JP4632620B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4632620B2
JP4632620B2 JP2002227507A JP2002227507A JP4632620B2 JP 4632620 B2 JP4632620 B2 JP 4632620B2 JP 2002227507 A JP2002227507 A JP 2002227507A JP 2002227507 A JP2002227507 A JP 2002227507A JP 4632620 B2 JP4632620 B2 JP 4632620B2
Authority
JP
Japan
Prior art keywords
film
adhesion layer
forming
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002227507A
Other languages
English (en)
Other versions
JP2004071759A (ja
Inventor
章宏 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2002227507A priority Critical patent/JP4632620B2/ja
Publication of JP2004071759A publication Critical patent/JP2004071759A/ja
Application granted granted Critical
Publication of JP4632620B2 publication Critical patent/JP4632620B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法に係わり、特にDRAM(ダイナミック・ランダム・アクセス・メモリ)或いはDRAM混在Logic LSIに設ける蓄積キャパシタに用いる密着層の接合構造に特徴のある半導体装置及びその製造方法に関するものである。
【0002】
【従来の技術】
DRAMは、1トランジスタ、1キャパシタで構成できる半導体記憶装置であり、従来より高密度・高集積化された半導体記憶装置を製造するための構造や製造方法が種々検討されている。特に、DRAMにおけるキャパシタの構造は高集積化に多大な影響を与えるため、如何にして装置の高集積化を阻害せずに所望の蓄積容量を確保するかが重要である。
【0003】
高集積化を図るためにはメモリセル面積を縮小することが不可欠であり、キャパシタの形成される面積をも小さくする必要がある。そこで、柱状やシリンダ型、コンケーブ型のキャパシタ構造のように三次元構造で立体化させることにより高さ方向にキャパシタの表面積を広げ、キャパシタが形成される領域の面積を増加することなく所望の蓄積容量を確保することが提案されている。
【0004】
しかし、上記のような方法を採り入れても、従来のシリコン酸化膜(SiO2 :比誘電率3.8)やシリコン窒化膜(Si3 4 :比誘電率7〜8)などのキャパシタ誘電体膜では、デバイス寸法がますます小さくなり、0.13μm線幅以降のデザインルール世代のキャパシタにおいて、素子動作に必要なキャパシタンス値を得ることが難しい。
【0005】
したがって、このような問題を解決するために、キャパシタ誘電体膜に、タンタル酸化膜(Ta2 5 :比誘電率20〜25)が適用されている。さらに、100以上の比誘電率を有するチタン酸バリウムストロンチウム:(Ba,Sr)TiO3 (BSTO)、チタン酸ストロンチウム:SrTiO3 (STO)、チタン酸ジルコン酸鉛:PbZrTiO3 (PZT)のような酸化物高誘電体の採用が検討されている。なお、本明細書において高誘電体とは比誘電率が20以上の誘電体を指す。
【0006】
これらの酸化物高誘電体をキャパシタ誘電体膜として用いる場合、従来用いられているシリコン材料をキャパシタの蓄積電極に用いると、キャパシタ誘電体膜より誘電率の低いシリコン酸化膜が、蓄積電極とキャパシタ誘電体膜の接触面に生成され、キャパシタ容量の低下を招く。
【0007】
したがって、キャパシタの蓄積電極は酸化されない金属、または酸化されても導電体である金属、または導電性金属酸化物で形成することが望まれる。このような材料の電極を用いれば、良好な誘電体特性を有するキャパシタ誘電体膜を得ることが容易になる。
【0008】
酸化されない、または酸化されても導電性を保つ性質を有する金属として、ルテニウム(Ru)、白金(Pt)等の貴金属を含むレアメタルが知られている。導電性を有する金属酸化物として酸化ルテニウム(RuO2 )、SrRuO3 (SRO)等が知られている。これらは、MOCVD(有機金属化学気相成長)法のようなCVDプロセスを用いて形成する。
【0009】
上記の材質を用いたシリンダ型、コンケーブ型キャパシタの製造方法は、まず半導体基板上に層間絶縁膜を形成し、層間絶縁膜内に開口部を形成する。その後、開口部内にRuをスパッタ法に続き、MOCVD法により成膜して蓄積電極を形成する。
【0010】
特開2000−156483号公報に開示されているように、この時、開口部によって露出される層間絶縁膜の側壁と蓄積電極が接触する部分の結合力が弱く、後続の研磨処理工程時または熱処理工程時、蓄積電極が層間絶縁膜からリフティング(lifting) される現像が生じる。このようなリフティング現像が生じると、キャパシタの全体構造にストレスを加えることになってキャパシタ誘電体膜及び蓄積電極に悪影響を及ぼす場合があり、完成されたキャパシタで漏洩電流を引き起こす等、電気的特性を劣化させるおそれがある。
【0011】
そこで、開口部表面にTiN、WN、TaN或いはTa等の導電性のある密着層をスパッタ法或いはCVD法で成膜してから、Ruをスパッタ法に続きMOCVD法により成膜して蓄積電極を形成している。
【0012】
次に、特開2002−76307号公報を参照して、開口部表面に密着層を成膜してから蓄積電極を形成する、従来のシリンダ型キャパシタの製造方法について、図22(a)乃至図25(b)を用いて説明する。
【0013】
図22(a)に示すように、まず、シリコン基板200上に、通常のMOSトランジスタの製造方法と同様にして、ゲート電極202、ソース/ドレイン拡散層204を有するメモリセルトランジスタと、ゲート電極208及びソース/ドレイン拡散層210を有する周辺回路用トランジスタを形成する。
【0014】
次いで、メモリセルトランジスタ及び周辺回路用トランジスタを覆う層間絶縁膜218上に、プラグ212を介してソース/ドレイン拡散層204に電気的に接続されたビット線214と、プラグ215を介してソース/ドレイン拡散層210に電気的に接続された配線層216とを形成する。なお、図示する断面にはビット線214は現れないため、ビット線214は点線で示している。
【0015】
次いで、ビット線214及び配線層216が形成された層間絶縁膜218上に、層間絶縁膜220を形成する。
【0016】
次いで、図22(b)に示すように、層間絶縁膜220、218に、プラグ222を介してソース/ドレイン拡散層204に電気的に接続されたタングステン(W)プラグ224を埋め込む。
【0017】
次いで、図22(c)に示すように、Wプラグ224が埋め込まれた層間絶縁膜220上に、CVD法により、シリコン窒化膜よりなるエッチングストッパ膜226と、シリコン酸化膜よりなる層間絶縁膜228と、シリコン窒化膜よりなるエッチングストッパ膜230と、シリコン酸化膜よりなる絶縁膜232と、アモルファスシリコン膜よりなるハードマスク234とを順次形成する。
【0018】
次いで、通常のリソグラフィー技術及びエッチング技術により、ハードマスク234、絶縁膜232、エッチングストッパ膜230、層間絶縁膜228、エッチングストッパ膜226をパターニングし、Wプラグ224に達する開口部236を形成する。
【0019】
次いで、図23(a)に示すように、全面に、CVD法により、膜厚10nmの窒化チタン膜よりなる密着層237を形成する。次いで、密着層237上に、シード層として膜厚10nmのRu膜をスパッタ法により形成した後、膜厚30nmのRu膜をMOCVD法により堆積することにより、トータル膜厚40nmのRu膜238を形成する。
【0020】
次いで、図23(b)に示すように、全面にフォトレジスト膜239を塗布し、密着層237及びRu膜238が形成された開口部236内をフォトレジスト膜239で埋め込む。
【0021】
次いで、図24(a)に示すように、CMP法により、フォトレジスト膜239、Ru膜238、ハードマスク234を密着層237の表面が露出するまで研磨し、その後、絶縁膜232の表面が露出するまで、反応性イオンエッチング法により密着層237を除去する。開口部236の内壁及び底部に沿って形成され、Wプラグ224に電気的に接続された、窒化チタン(TiN)膜よりなる密着層237と、Ru膜よりなる蓄積電極248とを形成する。
【0022】
次いで、図24(b)に示すように、弗酸水溶液を用いたウェットエッチングにより、エッチングストッパ膜230をストッパとして絶縁膜232を等方的にエッチングする。次に、薬液処理やプラズマアッシング処理により、蓄積電極248内のフォトレジスト膜239を除去する。
【0023】
次いで、図25(a)に示すように、硫酸過水溶液を用いたウェットエッチングにより、密着層237を、蓄積電極248、層間絶縁膜220、228、エッチングストッパ膜226、230に対して選択的にエッチングする。このエッチングは、密着層237と後に形成するキャパシタ誘電体膜240とが直接接触することによるキャパシタ特性の劣化を防止するために行なう。キャパシタ誘電体膜240となるTa2 5 等は、密着層237となるTiN等と直接接触すると、Ta2 5 の酸素がTiN側に拡散して酸素欠損を引き起こす。Ta2 5 が酸素欠損をおこすと導電性を帯び、膜中をリーク電流が流れ、キャパシタの情報が消えてしまうことになる。密着層237のエッチングは、このキャパシタ特性の劣化を防止するためのものであり、Ta2 5 が導電性を帯びても影響の出ないように、少なくともエッチングストッパ膜230の高さよりも低い位置まで密着層237をエッチングする必要がある。
【0024】
次いで、図25(b)に示すように、CVD法により、Ta2 5 膜を堆積して、蓄積電極248を覆うキャパシタ誘電体膜240を形成する。次いで、MOCVD法によりRu膜を堆積してパターニングし、キャパシタ誘電体膜240上に対向電極242を形成する。
【0025】
こうして、蓄積電極248、キャパシタ誘電体膜240、対向電極242を有し、メモリセルトランジスタのソース/ドレイン拡散層204に電気的に接続されたシリンダ型キャパシタを提供することができる。
【0026】
【発明が解決しようとする課題】
しかしながら、上記従来の半導体装置の製造方法では、図24(b)から図25(a)に示した密着層237のエッチングを、制御性良く行うことが困難であった。
【0027】
図26(a)に示すように、Ru膜よりなる蓄積電極248には、ピンホールと呼ばれる結晶の隙間が局所的にある。図25(a)の密着層237のエッチングにおいて、硫酸過水溶液を用いたウェットエッチングを行うと、蓄積電極248の開口部からシリンダ内部に入り込んだ硫酸過水溶液が、蓄積電極248のピンホールに染み込み、蓄積電極248とWプラグ224との間の密着層237まで達し、密着層237がエッチングされてコンタクト抵抗が増大してしまう。
【0028】
また、図26(b)のように、最悪の場合には、Wプラグ224までもがエッチングされ、転送トランジスタとキャパシタとの電気的接続がとれなくなり蓄積電極の倒れや飛びが発生し、歩留まりが低下するという問題が生じる。
【0029】
本発明の目的は、密着層のエッチングによるキャパシタ特性の劣化を防止するとともに、蓄積電極の倒れや飛びを防止しうる半導体装置及びその製造方法を提供することにある。
【0030】
【課題を解決するための手段】
(1)半導体基板に一対のソース/ドレイン拡散層と、該半導体基板上にゲート電極とを含むメモリセルトランジスタを形成する工程と、該メモリセルトランジスタ上に絶縁膜を形成する工程と、該絶縁膜にコンタクトホールを形成する工程と、該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグを形成する工程と、該導体プラグ上に導電性の密着層堆積する工程と、該密着層上にピンホールを有する蓄積電極を堆積する工程と、該ピンホール下の該密着層表面に、該密着層の酸化物をウェット処理により形成する工程と、該酸化物の形成後に、密着層の一部をウェットエッチングにより除去する工程と、該密着層の一部の除去後に、該蓄積電極表面に誘電体膜を形成する工程と、該誘電体膜表面に対向電極を形成する工程とを有し、該ウェット処理は、水とHCl水溶液に該ピンホール下の該密着層を晒す工程と、次いで、O 3 水に該ピンホール下の該密着層を晒す工程と、を含む半導体装置の製造方法が提供される。
(2)半導体基板に一対のソース/ドレイン拡散層と、該半導体基板上にゲート電極とを含むメモリセルトランジスタを形成する工程と、該メモリセルトランジスタ上に第1の絶縁膜を形成する工程と、該第1の絶縁膜にコンタクトホールを形成する工程と、該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグを形成する工程と、該導体プラグ及び該第1の絶縁膜上に、第2の絶縁膜を形成する工程と、該第2の絶縁膜に、該導体プラグに達する開口部を形成する工程と、該開口部の底面及び内壁に、該導体プラグと電気的に接続する導電性の密着層堆積する工程と、該開口部の底面及び内壁上に、該密着層を介してピンホールを有する蓄積電極を堆積する工程と、該ピンホール下の該密着層表面に、該密着層の酸化物をウェット処理により形成する工程と、該酸化物の形成後に、該第2の絶縁膜上面から、該密着層の一部をウェットエッチングにより除去する工程と、該密着層の一部の除去後に、該蓄積電極表面に誘電体膜を形成する工程と、該誘電体膜表面に対向電極を形成する工程とを有し、該ウェット処理は、水とHCl水溶液に該ピンホール下の該密着層を晒す工程と、次いで、O 3 水に該ピンホール下の該密着層を晒す工程と、を含む半導体装置の製造方法が提供される。
【0031】
【発明の実施の形態】
[第一実施形態]
本発明の第一実施形態による半導体装置及びその製造方法について図1乃至図12を用いて説明する。
【0032】
図1は、本実施形態による半導体装置のメモリセルの平面図である。図中、縦方向には、ワード線を兼ねるゲート電極20が配列され、その上に横方向にビット線48が配列され、その上に蓄積電極84が配置されている。
【0033】
図2は、本実施形態による半導体装置の構造を示す概略断面図であり、図面の左側はメモリセル部の断面であり、図1のA−A’線に沿う断面を示している。右側は周辺回路部の断面を示している。
【0034】
図3(a)乃至図12は、本実施形態による半導体装置の製造方法を説明する工程断面図である。
【0035】
図3(a)に示すように、p型シリコン基板10の主表面上に、STI(Shallow Trench Isolation)法により、素子分離膜12を形成する。
【0036】
まず、シリコン基板10上に膜厚100nmのシリコン窒化膜(図示せず)を形成し、次いで、このシリコン窒化膜を、素子領域となる領域に残存するようにパターニングする。次いで、パターニングしたシリコン窒化膜をハードマスクとしてシリコン基板10をエッチングし、シリコン基板10に深さ200nmの素子分離溝を形成する。
【0037】
次いで、CVD法によりシリコン酸化膜を全面に堆積した後、シリコン窒化膜が露出するまでこのシリコン酸化膜をCMP(化学的機械的研磨:Chemical Mechanical Polishing )法により研磨し、素子分離溝内に選択的にシリコン酸化膜を残存させる。この後、シリコン窒化膜を除去し、シリコン基板10の素子分離溝に埋め込まれたシリコン酸化膜よりなる素子分離膜12を形成する。
【0038】
次いで、図3(b)に示すように、メモリセル領域のシリコン基板10中にPウェル(図示せず)を形成し、しきい値電圧制御のためのイオン注入を行う。
【0039】
次いで、図3(c)に示すように、素子分離膜12により画定された複数の素子領域上に、熱酸化法により、膜厚5nmのシリコン酸化膜よりなるゲート絶縁膜14を形成する。なお、ゲート絶縁膜14としては、シリコン窒化酸化膜などの他の絶縁膜を適用してもよい。
【0040】
次いで、ゲート絶縁膜14上に、膜厚70nmのポリシリコン膜16と、膜厚5nmのタングステンナイトライド(WN)膜(図示せず)と、膜厚40nmのタングステン(W)膜18と、膜厚200nmのシリコン窒化膜22とを順次堆積する。その後、リソグラフィー技術及びエッチング技術によりこれら膜をパターニングし、上面がシリコン窒化膜22で覆われ、WN膜を介してポリシリコン膜16及びW膜18が積層されてなるポリメタル構造のゲート電極20を形成する。
【0041】
次いで、図3(d)に示すように、ゲート電極20をマスクとしてイオン注入を行い、ゲート電極20の両側のシリコン基板10中にソース/ドレイン拡散層24を形成する。こうして、シリコン基板10上に、ゲート電極20、ソース/ドレイン拡散層24を有するメモリセルトランジスタを形成する。
【0042】
次に、全面に、CVD法により、膜厚35nmのシリコン窒化膜を堆積した後にエッチバックし、ゲート電極20及びシリコン窒化膜22の側壁にシリコン窒化膜よりなるサイドウォール絶縁膜28を形成する。
【0043】
次いで、図3(e)に示すように、全面に、CVD法によりボロフォスフォシリケートガラス(BPSG)膜を堆積した後、リフロー法及びCMP法により、シリコン窒化膜22が露出するまでその表面を研磨し、表面が平坦化されたBPSG膜よりなる層間絶縁膜30を形成する。
【0044】
次いで、リソグラフィー技術及びエッチング技術により、層間絶縁膜30に、ソース/ドレイン拡散層24に達するコンタクトホール32、33、34を、ゲート電極20及びサイドウォール絶縁膜28に対して自己整合的に形成する。
【0045】
次いで、図4(a)に示すように、CVD法により、砒素ドープした多結晶シリコン膜を堆積した後、CMP法によりシリコン窒化膜22が露出するまで研磨し、コンタクトホール32、33、34内に多結晶シリコン膜よりなるプラグ36、37、38を選択的に埋め込む。
【0046】
次いで、図4(b)に示すように、全面に、CVD法により、膜厚200nmのシリコン酸化膜よりなる層間絶縁膜40を形成する。次いで、リソグラフィー技術及びエッチング技術により、プラグ36に達するコンタクトホール42とプラグ37に達するコンタクトホール43を層間絶縁膜40に形成する。
【0047】
次いで、図4(c)に示すように、スパッタ法により、膜厚45nmの窒化チタン(TiN)/チタン(Ti)の積層構造よりなる密着層50と、膜厚250nmのタングステン(W)膜51とを順次堆積する。密着層50は、シリコン酸化膜よりなる層間絶縁膜40の側壁とW膜51との密着性を改善するためのものである。
【0048】
次いで、CMP法によりW膜51を研磨し、コンタクトホール42、43内にW膜51よりなるプラグを埋め込む。次いで、スパッタ法により、膜厚30nmのW膜52を堆積する。次いで、CVD法により、W膜52上に、膜厚200nmのシリコン窒化膜54を堆積する。
【0049】
次いで、リソグラフィー技術及びエッチング技術により、シリコン窒化膜54、W膜52及び密着層50をパターニングし、上面がシリコン窒化膜54に覆われ、密着層50及びW膜52よりなり、プラグ36を介してソース/ドレイン拡散層24に接続されたビット線48を形成する。同様にして、プラグ37を介してソース/ドレイン拡散層24に接続された配線層44を形成する。なお、図示する断面にはビット線48は現れないため、点線で示している。
【0050】
次いで、全面に、CVD法により、膜厚20nmのシリコン窒化膜を堆積した後にエッチバックし、ビット線48、配線層44及びシリコン窒化膜54の側壁に、シリコン窒化膜よりなるサイドウォール絶縁膜56を形成する。次に、全面に、CVD法により、膜厚400nmのシリコン酸化膜を堆積し、CMP法によりその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜58を形成する。
【0051】
次いで、図5(a)に示すように、リソグラフィー技術及びエッチング技術により、層間絶縁膜58、40に、プラグ38に達するコンタクトホール60を形成する。このとき、シリコン窒化膜に対して高い選択比をもつエッチング条件でシリコン酸化膜をエッチングすることにより、ビット線48上を覆うシリコン窒化膜54及びビット線48の側壁に形成されたサイドウォール絶縁膜56(図示せず)に自己整合でコンタクトホール60を開口することができる。
【0052】
次いで、図5(b)に示すように、全面に、スパッタ法により、膜厚25nmの窒化チタン/チタンの積層構造よりなる密着層と、膜厚250nmのW膜とを堆積した後、層間絶縁膜58の表面が露出するまでCMP法により研磨し、コンタクトホール60内に埋め込まれた導体プラグ62を形成する。導体プラグ62としては、W膜にかえて、TiN、ポリシリコンを用いることもできる。
【0053】
次いで、図6(a)に示すように、全面に、CVD法により、膜厚40nm程度のシリコン窒化膜よりなるエッチングストッパ膜64、膜厚100nmのシリコン酸化膜よりなる層間絶縁膜66、膜厚40nm程度のシリコン窒化膜よりなるエッチングストッパ膜68、膜厚850nmのシリコン酸化膜よりなる絶縁膜70を順次形成する。
【0054】
次いで、図6(b)に示すように、リソグラフィー技術及びエッチング技術により、絶縁膜70、エッチングストッパ膜68、層間絶縁膜66、エッチングストッパ膜64をパターニングし、蓄積電極の形成予定領域に、これら膜を貫いて導体プラグ62に達する開口部72を形成する。
【0055】
次いで、図7に示すように、全面に、CVD法により、成膜温度を580℃、圧力を0.3Torr、ガス流量をTiCl4 /NH=30/400sccmとして、膜厚10nmの窒化チタン(TiN)膜よりなる密着層74を形成する。
【0056】
次いで、密着層74上に、シード層として膜厚10nmのルテニウム(Ru)膜をスパッタ法により形成した後、膜厚30nmのRu膜をMOCVD法により堆積することにより、トータル膜厚40nmのRu膜76を形成する。MOCVD法による成膜では、成膜温度を300℃、圧力を0.05Torr、Ru源としてのRu(EtCp)2 の流量を0.06sccm、O2 ガス流量を160sccmとしてRu膜を成膜する。また、Ru膜にかえて、Pt、Ir、IrOx、RuOxを用いることもできる。
【0057】
次いで、図8に示すように、ウェット処理により、Ru膜76と密着層74の界面にTiOxよりなる酸化物85を形成する。ウェット装置で、処理槽に水とHCL水溶液を2分間同時に流し、その後、15分間O3 水を流し続けるウェット処理により、薬液がRu膜76中のピンホール77中に染み込み、TiNよりなる密着層74と反応して、Ru膜76と密着層74の界面にTiOxが生成される。この酸化物85が、後の工程で、密着層74のエッチングの際に、Ru膜76のピンホール77に染み込んだ硫酸過水溶液を、密着層74との界面で止めて、密着層74及び下層の導体プラグ62がエッチングされてしてしまうのを防ぐ。酸化物85の生成には、アッシング、アニール等のドライ処理を用いてもよい。密着層74としては、TiN膜にかえて、TiN/Ti、TiAlN、WN、TiW、NbN、TaN、Ta、TaSiNを用いることもできる。この場合、Ru膜と窒化チタン膜の界面に生成される酸化物は、TiOx、WOx、NbOx、TaOxになる。
【0058】
次いで、図9(a)に示すように、全面にフォトレジスト膜78を塗布し、密着層74及びRu膜76が形成された開口部72内をフォトレジスト膜78で埋め込む。
【0059】
次いで、図9(b)に示すように、CMP法により、フォトレジスト膜78、Ru膜76を密着層74の表面が露出するまで研磨し、その後、絶縁膜70の表面が露出するまで、反応性イオンエッチング法により密着層74を除去する。
【0060】
次いで、図10(a)に示すように、弗酸水溶液を用いたウェットエッチングなどの等方性エッチングにより、エッチングストッパ膜68をストッパとして、絶縁膜70を選択的にエッチングする。次に、薬液処理やプラズマアッシング処理により、フォトレジスト膜78を除去し、Ru膜76よりなるシリンダ状の蓄積電極84を形成する。
【0061】
次いで、図10(b)に示すように、密着層74を、硫酸と過酸化水素とを含む水溶液により、Ru膜76、エッチングストッパ膜68、層間絶縁膜66に対して選択的にエッチングする。このエッチングは、密着層74と後に形成するキャパシタ誘電体膜86とが直接接触することによる、キャパシタ特性の劣化を防止するためのである。キャパシタ誘電体膜86となるTa2 5 等は、密着層74となるTiN等と直接接触すると、Ta2 5 の酸素がTiN側に拡散して酸素欠損を引き起こす。Ta2 5 が酸素欠損をおこすと導電性を帯び、膜中をリーク電流が流れ、キャパシタの情報が消えてしまうことになる。よって、密着層74のエッチングは、Ta2 5 が導電性を帯びても影響の出ないように、少なくともエッチングストッパ膜68とRu膜76との間に間隙が形成されるまで行うことが望ましい。
【0062】
この密着層74のエッチングのとき、硫酸過水溶液が蓄積電極84の開口部からシリンダ内に入り込み、Ru膜76のピンホール77(図8に図示)に染み込んでも、密着層74との界面に生成された酸化物85によって染み込みが止められ、密着層74や下層の導体プラグ62をエッチングしてしまうことはない。
【0063】
次いで、図11(a)に示すように、全面に、MOCVD法により、酸素とペントエトキシタンタル(Ta(O(C2 5 ))5 との混合ガスを用い、基板温度を460℃、圧力を0.5Torrとして成膜することにより、膜厚10〜30nmのタンタル酸化膜(Ta2 5 )よりなるキャパシタ誘電体膜86を形成する。
【0064】
次いで、UV−O3 中で、温度480℃、2分間の熱処理を行い、タンタル酸化膜中の酸素空孔を充填する。この熱処理により、キャパシタのリーク電流を更に低減することができる。
【0065】
なお、Ta2 5 にかえて、(Ba,Sr)TiO3 (BSTO)、SrTiO3 (STO)、PbZrTiO3 (PZT)等のような酸化物高誘電体を用いることもできる。
【0066】
次いで、全面に、シード層として膜厚10nmのRu膜をスパッタ法により形成した後、MOCVD法によりRu膜を堆積することにより、トータル膜厚30〜50nmのRu膜87を形成する。MOCVDによる成膜は、蓄積電極84となるRu膜76と同様の成膜条件を用いることができる。
【0067】
次いで、Ru膜87上に、スパッタ法により、膜厚10〜20nmの窒化チタン膜89を堆積する。窒化チタン膜は、基板温度を150℃、パワーを5kW、アルゴンガス流量を5sccm、窒素ガス流量を50sccmとして、チタンターゲットをスパッタすることにより成膜する。なお、窒化チタン膜89は、対向電極となるRu膜87とその上層に形成する層間絶縁膜との密着性を向上するための密着層である。したがって、対向電極と層間絶縁膜との密着性がよい場合には、必ずしも必要はない。
【0068】
次いで、圧力を0.1Torr、パワーを500W、ガス流量をCl2 /O2 =50/500sccmとしてエッチングにより、窒化チタン膜89及びRu膜87をパターニングし、上面が窒化チタン膜89により覆われた、Ru膜よりなる対向電極88を形成する。
【0069】
次いで、図11(b)に示すように、全面に、CVD法により、膜厚1000nmのシリコン酸化膜を堆積し、CMP法によりその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜90を形成する。
【0070】
次いで、リソグラフィー技術及びエッチング技術により、層間絶縁膜90、エッチングストッパ膜68、層間絶縁膜66、エッチングストッパ膜64及び層間絶縁膜58を貫き配線層44に達するコンタクトホール104を形成する。
【0071】
次いで、図12に示すように、次いで、全面に、スパッタ法により、膜厚25nmの窒化チタン/チタンの積層構造よりなる密着層と、膜厚250nmのW膜とを堆積した後、層間絶縁膜90の表面が露出するまでCMP法により研磨し、コンタクトホール104内に埋め込まれたプラグ108を形成する。
【0072】
次いで、全面に、スパッタ法により、膜厚10nmのバリアメタルとなる窒化チタン膜と、膜厚300nmのアルミ膜或いは銅膜とを堆積してパターニングし、プラグ108を介して下層配線に接続された配線層100を形成する。
【0073】
次いで、全面に、CVD法により、膜厚1000nmのシリコン酸化膜を堆積し、CMP法によりその表面を研磨し、表面が平坦化されたシリコン酸化膜よりなる層間絶縁膜102を形成する。
【0074】
こうして、1トランジスタ、1キャパシタよりなるメモリセルを有するDRAMを製造する。
【0075】
このように、本実施形態によれば、蓄積電極形成後の密着層のエッチングの際に、硫酸過水溶液が蓄積電極のシリンダ内に入り込んで、Ru膜のピンホールを通して電極層中に染み込んでも、密着層と蓄積電極の界面に生成された酸化物(TiOx)によって、染み込みが止められるので、密着層及び下層の導体プラグがエッチングされるのを防止することができる。これにより、密着層がエッチングされてコンタクト抵抗が増大してしまったり、導体プラグがエッチングされ、転送トランジスタとキャパシタとの電気的接続がとれなくなる等のキャパシタ特性の劣化を防止し、蓄積電極の倒れや飛びを防止することができる。
【0076】
[変形例]
図13は、第一実施形態の変形例による半導体装置の構造を示す概略断面図であり、図面の左側はメモリセル部の断面であり、図1のA−A’線に沿う断面を示している。右側は周辺回路部の断面を示している。
【0077】
第一実施形態では、図10に示すように、エッチングストッパ膜68と層間絶縁膜66によって、Ru膜76の倒れ込みを予防しているが、Ru膜76の倒れ込みの恐れが無い場合は、エッチングストッパ膜68と層間絶縁膜66によって支えるは必要無く、第一の実施形態に比べて、工程を削減することができる。
【0078】
[第二実施形態]
次に、第二実施形態について図面を参照して説明する。
【0079】
第一実施形態では、キャパシタ容量を確保するために、キャパシタ誘電体膜にタンタル酸化膜を用いたシリンダ型キャパシタについて説明した。
【0080】
特開2002−83880号公報には、第一実施形態のようなシリンダ型キャパシタでは、シリンダ外面にもキャパシタ誘電体膜を生成するので、ステップカバレッジを維持することが困難となる場合があることが記載されている。蓄積電極形成の過程で、CMP法によるシリンダ開口部の研磨を行なうため、開口部からシリンダ外面へかけての屈曲が鋭角になってしまう。この部分にはキャパシタ誘電体膜を蒸着しにくいので、キャパシタ誘電体膜の膜厚が薄くなり、場合によっては、蓄積電極と対向電極間でリーク電流が発生する。このように、シリンダ型キャパシタでは、歩留りが低く、信頼性に問題がある。
【0081】
そのため、本実施形態では、キャパシタ誘電体膜をシリンダ外面に形成しないコンケーブ型キャパシタにおいて、密着層のエッチングによるキャパシタ特性の劣化を防止する本発明を適用した半導体装置及びその製造方法について説明する。
【0082】
図14は、第実施形態による半導体装置の構造を示す概略断面図であり、図面の左側はメモリセル部の断面であり、図1のA−A'線に沿う断面を示している。右側は周辺回路部の断面を示している。図15〜21は、本実施形態による半導体装置の製造方法を説明する工程断面図である。図中、92は密着層、94は蓄積電極、96はキャパシタ誘電体膜、98は対向電極を示しており、その他の符号は第一実施形態において説明した図2〜12の符合と同一のものとする。
【0083】
まず、第一実施形態と同じようにして、図3(a)〜図5(b)に示すように、半導体基板に、メモリセルトランジスタを形成し、ソース/ドレイン拡散層24に接合するプラグ38に達するコンタクトホール60内に導体プラグ62を形成する。
【0084】
次いで、図15(a)に示すように、全面に、CVD法により、膜厚40nm程度のシリコン窒化膜よりなるエッチングストッパ膜64、膜厚800nmのシリコン酸化膜よりなる層間絶縁膜67を順次形成する。
【0085】
次いで、図15(b)に示すように、第一実施形態と同じようにして、蓄積電極の形成予定領域に、導体プラグ62に達する開口部72を形成する。
【0086】
次いで、図16に示すように、第一実施形態と同じようにして、全面に膜厚10nmの窒化チタン膜よりなる密着層92、膜厚40nmのルテニウム(Ru)膜76を順次成膜する。
【0087】
次いで、図17に示すように、アニールにより、Ru膜76と密着層92の界面にTiOxからなる酸化物85を形成する。アニール温度400℃で、微量の巻き込み酸素を含むN2 雰囲気の炉で30分間アニールすることにより、Ru膜76中のピンホール77にガスが染み込み、TiNよりなる密着層92と反応して、Ru膜76と密着層92の界面にTiOxが生成される。この酸化物85が、後の工程で、密着層92のエッチングの際に、Ru膜76のピンホール77に染み込んだ硫酸過水溶液を、密着層92との界面で止めて、密着層92及び下層の導体プラグ62がエッチングされてしまうのを防ぐ。酸化物85の生成には、アッシング等のドライ処理やウェット処理を用いてもよい。
【0088】
次いで、図18(a)に示すように、全面にフォトレジスト膜78を塗布し、密着層92及びRu膜76が形成された開口部72内をフォトレジスト膜78で埋め込む。
【0089】
次いで、図18(b)に示すように、CMP法により、フォトレジスト膜78、Ru膜76を密着層92の表面が露出するまで研磨し、その後、層間絶縁膜67の表面が露出するまで、反応性イオンエッチング法により密着層92を除去する。次に、薬液処理やプラズマアッシング処理により、開口部72内のフォトレジスト膜78を除去する。
【0090】
次に、図19に示すように、密着層92を、硫酸と過酸化水素とを含む水溶液によりエッチングする。このエッチングは、後に形成するキャパシタ誘電体膜96と密着層92が接触することによるキャパシタ特性の劣化が起きない様に、少なくとも層間絶縁膜67とRu膜76との間に間隙が形成されるまで行うことが望ましい。この密着層92のエッチングのとき、硫酸過水溶液が、Ru膜76の開口部内に入り込み、Ru膜76のピンホール77(図17に図示)に染み込んでも、密着層92との界面に生成された酸化物85によって染み込みが止められ、密着層92や下層の導体プラグ62をエッチングしてしまうことはない。
【0091】
図20(a)を参照して、第一実施形態では、キャパシタ誘電体膜にタンタル酸化膜(Ta2 5 )を用いたが、本実施例のコンケーブ型キャパシタにおいては、シリンダ型キャパシタよりもキャパシタ誘電体膜の面積が小さくなるので、キャパシタ容量を確保するために、キャパシタ誘電体膜にタンタル酸化膜よりも比誘電率の高いBSTO膜を成膜する。固形原料Ba(THD)2 、Sr(THD)2 、Ti(i−OC3 7 2 (THD)2 を溶媒であるtetrahydrofuran:THFに混ぜてそれを気化させてキャパシタ誘電体膜96を成膜する。
【0092】
次いで、第一実施形態と同じようにして、全面に、トータル膜厚30〜50nmのRu膜97、その上に膜厚10〜20nmの窒化チタン膜99を順次成膜する。なお、窒化チタン膜99は、対向電極となるRu膜とその上層に形成する層間絶縁膜との密着性を向上するための密着層である。したがって、対向電極と層間絶縁膜との密着性がよい場合には、必ずしも必要はない。
【0093】
次いで、第一実施形態と同じようにして、窒化チタン膜99及びRu膜97をパターニングし、上面が窒化チタン膜99により覆われた、Ru膜よりなる対向電極98を形成する。
【0094】
次いで、図20(b)に示すように、第一実施形態と同じようにして、シリコン酸化膜よりなる層間絶縁膜90を形成し、次いで、層間絶縁膜90、層間絶縁膜67、エッチングストッパ膜64及び層間絶縁膜58を貫き配線層44に達するコンタクトホール104を形成する。
【0095】
次いで、図21に示すように、第一実施形態と同じようにして、プラグ108、配線層100、層間絶縁膜102を順次形成する。
【0096】
こうして、1トランジスタ、1キャパシタよりなるメモリセルを有するDRAMを製造する。
【0097】
このように、本実施形態においても、蓄積電極形成後の密着層のエッチングの際に、密着層と蓄積電極の界面に生成された酸化物(TiOx)により、硫酸過水溶液の染み込みが止められるので、密着層及び下層の導体プラグがエッチングされるのを防止することができる。これにより、密着層がエッチングされてコンタクト抵抗が増大してしまったり、導体プラグがエッチングされ、転送トランジスタとキャパシタとの電気的接続がとれなくなる等のキャパシタ特性の劣化を防止することができる。また、コンケーブ型キャパシタとすることで、キャパシタ誘電体膜のステップカバレッジの維持が容易になり、蓄積電極と対向電極間でリーク電流が発生しないので、歩留りが向上し、信頼性に優れた半導体装置を提供できる。
【0098】
以上詳述したように、本発明による半導体装置及びその製造方法の特徴をまとめると以下の通りとなる。
【0099】
(付記1) 半導体基板に形成された一対のソース/ドレイン拡散層と、該半導体基板上に形成されたゲート電極とを含むメモリセルトランジスタと、
該メモリセルトランジスタ上に形成された絶縁膜と、
該絶縁膜に形成されたコンタクトホールと、
該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグと、
該導体プラグ上に形成された導電膜と、
該導電膜の表面に部分的に形成された酸化物と、
該酸化物を介して、該導電膜上に形成された蓄積電極と、
該蓄積電極表面に形成された誘電体膜と、
該誘電体膜表面に形成された対向電極と
を有することを特徴とする半導体装置。(1)
(付記2) 半導体基板に形成された一対のソース/ドレイン拡散層と、該半導体基板上に形成されたゲート電極とを含むメモリセルトランジスタと、
該メモリセルトランジスタ上に形成された第1の絶縁膜と、
該第1の絶縁膜に形成されたコンタクトホールと、
該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグと、
該導体プラグ及び該第1の絶縁膜上に形成された第2の絶縁膜と、
該第2の絶縁膜に形成され、該導体プラグに達する開口部と、
該開口部内の該導体プラグ上に形成された導電膜と、
該導電膜と電気的に接続し、該開口部の内壁に該導電膜を介して形成された蓄積電極と、
該蓄積電極表面に形成された誘電体膜と、
該誘電体膜表面に形成された対向電極とを備え、
該蓄積電極にはピンホールが形成されており、該ピンホールと該導電膜との界面に選択的に形成された酸化物と、
を有することを特徴とする半導体装置。(2)
(付記3) 前記導電膜が、TiN、TiN/Ti、TiAlN、WN、TiW、NbN、TaN、Ta、TaSiNのいずれかであることを特徴とする付記1または2記載の半導体装置。
【0100】
(付記4) 前記蓄積電極が、Ru、Pt、Ir、IrOx、RuOxのいずれかであることを特徴とする付記1乃至付記3のいずれかに記載の半導体装置。
【0101】
(付記5) 前記導電膜と前記蓄積電極間に形成された前記酸化物が、TiOx、WOx、NbOx、TaOxのいずれかであることを特徴とする付記1乃至付記4のいずれかに記載の半導体装置。
【0102】
(付記6) 前記導体プラグが、W、TiN、ポリシリコンのいずれかであることを特徴とする付記1乃至付記5のいずれかに記載の半導体装置。
【0103】
(付記7) 半導体基板に一対のソース/ドレイン拡散層と、該半導体基板上にゲート電極とを含むメモリセルトランジスタを形成する工程と、
該メモリセルトランジスタ上に絶縁膜を形成する工程と、
該絶縁膜にコンタクトホールを形成する工程と、
該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグを形成する工程と、
該導体プラグ上に導電膜を形成する工程と、
該導電膜上にピンホールを有する蓄積電極を形成する工程と、
該ピンホール下の該導電膜表面に酸化物を形成する工程と、
該導電膜の一部を除去する工程と、
該蓄積電極表面に誘電体膜を形成する工程と、
該誘電体膜表面に対向電極を形成する工程と
を有することを特徴とする半導体装置の製造方法。(3)
(付記8) 半導体基板に一対のソース/ドレイン拡散層と、該半導体基板上にゲート電極とを含むメモリセルトランジスタを形成する工程と、
該メモリセルトランジスタ上に第1の絶縁膜を形成する工程と、
該第1の絶縁膜にコンタクトホールを形成する工程と、
該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグを形成する工程と、
該導体プラグ及び該第1の絶縁膜上に、第2の絶縁膜を形成する工程と、
該第2の絶縁膜に、該導体プラグに達する開口部を形成する工程と、
該開口部の底面及び内壁に、該導体プラグと電気的に接続する導電膜を形成する工程と、
該開口部の底面及び内壁上に、該導電膜を介してピンホールを有する蓄積電極を形成する工程と、
該ピンホール下の該導電膜表面に酸化物を形成する工程と、
該第2の絶縁膜上面から、該導電膜の一部を除去する工程と、
該蓄積電極表面に誘電体膜を形成する工程と、
該誘電体膜表面に対向電極を形成する工程と
を有することを特徴とする半導体装置の製造方法。(4)
(付記9) 該蓄積電極は、有機金属化学気相成長法により形成することを特徴とする付記7または8記載の半導体装置の製造方法。
【0104】
(付記10) 該導電膜の一部を除去する工程は、該蓄積電極に対して選択的にエッチングすることを特徴とする付記7乃至付記9のいずれかに記載の半導体装置の製造方法。(5)
【0105】
【発明の効果】
以上の通り、本発明によれば、DRAMの蓄積キャパシタの形成において、蓄積電極形成後の密着層のエッチングの際に、密着層と蓄積電極の界面に局所的に形成された酸化物が、蓄積電極のピンホールに染み込んだエッチング薬液の染み込みを密着層界面で止めるので、下地の密着層及び導体プラグがエッチングされるのを防止することができる。これにより、蓄積電極の倒れや飛び、コンタクト不良等のキャパシタ特性の劣化を防止し、歩留まりが向上する。
【図面の簡単な説明】
【図1】本発明の第1実施形態による半導体装置の構造を示す平面図である。
【図2】本発明の第1実施形態による半導体装置の構造を示す概略断面図である。
【図3】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図4】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図5】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その3)である。
【図6】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その4)である。
【図7】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その5)である。
【図8】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その6)である。
【図9】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その7)である。
【図10】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その8)である。
【図11】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その9)である。
【図12】本発明の第1実施形態による半導体装置の製造方法を示す工程断面図(その10)である。
【図13】本発明の第1実施形態の変形例による半導体装置の構造を示す概略断面図である。
【図14】本発明の第2実施形態による半導体装置の構造を示す概略断面図である。
【図15】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その1)である。
【図16】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その2)である。
【図17】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その3)である。
【図18】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その4)である。
【図19】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その5)である。
【図20】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その6)である。
【図21】本発明の第2実施形態による半導体装置の製造方法を示す工程断面図(その7)である。
【図22】従来の半導体装置の製造方法を示す工程断面図(その1)である。
【図23】従来の半導体装置の製造方法を示す工程断面図(その2)である。
【図24】従来の半導体装置の製造方法を示す工程断面図(その3)である。
【図25】従来の半導体装置の製造方法を示す工程断面図(その4)である。
【図26】従来の半導体装置の製造方法における課題を説明する図である。
【符号の説明】
10…シリコン基板
12…素子分離膜
14…ゲート絶縁膜
16…ポリシリコン膜
18、51、52…タングステン膜
20…ゲート電極
22、54…シリコン窒化膜
24…ソース/ドレイン拡散層
28、56…サイドウォール絶縁膜
30、40、58、66、67、90、102…層間絶縁膜
32、33、34、42、43、60、104…コンタクトホール
36、37、38、108…プラグ
48…ビット線
50…密着層
62…導体プラグ
64、68…エッチングストッパ膜
70…絶縁膜
72…開口部
74、92…密着層
76、87、97…ルテニウム膜
77…ピンホール
84、94…蓄積電極
85…酸化物
86、96…キャパシタ誘電体膜
88、98…対向電極
89、99…窒化チタン膜
100…配線層

Claims (3)

  1. 半導体基板に一対のソース/ドレイン拡散層と、該半導体基板上にゲート電極とを含むメモリセルトランジスタを形成する工程と、
    該メモリセルトランジスタ上に絶縁膜を形成する工程と、
    該絶縁膜にコンタクトホールを形成する工程と、
    該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグを形成する工程と、
    該導体プラグ上に導電性の密着層堆積する工程と、
    密着層上にピンホールを有する蓄積電極を堆積する工程と、
    該ピンホール下の該密着層表面に、該密着層の酸化物をウェット処理により形成する工程と、
    該酸化物の形成後に、密着層の一部をウェットエッチングにより除去する工程と、
    該密着層の一部の除去後に、該蓄積電極表面に誘電体膜を形成する工程と、
    該誘電体膜表面に対向電極を形成する工程とを有し、
    該ウェット処理は、
    水とHCl水溶液に該ピンホール下の該密着層を晒す工程と、
    次いで、O 3 水に該ピンホール下の該密着層を晒す工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2. 半導体基板に一対のソース/ドレイン拡散層と、該半導体基板上にゲート電極とを含むメモリセルトランジスタを形成する工程と、
    該メモリセルトランジスタ上に第1の絶縁膜を形成する工程と、
    該第1の絶縁膜にコンタクトホールを形成する工程と、
    該コンタクトホール内に充填され、一方の該ソース/ドレイン拡散層に電気的に接続する導体プラグを形成する工程と、
    該導体プラグ及び該第1の絶縁膜上に、第2の絶縁膜を形成する工程と、
    該第2の絶縁膜に、該導体プラグに達する開口部を形成する工程と、
    該開口部の底面及び内壁に、該導体プラグと電気的に接続する導電性の密着層堆積する工程と、
    該開口部の底面及び内壁上に、該密着層を介してピンホールを有する蓄積電極を堆積する工程と、
    該ピンホール下の該密着層表面に、該密着層の酸化物をウェット処理により形成する工程と、
    該酸化物の形成後に、該第2の絶縁膜上面から、該密着層の一部をウェットエッチングにより除去する工程と、
    該密着層の一部の除去後に、該蓄積電極表面に誘電体膜を形成する工程と、
    該誘電体膜表面に対向電極を形成する工程とを有し、
    該ウェット処理は、
    水とHCl水溶液に該ピンホール下の該密着層を晒す工程と、
    次いで、O 3 水に該ピンホール下の該密着層を晒す工程と、
    を含むことを特徴とする半導体装置の製造方法。
  3. 密着層の一部を除去する工程は、該蓄積電極に対して選択的にエッチングすることを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。
JP2002227507A 2002-08-05 2002-08-05 半導体装置の製造方法 Expired - Fee Related JP4632620B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227507A JP4632620B2 (ja) 2002-08-05 2002-08-05 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227507A JP4632620B2 (ja) 2002-08-05 2002-08-05 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004071759A JP2004071759A (ja) 2004-03-04
JP4632620B2 true JP4632620B2 (ja) 2011-02-16

Family

ID=32014522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227507A Expired - Fee Related JP4632620B2 (ja) 2002-08-05 2002-08-05 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4632620B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650753B1 (ko) * 2005-06-10 2006-11-27 주식회사 하이닉스반도체 상변환 기억 소자 및 그의 제조방법
JP5596260B2 (ja) 2007-07-27 2014-09-24 ピーエスフォー ルクスコ エスエイアールエル 半導体装置およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022090A (ja) * 1998-06-26 2000-01-21 Toshiba Corp 強誘電体キャパシタ及び半導体集積回路
JP2001210798A (ja) * 1999-12-22 2001-08-03 Texas Instr Inc <Ti> コンデンサ構造の保護のための絶縁性と導電性の障壁の使用
JP2001234347A (ja) * 1999-12-23 2001-08-31 Samsung Electronics Co Ltd 工程条件を変化させつつ化学気相蒸着法でルテニウム膜を形成する方法及びそれにより形成されたルテニウム膜
JP2002057306A (ja) * 2000-08-10 2002-02-22 Fujitsu Ltd 半導体装置及びその製造方法
JP2002076302A (ja) * 2000-08-25 2002-03-15 Fujitsu Ltd 半導体装置の製造方法と半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557937A1 (en) * 1992-02-25 1993-09-01 Ramtron International Corporation Ozone gas processing for ferroelectric memory circuits
JPH11274431A (ja) * 1998-03-23 1999-10-08 Hitachi Ltd 半導体集積回路装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022090A (ja) * 1998-06-26 2000-01-21 Toshiba Corp 強誘電体キャパシタ及び半導体集積回路
JP2001210798A (ja) * 1999-12-22 2001-08-03 Texas Instr Inc <Ti> コンデンサ構造の保護のための絶縁性と導電性の障壁の使用
JP2001234347A (ja) * 1999-12-23 2001-08-31 Samsung Electronics Co Ltd 工程条件を変化させつつ化学気相蒸着法でルテニウム膜を形成する方法及びそれにより形成されたルテニウム膜
JP2002057306A (ja) * 2000-08-10 2002-02-22 Fujitsu Ltd 半導体装置及びその製造方法
JP2002076302A (ja) * 2000-08-25 2002-03-15 Fujitsu Ltd 半導体装置の製造方法と半導体装置

Also Published As

Publication number Publication date
JP2004071759A (ja) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3976462B2 (ja) 半導体装置の製造方法
JP4005805B2 (ja) 半導体装置
KR100227843B1 (ko) 반도체 소자의 콘택 배선 방법 및 이를 이용한 커패시터 제조방법
US7470595B2 (en) Oxidizing a metal layer for a dielectric having a platinum electrode
US6559025B2 (en) Method for manufacturing a capacitor
JPH09289296A (ja) 強誘電体キャパシタ及びその製造方法
US20030035313A1 (en) Ferroelectric memory device and method of forming the same
KR100533971B1 (ko) 반도체 소자의 캐패시터 제조방법
JP3269528B2 (ja) 容量素子を有する半導体装置及びその製造方法
KR100413606B1 (ko) 캐패시터의 제조 방법
KR19990005449A (ko) 반도체 메모리 장치 및 그 제조 방법
US6392264B2 (en) Semiconductor memory device and method of producing the same
KR100418586B1 (ko) 반도체소자의 제조방법
JP4771589B2 (ja) 半導体素子のキャパシタ製造方法
KR100346833B1 (ko) 전기 도금 방법을 이용한 반도체 메모리 소자의 캐패시터제조방법
JP4632620B2 (ja) 半導体装置の製造方法
US7042034B2 (en) Capacitor
US6723612B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2002190580A (ja) 半導体装置およびその製造方法
KR100418587B1 (ko) 전기도금법을 이용한 반도체 메모리 소자의 형성방법
JP2002134714A (ja) 半導体装置及び半導体装置の製造方法
KR100843940B1 (ko) 반도체소자의 캐패시터 형성방법
JP2002190581A (ja) 半導体装置及びその製造方法
JP2001085640A (ja) 半導体装置およびその製造方法
KR100334529B1 (ko) 반도체소자의캐패시터형성방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080502

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Ref document number: 4632620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees