JP4645600B2 - ポリエチレンテレフタレートの製造方法 - Google Patents

ポリエチレンテレフタレートの製造方法 Download PDF

Info

Publication number
JP4645600B2
JP4645600B2 JP2007023184A JP2007023184A JP4645600B2 JP 4645600 B2 JP4645600 B2 JP 4645600B2 JP 2007023184 A JP2007023184 A JP 2007023184A JP 2007023184 A JP2007023184 A JP 2007023184A JP 4645600 B2 JP4645600 B2 JP 4645600B2
Authority
JP
Japan
Prior art keywords
solid phase
temperature
polyethylene terephthalate
phase polycondensation
stage solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007023184A
Other languages
English (en)
Other versions
JP2007327029A (ja
Inventor
寿 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007023184A priority Critical patent/JP4645600B2/ja
Publication of JP2007327029A publication Critical patent/JP2007327029A/ja
Application granted granted Critical
Publication of JP4645600B2 publication Critical patent/JP4645600B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、低分子量のポリエチレンテレフタレートを固体状態で熱処理することにより高分子量のポリエチレンテレフタレートを製造する方法に関する。詳しくは、低分子量のポリエチレンテレフタレートプレポリマーを特定条件で段階的に熱処理して固相重縮合反応を行うことにより、常法よりも短時間で高分子量のポリエチレンテレフタレートを製造できる方法に関するものである。
ポリエチレンテレフタレート(以下「PET」と略すことがある)は、機械的強度、化学的安定性等その優れた特性により数多くの材料及び製品、例えば繊維、生地、成形用樹脂及び飲料用ボトルなどで幅広く用いられている。そして、PETは、その用途に応じて必要とされる分子量(固有粘度)が異なり、例えば、ボトル用では通常0.70〜0.95dL/gであり、タイヤコード用では通常0.95〜1.20dL/gであるとされている。
そのため上記用途に必要な成形加工性、機械的特性を引き出すためには、分子量(固有粘度)を所定のレベルにまで上げる必要があり、その方法としてポリエチレンテレフタレートの原料を溶融重縮合して得られるPETプレポリマーを引き続き固相重縮合し、高分子化する方法が工業的に広く用いられている。固相重縮合は、通常溶融重縮合によって得られたPETプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理することにより行われるが、所望の分子量に達するのに比較的長時間を要するために、より生産性に優れた製造方法が望まれている。かかる方法として、溶融重縮合で比較的低重合度のPETプレポリマーを得、このプレポリマーを高温で固相重縮合する方法が提案されている。
例えば、特許文献1には、溶融重縮合で得られた平均重合度約5から約35(固有粘度約0.10から0.36dL/g)の低分子量プレポリマーを、見掛け結晶子サイズが9nm以上となるように結晶化させてから固相重縮合する方法が開示されている。しかしながら、我々の検討によれば、この方法では固相重縮合開始時の重合度が低すぎるためか、あるいは結晶が成長して分子の移動が抑制されるためか、必ずしも満足な固相重縮合反応速度は得られない。
また、特許文献2には、固有粘度0.08から0.5dL/gのPETプレポリマーの粒子をそのガラス転移温度より140℃以上の高温で固相重縮合することが記載されているが、この場合、プレポリマーの平均粒子径が1mm程度以上で、粒子同士が融着しない程度の温度範囲では必ずしも十分な固相重縮合反応速度が得られない。
更に、特許文献3には、重合の進行が結晶化の進行より優先される固相重縮合方法、即ち、低分子量PETプレポリマー粒子を熱伝達媒体と接触させて約205℃〜240℃の範囲の温度まで10分未満で昇温した後、不活性ガス流中で固相重縮合する方法が開示されている。しかしながら、この方法では、熱衝撃を与えて約205℃〜240℃の範囲の温度まで極めて短時間で昇温するため、粒子同士が融着しやすく、これを防止するためには、PETプレポリマー粒子同士を接触させないように特別の設備的工夫が要ること、また、この方法では固相重縮合反応に要する時間を短縮する効果が得られないことなど、必ずしも満足できる方法ではなかった。
一方、特許文献4には、PETを固相重縮合することにより分子量を高める方法に係わり、その固相重縮合工程において連続した2段以上の移動床を用いる熱処理工程が開示されているが、この開示された技術は固有粘度が概ね0.5〜0.65dL/gである中程度の分子量のPETプレポリマー粒子を固相重縮合するにあたり粒子同士が融着しないように段階的に昇温するものであり、重縮合反応速度は必ずしも改良されるものではない。また、この中程度の分子量のプレポリマーを得るには、その溶融重縮合設備は低分子量のプレポリマーを得る設備より高価になるので、総合的な観点から必ずしも満足できる方法ではなかった。
特許3626758号公報 特開2004−67997号公報 特表2004-537622号公報 米国特許5408035号公報
本発明の課題は、上記技術背景に鑑み、低分子量のポリエチレンテレフタレートプレポリマー粒子を熱処理して、粒子の融着を生ずることなく大きな重縮合反応速度で固相重縮合し、より高分子量のポリエチレンテレフタレートを効率良く製造しうる工業的に有用な製造方法を提供することである。
本発明者は上記課題に鑑み、固相重縮合における条件を詳細に検討し、「第1段固相重縮合工程」、「昇温工程」及び「第2段固相重縮合工程」をこの順で含み、昇温工程の昇温条件を特定の範囲にすることにより、第2段固相重縮合工程の反応速度が大きくなり、常法よりも短時間で高分子量のポリエチレンテレフタレートを製造できることを見出し、本発明に到達した。即ち、本発明は以下を要旨とする。
固有粘度が0.18dL/g以上0.40dL/g以下のポリエチレンテレフタレートプレポリマーを、固体状態で熱処理して固有粘度を0.70dL/g以上とするポリエチレンテレフタレートの製造方法であって、固体状態での熱処理が、第1段固相重縮合工程、昇温工程、及び第2段固相重縮合工程をこの順で含み、かつ、各々の工程が下記1)〜3)を満足することを特徴とするポリエチレンテレフタレートの製造方法。
1)第1段固相重縮合工程が、ポリエチレンテレフタレートプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理する工程であり、かつその熱処理の温度(T1)が190℃以上225℃以下の工程である。
2)昇温工程が、第1段固相重縮合工程を経たポリエチレンテレフタレートプレポリマーを不活性ガス雰囲気下又は減圧下で、第1段固相重縮合工程の熱処理の温度(T1)又はそれ以下の温度から昇温を開始して温度(T2)まで昇温する工程であり、温度T1(℃)から(T1+15)℃までを30分以内で昇温し、かつ温度T1(℃)及びT2(℃)が下記(式1)及び(式2)を満足する工程である。
T1+15≦T2 (式1)
205℃≦T2≦240℃ (式2)
3)第2段固相重縮合工程が、第1段固相重縮合工程及び昇温工程を経たポリエチレンテレフタレートプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理する工程であり、かつ、その熱処理の温度(T3)が190℃以上240℃以下の工程である。
本発明によれば、溶融重縮合によって得られた低分子量のPETプレポリマー粒子を融着させることなく、大きな重縮合反応速度で固相重縮合を行って高分子量のPETを効率的に製造することができる。
即ち、本発明のPETの製造方法は、溶融重縮合によって得られたPETプレポリマー粒子を不活性ガス雰囲気下又は減圧下で熱処理、即ち固体状態で重縮合(固相重縮合)を進めることにより、各種の用途に適した所望の高分子量のPETを効率よく製造する方法であり、その際、PETプレポリマーとして低分子量のものを使用し、所定条件下で固相重縮合を行うことを要件とするものである。この所定条件に制御された固相重縮合を行うことにより、従来法におけるような条件、即ち、固相重縮合を一段で190℃ないし240℃で行う場合よりも、高分子量領域において大きな重縮合反応速度が得られるため、固相重縮合時間の短縮、重縮合に要する熱量の低減等の生産性向上や省エネルギー化が可能となる。
本発明の方法により得られるPETは、分子量が高く、飲料用ボトルや工業用繊維など幅広い用途に用いることができる。また、低分子量のPETプレポリマーを固相重縮合の原料として利用できるので、この低分子量PETプレポリマーを製造するための溶融重縮合工程における設備負荷も低減することができ、経済的にも有利である。
以下に本発明のPETの製造方法の実施の形態を詳細に説明する。
本発明における熱処理は、主として第1段と第2段の固相重縮合工程と昇温工程とよりなるが、結晶化工程、乾燥工程等の、通常、常温を超える温度条件下で固体状のPETプレポリマーを処理する工程などが含まれていてもよい。
なお、本発明では、PETの分子量の指標として固有粘度を用いる。
<PETプレポリマー>
本発明に用いるPETプレポリマーを得る方法は特に限定されず、例えばPETの慣用の製造方法により製造することができる。具体的には、通常、テレフタル酸及び/又はそのエステル形成性誘導体を主成分とするジカルボン酸成分とエチレングリコールを主成分とするジオール成分とを、要すればエステル化又はエステル交換触媒の存在下エステル化反応及び/又はエステル交換反応を行い、次いで重縮合触媒を使用して溶融重縮合させることにより製造される。詳しくは、例えば、原料のジカルボン酸成分とジオール成分とを、スラリー調製槽に投入して攪拌・混合して原料スラリーとし、エステル化反応槽で常圧〜加圧下、加熱下で、反応によって生ずる水などを留去しつつエステル化反応させた後、得られたエステル化反応物としてのPET低分子量体(オリゴマー)を重縮合槽に移送し、減圧下、加熱下で、重縮合触媒を使用して溶融重縮合させてPETプレポリマーを得る方法が挙げられる。
本発明においてテレフタル酸を主成分とするとは、PETを製造するのに使用する全ジカルボン酸成分に対して90モル%以上、好ましくは95モル%以上がテレフタル酸及び/又はそのエステル形成性誘導体であることをいい、またエチレングリコールを主成分とするとはPETを製造するのに使用する全ジオール成分に対してエチレングリコールが90モル%以上、好ましくは95モル%以上であることをいう。
ここで、テレフタル酸以外のジカルボン酸成分の例としては、フタル酸、イソフタル酸、ジブロモイソフタル酸、スルホイソフタル酸ナトリウム、フェニレンジオキシジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルケトンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸、及び、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、ドデカジカルボン酸等の脂肪族ジカルボン酸等とこれらのエステル形成性誘導体が挙げられる。
また、エチレングリコール以外のジオール成分の例としてはジエチレングリコールの他、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、2−エチル−2−ブチル−1,3−プロパンジオール、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール等の脂肪族ジオール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール、2,5−ノルボルナンジメチ
ロール等の脂環式ジオール、及びキシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4’−ヒドロキシフェニル)プロパン、2,2−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−β−ヒドロキシエトキシフェニル)スルホン酸等の芳香族ジオール、並びに、2,2−ビス(4’−ヒドロキシフェニル)プロパンのエチレンオキサイド付加物又はプロピレンオキサイド付加物等が挙げられる。
本発明において使用することができるエステル化又はエステル交換触媒、及び重縮合反応触媒としては特に制限されず、公知の触媒から適宜選択して添加使用することができる。触媒の例としては、二酸化ゲルマニウム、四酸化ゲルマニウム、水酸化ゲルマニウム、蓚酸ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ−n−ブトキシド等のゲルマニウム化合物、三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、メトキシアンチモン等のアンチモン化合物、テトラ−n−プロピルチタネート、テトラ−i−プロピルチタネート、テトラ−n−ブチルチタネート、蓚酸チタン、蓚酸チタンカリウム等のチタン化合物等が挙げられ、これらは単独で或いは併用して用いることができる。なかでもチタン化合物は重縮合反応活性が高いため好ましく用いられる。
触媒の使用量は、得られるPETプレポリマーに対して用いる触媒の金属原子換算で通常1〜400質量ppmである。なお、チタン化合物はエステル化及び/又はエステル交換触媒としても作用するので、これらの反応に使用する場合はその使用量を考慮してこの範囲となるように用いるのが好ましい。
また上記反応の際、正リン酸、正リン酸アルキルエステル、エチルアシッドホスフェート、トリエチレングリコールアシッドホスフェート、亜リン酸、亜リン酸アルキルエステル等のリン化合物を安定剤として用いることができる。その使用量は、得られるPETプレポリマーに対してリン原子換算で1〜1000質量ppmとなる量とするのが好ましく、2〜200質量ppmとなる量とするのが特に好ましい。
更に、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、水酸化マグネシウム、マグネシウムアルコキシド、炭酸マグネシウム、水酸化カリウム、水酸化カルシウム、酢酸カルシウム、炭酸カルシウム等のアルカリ金属、アルカリ土類金属の化合物を前記触媒と共に使用することもできる。
本発明に用いるPETプレポリマーのより具体的な製造方法の代表例としては、以下の方法が挙げられる。
テレフタル酸を主成分とするジカルボン酸及び/又はそのエステル形成性誘導体とエチレングリコールを主成分とするジオールとを、通常、ジカルボン酸成分:グリコール成分を1:1〜1:2(モル比)で用い、エステル化反応槽で要すればエステル化触媒の存在下、通常240〜280℃程度の温度、通常常圧乃至大気圧に対する相対圧力で0.4MPa程度の加圧下で、1〜10時間程度エステル化反応させるか、或いはエステル交換触媒の存在下エステル交換反応を行い、得られた生成物(PET低分子量体)を、重縮合反応槽に移送し、次いで溶融重縮合する。溶融重縮合は、重縮合触媒を使用して通常、250〜290℃程度の温度、常圧から漸次減圧として最終的に通常絶対圧力で10〜0.1kPa程度の減圧下で、撹拌下、固有粘度が後述の如く、0.18dL/g〜0.40dL/gとなるまで溶融重縮合させる。
なお、ジカルボン酸成分がジカルボン酸のエステル形成性誘導体、例えばテレフタル酸ジメチルなど適度な融点のものである場合、ジオールとのスラリーとせずに溶融してからジオールとのエステル交換反応に供することもできる。また、上記の反応は連続式、回分式、半回分式の何れか1以上の方法で行うことができ、また、エステル化反応槽(又はエステル交換反応槽)、溶融重縮合反応槽は、それぞれ一段としても多段としてもよい。
溶融重縮合反応で得られたPETプレポリマーは、溶融重縮合反応槽に配管及び/又はギヤポンプ及び/又はフィルターを介して接続されたダイヘッドに供給され、ダイの先端に設けられた複数のダイホールから、ストランド状又は滴状に吐出される。ストランド状に吐出されたPETプレポリマーは、例えばストランドカッターなどで切断されペレット状に粒子化される。
本発明に用いる溶融重縮合反応で得られたPETプレポリマー粒子は、好ましくは、平均質量が0.1〜30mg/粒であり、下限値は0.5mg/粒が更に好ましく、特に好ましくは0.8mg/粒であり、一方、上限値は10mg/粒が更に好ましく、より好ましくは5mg/粒、特に好ましくは3mg/粒である。本発明に用いるPETプレポリマー粒子の平均質量が上記下限値以上である場合、その後の工程や気力輸送の際にトラブルが起こりにくく、また、上記上限値以下である場合、所望の分子量に達するのに必要な固相重縮合反応時間を短くできるので、それぞれ一層好ましい。なお、本明細書でいうPETプレポリマーの平均質量とは、精密天秤を用いて、PETプレポリマー粒子30粒の合計質量を0.1mgの桁まで測定し、測定値を30で除することによって算出される値のことをいう。
本発明に用いられるPETプレポリマーの固有粘度は0.18〜0.40dL/gである。固有粘度の下限値は好ましくは0.20dL/gであり、上限値は好ましくは0.38dL/g、特に好ましくは0.35dL/gである。該プレポリマーの固有粘度が上記下限値未満の場合、粒子化する時に微粉が発生しやすく、また、所望の高分子量に到達するのに必要な固相重縮合反応時間が非常に長くなるので好ましくない。他方、上記上限値を超えると、本発明の特徴である、高分子量のPETを得るのに必要な反応時間を短縮する効果が得られず、加えて溶融重縮合工程において高粘度液体を撹拌する設備や、高真空反応を行う設備等の高価な設備が必要となり、製造プロセス全体としては本発明の効果が減殺される。
本発明に用いるPETプレポリマーの末端カルボキシル基濃度は100当量/トン以下であることが好ましい。末端カルボキシル基濃度は、より好ましくは70当量/トン以下、更に好ましくは40当量/トン以下、特に好ましくは30当量/トン以下である。PETプレポリマーの末端カルボキシル基濃度が100当量/トンを超えると、その後工程である固相重縮合において重縮合反応速度が小さくなる傾向がある。
<熱処理>
上記のようにして得られたPETプレポリマーの粒子は、本発明の方法により、固体状態で熱処理され所定の固有粘度まで固相重縮合される。本発明の熱処理は、主として段階的固相重縮合工程及び昇温工程を包含する。これらの工程は回分法でも行うことができるが連続法で行うことが生産効率の点で好ましい。本発明の方法で得られるPETの固有粘度は0.70dL/g以上である。0.70dL/g未満のPETを製造する場合には、従来法に比較し固相重縮合反応速度を大きくできるという本発明の効果が十分発揮されず、好ましくない。
本発明の熱処理は、下記の少なくとも第1段固相重縮合工程、昇温工程、及び第2段固相重縮合工程をこの順に含む。
1)第1段固相重縮合工程;
PETプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理する工程であり、かつその熱処理の温度(T1)が190℃以上225℃以下の工程。
2)昇温工程;
第1段固相重縮合工程を経たPETプレポリマーを不活性ガス雰囲気下又は減圧下で、第1段固相重縮合工程の熱処理の温度(T1)又はそれ以下の温度から昇温を開始して温度(T2)まで昇温する工程であり、温度T1(℃)から(T1+15)℃までを30分以内で昇温し、かつ温度T1(℃)及びT2(℃)が下記(式1)及び(式2)を満足する工程。
T1+15≦T2 (式1)
205℃≦T2≦240℃ (式2)
3)第2段固相重縮合工程;
第1段固相重縮合工程及び昇温工程を経たPETプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理する工程であり、かつ、その熱処理の温度(T3)が190℃以上240℃以下の工程。
これら昇温工程、第1段及び第2段固相重縮合工程は不活性ガス雰囲気下又は減圧下で行われるが、ここで「不活性ガス」とは、酸素濃度が0.1体積%以下、好ましくは0.05体積%以下であり、かつ、実質的にポリエステル(PET)と反応しない気体のことである。実質的にポリエステルと反応しない気体として、具体的には、窒素、ヘリウム、ネオン、アルゴン、キセノン、二酸化炭素等が例示でき、主に経済性の点から窒素が好ましく用いられる。また、「減圧下」とは、絶対圧力2kPa以下の圧力の状態にあることをいう。
第1段固相重縮合工程の温度(T1)は190℃以上225℃以下であり、下限値は好ましくは200℃更に好ましくは205℃である。T1の上限値は好ましくは220℃ある。T1が190℃未満であると、第1段工程での重縮合反応速度が小さくなり、その後の第2段工程の負荷が大きくなり好ましくない。T1が225℃超過であると後述するように昇温工程の温度(T2)が上限値240℃を超えることとなり、PET粒子同士の融着が起き易いなど不都合である。
また、本発明の第1段固相重縮合後の昇温工程ではT1とT2は、T1+15℃≦T2(式1)を満たすことが必要であり、T1から(T1+15℃)までを30分以内に昇温する必要がある。即ち、T1が190℃以上225℃以下であり、T1とT2は(式1)を満足するため、結果としてT2は下記(式2)を満足することとなる。
205℃≦T2≦240℃ (式2)
こうすることにより昇温工程後の固相重縮合の速度が大きいという本発明の効果が得られる。
このような昇温工程により、本発明の効果が得られる理由は明らかではないが、以下のように推定される。
即ち、ポリエステルプレポリマーを結晶化させた場合、結晶構造が形成されることでポリエステル分子鎖の運動性が低下し、一部の末端基が不活性化するが、特に低分子量で結晶化させた場合、不活性化する末端基数の絶対値が大きくなるため、固相重縮合後半に重縮合反応速度が小さくなる。これに対し、途中で温度差15℃以上という加熱処理を短時間で与えることにより、固体状態は保つものの、結晶の溶融と再結晶化が起こり、再度、多数の末端基が存在する非晶領域が形成されるため、不活性化していた末端基の一部が活性を取り戻し、重縮合反応速度が増大すると推定している。
昇温幅が15℃未満の場合や、昇温に要する時間が30分超過の場合は、本発明の固相重縮合反応速度の向上効果、特に第2段固相重縮合工程での効果が得られない場合がある。
第2段固相重縮合工程の温度(T3)は190℃以上240℃以下であり、T3の下限値は好ましくは210℃、更に好ましくは220℃である。T3の上限値は好ましくは237℃、更に好ましくは235℃である。T3が190℃未満であると、目標の重合度に到達するまでに長時間を要することとなる。また、T3が240℃を超えるとPET粒子同士の融着が起き易いなど不都合である。なお、T3が昇温工程の温度(T2)より低い場合であっても、本発明の固相重縮合速度が大きいという効果は発揮される。
第1段固相重縮合工程の平均滞留時間は、その温度T1にもよるが、通常0.5時間以上10時間以下であり、下限値は好ましくは1.0時間である。上限値は好ましくは9時間、更に好ましくは8時間である。第1段固相重縮合工程の平均滞留時間が0.5時間以上であると、第1段固相重縮合工程での固有粘度上昇値が大きくなり第2段固相重縮合工程の負荷が軽減される。また、第1段固相重縮合工程の平均滞留時間が10時間以下であると第1段固相重縮合工程における後半の固相重縮合反応速度の低下が軽微であり、それぞれ効率的であり、一層好ましい。
第1段固相重縮合工程における固有粘度の上昇、即ち第1段固相重縮合工程前後のPETの固有粘度の差は、通常、0.03dL/g以上であり、好ましくは0.05dL/g以上である。この値が0.03dL/g以上であると第2段固相重縮合工程での固相重縮合反応速度の向上効果が得やすく、一層好ましい。また、第1段固相重縮合工程における固有粘度の上昇幅の上限は、本熱処理全体の時間が最短になること及び/又は投入熱量が最小になることを充たすように設定すればよく、通常0.30dL/g程度である。
昇温工程における滞留時間は、通常、60分以下であり、好ましくは40分以下、より好ましくは30分以下である。昇温工程の滞留時間がこの範囲である場合、上記固相重縮合速度が大きいという昇温工程の効果のほかに、昇温工程に用いる設備を小型化できるため、一層好ましい。昇温工程に用いる設備はPET粒子を加熱昇温できる設備であれば特に制限されず、不活性ガスを用いた流動床が、粒子同士の融着や粒子の破砕などが少ないため、通常、好ましく用いられる。
昇温工程を経た後に第2段固相重縮合工程に供されるプレポリマーは、固有粘度が0.35dL/g以上であるのが好ましく、より好ましくは0.40dL/g以上、更に好ましくは0.43dL/g以上、特に好ましくは0.45dL/g以上である。昇温工程を経たプレポリマーの固有粘度がこの範囲である場合、本発明の第2段固相重縮合工程における固相重縮合反応速度が大きくなると共に、特に荷重下において、共重合成分を有するPETの熱融着を抑制できる傾向にあるため、一層好ましい。昇温工程を経た後に第2段固相重縮合工程に供されるプレポリマーの固有粘度と、第2段固相重縮合工程を経て得られるポリエステルの固有粘度との差は、通常0.10dL/g以上、好ましくは0.20dL/g以上である。
第2段固相重縮合工程の平均滞留時間は、その温度にもよるが、通常2時間以上50時間以下であり、下限は好ましくは4時間以上である。平均滞留時間がこの範囲である場合、第2段固相重縮合工程での固有粘度上昇値が大きくなり、所望の重合度のPETを効率的に得ることができるため、一層好ましい。
本発明の上記第1段固相重縮合工程及び第2段固相重縮合工程は、連続法が好ましく、生産効率や反応制御、操作性等の点から連続式移動床が特に好ましく用いられる。
本発明において、第1段固相重縮合工程に供されるPETプレポリマーは、結晶化度が15質量%以上、好ましくは30質量%以上であることが好ましく、また、70質量%以下、好ましくは60質量%以下であることが好ましい。第1段固相重縮合工程に供されるPETプレポリマーの結晶化度が15質量%未満の場合、第1段固相重縮合工程においてペレット同士が融着しやすくなる傾向にある。また、結晶化度が70質量%を超えると、第1段及び第2段固相重縮合工程における固相重縮合速度が小さくなることがある。
PETプレポリマーの結晶化度をこのような範囲にする方法としては、後述する結晶化工程を設ける方法や、溶融状態のPETプレポリマーを液滴として、気相中、及び/又は、金属ベルトのような固体状熱伝達媒体の表面において徐々に冷却、固化させて一部が結晶化したPETプレポリマー粒子とする方法や、溶融状態のPETプレポリマーを液体中で液滴とした後、徐々に冷却、固化させて一部が結晶化したPETプレポリマー粒子とする方法等の、実質的に非晶状態のPETプレポリマー粒子を経由させず、溶融状態から直接、一部が結晶化した状態のPETプレポリマー粒子を得る方法が例示される。
本発明の熱処理の第1段固相重縮合工程に先立って、実質的に非晶状態のPETプレポリマーの一部を結晶化する結晶化工程を設けることが好ましい。PETプレポリマーの一部が結晶化されることでその後の第1段、第2段固相重縮合工程などでPET粒子同士が融着するのを軽減することができる。結晶化は、PETプレポリマーを熱処理することにより行われるが、その結晶化工程の温度(Tx)は通常、110℃以上200℃以下であり、好ましくは下限が140℃以上、更に好ましくは下限が160℃以上である。結晶化工程の温度(Tx)がこの範囲である場合、該プレポリマー粒子同士が融着しにくく、かつ、比較的短時間で十分な結晶化度に到達するため、一層好ましい。また、次工程以降で融着しにくい傾向にあるため、一層好ましい。
結晶化工程においては、PETプレポリマーの結晶化を進行させて、結晶化度30〜60質量%程度のPETプレポリマーを得ることが好ましい。結晶化工程はPET粒子を加熱できる設備であれば特に制限されないが、不活性ガスを用いた流動床で行うと粒子同士の融着などが少なく、好ましい。
更に、この結晶化工程の前に、PETプレポリマーをTxまで昇温する工程を設けることもでき、結晶化工程で昇温及び結晶化を行ってもよい。また結晶化工程でプレポリマーの乾燥を行ってもよい。また、プレポリマーの乾燥は第1段固相重縮合工程の初期に行ってもよい。
本発明においては、前述の熱処理における第2段固相重縮合工程の後、更に、第2段昇温工程と第3段固相重縮合工程を設けてもよい。この場合、第2段固相重縮合工程の温度(T3)は190℃以上225℃以下とし、第2段昇温工程の温度(T4)はT3(℃)よりも15℃以上高く240℃以下、第3段固相重縮合工程の温度(T5)は205℃以上240℃以下であるのが、それぞれ好ましい。ここで、第2段昇温工程は、T3(℃)又はそれ以下の温度から昇温を開始して温度(T4)まで昇温する工程であり、第3段固相重縮合工程の熱処理温度T3(℃)から(T3+15)℃までを30分以内で昇温することが好ましい。更に同様にして、固相重縮合工程と昇温工程とを、3回以上交互に繰り返してもよい。
このように、比較的低温の固相重縮合工程と、比較的高温まで短時間で昇温する昇温工程とを交互に繰り返す方法は、特に、共重合量が多いため融着しやすいPETプレポリマーを固相重縮合する際に、固相重縮合工程を移動床で実施する場合の融着を抑制できる傾向にあり、また、長時間固相重縮合を実施することに伴い発生する一部の末端基の不活性化を抑制できる傾向にあるため、全体の熱処理時間を短縮できる傾向にあることから、一層好ましい。
以下、実施例により本発明をさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
なお、実施例及び比較例における物性の測定は、以下の方法により行った。
<固有粘度(IV)>
試料約0.25gを、フェノール/1,1,2,2−テトラクロロエタン(質量比 1/1)の混合溶媒約25mLに、濃度が1.00×10−2kg/Lとなるように、非晶状態のPETは110℃、30分で、固相重縮合後のPETは140℃、30分でそれぞれ溶解させた後、30℃まで冷却し、全自動溶液粘度計(センテック社製「2CH型DJ504」)にて、濃度が1.00×10−2kg/Lの試料溶液及び溶媒のみの落下秒数を測定し、下式により算出した。
IV=[(1+4KH・ηsp0.5−1]/(200KH・C)
ここで、 ηsp=η/η0−1 であり、ηは試料溶液の落下秒数、η0は溶媒の落下秒数、Cはポリマー溶液濃度(kg/L)、KHはハギンズの定数である。KHは0.33を採用した。
<PETプレポリマー粒子の平均質量>
精密天秤を用いて、PETプレポリマー粒子30粒の合計質量を0.1mgの桁まで測定し、測定値を30で除することにより、粒子1粒当たりの平均質量を算出した。
<末端カルボキシル基濃度 (AV)>
試料を粉砕した後、熱風乾燥機にて140℃で15分間乾燥させ、デシケーター内で室温まで冷却した試料から、0.1gを精秤して試験管に採取し、ベンジルアルコール3mLを加えて、乾燥窒素ガスを吹き込みながら195℃、3分間で溶解させ、次いで、クロロホルム5mLを徐々に加えて室温まで冷却した。この溶液にフェノールレッド指示薬を1〜2滴加え、乾燥窒素ガスを吹き込みながら攪拌下に、0.1規定の水酸化ナトリウムのベンジルアルコール溶液で滴定し、黄色から赤色に変じた時点で終了とした。また、ブランクとして、ポリエステル樹脂試料を使用せずに同様の操作を実施し、これらの結果を用いて以下の式により末端カルボキシル基濃度を算出した。
AV(当量/トン)=(A−B)×0.1×f/W
〔ここで、Aは、試料を用いた場合の滴定に要した0.1規定の水酸化ナトリウムのベンジルアルコール溶液の量(μL)、Bは、ブランクでの滴定に要した0.1規定の水酸化ナトリウムのベンジルアルコール溶液の量(μL)、Wは、ポリエステル樹脂試料の量(g)、fは、0.1規定の水酸化ナトリウムのベンジルアルコール溶液の力価である。〕
なお、0.1規定の水酸化ナトリウムのベンジルアルコール溶液の力価(f)は、試験管にメタノール5mLを採取し、フェノールレッドのエタノール溶液を指示薬として1〜2滴加え、0.1規定の水酸化ナトリウムのベンジルアルコール溶液0.4mLで変色点まで滴定し、次いで、力価既知の0.1規定の塩酸を標準液として0.2mL採取して加え、再度、0.1規定の水酸化ナトリウムのベンジルアルコール溶液で変色点まで滴定し(以上の操作は、乾燥窒素ガスを吹き込みながら行った。)、以下の式により算出した。
力価(f)=0.1規定の塩酸の力価×0.1規定の塩酸の採取量(μL)
/0.1規定の水酸化ナトリウムのベンジルアルコール溶液の滴定量(μL)
<結晶化度(X)>
結晶化度(X)の測定は、完全非晶の密度d=1335kg/m、完全結晶の密度d=1455kg/mとして、試料の密度d(kg/m)から、下式により算出した。
=(d−d)d/(d−d)d ×100(質量%)
また、試料の密度dは、測定セルに試料6〜8gを精秤し、測定温度23℃にて乾式自動密度測定装置(島津製作所製Accupyc1330)を用いて測定した。
<ジエチレングリコール(DEG)共重合モル%>
試料となるPET粒子5.00gに、4規定−水酸化カリウム/メタノール溶液50mlを加えて還流冷却器をセットし、マグネチックスターラ付きホットプレート(表面温度200℃)上で攪拌しながら、2時間加熱還流し加水分解する。放冷後、高純度テレフタル酸約20gを加えて、十分振とうして中和し、pHを9以下としたスラリーを、グラスフィルター(11G−4)を用いて濾過した後、メタノール2mlで2回洗浄して濾液と洗液を合わせ、ガスクロマトグラフィーへの供試液とする。供試液1μlをマイクロシリンジにて、島津製作所社製ガスクロマトグラフィー(形式GC−14APF)に注入し、エチレングリコール(EG)及びジエチレングリコール成分のピークの面積から、全グリコール成分に対するジエチレングリコール成分のモル%を、下式に従い計算した。
DEGの共重合モル%=(ADEG×CfDEG)/(Σ(A×C))×100
DEG : ジエチレングリコール成分の面積(μV・秒)
fDEG : そのグリコール成分の補正係数
A : 各グリコール成分の面積(μV・秒)
: 各グリコール成分の補正係数
(実施例1)
<PETプレポリマー粒子(A)の製造工程>
撹拌機、エチレングリコール仕込み配管及びテレフタル酸仕込み配管を具備するスラリー調製槽;スラリーやエステル化反応物を各エステル化反応槽へ移送する各配管;撹拌機、分離塔、原料受入れ口、触媒仕込み配管、反応物移送配管を具備する完全混合型第一及び第二エステル化反応槽;エステル化反応物(オリゴマー)を溶融重縮合反応槽へ移送する配管;撹拌機、分離塔、オリゴマー受入れ口、触媒仕込み配管を具備する完全混合型第一溶融重縮合反応槽;撹拌機、分離塔、ポリマー受入れ口、ポリマー抜き出し口を具備するプラグフロー型第二及び第三溶融重縮合反応槽;プレポリマーを抜き出し口よりギヤポンプを介してダイプレートからストランド状に取り出し水冷下ストランドカットする粒子化装置(ストランドカッターはリーター・オートマチック社製ペレタイザー(P−USG100))を備えたPETプレポリマー連続製造装置を用いた。
前記のPETプレポリマー連続製造装置を用いて、ジカルボン酸とジオールとをエステル化反応し、更に溶融重縮合反応することにより得られた溶融状態のPETプレポリマーをダイプレートからストランド状に取り出し切断することで、PETプレポリマー粒子を製造した。具体的には以下の通りである。
スラリー調製槽にて、得られるPETに対してチタン原子として4質量ppmとなる量のテトラ−n−ブチルチタネートを含有するテレフタル酸/エチレングリコール(モル比1:1.5)スラリーを調製した。また、ビス−(β−ヒドロキシエチル)テレフタレート400質量部をエステル化第一槽に仕込み窒素雰囲気下で溶融し、温度262℃、圧力96kPaG(Gは大気圧に対する相対圧力であることを示す)に保たれた中へ、前記のスラリー調製槽で調製されたスラリーを135質量部/時間で、ポリエステルとしての平均滞留時間が4.5時間になるように連続的に仕込み、分離塔から生成する水を留去しながらエステル化反応を行いつつ、反応液を連続的にエステル化第二反応槽へ移送した。
第二エステル化反応槽では温度260℃、圧力5kPaG下、滞留時間1.5時間でエステル化反応を行い、移送配管を通じ完全混合型第一溶融重縮合反応槽へ連続的に移送した。
第一溶融重縮合反応槽では温度270℃、圧力4.0kPaA(Aは絶対圧力であることを示す)下、滞留時間1.0時間にて反応を行い、移送配管を通じ第二溶融重縮合反応槽へ連続的に移送した。第二溶融重縮合反応槽では温度270℃、圧力4.0kPaA下、滞留時間1.0時間にて溶融重縮合反応を行い、移送配管を通じ第三溶融重縮合反応槽へ移送した。第三溶融重縮合反応槽では温度270℃、圧力4.0kPaA下、滞留時間1.2時間にて溶融重縮合反応を行った。
このようにして得られた溶融PETプレポリマーをそのまま、ギヤポンプ及び抜き出し配管を通じてダイヘッドへ導き、ダイホールからストランド状に取り出し、水冷後、リーター・オートマチック社製ペレタイザー(P−USG100)により造粒した。造粒方法はストランドカット法であり、具体的には、ストランド状PETプレポリマーを水と接触させて冷却させながら、水と共にカッター方向に搬送し、カッター前に設置された一対の引取ロールにて挟むことで引き取り、カッターに供給し、固定歯と回転歯とを有するカッターにて切断することにより、PETプレポリマー粒子を得た。
ここで、溶融PETプレポリマーの吐出量は60kg/時、温度は270℃とし、3mmφの円形ダイホールが4穴あるダイプレートから、水平方向から下向きに45°の角度を吐出方向として、ストランド状に吐出させた。
このストランド状PETプレポリマーを、100mm以上の空冷距離を経てストランドカッターの水冷却ゾーンに着水させ、50℃の水で水冷しながら搬送し、引取ロールにて引き取り、カッターに供給した。ストランドの引取速度は3.00m/秒であり、カッターは、引取ロールと回転歯の回転数の比を調整し、粒子の引取方向の長さが1.0mmとなるようにして粒子化した。
その結果、長さ1.0mm、幅1.3mm、厚さ0.9mmのほぼ直方体の両端に半円柱を付けた形状に近い楕円柱状のPETプレポリマー粒子を得た。この粒子の固有粘度は0.290dL/g、末端カルボキシル基濃度は22当量/トン、ジエチレングリコールの共重合量は2.0モル%、平均質量は1.5mg/粒であった。以降、このPETプレポリマー粒子を、「プレポリマー粒子(A)」と称する。
<熱処理>
<結晶化工程>
上記のプレポリマー粒子(A)30gを底面が130mm×170mmの角形で、深さが30mmのステンレス製バットに広げて置き、内部のガス温度が180℃のイナートオーブン(タバイエスペック社製IPHH−201M型)に入れ、イナートオーブンの内部に流通させる窒素の流量を50NL/分、温度を180℃の窒素流通下として、Tx=180℃で1時間の結晶化処理を行った。ここで、NLとは0℃1気圧における体積(L)のことである。結晶化処理後の試料の固有粘度は0.290dL/g、結晶化度は53質量%であった。
<熱処理装置>
上記の、プレポリマー粒子(A)を結晶化処理した試料を、図1に示すガラス製熱処理装置を用いて熱処理を行った。
以下、該熱処理装置について説明する。
図1に示す熱処理装置において、試料は、試料充填部の内径が45mmのガラス製熱処理管(1)に充填されている。熱処理管(1)には、ガス流量計(2)、窒素導入管(3)、窒素予熱管(4)を経由して、オイルバス(5)に充填されたオイルにより加熱された窒素が導入される。導入された窒素は、熱処理管(1)下部にある分散板(6)により分散され、熱処理管(1)内部で略均一な線速度を有する上昇流となって、試料層(7)を通過する。試料層(7)を通過した窒素は、熱処理管(1)上部にあるフィルター(8)を経由して、ガスパージ口(9)から熱処理管(1)の外部に排出される。熱処理管(1)は枝管(10)を有しており、その上部にある開口部(通常はガラス栓にて閉止してある)から試料の投入や試料の採取が可能である。また、熱処理管(1)内部の試料の温度は、熱電対(11)を備えた温度計(12)で測定できる。本実施例の範囲の温度、空塔線速度においては、熱処理管(1)の内部温度は、オイルバス中のオイル温度よりも2℃低い温度となるため、目標とする固相重縮合温度に対して、オイルの温度は2℃高い温度に調節した。
<第一段固相重縮合工程>
熱処理管(1)に枝管(10)の開口部より、上記結晶化処理後のプレポリマー粒子(A)30gを仕込み、窒素を流通して内部を窒素置換した。その後熱処理管(1)内の窒素の空塔線速度(ここで「空塔線速度」とは、試料層の空塔線速度を意味する(以下同様))が210℃で0.30m/秒となるように窒素の流量をガス流量計(2)で設定し、オイルの温度が212℃に調節された第一のオイルバス(5)に熱処理装置を浸漬した。この時点を第1段固相重縮合工程(T1=210℃)の開始とする。2時間後に枝管(10)の開口部より、固有粘度測定用試料約0.3gを採取した。
<昇温工程>
試料採取後、窒素の空塔線速度が235℃で1.0m/秒となるように窒素の流量を変更し、オイルの温度が237℃に調節された第二のオイルバス(5)に熱処理装置を移した。この時点を昇温工程(T2=235℃)の開始とする。試料の温度が235℃に到達するまでに、10分を要したので、T1から(T1+15℃)までの昇温は10分以内であった。昇温工程の開始から10分後に枝管(10)の開口部より、固有粘度測定用試料を採取した。
<第2段固相重縮合工程>
試料採取後、窒素の空塔線速度が230℃で0.30m/秒となるように窒素の流量を変更し、第三のオイルバス(5)に熱処理装置を移した。この時点を第2段固相重縮合工程(T3=230℃)の開始とした。第三のオイルバス(5)のオイルの温度は、あらかじめ212℃に調節しておき、熱処理装置を移した後、直ちに、60分掛けて232℃まで昇温し、232℃到達後はその温度で保持した。第2段固相重縮合開始点から8時間、16時間、32時間の時点で固有粘度測定用試料を採取した。
第1段固相重縮合後、昇温工程後、及び第2段固相重縮合時に採取した測定用試料につき固有粘度をそれぞれ測定した。熱処理条件と測定結果を表[I−A]に示す。表中、固有粘度IV=0.80dL/gへ到達までの時間は、IV=0.80前後の直近のデータを直交座標にて直線で結び、IV=0.80となる熱処理時間を内挿にて求め第2段固相重縮合工程時間とし、これに第1段固相重縮合時間と昇温工程時間を加算することで求めており、結晶化工程の時間は含めない。
(比較例1)
実施例1において昇温工程を全て実施しなかったこと以外は実施例1と同様に行った。結果を表[I−A]に示す。
この例の場合、235℃の昇温工程を実施しなかったため、IV=0.80dL/gへ到達するまでの時間が、実施例1に比較して長くなった。
(実施例2)
実施例1の<PETプレポリマー粒子(A)の製造工程>において溶融PETプレポリマーの吐出量を100kg/時に変更した以外は実施例1の<PETプレポリマー粒子(A)の製造工程>と同様に行った。
その結果、長さ1.0mm、幅1.6mm、厚さ1.2mmのほぼ直方体の両端に半円柱を付けた形状に近い楕円柱状のPETプレポリマー粒子(A’)を得た。この粒子(A’)の固有粘度は0.290dL/g、末端カルボキシル基濃度は22当量/トン、ジエチレングリコールの共重合量は2.0モル%、平均質量は2.3mg/粒であった。
このPETプレポリマー粒子(A’)を用いたこと以外は、実施例1の<熱処理>と同様の処理を行った。結果を表[I−A]に示す。
(比較例2)
実施例2において昇温工程を実施しなかったこと以外は実施例2と同様に行った。結果を表[I−A]に示す。
この例の場合、235℃の昇温工程を実施しなかったため、IV=0.80dL/gへ到達するまでの時間が、実施例2に比較して長くなった。なお、IV=0.80dL/gへ到達するまでの時間は、第2段固相重縮合開始点から16時間、32時間の時点の固有粘度測定結果を結ぶ直線を引き、IV=0.80に外挿することで推算した。
(比較例3)
実施例1において昇温工程の温度を220℃に変更したこと以外は実施例1と同様に行った。結果を表[I−A]に示す。
この例の場合、第1段固相重縮合工程と昇温工程との温度差が10℃と小さく、(式1)を満足しないため、IV=0.80dL/gへ到達するまでの時間が、実施例1に比較して長くなった。
(比較例4)
実施例1において、昇温工程を、オイルの温度が212℃のオイルバス(5)に熱処理装置を移した後、直ちに、オイルの温度を0.42℃/分で昇温し、60分掛けて237℃とする工程に、また、固有粘度測定用試料を採取する時間を開始点から60分の時点に、それぞれ変更したこと以外は実施例1と同様に行った。結果を表[I−A]に示す。
この例の場合、225℃(T1+15℃)到達までの時間が36分であり、この時間が30分を超えて長いため、IV=0.80dL/gへ到達するまでの時間が、実施例1に比較して長くなった。
(実施例3)
<PETプレポリマー粒子(B)の製造工程>
実施例1の<PETプレポリマー粒子(A)の製造工程>において、スラリー調製槽にて調製するスラリーを、得られるPETに対してチタン原子として8質量ppmとなる量のテトラ−n−ブチルチタネートを含有するテレフタル酸/イソフタル酸/エチレングリコール(モル比0.97:0.03:1.5)スラリーに変更し、第一溶融重縮合反応槽の圧力を3.8kPaAに変更し、第二及び第三溶融重縮合反応槽の温度を275℃、圧力を3.8kPaAに変更し、ダイプレートをダイホール数が10穴のものに変更し、溶融ポリエステルの吐出量を78kg/時に変更したこと以外は実施例1と同様にして、PETプレポリマー粒子を得た。
その結果、長さ1.0mm、幅1.0mm、厚さ0.7mmのほぼ直方体の両端に半円柱を付けた形状に近い楕円柱状のPETプレポリマー粒子(B)を得た。この粒子の固有粘度は0.323dL/g、末端カルボキシル基濃度は26当量/トン、イソフタル酸、ジエチレングリコールの共重合量はそれぞれ2.9モル%、2.2モル%、平均質量は1.4mg/粒であった。以降、このPETプレポリマー粒子を、「プレポリマー粒子(B)」と称する。
<熱処理>
実施例1において、試料を上記のプレポリマー粒子(B)に変更し、第1段固相重縮合工程、昇温工程の条件をそれぞれ表[I−B]の通り変更し、第2段固相重縮合工程の条件を、窒素の流量は空塔線速度を220℃で0.30m/秒となるように、オイルの温度はあらかじめ202℃に調節しておき、第三のオイルバス(5)に熱処理装置を移した後、直ちに、60分掛けて222℃まで昇温し、222℃到達後はその温度で保持することに、また、固有粘度測定用試料を採取する時間を開始点から16時間、32時間の時点に、それぞれ変更したこと以外は実施例1と同様にして、<熱処理>を行った。
結晶化処理後の試料の固有粘度は0.331dL/gであった。熱処理条件と測定結果を表[I−B]に示す。
(比較例5)
実施例3において昇温工程を実施しなかったこと以外は実施例2と同様に行った。結果を表[I−B]に示す。
この例の場合、225℃の昇温工程を実施しなかったため、IV=0.80dL/gへ到達するまでの時間が、実施例3に比較して長くなった。
(実施例4)
実施例3において第1段固相重縮合工程、昇温工程の条件をそれぞれ表[I−C]の通り変更し、第2段固相重縮合工程の条件を、窒素の流量は空塔線速度を215℃で0.30m/秒となるように、オイルの温度は217℃で一定に、また、固有粘度測定用試料を採取する時間を開始点から24時間の時点に、それぞれ変更したこと以外は実施例3と同様にして、<熱処理>を行った。結果を表[I−C]に示す。
表中、固有粘度IV=0.70dL/gへ到達までの時間は、24時間目のデータとその直前のデータとを直交座標にて直線で結び、IV=0.70となる熱処理時間を内挿にて求め第2段固相重縮合工程時間とし、これに第1段固相重縮合時間と昇温工程時間を加算することで求めており、結晶化工程の時間は含めない。
(比較例6)
実施例4において昇温工程を実施しなかったこと以外は実施例4と同様に行った。結果を表[I−C]に示す。
この例の場合、235℃の昇温工程を実施しなかったため、IV=0.70dL/gへ到達するまでの時間が、実施例4に比較して長くなった。
(実施例5)
実施例4において第1段固相重縮合工程の条件を表[I−C]の通り変更したこと以外は実施例4と同様に行った。結果を表[I−C]に示す。
(比較例7)
実施例5において昇温工程を実施しなかったこと以外は実施例5と同様に行った。結果を表[I−C]に示す。
この例の場合、235℃の昇温工程を実施しなかったため、IV=0.70dL/gへ到達するまでの時間が、実施例5に比較して長くなった。
Figure 0004645600
(実施例6)
<融着試験>
熱処理時のPET粒子の融着性を調べるため、実施例1の昇温工程まで実施したPET粒子(以下、「昇温工程後粒子(A)」と称する)を用いて、図2に示す融着試験装置で荷重負荷をかけた状態での融着試験を行った。
以下、該融着試験装置について説明する。
図2に示す融着試験装置において、試料は、試料充填部の内径が14mmのガラス製熱処理管(21)に充填されている。熱処理管(21)には、ガス流量計(22)、窒素導入管(23)、窒素予熱管(24)を経由して、オイルバス(25)に充填されたオイルにより加熱された窒素が導入される。導入された窒素は、熱処理管(21)下部にある分散板(26)により分散され、熱処理管(21)内部で略均一な線速度を有する上昇流となって、試料層(27)を通過する。試料層(27)を通過した窒素は、熱処理管(21)上部にあるフィルター(28)を経由して、ガスパージ口(29)から熱処理管(21)の外部に排出される。ここで、熱処理管(21)内部の試料の温度は、あらかじめ、別の試料を充填して熱電対を備えた温度計で測定することで、オイルバス中のオイル温度と等しい温度になることを確認した。また、試料層(27)の上部には、ステンレス製金網(30)を介してステンレス製中空支柱(31)を載せることができる。また、支柱(31)には、ピン(32)を用いて錘を載せるための台座(33)を固定することができる(支柱(31)の質量は80g、ピン(32)及び台座(33)の合計質量は42gである)。
熱処理管(21)に、試料として8gの昇温工程後粒子(A)を仕込み、その上に金網(30)と支柱(31)を載せた後、窒素を流通して内部を窒素置換した。その後熱処理管(21)内の窒素の空塔線速度(ここで「空塔線速度」とは、試料層部分の空塔線速度を意味する(以下同様))が230℃で0.40m/秒となるように窒素の流量をガス流量計(22)で設定し、235℃に調節されたオイルバス(25)に融着試験装置を浸漬した。そのまま10分間保持することで、試料層の温度を235℃とした。その後、10分間掛けて、オイルバス(25)に充填されたオイルの温度を230℃まで降温した。この時点を230℃での融着試験の開始とする。開始から1時間目までは、試料層(27)に掛かる荷重は支柱(30)の質量相当のみ(80g重)とした。1時間目に、支柱(30)にピン(32)と台座(33)を取り付け、資料に掛かる荷重を122g重とした。1.5時間目に、台座(33)の上に錘を載せ、荷重を160g重とした。以降、0.5時間毎に、196g重、231g重、265g重、298g重、330g重と荷重を増していき、4.5時間目から5時間目までの荷重は1039g重とした。5時間目に、融着試験装置をオイルバスから引き上げ、10分間放冷後、窒素の流通を停止し、錘(支柱、ピン、台座を含む)を取り除いた。試料は、目開き2.0mmの篩の上に抜き出し、静かに分級することで、融着比率(篩上の試料の質量比)を測定した。
融着比率は0.4質量%であり、230℃、荷重下における耐融着性に優れることを示す結果となった。
(実施例7)
<融着試験>
実施例6において試料を実施例4の昇温工程まで実施したPET粒子に変更し、空塔線速度が215℃で0.40m/秒となるように窒素の流量を流量計(22)で設定し、235℃に調節されたオイルバス(25)を10分間掛けて降温する温度を215℃に変更し、この時点を215℃での耐融着試験の開始と変更したこと以外は実施例6と同様に行った。
融着比率は11質量%であった。
(実施例8)
実施例4において第1段固相重縮合工程の時間を4時間に変更したこと以外は同様にして昇温工程まで行った。得られたPET粒子の固有粘度は0.476dL/gであった。
<融着試験>
実施例7において試料を上記の固有粘度が0.476dL/gのPET粒子に変更したこと以外は実施例7と同様に行った。
融着比率は0.3質量%であり、実施例7で用いた試料よりも耐融着性に優れることを示す結果となった。
(実施例9)
実施例3記載のプレポリマー粒子(B)を用いて、固体状態における熱処理が連続的に行われる熱処理試験を実施した。即ち、プレポリマー粒子(B)を、完全混合型の流動床へ連続的に供給し、空塔線速度3.2m/秒、120℃の空気雰囲気下、平均滞留時間60分にて第1段結晶化処理を行い(結晶化工程)、連続的に排出させた。得られた試料を、移送配管を経由させて、プラグフロー性を有する流動床へ連続的に供給し、空塔線速度1.3m/秒、180℃の窒素雰囲気下、平均滞留時間15分にて第2段結晶化処理を行い(結晶化工程)、連続的に排出させた。得られた試料を、移送配管を経由させて、移動床へ連続的に供給し、210℃の窒素雰囲気下、平均滞留時間120分にて、第1段固相重縮合処理を行い(第1段固相重縮合工程)、連続的に排出させた。得られた試料は、窒素雰囲気下で一旦放冷した。放冷後の試料の固有粘度は0.347dL/gであった。
一旦放冷した試料を、完全混合型の流動床へ連続的に供給し、空塔線速度3.2m/秒、180℃の空気雰囲気下、平均滞留時間10分にて再昇温し、連続的に排出させた。得られた試料を、移送配管を経由させて、プラグフロー性を有する流動床へ連続的に供給し、空塔線速度1.6m/秒、240℃の窒素雰囲気下、平均滞留時間15分にて昇温処理を行い(昇温工程)、連続的に排出させた。昇温工程出口直前の試料の温度は232℃だった。得られた試料を、移送配管を経由させて、移動床へ連続的に供給し、215℃の窒素雰囲気下、平均滞留時間14時間にて、第2段固相重縮合処理を行い、連続的に排出させた。
得られた試料は、窒素雰囲気下で放冷した。放冷後の試料の固有粘度は0.737dL/gであった。
(実施例10)
実施例9において、昇温工程出口で試料を採取した。この試料の固有粘度は0.386dL/gであった。この試料30gを、図1に示す熱処理装置の熱処理管(1)に枝管(10)の開口部より仕込み、窒素を流通して内部を窒素置換した。その後、熱処理管(1)内の窒素の空塔線速度が210℃で0.30m/秒となるように窒素の流量をガス流量計(2)で設定し、212℃に調節されたオイルバス(5)に熱処理装置を浸漬した。この時点を210℃での第2段固相重縮合の開始とする。第2段固相重縮合の開始から32時間及び64時間の時点で枝管(10)の開口部より、固有粘度測定用試料を採取した。
これらの試料の固有粘度はそれぞれ0.741dL/g及び0.853dL/gであった。また固有粘度が0.70dL/g及び0.80dL/gに到達するまでの時間は、それぞれ30.6時間、51.1時間であった。
なお、この例は、第1段固相重縮合工程、昇温工程を、それぞれ、210℃の連続移動床、232℃の連続流動床で行い、第2段固相重縮合工程を、210℃のバッチ固定床で実施したものである。
(比較例8)
実施例9において、第1段固相重縮合処理の後、窒素雰囲気下で放冷して試料を採取した。この試料の固有粘度は0.347dL/gであった。この試料を用いること以外は実施例10と同様に熱処理を行い、固有粘度測定用試料を採取した。
これらの試料の固有粘度はそれぞれ0.681dL/g及び0.777dL/gであった。また固有粘度が0.70dL/g及び0.80dL/gに到達するまでの時間は、それぞれ40.3時間、73.7時間であった。
本比較例では、昇温工程を実施しなかったため、実施例10に較べて固相重縮合反応速度が小さい結果だった。
なお、この例は、第1段固相重縮合工程を、210℃の連続移動床で行い、昇温工程を行わず、第2段固相重縮合工程を、210℃のバッチ固定床で実施したものである。
実施例及び比較例で用いた熱処理装置を示す模式図である。 実施例及び比較例で用いた融着試験装置を示す模式図である。
符号の説明
1:熱処理管
2:ガス流量計
3:窒素導入管
4:窒素予熱管
5:オイルバス
6:分散板
7:試料層
8:フィルター
9:ガスパージ口
10:枝管
11:熱電対
12:温度計
21:熱処理管
22:ガス流量計
23:窒素導入管
24:窒素予熱管
25:オイルバス
26:分散板
27:試料層
28:フィルター
29:ガスパージ口
30:金網
31:支柱
32:ピン
33:台座

Claims (11)

  1. 固有粘度が0.18dL/g以上0.40dL/g以下のポリエチレンテレフタレートプレポリマーを、固体状態で熱処理して固有粘度を0.70dL/g以上とするポリエチレンテレフタレートの製造方法であって、固体状態での熱処理が、第1段固相重縮合工程、昇温工程、及び第2段固相重縮合工程をこの順で含み、かつ、各々の工程が下記1)〜3)を満足することを特徴とするポリエチレンテレフタレートの製造方法。
    1)第1段固相重縮合工程が、ポリエチレンテレフタレートプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理する工程であり、かつその熱処理の温度(T1)が190℃以上225℃以下の工程である。
    2)昇温工程が、第1段固相重縮合工程を経たポリエチレンテレフタレートプレポリマーを不活性ガス雰囲気下又は減圧下で、第1段固相重縮合工程の熱処理の温度(T1)又はそれ以下の温度から昇温を開始して温度(T2)まで昇温する工程であり、温度T1(℃)から(T1+15)℃までを30分以内で昇温し、かつ温度T1(℃)及びT2(℃)が下記(式1)及び(式2)を満足する工程である。
    T1+15≦T2 (式1)
    205℃≦T2≦240℃ (式2)
    3)第2段固相重縮合工程が、第1段固相重縮合工程及び昇温工程を経たポリエチレンテレフタレートプレポリマーを不活性ガス雰囲気下又は減圧下で熱処理する工程であり、かつ、その熱処理の温度(T3)が190℃以上240℃以下の工程である。
  2. 第1段固相重縮合工程に供するポリエチレンテレフタレートプレポリマーの結晶化度が15質量%以上である請求項1に記載のポリエチレンテレフタレートの製造方法。
  3. 第1段固相重縮合工程に先立つ結晶化工程を有しており、該結晶化工程がポリエチレンテレフタレートプレポリマーを温度(Tx)110℃以上200℃以下で熱処理する工程である請求項1又は2に記載のポリエチレンテレフタレートの製造方法。
  4. 第2段固相重縮合工程に供するポリエチレンテレフタレートプレポリマーの固有粘度が0.35dL/g以上である請求項1乃至3のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  5. 固体状態での熱処理が連続的に行われる請求項1乃至4のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  6. 第1段固相重縮合工程及び/又は第2段固相重縮合工程が連続式移動床で実施される請求項1乃至5のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  7. 結晶化工程が流動床で実施される請求項3乃至6のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  8. 昇温工程が流動床で実施される請求項1乃至7のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  9. ポリエチレンテレフタレートプレポリマーが粒子であり、その平均質量が0.1mg/粒以上30mg/粒以下である請求項1乃至8のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  10. ポリエチレンテレフタレートプレポリマーの末端カルボキシル基濃度が100当量/トン以下である請求項1乃至9のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
  11. ポリエチレンテレフタレートがチタン化合物を含有する請求項1乃至10のいずれか1項に記載のポリエチレンテレフタレートの製造方法。
JP2007023184A 2006-05-08 2007-02-01 ポリエチレンテレフタレートの製造方法 Active JP4645600B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023184A JP4645600B2 (ja) 2006-05-08 2007-02-01 ポリエチレンテレフタレートの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006129284 2006-05-08
JP2007023184A JP4645600B2 (ja) 2006-05-08 2007-02-01 ポリエチレンテレフタレートの製造方法

Publications (2)

Publication Number Publication Date
JP2007327029A JP2007327029A (ja) 2007-12-20
JP4645600B2 true JP4645600B2 (ja) 2011-03-09

Family

ID=38927707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023184A Active JP4645600B2 (ja) 2006-05-08 2007-02-01 ポリエチレンテレフタレートの製造方法

Country Status (1)

Country Link
JP (1) JP4645600B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613929B2 (ja) * 2008-07-11 2014-10-29 ディーエスエム アイピー アセッツ ビー.ブイ. 半結晶ポリマーの熱処理方法
CN110095457A (zh) * 2019-04-17 2019-08-06 广东环凯微生物科技有限公司 一种余氯的测定试纸及快速测定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408035A (en) * 1991-10-16 1995-04-18 Shell Oil Company Solid state polymerization
JP2004067997A (ja) * 2002-06-12 2004-03-04 Mitsubishi Chemicals Corp ポリエステル樹脂の製造方法
JP2005232400A (ja) * 2004-02-23 2005-09-02 Mitsui Chemicals Inc ポリエステル樹脂、それよりなる中空成形体およびポリエステル樹脂の製造方法
JP2005325270A (ja) * 2004-05-14 2005-11-24 Mitsubishi Chemicals Corp ポリエステルの製造方法
JP2007070479A (ja) * 2005-09-07 2007-03-22 Mitsubishi Chemicals Corp ポリエチレンテレフタレートの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408035A (en) * 1991-10-16 1995-04-18 Shell Oil Company Solid state polymerization
JP2004067997A (ja) * 2002-06-12 2004-03-04 Mitsubishi Chemicals Corp ポリエステル樹脂の製造方法
JP2005232400A (ja) * 2004-02-23 2005-09-02 Mitsui Chemicals Inc ポリエステル樹脂、それよりなる中空成形体およびポリエステル樹脂の製造方法
JP2005325270A (ja) * 2004-05-14 2005-11-24 Mitsubishi Chemicals Corp ポリエステルの製造方法
JP2007070479A (ja) * 2005-09-07 2007-03-22 Mitsubishi Chemicals Corp ポリエチレンテレフタレートの製造方法

Also Published As

Publication number Publication date
JP2007327029A (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
EP1939238B1 (en) Apparatus for heat treatment of polyester particle and method of multistage solid-phase polycondensation of polyester particle
WO2007026838A1 (ja) ポリエステルの製造方法
JP2008189721A (ja) ポリエステル成形品及びその製造方法
US8329857B2 (en) Polyester resin particle and method for producing the same
JP2004143442A (ja) ポリエステル樹脂の製造方法
JP4127119B2 (ja) ポリエステル樹脂の製造方法
JP4784213B2 (ja) ポリエステルの製造方法
KR20070108385A (ko) 폴리에스테르의 연속적 제조 방법, 폴리에스테르예비중합체 입상체 및 폴리에스테르
JP4645600B2 (ja) ポリエチレンテレフタレートの製造方法
JP5444803B2 (ja) ポリエチレンテレフタレートの製造方法
JP4784216B2 (ja) ポリエチレンテレフタレートの製造方法
JP4735321B2 (ja) ポリエステルの連続的製造方法、ポリエステルプレポリマー粒状体及びポリエステル
KR101229581B1 (ko) 개선된 용융특성 및 결정화 특성을 구비하는폴리에스테르의 제조방법
JP4765748B2 (ja) ポリエステル粒子の製造方法及びポリエステル樹脂粒子の製造方法
JP5130741B2 (ja) ポリエチレンテレフタレートの製造方法
JP3999620B2 (ja) ポリエステル樹脂の製造方法
JP5160063B2 (ja) ポリエステルの製造方法
JP2008189722A (ja) ポリエチレンテレフタレートの製造方法
JP5211646B2 (ja) ポリエステルの製造方法
JP3799167B2 (ja) ポリエステルの製造方法
KR100718219B1 (ko) 폴리(트리메틸렌테레프탈레이트)조성물 및 그의 제조방법
JP4692527B2 (ja) ポリエステル樹脂の製造方法、結晶化ポリエステルプレポリマーペレット及びポリエステル樹脂ペレット
JP2005325270A (ja) ポリエステルの製造方法
JP2003073462A (ja) 結晶化ポリトリメチレンテレフタレートチップ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350