JP4639912B2 - タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法 - Google Patents

タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法 Download PDF

Info

Publication number
JP4639912B2
JP4639912B2 JP2005104779A JP2005104779A JP4639912B2 JP 4639912 B2 JP4639912 B2 JP 4639912B2 JP 2005104779 A JP2005104779 A JP 2005104779A JP 2005104779 A JP2005104779 A JP 2005104779A JP 4639912 B2 JP4639912 B2 JP 4639912B2
Authority
JP
Japan
Prior art keywords
tire
rim
model
bead portion
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104779A
Other languages
English (en)
Other versions
JP2006199263A (ja
Inventor
雅俊 桑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005104779A priority Critical patent/JP4639912B2/ja
Publication of JP2006199263A publication Critical patent/JP2006199263A/ja
Application granted granted Critical
Publication of JP4639912B2 publication Critical patent/JP4639912B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ性能のシミュレーションに関する。
従来タイヤは、試作品を走行試験や耐久試験等に供して得られた結果を基に、さらに改良を加えて試作品を作製するという繰返しによって開発されていた。このような開発手法は、試作と試験との繰返しになるので、開発効率が悪いという問題点があった。この問題点を解決するために、近年では数値解析を用いたコンピュータシミュレーションによって、試作品を製造しなくともタイヤの物理的性質を予測することができる手法が提案されている。
近年においては、より精度の高い予測結果を得るために、タイヤをホイールに装着した状態で、タイヤの諸性能を予測するタイヤ性能のシミュレーション方法が用いられつつある。このようなタイヤ性能の予測方法としては、例えば、タイヤのビード幅を狭めてからタイヤのビード部をホイールのリムに嵌合させるステップを含むシミュレーション方法が特許文献1に開示されている。
特開2002−350294号公報
しかしながら、上記特許文献1に開示されているシミュレーション方法では、より実際に近い状態を模擬するため、タイヤのビード幅をリム幅よりも狭くするステップと、ビードをリムに嵌合させるステップとを含む。これに起因して、上記特許文献1に開示されているシミュレーション方法では、計算時間が長くなるという問題があった。また、ビードの脱落を防止するための、いわゆるハンプがリムに設けられている場合、特許文献1に開示されているシミュレーション方法では、ビードがハンプを乗り越えなければならない。これに起因して、前記シミュレーション方法では、計算そのものが不可能になったり、計算は可能であっても極めて多くの計算時間を要したりするという問題もあった。
そこで、この発明は、上記に鑑みてなされたものであって、タイヤの性能を予測する際の計算時間を短縮すること、リムにハンプが形成されている場合でもタイヤの性能を予測可能とするとともに、そのときの計算時間を短縮することのうち少なくとも一つを達成できるタイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法を提供することを目的とする。
上述した目的を達成するために、本発明に係るタイヤ性能の予測方法は、ホイールのリムにタイヤのビード部を嵌合させた状態で性能を予測するにあたり、前記タイヤと、前記ホイールが備える前記リムとを複数の微小要素に分割して、リム側の嵌合面とビード部側の嵌合面とが対向し、かつ所定の間隔をもって配置されるように設定されるタイヤモデル及びリムモデルを作成する手順と、前記リムモデルの径を規定の寸法に変化させることにより、前記タイヤモデルのビード部側の嵌合面と、前記リムモデルのリム側の嵌合面との径方向における位置を合わせる手順と、前記タイヤモデルのビード部を前記リムモデルへ嵌合させる手順と、を含むことを特徴とする。
このタイヤ性能の予測方法は、リムモデルのリム側嵌合面とタイヤモデルのビード部側嵌合面とを、所定の間隔を設けて対向配置する。その後、前記リムモデルの径を規定の寸法に変化させることにより、リム側嵌合面とビード部側嵌合面とを、リムモデルあるいはタイヤモデルの径方向において一致させてから嵌合させる。これによって、タイヤモデルのビード部を一旦狭める手順が不要となり、また、リムとビード部とが嵌合する際におけるビード部の動きを小さくできる。その結果、リムとビード部とが嵌合する際におけるタイヤの振動の減衰時間が短縮するので、タイヤの性能を予測する際の計算時間を短縮できる。また、リムがハンプを乗り越えることはないので、リムにハンプが設けられている場合においてもビード部をリムに嵌合させる解析が可能になり、かかる場合にもタイヤの性能を予測することができる。さらに、リム上をビード部が滑るという大きな滑りを伴う振動が少なくなるため、計算時間を短縮できる。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記タイヤモデルのビード部を前記リムモデルへ嵌合させる前に、前記タイヤモデルのビード部の幅を変更する手順を含むことを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記タイヤモデルのビード部を前記リムモデルへ嵌合させるときに、前記タイヤモデルに内圧を負荷することを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記リムモデルには、ハンプが設けられていることを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記リムモデルの少なくとも一部は剛体としてモデル化されていることを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記タイヤモデルのビード部側の嵌合面と前記リムモデルのリム側の嵌合面との径方向における位置を合わせるときにおける、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第1の摩擦係数を、前記タイヤモデルのビード部を前記リムモデルへ嵌合させるときにおける、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第2の摩擦係数よりも大きくすることを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記第1の摩擦係数は、0.1以上1.0以下であり、前記第2の摩擦係数は、0.01以上0.4以下であることを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記タイヤモデルのビード部を前記リムモデルへ嵌合させた後における、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第3の摩擦係数を、前記タイヤモデルのビード部を前記リムモデルへ嵌合させるときにおける、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第2の摩擦係数よりも大きくすることを特徴とする。
次の本発明に係るタイヤ性能の予測方法は、前記タイヤ性能の予測方法において、前記第3の摩擦係数は、0.5以上2.0以下であることを特徴とする。
次の本発明に係るタイヤ性能の予測用コンピュータプログラムは、前記タイヤ性能の予測方法をコンピュータに実行させることを特徴とする。これによって、前記接触状態の評価方法を、コンピュータを用いて実現できる。
次の本発明に係るタイヤ/ホイール組立体モデルの作成方法は、微小要素に分割されるとともに、リム側の嵌合面とビード部側の嵌合面とが対向し、かつ所定の間隔をもって配置されるように設定されるタイヤモデル及びリムモデルを作成し、前記リムモデルの径を規定の寸法に変化させることにより、前記タイヤモデルのビード部側の嵌合面と前記リムモデルのリム側の嵌合面との径方向における位置を合わせてから、前記タイヤモデルのビード部を前記リムモデルへ嵌合させて作成されることを特徴とする。
このタイヤ/ホイール組立体モデルの作成方法は、リムモデルのリム側嵌合面とタイヤモデルのビード部側嵌合面とを、所定の間隔を設けて対向配置する。その後、前記リムモデルの径を規定の寸法に変化させることにより、リム側嵌合面とビード部側嵌合面とを、リムモデルあるいはタイヤモデルの径方向において一致させてから嵌合させることによりタイヤ/ホイール組立体モデルを作成る。このタイヤ/ホイール組立体モデルでは、タイヤモデルのビード部を一旦狭める手順が不要となり、また、リムとビード部とが嵌合する際におけるビードの動きを小さくできる。その結果、リムとビードとが嵌合する際におけるタイヤの振動の減衰時間が短縮するので、このタイヤ/ホイール組立体モデルを用いれば、タイヤの性能を予測する際におけるタイヤ/ホイール組立体モデルの作成を含めた計算時間を短縮できる。
また、リムがハンプを乗り越えることはないので、リムにハンプが設けられている場合においてもビード部をリムに嵌合させる解析が可能になる。このように、このタイヤ/ホイール組立体モデルのを用いれば、リムにハンプが設けられている場合においても、タイヤの性能を予測することができる。さらに、このタイヤ/ホイール組立体モデルは、リム上をビード部が滑るという大きな滑りを伴う計算が少なくなるため、タイヤ/ホイール組立体モデルを作成する際の計算時間を短縮できる。
次の本発明に係るタイヤ/ホイール組立体モデルの作成方法は、前記タイヤ/ホイール組立体モデルにおいて、前記リムモデルには、ハンプが設けられていることを特徴とする。
次の本発明に係るタイヤ/ホイール組立体モデルの作成方法は、前記タイヤ/ホイール組立体モデルにおいて、前記リムモデルの少なくとも一部は剛体としてモデル化されていることを特徴とする。
本発明によれば、タイヤの性能を予測する際の計算時間を短縮すること、リムにハンプが形成されている場合でもタイヤの性能を予測可能とするとともに、そのときの計算時間を短縮することのうち少なくとも一つを達成できる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。なお、本発明はタイヤの種類は問わず適用できるが、特に空気入りタイヤの性能予測に好適である。
(実施の形態)
この実施の形態に係るタイヤ性能の予測方法は次の点に特徴がある。すなわち、リム側の嵌合面とビード部側の嵌合面とが対向し、かつ所定の間隔をもって配置されるように設定されるリムモデルとタイヤモデルとを作成する。そして、前記リムモデルの径を規定の寸法に変化させることにより、タイヤモデルのビード部側の嵌合面と、リムモデルのリム側の嵌合面との径方向における位置を合わせ、タイヤモデルのビード部をリムモデルへ嵌合させる。その後、ホイールに装着したタイヤや、タイヤ/ホイール組立体の諸性能を予測する。なお、この実施の形態に係るタイヤ性能の予測方法は、コンピュータを用いたシミュレーションによって実現できる。
タイヤをホイールに装着する過程自体を予測するのであれば、上記特許文献1に開示されているような、タイヤのビード幅を狭めるステップと嵌合ステップという二つのステップを有するシミュレーション方法が必要となる。ここで、タイヤのビード部をホイールのリムに嵌合させる際には、タイヤの各部に振動が発生する。したがって、タイヤをホイールに装着した後、タイヤの転動その他のシミュレーションに移行する際には、この振動が減衰するまで待つ必要がある。
このように、特許文献1に開示されているシミュレーション方法では、タイヤ/ホイール組立体を得るにあたって二つのステップを要し、また嵌合時に発生するタイヤ各部の振動の減衰を待つ必要がある。このため、ホイールに装着したタイヤ等の転動その他のシミュレーションを完了するまでに長い計算時間を要してしまう。また、リムにハンプが設けられている場合にはビード部がハンプを乗り越えなければならないので、計算が不可能となるか、計算ができたとしても極めて多くの計算時間を要する。特に、陰解法を用いる場合には、ほとんど計算は不可能である。さらに、ビード部とリムとは大きな滑りを伴うので、計算に時間を要する。
ビード部とリムとを嵌合するときの挙動や、ビード部がハンプを乗り越える挙動をシミュレーションする場合には、特許文献1に開示されているような方法が必要となる。しかし、ホイールにタイヤを装着した後、実際に使用されている状態におけるタイヤ等の諸性能を予測する場合には、ビード部とリムとを嵌合するときの挙動等は必要ではない。本発明者はこの点に着目し、次に説明する手順によってホイールに装着したタイヤや、タイヤ/ホイール組立体の諸性能を予測することとした。
図1は、タイヤ及びホイールのリムを、その中心軸を含む子午面で切った断面を示す一部断面図である。まず、タイヤ及びホイールのリムについて簡単に説明する。キャップトレッド2は、タイヤ1の路面接地部に配置されており、カーカス6、ベルト5又はブレーカの外側を覆うゴム層である。キャップトレッド2は、路面等からの衝撃や外傷からカーカス6やベルト5を保護するとともに、摩耗寿命を延長する役目を持っている。
アンダトレッド3は、キャップトレッド2とベルト5との間に配置されるゴム層で、発熱性、接着性等を向上させる目的で用いられる。サイドトレッド4は、サイドウォール部の最も外側に配置されて外からの傷がカーカス6に達するのを防止するとともに、ラジアルタイヤの場合には、車軸からの駆動力を路面に伝える補助的役割も担っている。
ベルト5は、キャップトレッド2とカーカス6との間に配置されたゴム引きコード層である。なお、バイアスタイヤの場合にはブレーカと呼ぶ。ラジアルタイヤにおいて、ベルト5は形状保持及び強度メンバーとして重要な役割を担っている。カーカス6はタイヤ1の骨格をなすゴム引きコード層である。カーカス6は、タイヤ1に空気を充填した際に圧力容器としての役目を果たす強度メンバーであり、その内圧によって荷重を支え、走行中の動的荷重に耐える構造を持っている。
ビード部9は、内圧によって発生するカーカス6のコード張力を支えているスチールワイヤの束を、硬質ゴムで固めたリングである。タイヤ1をホイールのリムに固定させる役割を果たす他、カーカス6、ベルト5及びトレッドとともに、タイヤ1の強度部材となる。ビードフィラー8は、カーカス6をビードワイヤ7の周囲に巻き込む際に生ずる空間へ充填するゴムである。カーカス6をビードワイヤ7に固定するとともに、その部分の形状を整え、ビード部9全体の剛性を高める。
ホイール10は、タイヤ1のビード部9と嵌合するリム11を備える。リム11には、嵌合したタイヤ1のビード部9がリム11から外れないように、ハンプ12が設けられる。ハンプ12は、リム11からホイール10の径方向外側へ突出する突起であり、タイヤ1のビード部9が内側へ移動する動きを抑止する。なお、ビード部9がリム11へ嵌合する際には、ビード部9がハンプ12を乗り越える。次に、タイヤ、ホイール及びタイヤ/ホイール組立体の軸について説明する。
図2−1、図2−2は、タイヤ、ホイール及びタイヤ/ホイール組立体の各軸を示す説明図である。図2に示すY軸は、タイヤ1、ホイール10及びタイヤ/ホイール組立体18の中心軸に相当する軸である。X軸、Z軸は、それぞれ前記Y軸に直交するとともに、X軸とZ軸とは、互いに直交する。ここで、Z軸は、タイヤ1、ホイール10のY軸と平行な方向、すなわちタイヤ1、ホイール10の幅方向における中心の軸(以下幅方向中心軸という)である。次に、この実施の形態に係るタイヤ性能の予測方法を実現するタイヤ性能の予測装置について説明する。
図3、図4は、この実施の形態に係るタイヤ性能の予測装置を示す装置構成図である。この実施の形態に係るタイヤ性能の予測方法は、図3に示すタイヤ性能の予測装置50によって実現できる。図3に示すように、このタイヤ性能の予測装置50は、処理部52と記憶部54とで構成される。また、このタイヤ性能の予測装置50には、入出力装置51が接続されており、ここに備えられた入力手段53でタイヤモデルを構成するゴムの物性値やホイールの物性値、あるいは予測計算における境界条件や走行条件等を処理部52や記憶部54へ入力する。
ここで、入力手段53には、キーボード、マウス等の入力デバイスを使用することができる。また、図4に示すように、処理部52は、タイヤモデルやリムモデルを作成するモデル作成部52mと、リムモデルをタイヤモデルのビード部へ嵌合させる嵌合部52sと、得られたタイヤ/ホイール組立体モデルを用いてタイヤ等の性能を予測する解析部52pとを有している。
記憶部54には、この実施の形態に係るタイヤ性能の予測方法を含むコンピュータプログラムが格納されている。ここで、記憶部54は、ハードディスク装置や光磁気ディスク装置、又はフラッシュメモリ等の不揮発性のメモリ(CD−ROM等のような読み出しのみが可能な記憶媒体)や、RAM(Random Access Memory)のような揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。
また、上記コンピュータプログラムは、コンピュータシステムにすでに記録されているコンピュータプログラムとの組み合わせによって、本発明に係るタイヤ性能の予測方法を実現できるものであってもよい。また、処理部52を構成するモデル作成部52m、嵌合部52s及び解析部52pの機能を実現するためのコンピュータプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより本発明に係るタイヤ性能の予測方法を実行してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器などのハードウェアを含むものとする。
処理部52は、メモリ及びCPUにより構成されている。タイヤ性能の予測時においては設定されたタイヤモデル及び入力データに基づいて、処理部52が前記プログラムを当該処理部52に組み込まれたメモリに読み込んで演算する。その際に処理部52は、適宜記憶部54へ演算途中の数値を格納し、また格納した数値を取り出して演算を進める。なお、この処理部52は、前記コンピュータプログラムの代わりに専用のハードウェアにより、モデル作成部52m、嵌合部52s及び解析部52pの機能を実現するものであってもよい。予測結果は、入出力装置の表示手段55に表示される。
ここで、表示手段55には、CRT(Cathode Ray Tube)や液晶表示装置等を使用することができる。また、予測結果は、必要に応じて設けられたプリンタに出力することもできる。また、記憶部54は、処理部52に内蔵されるものであっても、他の装置(例えばデータベースサーバ)内にあってもよい。このように、上記タイヤ性能の予測装置50は、入出力装置51を備えた端末装置から通信により処理部52や記憶部54にアクセスするものであってもよい。次に、この実施の形態に係るタイヤ性能の予測方法について説明する。なお、次の説明においては、適宜図1〜図4を参照されたい。
図5は、この実施の形態に係るタイヤ性能の予測方法の手順を示すフローチャートである。ここでは、上述したタイヤ性能の予測装置50を用いて、この実施の形態に係るタイヤ性能の予測方法を実現する例を説明する。この実施の形態に係るタイヤ性能の予測方法では、タイヤやタイヤ/ホイール組立体の特性を予測する解析手法として有限要素法(Finite Element Method:FEM)を使用する。
なお、本発明に係るタイヤのシミュレーション方法に適用できる解析手法は有限要素法に限られず、境界要素法(Boundary Element Method:BEM)、有限差分法(Finite Differences Method:FDM)等も使用できる。性能予測対象であるタイヤ、タイヤ/ホイール組立体、あるいは境界条件等によって最も適当な解析手法を選択し、又は複数の解析手法を組み合わせて使用することもできる。解析手法に有限要素法を用いる場合、本発明は陽解法、陰解法を問わず適用できるが、特に収束計算を繰り返し実行する陰解法によってタイヤの諸性能を予測する際に好適である。
図6−1は、ホイールのリムを微小要素(ソリッド要素)に分割して作成したリムモデルの一例を示す断面図である。図6−2は、ホイールのリムを微小要素(剛体要素)に分割して作成したリムモデルの一例を示す断面図である。図7は、タイヤを微小要素に分割して作成したタイヤモデルの一例を示す断面図である。この実施の形態に係るタイヤのシミュレーション方法を実行するにあたっては、まず、有限要素法等の解析手法によって解析できるように、タイヤ性能の予測装置50が備えるモデル作成部52mが、前記解析手法に適したリムモデル及びタイヤモデルを作成する(ステップS101)。
例えば有限要素法を使用する場合、図6−1に示すように、リムを有限個の微小要素、すなわち有限要素法に基づく微小要素20n-1、20n、20n+1・・・等に分割する。これによって作成されたリムモデル20は、図6−1に示すように、第1リム21、第2リム22、ハンプ23及びウェル24が有限個の微小要素に分割されてモデル化されている。これにより、リムの有限要素モデル、すなわちリムモデル20を作成することができる。ここで、第1リム21、第2リム22は、ホイールが備える2個のリムを区別するための便宜上の称呼である。以下の説明においては、必要に応じて第1リム21、第2リム22をまとめて、リム21、22ともいう。なお、図6−2に示すように、ホイールのリムを微小要素(剛体要素)に分割して剛体要素リムモデル20sを作成し、これを解析に用いてもよい。
同様に、タイヤを有限要素法に基づく微小要素30n-1、30n、30n+1・・・等に分割する。タイヤモデル30は、第1ビード部31がリムモデル20の第1リム21に嵌合し、第2ビード部32がリムモデル20の第2リム22に嵌合する。これにより、タイヤの有限要素モデル、すなわちタイヤモデル30を作成することができる(図7参照)。なお、第1ビード部31、第2ビード部32は、タイヤが備える2個のビード部を区別するための便宜上の称呼である。以下の説明においては、必要に応じて第1ビード部31、第2ビード部32をまとめて、ビード部31、32ともいう。
有限要素法に基づく微小要素とは、例えば二次元平面においては、2節点のシェル及び膜、剛体要素や、三角形及び四角形の連続体要素、三次元においては、四面体要素、五面体要素、六面体要素等を含む連続体要素や、三角形、四角形要素等のシェル及び膜要素等を用いることができる。これらの要素は特に限定されるものではなく、一般的な有限要素法に用いられている要素を用いることができる。このようにして分割された微小要素は、解析の過程においては、三次元座標を用いて逐一特定される。
なお、この実施の形態に係るリムモデル20は、ホイール10のリム11(図1)をモデル化しているが、ホイール10全体をモデル化してリムモデルが含まれるようにしてもよい。また、リム21、22の部分のみをモデル化したリムモデルを用いてもよい。さらに、リムモデル20は、タイヤモデル30のビード部31、32を覆う範囲のみが例えば有限要素法等に基づいてモデル化されていればよく、ホイール10のリム11全体をモデル化する必要はない。
この実施の形態に係るリムモデル20は、2個のリム21、22を一体としているが、両方のリムを分割してもよい。この場合には、ビード部をリムに嵌合させるステップやタイヤモデルに内圧を負荷するステップで両方のリムを一体化したり、両方のリムを一体化したリムモデルに置き換えたりしてもよい。
また、この実施の形態に係るリムモデル20は、全体を変形体として構成することができる。すなわち、リムモデル20の全体にわたってリム21、22の弾性率や変形等を考慮してリムモデル20を構成することができる。また、リムモデル20を変形体としてではなく剛体としてモデル化してもよい。この場合には次の点で有利である。
有限要素法の陽解法においては、Courant条件を満たす必要がある。一般にホイールはアルミニウム合金や鉄等によって製造されており、その弾性率は高くなる。また、一般にホイールは形状が複雑であるので、有限要素法を用いてこれを精度よく解析するためには、各微小要素の大きさを小さくする必要がある。このため、ホイールのリム21、22を変形体としてリムモデル化すると、前記Courant条件を満たすために時間増分値が小さくなりやすく、計算に多くの時間を要することになる。ここで、ホイールのリム21、22を変形体としてではなく剛体としてモデル化すれば、弾性率や分割する微小要素の大きさを考慮する必要はない。その結果、前記時間増分値が減少しないので、計算時間の増加を抑制することができる。なお、リムモデル20を剛体としてモデル化する場合、すべてを剛体としなくとも、少なくとも一部を剛体としてモデル化してもよい。例えば、ホイール10のリム11がタイヤ1のビード部9と接する部分は少なくとも剛体としてモデル化する。
作成したリムモデル20及びタイヤモデル30は、この実施の形態に係るタイヤ性能の予測方法によって、タイヤモデル30がリムモデル20に装着されて、タイヤ/ホイール組立体モデルが得られる。そして、得られたタイヤ/ホイール組立体モデルに対して静的あるいは動的シミュレーションを実行することによって、タイヤをホイールに装着した状態におけるタイヤの諸性能や、タイヤ/ホイール組立体としての諸性能を予測する。ここで、タイヤ性能には、例えば制動性能やコーナーリング性能等、タイヤの動的シミュレーションによって取り扱うことのできる諸性能が含まれる。また、タイヤの静的シミュレーションによって取り扱うことのできる諸性能も含まれる。次に、リムモデル20とタイヤモデル30との径方向における位置関係について説明する。
図8は、この実施の形態に係るリムモデルの径方向における位置を示す説明図である。図9は、この実施の形態に係るリムモデルとタイヤモデルとの径方向における位置を示す説明図である。図10は、この実施の形態に係るリムモデルとタイヤモデルとの径方向における位置を合わせた状態を示す説明図である。この実施の形態に係るリムモデル20は、実際のリム11をモデル化したものである。図8に示すように、この実施の形態に係るリムモデル20のリム半径Rrvは、実際のリム11のリム半径がRrよりも小さく設定されている。ここで、「リム半径」とは、ホイールの中心軸Yrからリム側の嵌合面(以下リム側嵌合面)Srまでの距離をいう。なお、ホイールの中心軸Yrは、タイヤの中心軸Ytと同じである。
また、この実施の形態に係るタイヤモデル30は、実際のタイヤ1をモデル化したものである。図9に示すように、この実施の形態に係るタイヤモデル30のビード半径Rtは、実際のタイヤ1のビード半径と同じ大きさに設定されている。ここで、「ビード半径」とは、タイヤの中心軸Ytからビード部側の嵌合面(以下ビード部側嵌合面)Sbまでの距離をいう。
リムモデル20のリム半径Rrvとタイヤモデル30のビード半径Rtとを上記のように設定することにより、図9に示すように、リムモデル20のリム半径Rrvは、タイヤモデル30のビード半径Rtよりも小さくなる。これによって、リムモデル20(あるいはタイヤモデル30)の径方向において、リム側嵌合面Srとビード部側嵌合面Sbとが異なり、かつリム側嵌合面Srとビード部側嵌合面Sbとが対向して配置される。すなわち、リム側嵌合面Srとビード部側嵌合面Sbとは、所定の間隔(ここではRt−Rrv)をもって対向配置される。なお、リムモデル20の幅方向中心軸(図2−2参照)と、タイヤモデル3の幅方向中心軸とは一致している。
次に、嵌合部52sは、前記リムモデルの径を規定の寸法に変化させることにより、リムモデル20のリム側嵌合面Srとタイヤモデル30のビード部側嵌合面Sbとの径方向における位置を合わせる(ステップS102)。この実施の形態では、リム半径Rrvをビード半径Rtよりも小さく設定しているので、リムモデル20のリム半径Rrvを大きくする方向に変更する。すなわち、図9に示す矢印Aの方向にリムモデル20が移動することになる。これによって、図10に示すように、リムモデル側嵌合面Srとビード部側嵌合面Sbとの径方向における位置が一致する。なお、径方向とは、リムモデル20あるいはタイヤモデル30の径方向をいう。
次に、嵌合部52sは、タイヤモデル30のビードをリムモデル20のリムに嵌合させる(ステップS103)。例えば、リムモデル20のリムモデル側嵌合面Srと、タイヤモデル30のビード部側嵌合面Sbとの接触を定義することによって、ビード部31、32とリム21、22との嵌合を再現することができる。これによって、タイヤモデル30のビード部31、32が、リムモデル20のリム21、22にそれぞれ嵌合する。これにより、二次元のタイヤ/ホイール組立体モデル40が作成される。
ここで、ビード幅Wbが、リム幅Wrよりも大きい場合、タイヤモデル30のビードをリムモデル20のリムに嵌合させる(ステップS103)前に、ビード幅Wbを変更する手順を加えてもよい。これによって、リム側嵌合面Srとビード部側嵌合面Sbとの径方向における位置を合わせる際には、ビード部とリムとの干渉を無視することができるので、計算の収束を早めて計算時間を短縮できる。ビード幅Wbを変更する際には、ビード幅Wbをリム幅Wrよりもやや小さくしておくとよい。このようにすれば、リム径を変化させる際のビード部トリムとの接触領域が少なくて済むため、計算時間をより短くできる。ここで、ビード幅Wbとは、タイヤモデル30の第1ビード部31の外側と第2ビード部32の外側との間隔をいい、リム幅Wrとは、リムモデルの第1リム21の内側と第2リム22の内側との間隔をいう(図9参照)。
ビード幅Wbは、例えば、第1ビード部31と第2ビード部32とに強制変位を与えて変更(この実施の形態では狭める)もよいし、リムモデル20とは別個に用意した第2リムモデルと接触させて、ビード幅Wbを変更してもよい。なお、ビード幅Wbは、リム側嵌合面Srとビード部側嵌合面Sbとの径方向における位置を合わせる前又は後、すなわち、ステップS102の前又は後に変更すればよい。ビードとリムとの嵌合は、例えば、リムモデル側嵌合面Srとビード部側嵌合面Sbとの接触を定義することで実現できるが、この手法によれば、前記接触を定義する前は、リムとビードとの干渉は考慮しなくてよいからである。
ここで、リム側嵌合面Srとビード部側嵌合面Sbとの径方向における位置を合わせるとき(ステップS102)における、ビード部31、32とリム21、22との間の第1の摩擦係数μ1を、タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させるとき(ステップS103)におけるビード部31、32とリム21、22との間の第2の摩擦係数μ2よりも大きくする。これによって、リム側嵌合面Srとビード部側嵌合面Sbとの径方向における位置を合わせるときにおいては、ビード部31、32の滑りを小さくできるので、計算時間をさらに短くすることができる。また、ビード部31、32をリム21、22に嵌合させる際には、前記第2の摩擦係数μ2が前記第1の摩擦係数μ1よりも小さくなるため、ビード部31、32がリム21、22上を動きやすくなる。その結果、ビード部31、32をリム21、22に対してより確実にフィットさせることができる。
リム側嵌合面Srとビード部側嵌合面Sbとの径方向における位置を合わせるときの第1の摩擦係数μ1は、0.1以上1.0以下が好ましく、より好ましい範囲は0.3以上0.7以下である。また、タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させるときの第2の摩擦係数μ2は、0.01以上0.4以下が好ましく、より好ましい範囲は0.01以上0.1以下である。なお、静止摩擦係数及び動摩擦係数の両方が、前記第1、第2の摩擦係数μ1、μ2の範囲にあることが好ましい。
また、タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させた後の第3の摩擦係数μ3は、タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させるときの第2の摩擦係数μ2よりも大きくする。この第3の摩擦係数μ3は、現実のタイヤ1のビード部9を、現実のホイール10のリム11に嵌合させた後における両者の摩擦係数である。このようにすることで、嵌合後におけるビード部とリムとの状態をより精度よく再現できる。
その結果、ビード部の変形状態をより正確に再現し、タイヤやタイヤ/ホイール組立体の性能の予測精度を向上させることができる。また、タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させるときには、ビード部31、32をリム21、22に対してより確実にフィットさせることができる。タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させた後の第3の摩擦係数μ3は、0.5以上2.0以下が好ましい。なお、静止摩擦係数及び動摩擦係数の両方が、前記摩擦係数μ3の範囲にあることが好ましい。
この実施の形態では、リムモデル20のリム側嵌合面Srとタイヤモデル30のビード部側嵌合面Sbとを、所定の間隔を設けて対向配置し、その後、リム側嵌合面Srとビード部側嵌合面Sbとを一致させてから嵌合させる。このため、この実施の形態においては、ビード部を一旦狭めてからリムに嵌合させるという特許文献1に開示されているシミュレーション方法と異なり、ビード部を一旦狭める手順は不要となる。これによって、リム21、22とビード部31、32とが嵌合する際におけるビード部31、32の動きを小さくできるので、嵌合後に内圧Pを負荷する際には、ビード部が急激にリムへ嵌合することを防止できる。その結果、リム21、22とビード部31、32とが嵌合する際におけるタイヤの振動を低減できるので、前記振動の減衰時間を短縮して計算時間を短くすることができる。
また、特許文献1に開示されているシミュレーション方法では、ビード部を一旦狭めてからリムに嵌合させるので、ビード部の圧縮変形に加え、ビード部とリムとの間で大きな滑りをともない、解析においては収束性が悪化して多くの時間を要する。しかし、この実施の形態に係るタイヤ性能の予測方法では、所定の間隔を設けて対向配置したリム側嵌合面Srとビード部側嵌合面Sbとを一致させてから嵌合させる。これによってリム21、22とビード部31、32との間の大きな滑りは極めて低減できるので、この実施の形態においては、主としてビード部31、32の圧縮変形を取り扱えばよい。その結果、収束性を向上させて解析時間を短縮することができる。このように、この実施の形態に係るタイヤ性能の予測方法は、特に、収束計算を繰り返し実行する陰解法に好ましい。
また、特許文献1に開示されているシミュレーション方法は、ビード部とリムとの間に大きな滑りを伴うだけでなく、リムにハンプが設けられている場合には、ビード部がこれを乗り越える必要がある。このため、リムにハンプが設けられている場合には解析が困難になり、特に陰解法を用いる場合には、解析はほとんど不可能である。しかし、この実施の形態に係るタイヤ性能の予測方法では、所定の間隔を設けて対向配置したリム側嵌合面Srとビード部側嵌合面Sbとを径方向において一致させてから嵌合させる。これによって、ビード部31、32がハンプ23を乗り越えることはないので、リム21、22にハンプ23が設けられている場合において陰解法を用いた解析が可能となる。
次に、嵌合部52sは、タイヤモデル30へ内圧Pを負荷する(ステップS104)。内圧Pの負荷によって、ビード部31、32は、それぞれ図10中の矢印B方向に移動して、リムモデル20のリム21、22側へそれぞれ押し付けられる。これによって、実際のタイヤの使用状態を再現することができる。また、内圧Pを直接負荷するので、タイヤの内部における実際の応力状態等も精度よく再現できる。
なお、内圧Pは、タイヤモデル30のビード部31、32をリムモデル20のリム21、22に嵌合させるとき(ステップS103)と同時に負荷してもよい。実際のタイヤにおいては、内圧Pの負荷によりタイヤのビード部がリムに押し付けられて、ビード部とリムとが十分に嵌合するので、このようにすれば、より実際の嵌合に近い状態を再現できる。また、嵌合と同時に内圧Pを負荷すれば、それだけ嵌合と内圧Pの負荷とを別個に実行する場合よりも計算時間を短縮することができる。
上記各手順によってタイヤモデル30をリムモデル20に嵌合して得られたタイヤ/ホイール組立体モデル40は、実際のタイヤ/ホイール組立体18(図2−1、図2−2)の中心軸Yを通る子午面内における二次元モデルである。二次元モデルを用いてタイヤ性能を予測する場合には(ステップS105;No)、所定の荷重F、キャンバー角、横力、その他の条件を与えて、得られたタイヤ/ホイール組立体モデル40を用いて、解析部52pがタイヤの諸性能を予測する(ステップS107)。
三次元モデルを用いてタイヤ性能を予測する場合には(ステップS105;Yes)、上記各手順によって得られた二次元のタイヤ/ホイール組立体モデル40から三次元のタイヤ/ホイール組立体モデルを作成する。図11は、二次元のタイヤ/ホイール組立体モデルから三次元のタイヤ/ホイール組立体モデルを作成する方法を示す説明図である。図12は、三次元のタイヤ/ホイール組立体モデルの一例を示す斜視図である。
図11に示すように、二次元のタイヤ/ホイール組立体40の中心軸Ytrを基準とした中心角θの領域は、作成した二次元のタイヤ/ホイール組立体モデル40であるとみなす。そして、作成しようとする三次元のタイヤ/ホイール組立体の周方向に向かって、作成した二次元のタイヤ/ホイール組立体モデル40を展開する。これによって、二次元のタイヤ/ホイール組立体モデル40から、三次元のタイヤ/ホイール組立体モデル100(図12参照)を作成することができる。なお、三次元のタイヤ/ホイール組立体モデル100は、タイヤモデル30へ内圧Pを負荷する前(前記ステップS104の前)に作成してもよい。
三次元のタイヤ/ホイール組立体モデル100を作成したら(ステップS106)、所定の荷重F、速度、スリップ角、キャンバー角、スリップ率、横力、前後力、その他の条件を与えて、得られたタイヤ/ホイール組立体モデル40を用いて、解析部52pがタイヤの諸性能を予測する(ステップS107)。
(変形例)
次に、タイヤモデルのビードとリムモデルのリムとを嵌合させる手順の変形例を説明する。図13〜図15は、ビード部とリムとを嵌合させる手順の変形例を示す説明図である。図13に示す例では、リムモデル20のホイールの中心軸Yrvを、タイヤモデル30のビード部31、32から離れる方向にタイヤの中心軸YtからΔRrだけずらして配置する。そして、リムモデル20のリム半径Rrと、タイヤモデルのビード半径Rtとは同じ大きさに設定してある。これによって、径方向においてはビード部側嵌合面Sbとリム側嵌合面Srとが所定の間隔ΔRrをもって、かつリム側嵌合面Srとビード部側嵌合面Sbとが対向して配置される。
タイヤモデル30のビード部側嵌合面Sbと、リムモデル20のリム側嵌合面Srとの径方向における位置を合わせる(上記ステップS102)際には、前記ホイールの中心軸Yrvを図13の矢印C方向にΔRrだけ、あるいはそれ以上にずらす。そして、リムモデル20の径(この例では半径だが、リムモデルによっては直径でもよい)を規定の寸法に変化させることにより、前記ホイールの中心軸Yrvとタイヤの中心軸Ytとを一致させる。あるいは、ホイールの中心軸Yrvがタイヤの中心軸Ytを超える(Rt>Rr)ようにする。これによって、リムモデル20のリムモデル側嵌合面Srと、タイヤモデル30のビード部側嵌合面Sbとの径方向における位置が一致するので、ビード部側嵌合面Sbとリム側嵌合面Srとの径方向における位置を合わせることができる。
以上、この実施の形態及びその変形例に係るタイヤ性能の予測方法によれば、リムモデルのリム側嵌合面とタイヤモデルのビード部側嵌合面とを、所定の間隔を設けて対向配置し、その後リム側嵌合面とビード部側嵌合面とを、リムモデルあるいはタイヤモデルの径方向において一致させてから嵌合させる。これによって、タイヤモデルのビード部を一旦狭める手順が不要となるとともに、リムとビード部とが嵌合する際におけるビード部の動きを小さくできるので、嵌合後に内圧を負荷する際には、ビード部が急激にリムへ衝突することを防止できる。その結果、リムとビード部とが嵌合する際におけるタイヤの振動の減衰時間を短縮して計算時間を短くできる。そして、計算精度を確保した上で、より効率的にタイヤ性能を予測することができる。
また、この実施の形態及びその変形例に係るタイヤ性能の予測方法によれば、リムとビード部との間の大きな滑りを極めて低減できるので、主としてビード部の圧縮変形を取り扱えばよい。その結果、計算精度を確保しつつ、計算の収束性を向上させて全体の解析時間を短縮することができる。特に、収束計算を繰り返し実行する陰解法の場合には、計算時間の短縮に効果的である。
また、この実施の形態及びその変形例に係るタイヤ性能の予測方法では、所定の間隔を設けて対向配置したリム側嵌合面とビード部側嵌合面とを、リムモデルあるいはタイヤモデルの径方向において一致させてから嵌合させる。これによって、リムがハンプを乗り越えることはないので、リムにハンプが設けられている場合においてもビード部をリムに嵌合させる解析が可能になるとともに、リム上をビード部が滑るという大きな滑りを伴う計算が少なくなるため、計算精度を確保しつつ、計算時間を短縮できる。特に、収束計算を繰り返し実行する陰解法を用いた場合でも、リムにハンプが形成されている場合の解析が可能となる。
(実施例)
この実施例では、本発明に係るタイヤ性能の予測方法及び特許文献1に開示されているシミュレーション方法を用いて、嵌合から内圧の負荷までに要する時間を求めた。手順Aは、特許文献1に開示したシミュレーション方法であり、剛体要素でモデル化したビード半径とリム半径とが同じ大きさのリムモデルを用い、ビード幅をリム幅よりも狭めてからビード幅をリム幅の大きさまで変化させる。そして、ビード部とリムとを嵌合させると同時に内圧を負荷する。ビード幅をリム幅の大きさまで変化させるときのビード部とリムとの摩擦係数は0.01とし、内圧負荷時の摩擦係数も0.01としている。
手順Bは、本発明に係るタイヤ性能の予測方法であり、ビード半径よりもリム半径を小さく設定したリムモデルを用い、ビード幅をリム幅に合わせてから、リム半径を規定の寸法に変化させる。そしてビード部とリムとを嵌合させると同時に内圧を負荷する。リム半径を規定の寸法に変化させるときのビード部とリムとの摩擦係数は0.01とし、内圧負荷時の摩擦係数も0.01としている。
手順Cは、本発明に係るタイヤ性能の予測方法であり、ビード半径よりもリム半径を小さく設定したリムモデルを用い、ビード幅をリム幅に合わせてから、リム半径を規定の寸法に変化させる。そしてビード部とリムとを嵌合させると同時に内圧を負荷している。リム半径を規定の寸法に変化させるときのビード部とリムとの摩擦係数は0.5とし、内圧負荷時の摩擦係数も0.01としている。
上記手順A、B、Cを用いて、嵌合から内圧の負荷までに要する時間を求めた結果を表1に示す。計算時間は、比較例1を100とした場合の指数値で示す。また、いずれの例も有限要素法の陰解法を用いた。モデル化したタイヤは、195/65R15のタイヤであり、リムモデルは、15×6JJのホイールのリムをモデル化した。比較例1、3が、特許文献1に開示されたシミュレーション方法によるものであり、実施例1〜3が本発明に係るタイヤ性能の予測方法によるものである。
Figure 0004639912
表1の結果からわかるように、実施例1〜3は、いずれも比較例1、2と比較して計算時間が短くなっている。また、ハンプがある場合、比較例2では計算が不能となっているが、実施例2によれは計算が可能になるとともに、計算時間は比較例1よりも向上している。実施例2の計算時間が実施例1よりも短くなったのは、ハンプによってリムとビード部との滑りが減少したためであると考えられる。また、実施例3に示すように、嵌合時にビード部とリムとの摩擦係数を小さくすることにより、計算時間が短縮されている。
以上のように、本発明に係るタイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法は、ホイールに装着したタイヤの諸性能を予測する場合に有用であり、特に、タイヤの性能を予測する際の計算時間を短縮することに適している。
タイヤ及びホイールのリムを、その中心軸を含む子午面で切った断面を示す一部断面図である。 タイヤ、ホイール及びタイヤ/ホイール組立体の各軸を示す説明図である。 タイヤ、ホイール及びタイヤ/ホイール組立体の各軸を示す説明図である。 この実施の形態に係るタイヤ性能の予測装置を示す装置構成図である。 この実施の形態に係るタイヤ性能の予測装置を示す装置構成図である。 この実施の形態に係るタイヤ性能の予測方法の手順を示すフローチャートである。 ホイールのリムを微小要素(ソリッド要素)に分割して作成したリムモデルの一例を示す断面図である。 ホイールのリムを微小要素(剛体要素)に分割して作成したリムモデルの一例を示す断面図である。 タイヤを微小要素に分割して作成したタイヤモデルの一例を示す断面図である。 この実施の形態に係るリムモデルの径方向における位置を示す説明図である。 この実施の形態に係るリムモデルとタイヤモデルとの径方向における位置を示す説明図である。 この実施の形態に係るリムモデルとタイヤモデルとの径方向における位置を合わせた状態を示す説明図である。 二次元のタイヤ/ホイール組立体モデルから三次元のタイヤ/ホイール組立体モデルを作成する方法を示す説明図である。 三次元のタイヤ/ホイール組立体モデルの一例を示す斜視図である。 ビード部とリムとを嵌合させる手順の変形例を示す説明図である。
符号の説明
1 タイヤ
7 ビードワイヤ
8 ビードフィラー
9 ビード部
10 ホイール
11 リム
12 ハンプ
18 タイヤ/ホイール組立体
20 リムモデル
21、22 リム
23 ハンプ
24 ウェル
30 タイヤモデル
31、32 ビード部
40、100 タイヤ/ホイール組立体モデル
50 タイヤ性能の予測装置

Claims (13)

  1. ホイールのリムにタイヤのビード部を嵌合させた状態で性能を予測するにあたり、
    前記タイヤと、前記ホイールが備える前記リムとを複数の微小要素に分割して、リム側の嵌合面とビード部側の嵌合面とが対向し、かつ所定の間隔をもって配置されるように設定されるタイヤモデル及びリムモデルを作成する手順と、
    前記リムモデルの径を規定の寸法に変化させることにより、前記タイヤモデルのビード部側の嵌合面と、前記リムモデルのリム側の嵌合面との径方向における位置を合わせる手順と、
    前記タイヤモデルのビード部を前記リムモデルへ嵌合させる手順と、
    を含むことを特徴とするタイヤ性能の予測方法。
  2. 前記タイヤモデルのビード部を前記リムモデルへ嵌合させる前に、前記タイヤモデルのビード部の幅を変更する手順を含むことを特徴とする請求項1に記載のタイヤ性能の予測方法。
  3. 前記タイヤモデルのビード部を前記リムモデルへ嵌合させるときに、前記タイヤモデルに内圧を負荷することを特徴とする請求項1又は2に記載のタイヤ性能の予測方法。
  4. 前記リムモデルには、ハンプが設けられていることを特徴とする請求項1〜3のいずれか1項に記載のタイヤ性能の予測方法。
  5. 前記リムモデルの少なくとも一部は剛体としてモデル化されていることを特徴とする請求項1〜4のいずれか1項に記載のタイヤ性能の予測方法。
  6. 前記タイヤモデルのビード部側の嵌合面と前記リムモデルのリム側の嵌合面との径方向における位置を合わせるときにおける、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第1の摩擦係数を、
    前記タイヤモデルのビード部を前記リムモデルへ嵌合させるときにおける、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第2の摩擦係数よりも大きくすることを特徴とする請求項1〜5のいずれか1項に記載のタイヤ性能の予測方法。
  7. 前記第1の摩擦係数は、0.1以上1.0以下であり、前記第2の摩擦係数は、0.01以上0.4以下であることを特徴とする請求項6に記載のタイヤ性能の予測方法。
  8. 前記タイヤモデルのビード部を前記リムモデルへ嵌合させた後における、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第3の摩擦係数を、
    前記タイヤモデルのビード部を前記リムモデルへ嵌合させるときにおける、前記タイヤモデルのビード部と前記リムモデルのリムとの間の第2の摩擦係数よりも大きくすることを特徴とする請求項1〜7のいずれか1項に記載のタイヤ性能の予測方法。
  9. 前記第3の摩擦係数は、0.5以上2.0以下であることを特徴とする請求項8に記載のタイヤ性能の予測方法。
  10. 請求項1〜9のいずれか1項に記載のタイヤ性能の予測方法をコンピュータに実行させることを特徴とするタイヤ性能の予測用コンピュータプログラム。
  11. 微小要素に分割されるとともに、リム側の嵌合面とビード部側の嵌合面とが対向し、かつ所定の間隔をもって配置されるように設定されるタイヤモデル及びリムモデルを作成する手順と
    前記リムモデルの径を規定の寸法に変化させることにより、前記タイヤモデルのビード部側の嵌合面と前記リムモデルのリム側の嵌合面との径方向における位置を合わせてから、前記タイヤモデルのビード部を前記リムモデルへ嵌合させる手順と、
    を含むことを特徴とするタイヤ/ホイール組立体モデルの作成方法
  12. 前記リムモデルには、ハンプけることを特徴とする請求項11に記載のタイヤ/ホイール組立体モデルの作成方法
  13. 前記リムモデルの少なくとも一部剛体としてモデル化ることを特徴とする請求項11又は12に記載のタイヤ/ホイール組立体モデルの作成方法
JP2005104779A 2004-12-22 2005-03-31 タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法 Expired - Fee Related JP4639912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104779A JP4639912B2 (ja) 2004-12-22 2005-03-31 タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004371274 2004-12-22
JP2005104779A JP4639912B2 (ja) 2004-12-22 2005-03-31 タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法

Publications (2)

Publication Number Publication Date
JP2006199263A JP2006199263A (ja) 2006-08-03
JP4639912B2 true JP4639912B2 (ja) 2011-02-23

Family

ID=36957621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104779A Expired - Fee Related JP4639912B2 (ja) 2004-12-22 2005-03-31 タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法

Country Status (1)

Country Link
JP (1) JP4639912B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096262B2 (ja) * 2008-08-20 2012-12-12 株式会社ブリヂストン 複合体モデル解析装置、複合体モデル解析方法、複合体モデル解析プログラム、タイヤ製造方法、及び空気入りタイヤ
JP5262489B2 (ja) * 2008-09-16 2013-08-14 横浜ゴム株式会社 タイヤ/内部構造体組立体のシミュレーション方法及びコンピュータプログラム
JP5572946B2 (ja) * 2008-12-26 2014-08-20 横浜ゴム株式会社 タイヤの性能予測方法及びタイヤの性能予測用コンピュータプログラム
JP5406749B2 (ja) * 2010-02-01 2014-02-05 株式会社ブリヂストン 空気入りタイヤのシミュレーション方法
JP5814740B2 (ja) * 2011-10-19 2015-11-17 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP6042194B2 (ja) * 2012-12-05 2016-12-14 東洋ゴム工業株式会社 タイヤのリム組み付け状態解析装置、その方法及びプログラム
JP6400459B2 (ja) * 2014-12-17 2018-10-03 東洋ゴム工業株式会社 タイヤのリム組み付け状態解析装置、その方法及びプログラム
JP7323340B2 (ja) * 2019-06-11 2023-08-08 Toyo Tire株式会社 空気入りタイヤのシミュレーション装置、シミュレーション方法、およびプログラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350294A (ja) * 2001-05-28 2002-12-04 Sumitomo Rubber Ind Ltd タイヤ・ホイール性能のシミュレーション方法及び装置
JP2003159916A (ja) * 2001-11-27 2003-06-03 Yokohama Rubber Co Ltd:The タイヤ特性予測方法、空気入りタイヤおよびプログラム
JP2004093530A (ja) * 2002-09-04 2004-03-25 Yokohama Rubber Co Ltd:The 複合材の力学特性シミュレーション方法
JP2004136815A (ja) * 2002-10-18 2004-05-13 Toyo Tire & Rubber Co Ltd タイヤのレイングルーブワンダー性能評価法
JP2004161210A (ja) * 2002-11-15 2004-06-10 Yokohama Rubber Co Ltd:The 構造体モデルの作成方法、タイヤ性能予測方法、タイヤ製造方法、タイヤおよびプログラム
JP2004217075A (ja) * 2003-01-15 2004-08-05 Yokohama Rubber Co Ltd:The タイヤモデル作成方法、タイヤ特性予測方法、タイヤモデル作成装置、タイヤ特性予測装置およびタイヤモデル作成方法を実行するプログラム
JP2004224245A (ja) * 2003-01-24 2004-08-12 Bridgestone Corp タイヤ性能シミュレーション方法、装置、及び記録媒体
JP2004340849A (ja) * 2003-05-19 2004-12-02 Yokohama Rubber Co Ltd:The タイヤモデル作成方法、タイヤ性能予測方法およびプログラム
JP2004338660A (ja) * 2003-05-19 2004-12-02 Yokohama Rubber Co Ltd:The タイヤのシミュレーション方法、タイヤ性能予測方法、タイヤ製造方法、タイヤおよびプログラム
JP2005082076A (ja) * 2003-09-10 2005-03-31 Yokohama Rubber Co Ltd:The タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイールモデル
JP2005212523A (ja) * 2004-01-27 2005-08-11 Sumitomo Rubber Ind Ltd タイヤのシミュレーション方法及びタイヤの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350294A (ja) * 2001-05-28 2002-12-04 Sumitomo Rubber Ind Ltd タイヤ・ホイール性能のシミュレーション方法及び装置
JP2003159916A (ja) * 2001-11-27 2003-06-03 Yokohama Rubber Co Ltd:The タイヤ特性予測方法、空気入りタイヤおよびプログラム
JP2004093530A (ja) * 2002-09-04 2004-03-25 Yokohama Rubber Co Ltd:The 複合材の力学特性シミュレーション方法
JP2004136815A (ja) * 2002-10-18 2004-05-13 Toyo Tire & Rubber Co Ltd タイヤのレイングルーブワンダー性能評価法
JP2004161210A (ja) * 2002-11-15 2004-06-10 Yokohama Rubber Co Ltd:The 構造体モデルの作成方法、タイヤ性能予測方法、タイヤ製造方法、タイヤおよびプログラム
JP2004217075A (ja) * 2003-01-15 2004-08-05 Yokohama Rubber Co Ltd:The タイヤモデル作成方法、タイヤ特性予測方法、タイヤモデル作成装置、タイヤ特性予測装置およびタイヤモデル作成方法を実行するプログラム
JP2004224245A (ja) * 2003-01-24 2004-08-12 Bridgestone Corp タイヤ性能シミュレーション方法、装置、及び記録媒体
JP2004340849A (ja) * 2003-05-19 2004-12-02 Yokohama Rubber Co Ltd:The タイヤモデル作成方法、タイヤ性能予測方法およびプログラム
JP2004338660A (ja) * 2003-05-19 2004-12-02 Yokohama Rubber Co Ltd:The タイヤのシミュレーション方法、タイヤ性能予測方法、タイヤ製造方法、タイヤおよびプログラム
JP2005082076A (ja) * 2003-09-10 2005-03-31 Yokohama Rubber Co Ltd:The タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイールモデル
JP2005212523A (ja) * 2004-01-27 2005-08-11 Sumitomo Rubber Ind Ltd タイヤのシミュレーション方法及びタイヤの製造方法

Also Published As

Publication number Publication date
JP2006199263A (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4635668B2 (ja) タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法
JP4639912B2 (ja) タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイール組立体モデルの作成方法
JP5151040B2 (ja) タイヤの嵌合過程予測方法、タイヤの嵌合過程予測用コンピュータプログラム、タイヤの解析方法及びタイヤの解析用コンピュータプログラム
JP2012006522A (ja) シミュレーションモデル作成方法、シミュレーション方法、シミュレーションモデル作成装置、及びシミュレーション装置
JP4814751B2 (ja) タイヤモデルの作成方法、装置、及びプログラム
JP4067934B2 (ja) タイヤモデルを用いたタイヤ性能予測方法、タイヤ性能予測プログラムおよび入出力装置
JPH11153520A (ja) タイヤ性能のシミュレーション方法及びその装置
JP5585436B2 (ja) タイヤのシミュレーション方法
JP3431817B2 (ja) タイヤ性能のシミュレーション方法
JP2005008011A (ja) タイヤの設計方法、タイヤの設計用コンピュータプログラム及びタイヤの設計装置、並びにタイヤ加硫金型の設計方法
JP3314082B2 (ja) タイヤ有限要素モデルの作成方法
JP4318971B2 (ja) タイヤ性能のシミュレーション方法及びタイヤ設計方法
JP4275991B2 (ja) タイヤ性能のシミュレーション方法及びタイヤ設計方法
JP4862342B2 (ja) 回転体モデルの作成方法、回転体モデルの作成用コンピュータプログラム及びタイヤ/ホイール組立体の転動解析方法、並びにタイヤ/ホイール組立体の転動解析用コンピュータプログラム
JP4372498B2 (ja) タイヤ性能の予測方法及びタイヤ性能の予測用コンピュータプログラム、並びにタイヤ/ホイールモデルの作成方法
JP4064192B2 (ja) タイヤモデル、このタイヤモデルを用いたタイヤ性能予測方法およびタイヤ性能予測プログラム並びに入出力装置
JP5811625B2 (ja) シミュレーション方法及びシミュレーション装置
JP4761753B2 (ja) シミュレーション方法
JP5841767B2 (ja) 解析装置、その方法及びそのプログラム
JP4487582B2 (ja) タイヤのシミュレーションモデル作成方法
JP3363443B2 (ja) タイヤ性能のシミュレーション方法
JP6454221B2 (ja) タイヤのシミュレーション方法
JP2012148653A (ja) タイヤのシミュレーション方法およびタイヤのシミュレーション用コンピュータプログラム
JP3363442B2 (ja) タイヤ性能のシミュレーション方法
JP6003174B2 (ja) シミュレーション用タイヤモデルの作成方法、タイヤのシミュレーション方法、これらの方法に用いるコンピュータプログラム及びタイヤのシミュレーション装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees