4回のパスで主走査ラインが形成される。一方、他の主走査ラインについては、3回のパスで主走査ラインが形成される。具体的には、ラスタ番号が「1」の主走査ラインについては、パス1とパス9で交互にカラム番号が奇数の画素位置にドットが形成され、パス4とパス12でカラム番号が偶数の画素位置にドットが形成される。一方、ラスタ番号が「2」の主走査ラインについては、パス3とパス11で交互にカラム番号が奇数の画素位置にドットが形成され、パス5のみでカラム番号が偶数の画素位置にドットが形成される。
この記録方式は、各主走査ラインが往方向と復方向の双方を含む4回あるいは3回のパスで形成されているという特徴を有している。この記録方式も、後述のハーフトーン処理技術の組み合わせによって高画質を実現することが実証されたものである。このように、各主走査ラインを形成するパスの回数が変動する記録方式においても、後述のハーフトーン処理技術の組み合わせによって高画質を実現することができる。
C.画像印刷処理の概要 :
図11は、印刷しようとする画像にコンピュータ100が所定の画像処理を加えることにより、画像データをドット形成の有無によって表現されたドットデータに変換し、得られたドットデータを制御データとしてカラープリンタ200に供給して、画像を印刷する処理の流れを示すフローチャートである。以下では、フローチャートに従って、本実施例の画像処理について説明する。
コンピュータ100は、画像処理を開始すると、先ず初めに、変換すべき画像データの読み込みを開始する(ステップS100)。ここでは、画像データはRGBカラー画像データであるものとして説明するが、カラー画像データに限らず、モノクロ画像データについても同様に適用することができる。
画像データの読み込みに続いて、解像度変換処理を開始する(ステップS102)。解像度変換処理とは、読み込んだ画像データの解像度を、カラープリンタ200が画像を印刷しようとする解像度(印刷解像度)に変換する処理である。画像データの解像度よりも印刷解像度の方が高い場合は、補間演算を行って画素間に新たな画像データを生成することにより解像度を増加させる。逆に、画像データの解像度の方が印刷解像度よりも高い場合は、読み込んだ画像データを一定の比率で間引くことによって解像度を低下させる。解像度変換処理では、読み込んだ画像データに対して、このような操作を行うことにより、画像データの解像度を印刷解像度に変換する。
こうして画像データの解像度を印刷解像度に変換したら、今度は、色変換処理を行う(ステップS104)。色変換処理とは、R,G,Bの階調値の組合せによって表現されているRGBカラー画像データを、印刷のために使用される各色の階調値の組合せによって表現された画像データに変換する処理である。前述したように、カラープリンタ200はC,M,Y,Kの4色のインクを用いて画像を印刷している。そこで、本実施例の色変換処理ではRGB各色によって表現された画像データを、C,M,Y,Kの各色の階調値によって表現されたデータに変換する処理を行うのである。
色変換処理は、色変換テーブル(LUT)を参照することで、迅速に行うことができる。図12は、色変換処理のために参照されるLUTを概念的に示した説明図である。LUTは、次のように考えれば3次元の数表と考えることができる。先ず、図12に示されているように、直交する3つの軸にR軸、G軸、B軸を取って色空間を考える。すると、全てのRGB画像データは、必ず色空間内の座標点に対応付けて表示することができる。このことから、R軸、G軸、B軸のそれぞれを細分して色空間内に多数の格子点を設定してやれば、それぞれの格子点はRGB画像データを表していると考えることができ、各RGB画像データに対応するC,M,Y,K各色の階調値を、各格子点に対応付けてやることができる。LUTは、こうして色空間内に設けた格子点に、C,M,Y,K各色の階調値を対応付けて記憶した3次元の数表と考えることができる。このような、LUTに記憶されているRGBカラー画像データとC,M,Y,K各色の階調データとの対応関係に基づいて色変換処理を行えば、RGBカラー画像データを、C,M,Y,K各色の階調データに迅速に変換することが可能となる。
こうしてC,M,Y,K各色毎に階調データが得られると、コンピュータ100は、階調数変換処理を開始する(ステップS106)。階調数変換処理とは、次のような処理である。色変換処理によって得られた画像データは、データ長を1バイトとすると、画素毎に、階調値0から階調値255までの値を取り得る階調データである。これに対してプリンタはドットを形成することによって画像を表示しているから、それぞれの画素については「ドットを形成する」か「ドットを形成しない」かのいずれかの状態しか取り得ない。そこで、画素毎の階調値を変化させる代わりに、こうしたプリンタでは、所定領域内で形成されるドットの密度を変化させることによって画像を表現している。階調数変換処理とは、階調データの階調値に応じて適切な密度でドットを発生させるべく、画素毎にドット形成の有無を判断する処理である。
階調値に応じた適切な密度でドットを発生させる手法としては、誤差拡散法やディザ法などの種々の手法が知られているが、本実施例の階調数変換処理では、ディザ法と呼ばれる手法を使用する。本実施例のディザ法は、ディザマトリックスに設定されている閾値と画像データの階調値とを画素毎に比較することによって、画素毎にドット形成の有無を判断する手法である。以下、ディザ法を用いてドット形成の有無を判断する原理について簡単に説明する。
図13は、ディザマトリックスの一部を概念的に例示した説明図である。図示したマトリックスには、横方向(主走査方向)に128画素、縦方向(副走査方向)に64画素、合計8192個の画素に、階調値1〜255の範囲から万遍なく選択された閾値がランダムに記憶されている。ここで、閾値の階調値が1〜255の範囲から選択されているのは、本実施例では、画像データが階調値0〜255の値を取り得る1バイトデータとしていることに加えて、画像データの階調値と閾値とが等しい場合には、その画素にはドットを形成するものと判断していることによるものである。
すなわち、ドットが形成されるのは画像データの階調値が閾値よりも大きい画素に限る(すなわち階調値と閾値が等しい画素にはドットは形成しない)とした場合、画像データの取り得る最大階調値と同じ値の閾値を有する画素には、決してドットが形成されることはない。こうしたことを避けるため、閾値の取り得る範囲は、画像データの取り得る範囲から最大階調値を除いた範囲とする。逆に、画像データの階調値と閾値が等しい画素にもドットを形成するとした場合、画像データの取り得る最小階調値と同じ値の閾値を有する画素には、常にドットが形成されてしまうことになる。こうしたことを避けるため、閾値の取り得る範囲は、画像データの取り得る範囲から最小階調値を除いた範囲とする。本実施例では、画像データの取り得る階調値が0〜255であり、画像データと閾値が等しい画素にはドットを形成するとしていることから、閾値の取り得る範囲を1〜255としておくのである。尚、ディザマトリックスの大きさは、図13に例示したような大きさに限られるものではなく、縦と横の画素数が同じマトリックスも含めて種々の大きさとすることができる。
図14は、ディザマトリックスを参照しながら、各画素についてのドット形成の有無を判断している様子を概念的に示した説明図である。ドット形成の有無を判断するに際しては、先ず、判断しようとする画素を選択し、この画素についての画像データの階調値と、ディザマトリックス中で対応する位置に記憶されている閾値と比較する。図14中に示した細い破線の矢印は、画像データの階調値と、ディザマトリックスに記憶されている閾値とを、画素毎に比較していることを模式的に表したものである。例えば、画像データの左上隅の画素については、画像データの階調値は97であり、ディザマトリックスの閾値は1であるから、この画素にはドットを形成すると判断する。図14中に実線で示した矢印は、この画素にはドットを形成すると判断して、判断結果をメモリに書き込んでいる様子を模式的に表したものである。一方、この画素の右隣の画素については、画像データの階調値は97、ディザマトリックスの閾値は177であり、閾値の方が大きいので、この画素についてはドットを形成しないと判断する。ディザ法では、こうしてディザマトリックスを参照しながら、画素毎にドットを形成するか否かを判断することで、画像データを画素毎にドット形成の有無を表すデータに変換する。このように、ディザ法を用いれば、画像データの階調値とディザマトリックスに設定されている閾値とを比較するという単純な処理で、画素毎のドットの形成有無を判断することができるので、階調数変換処理を迅速に実施することが可能となる。
また、画像データの階調値が決まると、各画素にドットが形成されるか否かは、もっぱらディザマトリックスに設定される閾値によって決まることからも明らかなように、ディザ法では、ディザマトリックスに設定する閾値によって、ドットの発生状況を積極的に制御することが可能である。本実施例の階調数変換処理では、ディザ法のこうした特長を利用して、後述する特別な特性を有するディザマトリックスを用いて画素毎のドット形成の有無を判断することにより、双方向印刷時の往動時に形成されるドットと、復動時に形成されるドットとでドットの形成位置がずれた場合でも、そのことによる画質の悪化を最小限に抑制することを可能としている。画質の悪化を最小限に抑制可能な原理、および、こうしたことを可能とするディザマトリックスが備える特性については、後ほど詳しく説明する。
階調数変換処理を終了して、C,M,Y,K各色の階調データから画素毎にドット形成の有無を表すデータが得られたら、今度は、インターレース処理を開始する(ステップS108)。インターレース処理とは、ドットの形成有無による表現形式に変換された画像データを、ドットが実際に印刷用紙上に形成される順序を考慮しながら、カラープリンタ200に転送する順序に並べ替える処理である。コンピュータ100は、インターレース処理を行って画像データを並べ替えた後、最終的に得られたデータを、制御データとしてカラープリンタ200に出力する(ステップS110)。
カラープリンタ200は、このようにしてコンピュータ100から供給された制御データに従って、印刷用紙上にドットを形成することにより画像を印刷する。すなわち、図3を用いて前述したように、キャリッジモータ230および紙送りモータ235を駆動することによってキャリッジ240の主走査および副走査を行い、これらの動きに合わせて、ドットデータに基づいてヘッド241を駆動してインク滴を吐出する。その結果、適切な位置に適切な色のインクドットが形成されて画像が印刷されることになる。
以上に説明したカラープリンタ200は、キャリッジ240を往復動させながらドットを形成して画像を印刷していることから、キャリッジ240の往動時だけでなく復動時にもドットを形成することとすれば、画像を迅速に印刷することが可能である。もっとも、こうした双方向印刷を行う場合、キャリッジ240の往動時に形成したドットと、復動時に形成したドットとで、ドットの形成位置にずれが生じると画質が悪化してしまう。そこで、こうしたことを回避するために、通常のカラープリンタは、往動時あるいは復動時の少なくとも一方について、ドットを形成するタイミングを精度良く調整することができるようになっている。このため、往動時にドットが形成される位置と復動時にドットが形成される位置とを一致させることができ、双方向印刷を行った場合でも画質を悪化させること無く、高画質な画像を迅速に印刷することが可能となっている。しかし、その一方で、ドットを形成するタイミングを精度良く調整可能とするためには、専用の調整機構や調整用のプログラムが必要となり、カラープリンタが複雑化および大型化してしまう傾向がある。
こうした問題の発生を回避するために、本実施例のコンピュータ100では、往動時と復動時とでドットの形成位置が多少ずれた場合でも、画質への影響を最小限に抑制可能なディザマトリックスを用いてドットの形成有無を判断している。このようなディザマトリックスを参照して画素毎のドット形成有無を判断しておけば、往動時と復動時とでドットの形成位置が多少ずれても画質に大きな影響を与えることがない。このため、ドットの形成位置を高い精度で調整する必要が無く、調整のための機構や制御内容を簡素なものとすることができるので、カラープリンタをいたずらに大型化や複雑化させることを回避することが可能となっている。以下では、こうしたことが可能となる原理について説明し、その後、このようなディザマトリックスを生成するための一つの方法について簡単に説明する。
D.ドットの位置ずれによる画質の悪化を抑制する原理 :
本願発明は、ディザ法を用いて形成した画像について、新たな知見を見出したことが端緒となって完成されたものである。そこで、先ず初めに、本願発明の端緒となった新たに見出された知見について説明する。
図15は、本願発明の端緒となった知見について示した説明図である。図15(a)は、ある階調値の画像を形成するために、所定の密度でドットが形成されている様子を拡大して示している。良好な画質の画像を得るためには、図15(a)に示されているように、ドットが出来るだけ満遍なく分散された状態で形成されている必要がある。
このようにドットを、満遍なく分散された状態で形成するためには、いわゆるブルーノイズ特性を有するディザマトリックスを参照して、ドット形成の有無を判断すればよいことが知られている。ここで、ブルーノイズ特性を有するディザマトリックスとは、次のようなマトリックスを言う。すなわち、ドットを不規則に発生させるとともに、設定されている閾値の空間周波数成分は、1周期が2画素以下の高周波数領域に最も大きな成分を有するディザマトリックスを言う。尚、明るい(明度の高い)画像など、特定の明度付近では規則的なパターンでドットが形成される場合があっても良い。
図16は、ブルーノイズ特性を有するディザマトリックス(以下では、ブルーノイズマトリックスと呼ぶことがあるものとする)の各画素に設定されている閾値の空間周波数特性を概念的に例示した説明図である。尚、図16では、ブルーノイズマトリックスの空間周波数特性に加えて、いわゆるグリーンノイズ特性を有するディザマトリックス(以下では、グリーンノイズマトリックスと呼ぶことがあるものとする)に設定された閾値の空間周波数特性についても併せて表示している。グリーンノイズマトリックスの空間周波数特性については後述することとして、先ずブルーノイズマトリックスの空間周波数特性について説明する。
図16では、表示の都合から、横軸には空間周波数の代わりに周期を取って表示している。言うまでもなく、周期が短くなるほど、空間周波数は高くなる。また、図16の縦軸は、それぞれの周期での空間周波数成分を示している。尚、図示されている周波数成分は、ある程度変化が滑らかとなるように平滑化された状態で示されている。
ブルーノイズマトリックスに設定された閾値の空間周波数成分は、図中では実線によって例示されている。図示されているように、ブルーノイズマトリックスの空間周波数特性は、1周期の長さが2画素以下の高い周波数領域に最も大きな周波数成分を有する特性となっている。ブルーノイズマトリックスの閾値は、このような空間周波数特性を有するように設定されていることから、このような特性を有するマトリックスに基づいてドット形成の有無を判断してやれば、ドットが互いに離れた状態で形成されることになる。
以上のような理由から、ブルーノイズ特性を有するディザマトリックスを参照しながら、各画素についてのドット形成の有無を判断してやれば、図15(a)に例示したように、ドットが万遍なく分散した画像を得ることが可能となる。逆に言えば、図15(a)に示すようにドットを万遍なく分散して発生させるために、ディザマトリックスには、ブルーノイズ特性を有するように調整された閾値が設定されているのである。
尚、ここで、図16に示されたグリーンノイズマトリックスに設定された閾値の空間周波数特性について説明しておく。図16に示された破線の曲線は、グリーンノイズマトリックスの空間周波数特性を例示したものである。図示されているように、グリーンノイズマトリックスの空間周波数特性は、1周期の長さが2画素から十数画素の中間周波数領域に最も大きな周波数成分を有する特性となっている。グリーンノイズマトリックスの閾値は、このような空間周波数特性を有するように設定されていることから、グリーンノイズ特性を有するディザマトリックスを参照しながら各画素のドット形成の有無を判断すると、数ドット単位で隣接してドットが形成されながら、全体としてはドットの固まりが分散した状態で形成されることになる。いわゆるレーザープリンタなどのように、1画素程度の微細なドットを安定して形成することが苦手なプリンタでは、こうしたグリーンノイズマトリックスを参照してドット形成の有無を判断することで、孤立したドットの発生を抑制することができる。その結果、安定した画質の画像を迅速に出力することが可能となる。逆に言えば、レーザープリンタなどでドットの形成有無を判断する際に参照されるディザマトリックスには、グリーンノイズ特性を有するように調整された閾値が設定されている。
以上に説明したように、カラープリンタ200のようなインクジェットプリンタでは、ブルーノイズ特性を有するディザマトリックスが用いられており、従って、得られる画像は図15(a)に示すように、ドットが万遍なく分散した画像となっている。しかし、この画像を、ヘッドの往動時に形成されたドットと、復動時に形成されたドットとに分解してみたところ、往動時に形成されたドットのみによる画像(往動時の画像)、および、復動時に形成されたドットのみによる画像(復動時の画像)は、必ずしもドットが万遍なく分散しているわけではないことが見出された。図15(b)は、図15(a)に示した画像から、往動時に形成されたドットのみを抜き出して得られた画像である。また、図15(c)は、図15(a)に示した画像から、復動時に形成されたドットのみを抜き出して得られた画像である。
図示されているように、往復動のいずれで形成されるドットも合わせれば、図15(a)に示されているように、ドットが万遍なく形成されているにも拘わらず、図15(b)に示した往動時に形成されるドットのみの画像、あるいは、図15(c)に示した復動時に形成されるドットのみの画像は、いずれもドットが偏った状態で発生している。
このように、大きく傾向が異なることは意外ではあるが、次のように考えれば、半ば必然的に生じる現象でもあると思われる。すなわち、前述したようにドットの分布状態は、ディザマトリックスの閾値の設定に依存しており、ディザマトリックスの閾値は、ドットを良好に分散させるために、ブルーノイズ特性を有するような閾値の分布が特別に生成されて設定されている。ここで、ディザマトリックスの閾値の中で、往動時にドットが形成される画素の閾値、あるいは、復動時にドットが形成される画素の閾値を取り出して、それぞれの閾値の分布がブルーノイズ特性を有するような配慮はされていない以上、これら閾値の分布は、ブルーノイズ特性とは異なり、長周期領域で大きな周波数成分を有する特性となってしまうのは、半ば必然的であると考えられる(図16参照)。また、グリーンノイズ特性を有するディザマトリックスも、閾値の分布がグリーンノイズ特性を有するように、特に設定されたマトリックスであることを考えると、往動時あるいは復動時にドットが形成される画素の閾値は、グリーンノイズマトリックスが大きな周波数成分を有する周期よりも、長周期側で大きな周波数成分を有するものと考えられる(図16参照)。結局、ブルーノイズ特性を有するディザマトリックスから、往動時にドットが形成される画素の閾値、あるいは、復動時にドットが形成される画素の閾値を取り出すと、それら閾値の分布は、視覚の感度範囲に大きな周波数成分を有することとなる。このため、たとえ、ドットが万遍なく分散している画像でも、往動時に形成したドットのみ、あるいは復動時に形成したドットのみを抜き出すと、得られる画像はそれぞれ、図15(b)および図15(c)に示したようなドットが偏って発生した画像となってしまうものと考えられる。すなわち、図15に示した現象は、特定のディザマトリックスで生じる特異な現象ではなく、大部分のディザマトリックスで同様な現象が生じるものと考えられるのである。
以上のような、新たな知見と、この知見に対する考察とを踏まえて、他のディザマトリックスについても調査を行った。調査では、結果を定量的に評価するために、粒状性指数と呼ばれる指標を使用している。そこで、調査結果について説明する前に、粒状性指数について簡単に説明しておく。
図17は、人間が有する視覚の空間周波数に対する感度特性VTF(Visual Transfer Function)を概念的に示した説明図である。図示されているように、人間の視覚には高い感度を示す空間周波数が存在しており、空間周波数が高くなると次第に感度が低下する特性がある。また、空間周波数が極端に低い領域においても視覚の感度が低下する特性を有することが知られている。図17(a)には、こうした人間の視覚の感度特性の一例が示されている。こうした感度特性を与える実験式には、種々の実験式が提案されているが、図17(b)に代表的な実験式が示されている。尚、図17(b)中の変数Lは観察距離を表しており、変数uは空間周波数を表している。
こうした視覚の感度特性VTFに基づいて、粒状性指数(すなわち、ドットの目立ち易さを表す指標)を考えることができる。今、ある画像をフーリエ変換してパワースペクトルを求めたものとする。仮に、そのパワースペクトルに大きな周波数成分が含まれていたからといって、直ちに、その画像がドットの目立つ画像となるわけではない。何故なら、図17(a)を用いて前述したように、その周波数が人間の視覚感度の低い領域にあれば、たとえ大きな周波数成分を有していても、ドットがそれほど目立たないからである。逆に、人間の視覚感度が高い周波数では、たとえ、比較的小さな周波数成分しか存在しない場合でも、見る者にとってはドットが目立って感じられる場合もある。このことから、画像をフーリエ変換してパワースペクトルFSを求め、得られたパワースペクトルFSを、人間の視覚感度特性VTFに相当する重みを付けて、各空間周波数で積分してやれば、人間がドットを目立つと感じるか否かを示す指標が得られることになる。粒状性指数とは、このようにして得られた指標であり、図17(c)に示した計算式によって算出することができる。尚、図17(c)中の係数Kは、得られた値を人間の感覚と合わせるための係数である。
図15を用いて前述した現象が、特定のディザマトリックスで生じる特異な現象ではなく、大部分のディザマトリックスでも生じることを確かめるために、ブルーノイズ特性を有する種々のディザマトリックスについて、次のような調査を行った。先ず、双方向印刷によって形成された形成されたドットの中から、図15(b)に示したような往動時に形成されたドットのみによる画像(往動時の画像)を取得する。次いで、得られた画像の粒状性指数を算出する。こうした操作を、画像の階調値を変更しながら種々のディザマトリックスについて行った。
図18は、ブルーノイズ特性を有する種々のディザマトリックスについて、往動時の画像の粒状性指数を調査した結果を示した説明図である。図18には、解像度の異なる3つのディザマトリックスについて得られた結果のみが示されている。図18(a)に示したディザマトリックスAは、主走査方向の解像度1440dpi、副走査方向の解像度720dpiで印刷するためのディザマトリックスであり、図18(b)に示したディザマトリックスBは、主走査方向および副走査方向何れの解像度も1440dpiで印刷するために用いられるディザマトリックスである。また、図18(c)に示したディザマトリックスCは、主走査方向の解像度720dpi、副走査方向の解像度1440dpiで印刷するためのディザマトリックスである。尚、図18では、横軸に小ドットの形成密度を取って表示しており、表示された小ドットの形成密度40%以下の領域は、ドットが比較的目立ち易いとされるハイライト領域から中間階調領域の手前までの領域に相当している。
図18に示された3つの往動時の画像は、それぞれ異なる解像度で印刷するために別個に作成されたディザマトリックスから生成されたものであるにも拘わらず、何れも粒状性指数が悪化する領域(すなわち、ドットが目立ち易くなっている領域)が存在している。このような領域では、往動時の画像は、図15(b)に示したようにドットが偏って発生しているものと考えられる。結局、図18に示した3つのディザマトリクスは何れもブルーノイズ特性を有しており、従って、双方向印刷によって形成される画像はドットが偏らずに形成されたものであるにも拘わらず、少なくとも一部の階調領域では、往動時の画像あるいは復動時の画像はドットが偏って発生したものとなっている。このことから、図15を用いて前述した現象は、特定のディザマトリックスで生じる特異な現象ではなく、大部分のディザマトリックスで生じる一般的な現象であると考えられる。そして、このように往動時の画像あるいは復動時の画像ではドットが偏って発生することを踏まえると、このことが、双方向印刷時のドットの位置ずれによる画質の悪化に影響を与えている可能性が考えられる。そこで、双方向印刷時のドット形成位置を意図的にずらして形成した画像(位置ずれ画像)の粒状性指数と、往動時の画像の粒状性指数との間に、何らかの相関が見られるか否かを調査してみた。
図19は、位置ずれ画像の粒状性指数と、往動時の画像の粒状性指数との相関関係を調査した結果を示す説明図である。図19(a)は、図18(a)に示したディザマトリックスAについて調査した結果を示しており、図中の黒丸は位置ずれ画像の粒状性指数を、図中の白丸は往動時の画像についての粒状性指数をそれぞれ表している。また、図19(b)は、図18(b)に示したディザマトリックスBについて調査した結果を示しており、黒四角は位置ずれ画像の粒状性指数を、白四角は往動時画像の粒状性指数を表している。図19から明らかなように、何れのディザマトリックスについても、位置ずれ画像の粒状性指数と、往動時の画像についての粒状性指数との間には、驚くほど強い相関が見られる。このことから、双方向印刷時のドットの位置ずれによって画質が悪化する現象は、往動時の画像と復動時の画像との相対位置がずれることによって双方の画像のドットの偏りが顕在化することが、大きな要因の一つになっているものと考えられる。逆には、往動時の画像および復動時の画像のドットの偏りを低減しておけば、たとえ双方向印刷時にドットの位置ずれが生じた場合でも、画質の悪化を抑制することができるものと考えられる。
図20は、往動時の画像および復動時の画像のドットの偏りを低減しておけば、双方向印刷時にドットの位置ずれが生じた場合の画質悪化を抑制可能なことを示す説明図である。図20(a)には、ドットの位置ずれが無い状態で双方向印刷を行った画像と、ドットの形成位置を意図的に所定量だけずらした状態で印刷した画像とが、比較して示されている。また、図20(b)および図20(c)には、図20(a)に示した画像を、ヘッドの往動時に形成したドットのみによる画像(往動時の画像)と、復動時に形成したドットのみによる画像(復動時の画像)とに分解して得られた画像が、それぞれ示されている。
図20(b)および図20(c)に示されているように、往動時の画像も復動時の画像も、何れもドットが万遍なく分散した画像となっている。また、図20(a)の左側に示したように、ドットの位置ずれの無い状態では、往動時の画像と復動時の画像とを合成して得られる画像(すなわち、双方向印刷で得られる画像)も、ドットが万遍なく分散した画像となっている。このように、双方向印刷を行って得られた画像だけでなく、往動時の画像と復動時の画像とに分解した場合でも、それぞれの画像でドットが万遍なく分散するような画像は、図11の階調数変換処理において、後述するような特性を有するディザマトリックスを参照してドット形成の有無を判断することで得ることができる。そして、図20(a)の右側に示された画像は、このような往動時の画像と復動時の画像とを、所定量だけずらした状態で重ね合わせた画像に相当している。
図20(a)に示された位置ずれ無しの画像(左側の画像)と、位置ずれ有りの画像(右側の画像)とを比較すれば、右側の画像は、ドットの位置がずれることで、ずれのない左側の画像よりも若干ドットが目立ち易くなっているが、画質を大きく悪化させる程ではないことが了解される。このことは、往動時の画像および復動時の画像に分解した場合でも、でドットが万遍なく分散しているようにドットを発生させておけば、たとえ双方向印刷時にドットの位置ずれが生じても、これによる画質の悪化を大幅に抑制可能であることを示していると考えられる。
参考として、一般的なディザマトリックスを用いて形成した画像では、図20に示した場合と同じだけドットの位置ずれが生じたとしたときに、どの程度、画質が悪化するかを調べてみた。図21は、一般的なディザマトリックスで形成した画像で、ドットの位置ずれの有無による画質の悪化を示した説明図である。図21(a)に示した位置ずれ無しの画像(左側の画像)は、図15に示した往動時の画像と復動時の画像とを、位置ずれさせずに重ね合わせた画像である。また、図21(a)に示した位置ずれ有りの画像(右側の画像)は、往動時の画像と復動時の画像とを、図20に示した場合と同じだけ位置をずらした状態で重ね合わせた画像である。尚、図21(b)および図21(c)には、それぞれの往動時の画像および復動時の画像が示されている。
図21から明らかなように、往動時の画像および復動時の画像でドットが偏って発生していると、双方向印刷時にドットの形成位置がずれると、画質が大きく悪化したときに画質が大きく悪化してしまうことが確認できる。また、図20と図21とを比較すれば、往動時の画像および復動時の画像でドットを万遍なく分散させておくことで、ドットの位置ずれによる画質の悪化を、劇的に改善可能であることが了解できる。
本実施例のカラープリンタ200では、このような原理に基づいて、双方向印刷時のドットの位置ずれによる画質の悪化を、最小限に抑制することが可能となっているのである。このため、双方向印刷時に、往動時に形成されるドットと、復動時に形成されるドットとの形成位置を高い精度で一致させずとも、画質が悪化することが無い。その結果、ドットの位置ずれを精度良く調整するための機構や制御プログラムが不要となるので、プリンタの構成を簡素なものとすることが可能となる。更には、ヘッドを往復動させるための機構についても要求される精度を下げることが可能となり、この点でも、プリンタの構成の簡素化を図ることが可能となるのである。
E.ディザマトリックスの生成方法 :
次に、本実施例の階調数変換処理で参照されるディザマトリックスの生成方法について、その一例を簡単に説明しておく。すなわち、本実施例の階調数変換処理では、往動時に形成するドットについても、復動時に形成するドットについても、更には、これらを合わせたドットについても、万遍なく分散した状態でドットを発生させるために、次のような2つの特性を有するディザマトリックスを参照して階調変換処理を行っている。
[第1の特性]:ディザマトリックスの画素位置を、第1の画素位置のグループと、第2の画素位置のグループとに分類することが可能である。ここで、第1の画素位置および第2の画素位置とは、互いに、往動時または復動時の何れかでドットが形成されるとき、他方がそれ以外でドットが形成されるような関係にある画素位置をいう。
[第2の特性]:ディザマトリックスと、該ディザマトリックスから第1の画素位置に設定されている閾値を抜き出したマトリックス(第1の画素位置のマトリックス)と、第2の画素位置に設定されている閾値を抜き出したマトリックス(第2の画素位置のマトリックス)とが、何れもブルーノイズ特性あるいはグリーンノイズ特性を有している。なお、これらディザマトリックスは、特定の明度付近であれば、規則的なパターンでドットが形成される場合があっても良い。
前述したように、このような特性を有するディザマトリックスは、決して偶然に生成可能なわけではないので、こうしたディザマトリックスを生成する方法について、一例を簡単に説明しておく。
図22は、本実施例の階調数変換処理で参照されるディザマトリックスを生成する処理の流れを示すフローチャートである。尚、ここでは、ブルーノイズ特性を有する既存のディザマトリックスを元にして、上述した[第1の特性]および[第2の特性]が得られるように、修正を加える方法について説明する。もっとも、元になるマトリックスを修正するのではなく、[第1の特性]および[第2の特性]を有するディザマトリックスを初めから生成することも可能である。また、ここでは、ブルーノイズ特性を有するマトリックスを元にした場合について説明するが、グリーンノイズ特性を有するディザマトリックスを元にする場合も、ほぼ同様にすれば、上記の特性を有するディザマトリックスを得ることができる。
ディザマトリックス生成処理を開始すると、先ず初めに元になるディザマトリックスを読み込む(ステップS200)。かかるマトリックスは、全体としてはブルーノイズ特性を有しているものの、第1の画素位置のマトリックス(ディザマトリックスから第1の画素位置に設定されている閾値を抜き出したマトリックス)、および、第2の画素位置のマトリックス(ディザマトリックスから前述した第2の画素位置に設定されている閾値を抜き出したマトリックス)は、何れもブルーノイズ特性を有していないマトリックスである。尚、前述したように、第1の画素位置および第2の画素位置とは、互いに、往動時または復動時の何れかでドットが形成されるとき、他方がそれ以外でドットが形成されるような関係にある画素位置をいう。
次いで、読み込んだマトリックスをマトリックスAとして設定する(ステップS202)。そして、ディザマトリックスAから、2つの画素位置(画素位置Pおよび画素位置Q)をランダムに選択し(ステップS204)、選択した画素位置Pに設定されている閾値と、選択した画素位置Qに設定されている閾値とを入れ換えて、得られたマトリックスをマトリックスBとする(ステップS206)。
次いで、マトリックスAについての粒状性評価値Evaを算出する(ステップS208)。ここで、粒状性評価値とは次のようにして求めた評価値である。先ず、階調値0〜255の256通りの画像にディザ法を適用して、ドットの形成有無によって表現された256通りの画像を得る。次いで、各画像を往動時の画像と、復動時の画像とに分解する。この結果、「0」〜「255」までの各階調値について、往動時の画像と、復動時の画像と、これらを重ね合わせた画像(合計の画像)とが得られることになる。こうして得られた768個(=256×3)の画像について、図17を用いて前述した粒状性指数を算出した後、これらの平均値を求めて得られた値を粒状性評価値とする。尚、粒状性評価値の算出に際しては、768個の粒状性指数を単純に算術平均するのではなく、往動時の画像、復動時の画像、合計の画像毎にそれぞれの重みを付けて平均しても良い。あるいは、特定の階調値(例えば、ドットが比較的目立ち易いと言われる低階調領域)については、大きな重み係数をかけて、平均することとしても良い。図22のステップS208では、マトリックスAについてこのような粒状性評価値を求めて、得られた値を粒状性評価値Evaとするのである。
マトリックスAについての粒状性評価値Evaが得られたら、マトリックスBについても同様にして粒状性評価値Evbを算出する(ステップS210)。次いで、マトリックスAについての粒状性評価値Evaと、マトリックスBについての粒状性評価値Evbとを比較する(ステップS212)。そして、粒状性評価値Evaの方が大きいと判断された場合は(ステップS212:yes)、元になったマトリックスAよりも、2つの画素位置に設定された閾値を入れ換えたマトリックスBの方が、より好ましい特性を有するものと考えられる。そこで、この場合は、マトリックスBをマトリックスAと読み替える(ステップS214)。一方、マトリックスAの粒状性評価値Evaよりも、マトリックスBの粒状性評価値Evbの方が大きいと判断された場合は(ステップS212:no)、マトリックスの読み替えは行わない。
こうして、マトリックスAの粒状性評価値EvaがマトリックスBの粒状性評価値Evbよりも大きいと判断された場合にだけ、マトリックスBをマトリックスAと読み替える操作を行ったら、粒状性評価値が収束したか否かを判断する(ステップS216)。すなわち、元にしたディザマトリックスは、往動時に形成したドット、および復動時に形成したドットが偏って発生しているため、以上のような操作を開始した直後では、粒状性評価値は大きな値を取る。しかし、2箇所の画素位置に設定されている閾値を入れ換えることで、より小さな粒状性評価値が得られた場合には、閾値を入れ換えたマトリックスを採用し、このマトリックスについて更に上述した操作を繰り返していけば、得られる粒状性評価値は小さくなっていき、やがてある値で安定するものと考えられる。ステップS216では、粒状性評価値が安定したか否か、換言すれば、下げ止まったものと考えられるか否かを判断するのである。粒状性評価値が収束したか否かは、例えば、マトリックスAの粒状性評価値EvaよりもマトリックスBの粒状性評価値Evbの方が小さくなった場合について、粒状性評価値の減少量を求めておき、この減少量が複数回の操作に亘って安定して一定値以下となっていれば、粒状性評価値が収束したものと判断することができる。
そして、粒状性評価値が収束していないと判断された場合は(ステップS216:no)、ステップS204に戻って、新たに2つの画素位置を選択した後、続く一連の操作を繰り返す。こうして操作を繰り返していく間に、やがて粒状性評価値が収束していき、粒状性評価値が収束したと判断されたら(ステップS216:yes)、そのときのマトリックスAは、前述した[第1の特性]および[第2の特性]を有するディザマトリックスとなっている。そこで、このマトリックスAを記憶して(ステップS218)、図22に示したディザマトリックス生成処理を終了する。
このようにして得られたディザマトリックスを参照して、階調数変換処理を行い、画素毎にドット形成の有無を判断してやれば、全体の画像は言うに及ばず、往動時の画像や復動時の画像についても、ドットが良好に分散した画像を得ることができる。このため、たとえ双方向印刷時にドットの形成位置が多少ずれたとしても、そのことが画質に与える影響を最小限に抑制することが可能となる。
なお、本実施例では、ディザマトリックスの評価に使用される粒状性評価値Evaは、視覚の感度特性VTFを用いた主観的な評価値である粒状性指数に基づいて算出されているが、たとえば濃度分布の標準偏差であるRMS粒状度に基づいて算出するようにしても良い。
粒状性指数は、周知な方法であって、従来から広く使用されている評価指数である。しかし、粒状性指数の計算は、前述のように、画像をフーリエ変換してパワースペクトルFSを求め、得られたパワースペクトルFSを、人間の視覚感度特性VTFに相当する重みを付けて各空間周波数で積分する必要があるため、計算量が非常に多くなるという問題を有する。一方、RMS粒状度は、ドットの疎密のバラツキを表す客観的な尺度であって、解像度に応じて設定された平滑化フィルタによる平滑化処理と、ドット形成密度の標準偏差の計算だけで簡単に算出することができるので、繰り返し計算の多い最適化処理に好適である。加えて、RMS粒状度の利用は、人間の視覚感度特性VTFを利用した固定的な処理に対して、平滑化フィルタの設計次第で人間の視覚感度や視覚環境を考慮した柔軟な処理が可能となるという利点をも有する。
F.変形例 :
以上、本発明のいくつかの実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形例が可能である。
上述の実施例では、ディザマトリックスを用いてハーフトーン処理が行われているが、たとえば誤差拡散を利用してハーフトーン処理を行う場合にも本発明は適用することができる。誤差拡散の利用は、たとえば複数の画素位置のグループ毎に誤差拡散処理を行うようにして実現することができる。
具体的には、通常の誤差拡散に加えて複数の画素位置のグループ毎にも別途誤差を拡散する処理を行っても良いし、あるいは複数の画素位置のグループに属する画素に対して拡散される誤差の重み付けを大きくするようにしても良い。このように構成しても、誤差拡散法の本来的な特性によって、各階調値において、複数の画素グループの各々に属する印刷画素に形成されるドットパターンのいずれもが所定の特性を有するようにすることができるからである。
なお、上記実施例のディザ法では、ディザマトリックスに設定されている閾値と画像データの階調値とを画素毎に比較することによって、画素毎にドット形成の有無を判断しているが、たとえば閾値と階調値の和を固定値と比較してドット形成の有無を判断するようにしても良い。さらに、閾値を直接使用することなく閾値に基づいて予め生成されたデータと、階調値とに応じてドット形成の有無を判断するようにしても良い。本発明のディザ法は、一般に、各画素の階調値と、ディザマトリックスの対応する画素位置に設定された閾値とに応じてドットの形成の有無を判断するものであれば良い。
本実施例の印刷装置としての印刷システムの概要を示した説明図。 本実施例の画像処理装置としてのコンピュータの構成を示す説明図。 本実施例のカラープリンタの概略構成を示す説明図。 インク吐出用ヘッドにおけるインクジェットノズルの配列を示す説明図。 比較例のドットの記録方式を示す説明図。 本発明の第1実施例のドットの記録方式を示す説明図。 本発明の第2実施例のドットの記録方式を示す説明図。 本発明の第3実施例のドットの記録方式を示す説明図。 本発明の第4実施例のドットの記録方式を示す説明図。 本発明の第5実施例のドットの記録方式を示す説明図。 本実施例の画像印刷処理の流れを示すフローチャート。 色変換処理のために参照されるLUTを概念的に示した説明図。 ディザマトリックスの一部を概念的に例示した説明図。 ディザマトリックスを参照しながら各画素についてのドット形成の有無を判断している様子を概念的に示した説明図。 本願発明の端緒となった知見について示した説明図。 ブルーノイズ特性を有するディザマトリックスの各画素に設定されている閾値の空間周波数特性を概念的に例示した説明図。 人間が有する視覚の空間周波数に対する感度特性VTFを概念的に示した説明図。 ブルーノイズ特性を有する種々のディザマトリックスについて往動時の画像の粒状性指数を調査した結果を示した説明図。 位置ずれ画像の粒状性指数と往動時の画像の粒状性指数との相関関係を調査した結果を示す説明図。 双方向印刷時にドットの位置ずれが生じた場合でも画質悪化を抑制可能な原理を示す説明図。 一般的なディザマトリックスで形成した画像でドットの位置ずれの有無による画質の悪化を示した説明図。 本実施例の階調数変換処理で参照されるディザマトリックスを生成する処理の流れを示すフローチャート。
符号の説明
10…プリンタ、 20…デジタルカメラ、 30…コンピュータ、
100…コンピュータ、 108…周辺機器インターフェースPIF、
109…ディスクコントローラDDC、
110…ネットワークインターフェースカードNIC、
112…ビデオインターフェースVIF、
116…バス、 118…ハードディスク、 120…デジタルカメラ、
122…カラースキャナ、 124…フレキシブルディスク、
126…コンパクトディスク、 230…キャリッジモータ、 235…モータ、
236…プラテン、 240…キャリッジ、 241…印字ヘッド、
242…インクカートリッジ、 243…インクカートリッジ、
244、251、252…インク吐出用ヘッド、 260…制御回路
200…カラープリンタ
300…通信回線、 310…記憶装置

Claims (5)

  1. 主走査と副走査を行いつつ印刷媒体上に印刷を行う印刷装置であって、
    同一色のドットを形成するための複数のノズルが前記副走査の方向に異なる位置に配置された1つ以上のノズル列を有する印刷ヘッドと、
    前記印刷媒体と前記印刷ヘッドを相対的に前記主走査方向に移動させることによって主走査を行う主走査部と、
    前記印刷媒体と印刷ヘッドを相対的に前記副走査方向に移動させることによって副走査を行う副走査部と、
    前記印刷ヘッドの主走査の往動時に前記複数のノズルのうちの少なくとも一部のノズルを駆動して往動時ドットの形成を行わせると共に、前記印刷ヘッドの主走査の復動時に前記複数のノズルのうちの少なくとも一部のノズルを駆動して復動時ドットの形成を行わせるヘッド駆動部と、
    元画像を構成する各画素の階調値を表す画像データに対してディザマトリックスを用いたハーフトーン処理を行うことによって、前記印刷媒体上に形成されるべき印刷画像の各印刷画素への前記往動時ドットおよび前記復動時ドットの形成状態を決定するとともに、前記決定された前記往動時ドットおよび前記復動時ドットの形成状態を表すドットデータを生成するドットデータ生成部と、
    を備え、
    前記ドットデータ生成部は、主走査方向に並んだドットによって形成される主走査ラインのそれぞれが、前記ノズル列内の一つのノズルにより形成される往動時ドットと、該往動時ドットとは前記副走査方向に異なる位置のノズルにより形成される復動時ドットの双方で形成されるように前記ドットデータを生成し、
    前記ディザマトリックスは、前記往動時ドットのみにより形成される第1の画像と、前記復動時ドットのみにより形成される第2の画像と、前記第1の画像と前記第2の画像とを重ねた印刷画像と、のいずれもが、ブルーノイズ特性を有するように、粒状性指数を規定する同一の評価指数を用いて設定されている
    印刷装置。
  2. 請求項1記載の印刷装置であって、
    前記ドットデータ生成部は、さらに、前記往動時ドットと前記復動時ドットのいずれかにおいて、副走査方向の連続数が主走査方向の連続数よりも大きくなるように、前記ドットデータを生成する、印刷装置。
  3. 請求項1記載の印刷装置であって、
    前記印刷部は、さらに、副走査方向に並んだドットによって形成される副走査ラインのそれぞれが、前記往動時ドットと前記復動時ドットのいずれか一方のみによって構成される印刷装置。
  4. 請求項1ないし3のいずれかに記載の印刷装置であって、
    前記印刷部は、さらに、前記印刷画素の副走査方向の長さをWPとするとき、WP×(N(N は負でない整数)+1/2)の一定の副走査送り量で副走査送りを行う印刷装置。
  5. 同一色のドットを形成するための複数のノズルが前記副走査の方向に異なる位置に配置された1つ以上のノズル列を有する印刷ヘッドを用いて主走査と副走査を行いつつ印刷媒体上に印刷を行う印刷方法であって、
    前記印刷媒体と前記印刷ヘッドを相対的に前記主走査方向に移動させることによって主走査を行う主走査工程と、
    前記印刷媒体と印刷ヘッドを相対的に前記副走査方向に移動させることによって副走査を行う副走査工程と、
    前記印刷ヘッドの主走査の往動時に前記複数のノズルのうちの少なくとも一部のノズルを駆動して往動時ドットの形成を行わせると共に、前記印刷ヘッドの主走査の復動時に前記複数のノズルのうちの少なくとも一部のノズルを駆動して復動時ドットの形成を行わせるヘッド駆動工程と、
    元画像を構成する各画素の階調値を表す画像データに対してディザマトリックスを用いたハーフトーン処理を行うことによって、前記印刷媒体上に形成されるべき印刷画像の各印刷画素への前記往動時ドットおよび前記復動時ドットの形成状態を決定するとともに、前記決定された前記往動時ドットおよび前記復動時ドットの形成状態を表すドットデータを生成するドットデータ生成工程と、
    を備え、
    前記ドットデータ生成工程は、主走査方向に並んだドットによって形成される主走査ラインのそれぞれが、前記ノズル列内の一つのノズルにより形成される往動時ドットと、該往動時ドットとは前記副走査方向に異なる位置のノズルにより形成される復動時ドットの双方で形成されるように前記ドットデータを生成し、
    前記ディザマトリックスは、前記往動時ドットのみにより形成される第1の画像と、前記復動時ドットのみにより形成される第2の画像と、前記第1の画像と前記第2の画像とを重ねた印刷画像と、のいずれもが、ブルーノイズ特性を有するように、粒状性指数を規定する同一の評価指数を用いて設定されている
    印刷方法。
JP2006204143A 2006-07-27 2006-07-27 印刷装置および印刷方法 Expired - Fee Related JP4660436B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006204143A JP4660436B2 (ja) 2006-07-27 2006-07-27 印刷装置および印刷方法
US11/881,186 US20080024826A1 (en) 2006-07-27 2007-07-25 Image processing device and printing apparatus for performing bidirectional printing
CNA2007101381180A CN101112823A (zh) 2006-07-27 2007-07-26 用于进行双向打印的图像处理装置和打印装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204143A JP4660436B2 (ja) 2006-07-27 2006-07-27 印刷装置および印刷方法

Publications (2)

Publication Number Publication Date
JP2008030254A JP2008030254A (ja) 2008-02-14
JP4660436B2 true JP4660436B2 (ja) 2011-03-30

Family

ID=38985915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204143A Expired - Fee Related JP4660436B2 (ja) 2006-07-27 2006-07-27 印刷装置および印刷方法

Country Status (3)

Country Link
US (1) US20080024826A1 (ja)
JP (1) JP4660436B2 (ja)
CN (1) CN101112823A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434058B2 (ja) 2008-12-04 2014-03-05 セイコーエプソン株式会社 印刷装置及びディザマスク
US8531743B2 (en) * 2010-10-18 2013-09-10 Xerox Corporation System and method for detecting missing inkjets in an inkjet printer using image data of printed documents without a priori knowledge of the documents
JP5793870B2 (ja) * 2011-01-24 2015-10-14 セイコーエプソン株式会社 印刷装置及び印刷方法
JP5750969B2 (ja) * 2011-03-24 2015-07-22 セイコーエプソン株式会社 画像処理装置、印刷装置、画像処理方法および画像処理プログラム
CN107209955B (zh) * 2015-04-16 2021-06-18 惠普发展公司有限责任合伙企业 用于三维半色调化的三维阈值矩阵
JP6631164B2 (ja) * 2015-10-30 2020-01-15 セイコーエプソン株式会社 記録装置、記録方法
JP6812149B2 (ja) * 2016-06-30 2021-01-13 オリンパス株式会社 走査型顕微鏡、及び、走査型顕微鏡の制御方法
CN109435517B (zh) * 2018-12-19 2020-11-03 深圳市汉森软件有限公司 双向回旋打印控制方法及装置
CN112622276B (zh) * 2020-11-30 2022-08-09 北京恒创增材制造技术研究院有限公司 一种用于3dp多色打印的彩色模型最大色差表示方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071140A1 (en) * 1998-06-03 2002-06-13 Takashi Suzuki Threshold matrix, and method and apparatus of reproducing gray levels using threshold matrix
EP1059803B1 (en) * 1999-06-07 2007-07-18 Canon Kabushiki Kaisha Image recording apparatus and image recording method
JP3800874B2 (ja) * 1999-07-30 2006-07-26 セイコーエプソン株式会社 印刷装置、印刷方法および記録媒体
JP2001129985A (ja) * 1999-08-24 2001-05-15 Canon Inc プリント位置調整方法並びに該方法を用いるプリント装置およびプリントシステム
JP2001130112A (ja) * 1999-11-04 2001-05-15 Seiko Epson Corp ドット間の形成位置ずれを調整する印刷装置
JP4931164B2 (ja) * 2000-08-30 2012-05-16 キヤノン株式会社 マスクパターンの製造方法
JP4931165B2 (ja) * 2000-08-31 2012-05-16 キヤノン株式会社 画像記録装置および画像処理装置
US6749280B2 (en) * 2001-12-14 2004-06-15 Fuji Xerox Co., Ltd. Recording apparatus, recording method therefor and program therefor
JP4822712B2 (ja) * 2004-04-19 2011-11-24 株式会社リコー 画像形成装置、画像処理方法及びプログラム
RU2337009C2 (ru) * 2004-07-06 2008-10-27 Кэнон Кабусики Кайся Способ обработки данных, устройство обработки данных, способ генерации маски и шаблон маски
JP2006027193A (ja) * 2004-07-21 2006-02-02 Konica Minolta Holdings Inc インクジェット記録方法及びインクジェット記録装置
JP4375167B2 (ja) * 2004-08-27 2009-12-02 コニカミノルタホールディングス株式会社 画像形成装置、画像形成方法及び画像形成プログラム
JP4635762B2 (ja) * 2005-02-09 2011-02-23 セイコーエプソン株式会社 双方向印刷を行うための画像処理装置および印刷装置
US20060203280A1 (en) * 2005-02-25 2006-09-14 Matsushita Electric Industrial Co., Ltd. Image printing apparatus and image printing method
US7513589B2 (en) * 2007-01-31 2009-04-07 Hewlett-Packard Development Company, L.P. Multipass printing

Also Published As

Publication number Publication date
US20080024826A1 (en) 2008-01-31
JP2008030254A (ja) 2008-02-14
CN101112823A (zh) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4635762B2 (ja) 双方向印刷を行うための画像処理装置および印刷装置
JP4675296B2 (ja) 印刷装置および印刷方法
JP4660436B2 (ja) 印刷装置および印刷方法
JP4604940B2 (ja) 双方向印刷を行うための画像処理装置および印刷装置
JP4660439B2 (ja) 印刷装置および印刷方法
JP5741112B2 (ja) 印刷装置、印刷方法、印刷データ生成プログラム、ディザマスクの生成方法
JP5045790B2 (ja) 双方向印刷を行うための画像処理装置および印刷装置
JP4535011B2 (ja) 高画質ハーフトーン処理
US8462387B2 (en) Image processing device, printing apparatus, and image processing method
JP3711441B2 (ja) 印刷制御装置
JP2008162151A (ja) 同一色のインクを吐出する複数のノズルグループを備える印刷装置及び印刷方法
JP2005125658A (ja) 画像処理装置、画像処理方法、印刷装置、印刷方法、およびこれら方法を実現するためのプログラム
JP2011109602A (ja) 画像処理装置及び画像処理方法
JP5703579B2 (ja) 印刷装置、印刷方法、印刷データ生成プログラム、ディザマスクの生成方法
WO2000019704A1 (fr) Dispositif et procede de traitement d'images, et imprimante
JP5741461B2 (ja) 印刷装置及び印刷方法
JP2011124744A (ja) ディザマスクの生成方法、印刷装置およびそのプログラム
JP5504858B2 (ja) 印刷装置、印刷方法、コンピュータープログラム
JP6131216B2 (ja) 同一色のインクを吐出する複数のノズルグループを備える印刷装置及び印刷方法
JP4107302B2 (ja) 印刷装置、画像処理装置、印刷方法、画像処理方法、および変換テーブルの作成方法
US20090135439A1 (en) Method And Apparatus For Printing A High Resolution Image With A Printhead In A Multi-Pass Printing Mode
JP2011121250A (ja) ディザマスクの生成方法、印刷装置およびそのプログラム
US7362473B2 (en) Image processing technique for tone number conversion of image data
JP5564771B2 (ja) 印刷装置、印刷方法、コンピュータプログラム、記録媒体、印刷媒体、および、プリンタ
JP4521909B2 (ja) 印刷装置および印刷方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090416

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees