JP4629058B2 - マルチビュー指向性ディスプレイ - Google Patents

マルチビュー指向性ディスプレイ Download PDF

Info

Publication number
JP4629058B2
JP4629058B2 JP2007020129A JP2007020129A JP4629058B2 JP 4629058 B2 JP4629058 B2 JP 4629058B2 JP 2007020129 A JP2007020129 A JP 2007020129A JP 2007020129 A JP2007020129 A JP 2007020129A JP 4629058 B2 JP4629058 B2 JP 4629058B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
layer
addressable
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007020129A
Other languages
English (en)
Other versions
JP2007293270A (ja
Inventor
マーク サイモン ジェイコブス エイドリアン
ウルリッチ キーン ダイアナ
モンゴメリー デイヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JP2007293270A publication Critical patent/JP2007293270A/ja
Application granted granted Critical
Publication of JP4629058B2 publication Critical patent/JP4629058B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/312Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being placed behind the display panel, e.g. between backlight and spatial light modulator [SLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、空間光変調器(spatial light modulator)に関する。本発明は特に、各画像が異なる方向から見えるように、2つまたは2つ以上の画像を表示するマルチビュー指向性(multiple-view directional)ディスプレイにおける視差視覚(parallax optic)として用いるのに適した空間光変調器に関する。本発明はさらに、本発明による空間光変調器を内蔵した表示装置に関する。
長年にわたって、従来の表示装置は、複数のユーザが同時に見ることができるように設計されてきた。表示装置の表示特性は、ディスプレイからの異なった角度においても視聴者が同じように良質な画像を見ることができるように形成されている。これは例えば、空港および電車の駅にある出発時刻ディスプレイなどの、多くのユーザがディスプレイから同じ情報を得る必要があるアプリケーションには効果的である。しかしながら、それぞれのユーザが同一のディスプレイから異なった情報を得られた方が望ましいアプリケーションも多数ある。例えば自動車内では、運転者は衛星誘導システムのデータを見たい一方で、助手席にいる者は映画を観たいという状況がある。このように相反する必要性も、2つの別々の表示装置を備えることによって満たされる。しかしこれは余分なスペースをとり、また費用も増える。その上、上記例において2つの異なるディスプレイが使用された場合、運転者が頭の位置を動かしたときに助手席側のディスプレイが見えてしまうこともあり、この場合、運転手は気が散ってしまう。さらに別の例として、2人以上のプレイヤー用のコンピュータゲームにおいて、各プレイヤーがそれぞれの視点からゲームを見たいという状況がある。これは現在、各プレイヤーが別々の表示画面でゲームを見て、それぞれの画面を独自の視点から見ることによって行われている。しかし、各プレイヤーに対して別々のディスプレイを備えることは余分なスペースをとり、費用もかさみ、そして携帯ゲームの場合には実用的でない。
これらの問題を解決するために、マルチビュー指向性ディスプレイが開発された。マルチビュー指向性ディスプレイのアプリケーションの1つとして、「デュアルビュー(dual-view)ディスプレイ」が挙げられる。デュアルビューディスプレイは、2つ以上の異なる画像を同時に表示でき、各画像は特定の方向においてのみ見ることができる。従って、1方向から表示装置を見ている観察者はある画像だけを見る一方で、別の異なる方向から表示装置を見ている観察者は別の画像を見ることになる。2人以上のユーザに異なる画像を表示できるディスプレイによって、2つ以上の別々のディスプレイを使用する場合に比べて、スペースおよび費用を大幅に削減できる。
マルチビュー指向性ディスプレイの可能なアプリケーションの例については既に説明したが、別のアプリケーションも多数ある。例えば、マルチビュー指向性ディスプレイは、各乗客に対して個人用の機内娯楽プログラムが備えられている航空機内において使用することができる。現在は、各乗客に個人用の表示装置が備えられていて、これらは、一般的に前列の席の後部に備えられている。マルチビュー指向性ディスプレイを使用することによって、費用、スペース、および重量を大幅に減らすことができる。なぜなら、1つのディスプレイが2人以上の乗客にサービスを提供できる一方で、各乗客もそれぞれの映画を選んで観ることができるからである。
マルチビュー指向性ディスプレイは、ユーザが互いの表示を見ることができないようにすることが可能であるというさらなる利点がある。これは、前述したコンピュータゲームの例と同様、例えば現金自動預入支払機(ATM)を使用する銀行または売買取引などの安全性を必要とするアプリケーションにおいて望ましい。
マルチビュー指向性ディスプレイは、3次元ディスプレイを形成するさらなるアプリケーションがある。通常の視覚では、人間の両目は、頭部の異なった位置にあるため、異なる視覚から世界の光景を知覚している。そして脳がこれら2つの視覚を使って、その光景にある様々な対象への距離を判断する。3次元画像を効果的に表示するディスプレイを形成するためには、上記のような状況を再現して、画像のいわゆる「立体写真」を提供する必要がある。上記「立体写真」の画像は、観察者のそれぞれの目に1つの画像を表示する。
3次元ディスプレイは、両目に異なる光景を提供するために用いられる方法に応じて、2つのタイプに分類される。一般的に立体ディスプレイは、広い視野領域において、立体写真の画像対を両方とも表示する。各光景は、例えば色、極性状態、または表示時間などによって符号化される。ユーザは、光景を分けると共に対象とする光景だけをそれぞれの目が見るようにするメガネのフィルタシステム(filter system of glasses)を身に付ける必要がある。
裸眼立体ディスプレイ(autostereoscopic display)は、右目の光景と左目の光景とを別々の方向に表示する。この結果、各光景は、それぞれ規定された空間領域からしか見ることができない。ディスプレイがアクティブになっている領域全体において画像を見ることができる空間領域は、「視野ウィンドウ(viewing window)」と称される。左目が、立体写真対の左目光景用の視野ウィンドウ内にあり、右目が、立体写真対の右目用の視野ウィンドウ内にあるような位置に観察者がいる場合には、この観察者のそれぞれの目は正しい光景を見ることができ、そして3次元画像を知覚することになる。裸眼立体ディスプレイでは、観察者は、視覚補助を身に付ける必要はない。
裸眼立体ディスプレイは、原理上はデュアルビューディスプレイと同類である。しかしながら、裸眼立体ディスプレイ上に表示された2つの画像は、立体写真画像対の左目画像および右目画像であって、互いに独立はしていない。その上、1人の観察者が見ることができるように2つの画像が表示され、上記観察者のそれぞれの目が1つの画像を見ることになる。
フラットパネル裸眼立体ディスプレイでは、視野ウィンドウの構成は、一般的には裸眼立体ディスプレイの画像表示ユニットの画像素子(すなわち「ピクセル」)構造と、光学素子との組み合わせ(一般的には視差視覚と称される)による。視差視覚の一例としては、視差バリアがある。視差バリアは、不透過領域によって区切られた、多くの場合はスリット形状である透過領域を備えた画面である。この画面は、裸眼立体ディスプレイを形成するための画像素子の2次元配列を有した空間光変調器(SLM)の前または後に配置することができる。
図1は、従来のマルチビュー指向性装置、この場合では裸眼立体ディスプレイの平面図である。指向性ディスプレイ1は、画像表示装置を構成する空間光変調器(SLM)4と、視差バリア5とから形成されている。図1の画像ディスプレイSLM4は、アクティブマトリックス薄膜トランジスタ(TFT)基板6、対向基板7、および上記基板と上記対向基板との間に配置された液晶層8を備えた液晶ディスプレイ(LCD)装置の形態を取っている。上記SLMには、アドレッシング電極(図示せず)が備えられている。上記アドレッシング電極は、独立してアドレス可能な複数の画像素子、すなわち「ピクセル」を構成している。また上記アドレッシング電極には、液晶層の位置合わせをするための位置合わせ層(alignment layer)(図示せず)が備えられている。画像ディスプレイSLM4のピクセルは、横と縦とに配置されており、縦列は図1の紙面(plane of the paper)に伸びている。観察者に最も近い基板7の外面には、直線偏光器10が備えられている。また偏光器10と基板7との間に、視野角拡大フィルム9が任意で配置されていてもよい。照明は、バックライト11から供給される。
視差バリア5は、視差バリア開口部アレイ13を有した基板12を備えている。この視差バリア開口部アレイ13は、基板12の、画像ディスプレイSLM4に隣接した方の面に形成されている。上記開口部アレイは、不透過領域14によって区切られた、垂直に伸びる(つまり図1の紙面に伸びる)透過性開口部15を有している。視差バリア基板12の、バックライト11に面した方の表面には、直線偏光器16が形成されている。視差バリア5と画像ディスプレイSLM4との間に、別の視野角拡大フィルム9が任意で備えられていてもよい。
図1のディスプレイ1では、視差バリア5もまた液晶ディスプレイ(LCD)装置の形態を取っており、基板12と対向基板17との間に液晶層18が配置されている。上記視差バリアの透過性開口部15および不透過部14は、上記液晶層を適切にアドレスすることによって、液晶層18内に構成されている。また上記視差バリアLCDには、視差バリアの透過性開口部15および不透過部14を構成するアドレッシング電極(図2(a)に図示)が備えられている。上記視差バリアLCDには、液晶層18の位置合わせをするための位置合わせ層(図示せず)がさらに備えられている。
図2(a)は、視差バリア5の断面図であり、図2(b)は、視差バリア5の平面図である。前述したように上記視差バリアは、基板12、対向基板17、および基板12と対向基板17との間に配置された液晶層18を備えた液晶ディスプレイ(LCD)装置の形態を取っている。上記SLMには、基板12上にアドレッシング電極E(i=1、2、3・・・)が備えられている。これらの電極Eは、図2(b)の平面図に示されている。図2(b)に見られるように、これらの電極Eは一般的にストライプ状であり、互いに平行かつ間隔を置いて伸びている。対向基板17上には、対向電極21が備えられている。また、電極Eをアドレスするために、駆動回路が備えられている。この駆動回路は、図2(b)の22として概略的に示されている。図2(a)および図2(b)では、位置合わせフィルム等のその他の構成要素は、簡潔にするために省略されている。
液晶装置が「ノーマリーホワイト」である場合は、例えば視差バリアSLMの対応する領域を不透過にして、視差バリアの不透過領域14が形成されるように電極Eをアドレスすることによって、視差バリアが構成される。従って各電極は、視差バリアの不透過領域14の1つを構成する。隣り合う電極間の隙間に対応する視差バリアSLMの領域の透過率が最大に維持されて、視差バリアの透過領域15が形成される。反対に、液晶装置が「ノーマリーブラック」である場合、視差バリアSLMの対応する領域の透過率を最大にして、視差バリアの透過領域15が形成されるように電極Eをアドレスすることによって、視差バリアが構成される。隣り合う電極間の隙間に対応する視差バリアSLMの領域が不透過に維持されて、視差バリアの不透過領域14が形成される。
使用中は、画像ディスプレイSLM4の液晶層8に2つの画像が表示される。例えば、ピクセルの縦列に2つの画像がインターレースされる。視差バリア5は、光を選択的に遮断するため、画像ディスプレイSLM4の液晶層8のピクセルを透過する光は、限られた範囲の方向にのみ伝播する。従って、表示装置1は左目画像および右目画像を形成する。そして観察者は、その左目および右目が、左目画像用の視野ウィンドウ19(すなわち「左視野ウィンドウ」)、および右目画像用の視野ウィンドウ20(すなわち「右視野ウィンドウ」)とそれぞれ一致する位置に頭部がある場合は、3次元画像を見ることができる。左視野ウィンドウ19および右視野ウィンドウ20は、ウィンドウ面内に、ディスプレイから所望の視距離を置いて形成される。
図1のディスプレイは、裸眼立体3次元ディスプレイを備える場合には効果的であるが、観察者は、その左目および右目がそれぞれ、左視野ウィンドウ19および右視野ウィンドウ20と位置が合っている場合にのみ3次元ディスプレイを見ることができる。観察者は、その左目および右目が左視野ウィンドウ19および右視野ウィンドウ20とずれるように頭部を動かした場合は、3次元ディスプレイを見ることができなくなる。左視野ウィンドウ19および右視野ウィンドウ20の横幅wは、一般的に6cm程度である。このため観察者は、3次元画像を見続ける場合は、上記の距離を越えて頭部を動かすことができない。このディスプレイは、「視野自由度(viewing freedom)」が低いと言われる。
デュアルビューディスプレイは、頭部が第1の視野ウィンドウ内に位置している観察者に対して第1の画像を表示し、頭部が第2の視野ウィンドウ内に位置している別の観察者に対して第2の画像を表示するという点を除いては、図1のディスプレイ1と概念が類似している。ここでもまた観察者は、表示される画像を見るために、適切な視野ウィンドウ内に頭部が位置するよう維持しなければならない。そして観察者が頭部をその視野ウィンドウからずらしてしまうと、表示される画像を見ることができなくなる。従って観察者の動きが制約されることになり、上記ディスプレイの視野自由度はここでもまた低い。これは、例えば観察者の動きの自由度が限定的である自動車の場合は重要ではないこともあるが、デュアルビューディスプレイの一部の用途にとっては重大な問題となる。
これまで、3次元画像またはデュアルビューディスプレイの画像を見るために、観察者が頭部を限られた空間領域内に維持しなければならない必要性を排除することによって、マルチビューディスプレイの視野自由度を高めるための多くの試みがなされてきた。一般的に、提案された解決案は、(1)観察者の頭部の位置をモニタする工程、および(2)観察者の頭部が確定された位置に基づいて、ディスプレイの視野ウィンドウの位置を調整する工程という2つの工程を含んでいる。これは「観察者追跡(observer tracking)」として知られている。例えば、欧州特許出願第98302989.3(欧州特許出願公開第0877274A1号;特許文献1)は、ビデオ映像の一シーンを解析して、そのシーンにおける観察者位置を特定し、特定された観察者の位置を用いてディスプレイの視野ウィンドウの位置を調整する方法を開示している。
図1のディスプレイの視野ウィンドウ19および20の位置は、視差バリア5の不透過領域14および透過領域15を、画像ディスプレイSLM4の液晶層8に表示された画像に対して側方に移動させることによって変えることができる。これは、視差バリアが固定視差バリア(すなわち、視差バリアの不透過領域14が恒久的に不透過性であり、視差バリアの透過領域15が恒久的に透過性)であるディスプレイでは、視差バリア5全体を画像ディスプレイSLM4に対して機械的に移動することによって行われる。しかし、これは可動部分を導入するため、摩耗および信頼性の低下につながる。また、バリアを移動する構造によって、ディスプレイの重量およびかさが増すことにもなる。このため、再構成可能な視差バリアへの注目が集まっている。再構成可能な視差バリアでは、視差バリアの不透過領域および透過領域が恒久的に構成されておらず、このため視差バリアは、その不透過領域を変え、これに対応して透過領域を変えることによって再構成することができる。図1の視差バリア5は、再構成可能な視差バリアである。透過領域15および不透過領域14は、視差バリア5の液晶層18内に構成されており、透過領域15および不透過領域14の位置は、液晶層18を再アドレスすることによって変更することができる。再構成可能な視差バリアを用いることによって、視差バリアの透過領域15および不透過領域14が、画像ディスプレイSLM4に対して側方に移動可能となる。このため、SLM4に対して視差バリア全体を移動させる必要なく、視野ウィンドウ19および20の側方位置を変えることができる。
観察者追跡を備えるために、観察者の位置を特定するための位置特定部61がディスプレイにさらに備えられる。この位置特定手段は、例えば観察者の位置に向けられたカメラ62、および、(例えば、欧州特許出願第98302989.3に記載の方法に従って)カメラ62から得られた画像から観察者の位置を特定するためのアナライザ63であってよい。
ディスプレイ1は、視差バリア5を制御するための制御部64をさらに備えている。この制御部は、アナライザ63によって特定された観察者の位置に従って視差バリアを制御する。視差バリアの不透過領域および透過領域の位置が、特定された観察者の位置に応じて制御されて、左視野ウィンドウ19および右視野ウィンドウ20の位置は、観察者の両目の瞬間的な位置と一致する。
欧州特許出願第97307571.6(欧州特許出願公開第0833183A1号;特許文献2)には、再構成可能な視差バリアをLCDの周縁電界(LCD fringing field)に基づいて備える方法が記載されている。しかしこの方法は、多くの一般的なLCモードを用いて実施することが困難ともなり得る。
米国特許第6,049,424号(特許文献3)は、再構成可能な視差バリアを備えるための方法を開示している。この方法は図3(a)〜図3(c)に示されている。
米国特許第6,049,424号の視差バリアは、液晶SLMを用いる点において、図2(a)の視差バリアと類似している。しかし視差バリアの電極が、視差バリアの不透過領域14となる領域よりも狭く、また不透過領域は、隣接する多数の電極をアドレスすることによって構成される。さらに各々の電極Eは、他の電極とは独立してアドレス可能である。対照的に図2(a)の視差バリア5では、各々の電極Eは、視差バリアの不透過(または透過)領域の1つを構成している。
図3(a)は、米国特許第6,049,424号のSLMの平面図である。図3(a)は、対応するSLMの領域を不透過性にするようにアドレスされた電極E、E、E、E、E、E、E11等を示している。一方、電極E、E、E、E10等は、対応するSLMの領域を透過性にするためにアドレスされている。電極E、E、Eに対応するSLMの領域は、視差バリアの第1の不透過領域14を構成し、電極E、Eに対応するSLMの領域は、視差バリアの第1の透過スリット15を構成し、電極E、E、Eに対応するSLMの領域は、視差バリアの第2の不透過領域14を構成している。そして、以後も同様の構成となっている。
視差バリアは、電極を再アドレスすることによって再構成可能である。これは図3(b)および図3(c)に示されている。図3(b)では、電極E、E、E、E、E、E、E12等は、対応するSLMの領域を不透過性にするようにアドレスされており、電極E、E、E、E10、E11等は、対応するSLMの領域を透過性にするためにアドレスされている。図3(c)では、電極E、E、E、E、E、E10等は、対応するSLMの領域を不透過性にするようにアドレスされており、電極E、E、E、E、E11、E12等は、対応するSLMの領域を透過性にするためにアドレスされている。視差バリアを再構成することによって、視差バリアの透過領域および不透過領域が、SLM全体において側方に「移動する」という効果を奏する。マルチビューディスプレイ内に視差バリアを形成するために上記のようなSLMを用いた場合は、移動する観察者を追跡できるように視野ウィンドウ19および20の位置を変更することが可能になる。
欧州特許出願公開第0877274A1号(1998年11月11日公開) 欧州特許出願公開第0833183A1号(1998年4月1日公開) 米国特許第6,049,424号(2000年4月11日公開)
米国特許第6,049,424号の方法は、隣り合う電極間に必然的に隙間23が生じるという不都合な点がある。これらの隙間の幅は一般的に10μmであり、また各隙間23は、対応する液晶層のアドレスされていない領域にまで至る。アドレスされていないこれらの領域は、上記バリアの不透過領域14内において、狭い透過性のストライプとして現れる。そして、クロストークの発生を許すことにより、ディスプレイの3次元(またはデュアルビュー)性能を劣化させる。(「クロストーク」は、第1(または第2)の視野ウィンドウ19(20)からの見るための画像が、第2(または第1)の視野ウィンドウ20(19)からも見ることができる場合に発生する)。さらに、各電極Eは個々にアドレスされなければならず、これには高価な駆動回路が必要となる。
本出願の第1の形態は、空間光変調器を提供する。この空間光変調器は、第1の基板と、第2の基板と、上記第1の基板と上記第2の基板との間に配置された電子光学材料の層と、記第1の基板上に配置された第1の電極構造と、上記第2の基板上に配置された第2の電極構造とを備え、上記第1の電極構造と第2の電極構造とが、使用中において、上記電子光学材料の層内に、複数のアドレス可能領域を構成するために共に作用しており、上記第1の電極構造は、上記第1の基板上に配置された第1および第2の電極層を有しており、上記第1の電極層と上記第1の基板との間隔は、上記第2の電極層と上記第1の基板との間隔とは異なっており、上記第1の電極層および上記第2の電極構造は、使用中において、上記電子光学材料内に、少なくとも第1のセットのアドレス可能領域を構成するために共に作用するように構成されており、上記第2の電極層および上記第2の電極構造は、使用中において、上記電子光学材料内に、少なくとも第2のセットのアドレス可能領域を構成するために共に作用するように構成されており、これによって、上記電子光学材料の層内に構成された上記アドレス可能領域は、上記第1のセットのアドレス可能領域および上記第2のセットのアドレス可能領域を少なくとも含んでいることを特徴とする。
上記第1および上記第2の電極層を、上記第1の基板からそれぞれ距離が異なるように備えるということは、上記第1の電極層によって上記電子光学材料の層内に構成された1アドレス可能領域が、上記第2の電極層によって上記電子光学材料の層内に構成された1アドレス可能領域と連続あるいは重複することを意味する。
上記第1の電極層は、1セットの第1の電極と、1セットの第2の電極とを有しており、第1の電極の上記セットは、第2の電極の上記セットとは独立してアドレス可能であってもよい。この実施形態では、上記第1の電極層が必要とする電気接続部は、第1の電極の上記セットに対して1つ、そして第2の電極の上記セットに対して1つの、2つのみである。
上記第1の電極は、上記第2の電極と嵌合していてもよい。
上記第2の電極層は、1セットの第3の電極と、1セットの第4の電極とを有しており、第3の電極の上記セットは、第4の電極の上記セットとは独立してアドレス可能であってもよい。この実施形態では、上記第1の電極層が必要とする電気接続部は、第3の電極の上記セットに対して1つ、そして第4の電極の上記セットに対して1つの、2つのみである。これによって、上記第1の電極構造が備える電気接続部は合計で4つのみであり、上記第1の電極構造に必要な駆動回路は4つのみとなる。対照的に、米国特許第6,049,424号のSLMでは、各アドレス可能領域は、その各自の電極Eによって構成されているため、各電極を個々にアドレスするためには高価な駆動回路が必要となる。
上記第3の電極は、上記第4の電極と嵌合していてもよい。
第3の電極は、第1の電極と第2の電極との隙間と少なくとも連続していてもよい。
上記第4のセットの第4の電極は、第1の電極と第2の電極との隙間と少なくとも連続していてもよい。
第1の電極は、第3の電極と第4の電極との隙間と少なくとも連続していてもよい。
第2の電極は、第3の電極と第4の電極との隙間と少なくとも連続していてもよい。
第1の電極は、第2の電極の幅と実質的に等しい幅を有していてもよい。
第4の電極は、第3の電極の幅の半分と実質的に等しい幅を有していてもよい。
上記第2のセットのアドレス可能領域の各アドレス可能領域は、上記第1のセットのアドレス可能領域の各アドレス可能領域と連続または重複していてもよい。
上記第1および上記第2の電極層を、上記第1の基板から異なる間隔を置いて備えることによって、米国特許第6,049,424号において、隣り合う電極間の隙間23によって生じる、隣り合うアドレス可能領域間の隙間が除去されるというさらなる利点が得られる。米国特許第6,049,424号におけるSLM内の液晶層のアドレスされていない領域を除去することによって、SLM内に構成された視差バリアの不透過領域14内の透過性の隙間が、結果的に除去される。本実施形態のSLMが、マルチビューディスプレイ内に視差バリアを備えるために用いられる場合には、視野ウィンドウの位置が観察者の位置に応じて変えられる再構成可能な視差バリアを提供することにより、観察者追跡を備えることができる。しかし、視差バリアの不透過領域14内の透過性の隙間を除去することによって、2つの画面間におけるクロストークが回避されて、表示品質が改善される。
上記第2のセットのアドレス可能領域の各アドレス可能領域は、上記第1のセットのアドレス可能領域の各アドレス可能領域と重複していてもよい。
上記第1および第2の電極構造は、上記電子光学材料の層内に構成されたアドレス可能領域が、複数の第1のアドレス可能領域と、複数の第2のアドレス可能領域と、複数の第3のアドレス可能領域とを少なくとも有するように構成されており、各第2のアドレス可能領域は、各第1のアドレス可能領域と少なくとも連続していると共に、各第3のアドレス可能領域は、各第2のアドレス可能領域と少なくとも連続していてもよい。
上記第1、第2、および第3のアドレス可能領域は、例えば、図4(a)、6(a)、または6(b)に示されているアドレス可能領域の隣り合う3つのアドレス可能領域(例えば、アドレス可能領域R1、R2、およびR3)とそれぞれ一致していてもよい。
上記第1および第2の電極構造は、上記電子光学材料の層内に構成された上記アドレス可能領域が、少なくとも複数の第4のアドレス可能領域をさらに有するように構成されており、各第4のアドレス可能領域は、各第3のアドレス可能領域と少なくとも連続していてもよい。
上記第2の電極構造は、上記第2の基板上に配置された第3および第4の電極層を有しており、上記第3の電極層と上記第2の基板との隙間は、上記第4の電極層と上記第2の基板との隙間とは異なっていてもよい。
あるいは、上記第2の電極構造は、上記第2の基板上に配置された単一の対向電極のみから形成することができる。
上記第3の電極層は、1セットの第5の電極と、1セットの第6の電極とを有しており、第5の電極の上記セットは、第6の電極の上記セットとは独立してアドレス可能であってもよい。
上記第5の電極は、上記第6の電極と嵌合していてもよい。
上記第4の電極層は、1セットの第7の電極と、1セットの第8の電極とを有しており、第7の電極の上記セットは、第8の電極の上記セットとは独立してアドレス可能であってもよい。従って上記第2の電極構造は、4つの駆動回路および4つの電気接続部を必要とする。
上記第7の電極は、上記第8の電極と嵌合していてもよい。
あるいは、第7の電極の群が、第8の電極の群と嵌合していてもよい。第7の電極の群は、第8の電極の群と同数の電極を有していてよく、あるいは第7の電極の群は、第8の電極の群と異なる数の電極を有していてもよい。第7の電極の群は、電極を1つのみ有していてよく、あるいは第8の電極の群が、電極を1つのみ有していてもよい。これは、上述した第1および第2の電極、第3および第4の電極、および第5および第6の電極にも適用することができる。
上記電子光学材料の層は、液晶材料の層であってもよい。
上記変調器は、上記第1の電極層と上記第2の電極層との間に配置された電気的絶縁層をさらに有していてもよい。
上記電気的絶縁層は、寸法および形状が、上記第1および第2の電極層の1つと概ね一致するようにパターン形成されてもよい。
上記変調器は、上記第3の電極層と上記第4の電極層との間に配置された電気的絶縁層をさらに有していてもよい。
上記電気的絶縁層は、寸法および形状が、上記第3および第4の電極層の1つと概ね一致するようにパターン形成されてもよい。
上記第1の電極構造内に構成された少なくとも1つの電極は、上記第2の電極構造の2つの電極の少なくとも一部と対向していてもよい。
上記第2の電極構造内に構成された少なくとも1つの電極は、上記第1の電極構造の2つの電極の少なくとも一部と対向していてもよい。
本発明の第2の形態は、画像表示層と、この画像表示層を通る光路内に配置された空間光変調器と、視差バリアを構成するために上記空間光変調器をアドレスするための手段とを備えた、マルチビュー指向性ディスプレイを提供する。
上記画像表示層は、ピクセル化された画像表示層であって、上記電子光学材料の層内に構成された上記複数のアドレス可能領域の1アドレス可能領域の幅は、上記画像表示層の1ピクセルセットに対応する上記電子光学材料の層の一部分内にある上記アドレス可能領域の側方位置に依存していてもよい。
1ピクセルセットに対応する上記電子光学材料の層の上記部分の側方中心(lateral centre)に近い方の上記電子光学材料内に構成された上記複数のアドレス可能領域の1アドレス可能領域の幅は、1ピクセルセットに対応する上記電子光学材料の層の上記部分の上記側方中心から離れた方の上記電子光学材料内に構成された上記複数のアドレス可能領域の1アドレス可能領域の幅より小さくてもよい。
上記ディスプレイは、デュアルディスプレイ、または裸眼立体3次元ディスプレイであってもよい。
本発明による裸眼立体3次元ディスプレイは、観察者の位置を特定するための位置特定手段と、上記観察者の特定された位置に従って、上記空間光変調器を制御するための制御部とをさらに備えていてもよい。このようなディスプレイは、観察者追跡を備えることができる。上記ディスプレイの視差バリアは、空間光変調器内に構成されている。また、観察者追跡は、視差バリアの不透過領域および透過領域の位置が、特定された観察者の位置に応じて変わるように空間光変調器を制御することによって備えられる。
本発明の好ましい実施形態について、添付図面を参照しながら例として説明する。
本発明によれば、上記第1および上記第2の電極層を、上記第1の基板から異なる間隔を置いて備えることによって、米国特許第6,049,424号において、隣り合う電極間の隙間23によって生じる、隣り合うアドレス可能領域間の隙間が除去されるという利点が得られる。
本発明による空間光変調器(SLM)では、電子光学材料の層が、第1の電極構造および第2の電極構造によってアドレスされる。上記第1および第2の電極構造は、電子光学材料内に、複数のアドレス可能領域を構成するように構成されている。これによって、アドレス可能領域の一部が不透過性となるように駆動し、そしてアドレス可能領域のその他の部分が透過性となるように駆動することによって、再構成可能な視差バリアがSLM内に構成される。米国特許第6,049,424号に記載されているように、視差バリアは、不透過性となるように駆動されたアドレス可能領域、および透過性となるように駆動されたアドレス可能領域を再選択することによって再構成可能となる。電子光学材料の層は、例えば液晶材料の層であってよい。
本発明では、アドレス可能領域は、電子光学材料内において、隣接するアドレス可能領域と少なくとも連続するように構成されていることが好ましい。「少なくとも連続する」とは、アドレス可能領域が、隣接するアドレス可能領域と重複しているか、あるいは連続しているという意味である。これによって、米国特許第6,049,424号において生じる、視差バリアの不透過領域14内の透過性の隙間が除去される。
本発明の上記実施形態の原理は、図4(b)に示されている。図4(b)は、本発明によるSLMの概略平面図である。図4(b)は、第1の基板25と第2の基板26との間に配置された電子光学材料の層24内に構成された、7つのアドレス可能領域を示している。アドレス可能領域は、R1・・・R7と表示されている。アドレス可能領域、例えば領域R2は、隣接するアドレス可能領域R1およびR3と連続していることが分かる。
図4(b)に示されているアドレス可能領域R1〜R7は、画像ディスプレイSLM4のピクセルセットに対応する視差バリアの領域内に形成されている。ピクセル「セット」は、側方にて隣接する少なくとも2つのピクセルを有しており、1セットにおけるピクセル数は、ディスプレイによって表示される視野の数と対応している。例えば、標準的な2視点裸眼立体3次元ディスプレイでは、1ピクセルセットは、隣接する2つのピクセルを有している。これに関連して、「ピクセル」は、単色のサブピクセル、白色のフルピクセル、または、ピクセルもしくはサブピクセルのその他任意の群を指す。アドレス可能領域は、画像ディスプレイSLM4の各ピクセルセットに対して同様の方法によって構成することができる。このため、図4(a)の実施形態では、7つのアドレス可能領域は、画像ディスプレイSLM4のピクセルセットと対応する視差バリアの各領域内に構成されている。隣接するピクセルセットと対応する視差バリアの領域に対する2つのアドレス可能領域R1’およびR2’は、図4(b)に示されている。従って、複数のアドレス可能領域R1およびR1’は、電子光学材料の層内に構成され、複数のアドレス可能領域R2およびR2’は、電子光学材料の層内に構成され、以後も同様に構成されている。
電子光学材料の層内に構成された各アドレス可能領域は、(唯一の隣接する領域R2、R6と連続または重複している、電子光学材料の層の最も端にあるアドレス可能領域は別として、)隣接する2つのアドレス可能領域と連続しているか、あるいは重複していることが好ましい。
本発明では、電子光学材料内に構成されたアドレス可能領域は、アドレス可能領域のセットとして配置されている。第1のセットはアドレス可能領域R1、R1’を含み、第2のセットはアドレス可能領域R2、R2’を含み、第iのセットはアドレス可能領域Riを含み、そしてアドレス可能領域RNを含む第Nのセットまで続いている。第1のセットのアドレス可能領域同士が共に切り替えられ、第2のセットのアドレス可能領域同士が共に切り替えられ(しかし、アドレス可能領域の第1のセットとは独立して切り替えることができる)、以後も同様に切り替えられる。
図4(a)および図4(b)の実施形態では、電子光学材料内に7セットのアドレス可能領域が構成されている。つまりN=7である。しかし本発明は、この特定のセット数のアドレス可能領域に限定されるものではない。原理的には、Nは、2あるいは2以上の任意の整数と等しければよい。しかし実際は、電子光学材料内に第1および第2のセットのアドレス可能領域のみが構成されている場合は(すなわちN=2)、不透過領域を透過領域に、そして透過領域を不透過領域に変更することのみによって、電子光学材料内に構成された視差バリアを再構成することが可能である。これによって、裸眼立体3次元ディスプレイの場合は、左視野領域19および右視野領域20の位置が置き換えられる。しかしこの効果は、視差バリア5を変更することなく、図1のディスプレイの画像表示層8を再アドレスすることによっても得ることができる。従って、第1のセットのアドレス可能領域、第2のセットのアドレス可能領域、および第3のセットのアドレス可能領域が、電子光学材料の層内に構成されて、より効果的な観察者追跡を可能にすることが好ましい。
図4(a)は、本発明の第1の実施形態によるSLMの断面図である。この図は、電子光学材料の層内にアドレス可能領域R1〜R7を備えることのできる、第1の基板25および第2の基板26上の電極構造の一構成を示している。図4(a)は、ディスプレイ1の画像ディスプレイSLM4のピクセルセットに対応し、かつ図4(b)のアドレス可能領域R1〜R7を備えたSLM部分を示している。
上記実施形態では、第1の基板25上に第1の電極構造27が備えられている。第1の電極構造27は、第1の電極層28および第2の電極層29を有している。第1および第2の電極層は、第1の基板25上において、第1の電極層28と第1の基板25との間隔が、第2の電極層29と第1の基板25との間隔とは異なるように配置されている。第1の電極層28と第2の電極層29との間には、電気的絶縁層30が配置されており、第1の電極層28を第2の電極層29から電気的に絶縁している。
第1の電極層28および第2の電極層29はそれぞれパターン形成されて、複数の電極31、32および33、34を形成する。上記SLMが視差バリアとして用いられる場合は、第1の電極層28および第2の電極層29上に構成された電極は、図4(a)の紙面に伸びるストライプ電極となる。しかし、これら電極の正確な形状および寸法は、用いる特定のSLMに応じて選択される。
図4(a)のSLMでは、第2の電極層29内に構成された電極33および34の形状および寸法は、第1の電極層28内において隣り合う電極31と電極32との隙間と一致している。この結果、第1の電極層内の電極31および32と、第2の電極層内において隣り合う電極33および34との間に、側方の隙間(lateral gap)が生じない。従って、米国特許第6,049,424号において隣り合う電極間において生じた隙間23は除去される。この結果、電子光学層内において、電極の1つ(例えば図4(a)に示されている電極32)によって構成されたアドレス可能領域は、隣接するアドレス可能領域(例えば、図4(a)において電極33によって構成されたアドレス可能領域)と連続している。
必要に応じて、第2の電極層29内に構成された電極33および34を、第1の電極層28内において隣り合う電極31と32との間の隙間よりも広くしてもよい。これによって、第2の電極層29内に構成された電極33および34が、第1の電極層内において隣り合って構成された電極と重複し、また同様に、第1の電極層28内に構成された電極31および32は、第2の電極層内において隣り合って構成された電極と重複する。これは、電極の1つによって電子光学材料の層内に構成されたアドレス可能領域が、隣接する電極によって構成されたアドレス可能領域と重複することを意味する。これは、以下にさらに説明するように、いくつかの用途においては利点となる。さらに上記電極は、様々な製造プロセスを行った結果として、電子光学層のアドレスされていない領域が何かの拍子に形成されてしまうことのないように、電極同士をわずかに重複させて、電極の形成プロセスにおける許容範囲を補償するように備えることができる。
本発明の好ましい一実施形態では、第1の電極層28がパターン形成されて、2セットの電極が形成される。このとき、第1のセットの電極は、第2のセットの電極とは独立してアドレス可能である。これを実施できる方法の1つは、図5(b)に示されている。図5(b)は、第1の電極層28の平面図を示している。第1の電極層28内に2セットの電極が形成されており、第1のセットの電極31が、第2のセットの電極32間に嵌合していることが分かる。第1のセットの各電極31(すなわち「第1の電極」)は、第1の母線31Aと接続されており、そして第2のセットの各電極32(すなわち「第2の電極」)は、第2の母線32Aと接続されている。各母線31Aおよび32Aは、それぞれのインターフェース(図示せず)に接続され、これによって適切な駆動回路に接続される。
第2の電極層29もパターン形成されて、独立してアドレス可能な2セットの電極を構成することが好ましい。図5(a)は、第2の電極層29の平面図であって、パターン形成されて第3のセットの電極33および第4のセットの電極34を形成している、第2の電極層29を一例として示している。第3のセットの各電極33(すなわち「第3の電極」)は、第4のセットの各電極34(すなわち「第4の電極」)間に嵌合している。各第3の電極33は、第3の母線33Aと接続されており、そして第4のセットの各電極34は、第4の母線34Aと接続されている。各母線33Aおよび34Aは、それぞれのインターフェース(図示せず)に接続され、これによって適切な駆動回路に接続される。
なお、図5(a)および図5(b)に示されている第1の実施形態によるSLM部分は、図4(a)および図4(b)に示されているよりも大きい。図5(a)または図5(b)の矢印Pは、例えば第1(あるいは第2、第3、または第4)の電極の右端と、隣接する第1(あるいは第2、第3、または第4)の電極の右端との間の距離によって構成される、SLMのピッチを示している(このピッチは、第1(あるいは第2、第3、または第4)の電極の中心と、隣接する第1(あるいは第2、第3、または第4)の電極の中心との距離として構成されていてもよい)。図4(a)は、幅が、矢印Pの長さと一致するSLM部分を示している。
上記変調器のアクティブ領域65は、図5(a)および図5(b)において破線で示されている。
従って、図4(a)の第1の電極構造27は、独立してアドレス可能な第1〜第4のセットの電極31〜34を備えていることが分かる。上記第1の電極構造では、形成される必要のある電気的接触部は4つのみであり、また必要な駆動回路は4つのみである。対照的に、米国特許第6,049,424号では、各アドレス可能領域は、その各自の電極Eによって構成されているため、各電極を個々にアドレスするためには高価な駆動回路が必要となる。
原理上は、図4(a)に示されている第1の電極構造27は、第2の基板26上全体に配置された単一の対向電極のみからなる第2の電極構造と共に用いることができる。これによって、第1〜第4のセットのアドレス可能領域が、電子光学材料内に構成される。またこれは、再構成可能な簡素な視差バリアを実施するために用いることができる。例えば、まず第1のセットの電極31および第2のセットの電極32が駆動されて、対応するSLMの領域を不透過性にし、そして第3のセットの電極33および第4のセットの電極34が駆動されて、対応するSLMの領域を透過性にする。次に、第2のセットの電極32および第3のセットの電極33を駆動して、対応するSLMの領域を不透過性にする。そして第1のセットの電極31および第4のセットの電極34を駆動して、対応するSLMの領域を透過性にすることによって視差バリアが再構成されて、例えば観察者の動きが補償される。
しかし多くの用途において、電子光学材料内に第1〜第4のセット以上のアドレス可能領域を形成することが望ましい。そして、特定の視差バリアを構成する(例えば、バリアの不透過領域14の幅と、バリアの透過領域15の幅との比率を変える)ことで、またはバリアの不透過領域および透過領域の「側方移動」をより精緻に制御することによって、より高い柔軟性を与えることが望ましい。従って、本発明の特に好ましい実施形態では、第2の基板26上に形成された第2の電極構造35は単一の対向電極ではなく、独立してアドレス可能な電極を2セットまたは2セット以上備えている。図4(a)の実施形態では、第2の電極構造35は、第1の電極構造27と類似しており、また第2の基板26上には第3の電極層36および第4の電極層37が形成されている。第3の電極層36と第2の基板26との間の間隔は、第4の電極層37との間隔とは異なる。第3の電極層36がパターン形成されて、1セットの第5の電極39および1セットの第6の電極40を構成する。この第5の電極39のセットは、第6の電極40のセットとは独立してアドレス可能である。さらに、第4の電極層37がパターン形成されて、1セットの第7の電極41および1セットの第8の電極42を構成する。この第7の電極41のセットは、第8の電極42のセットとは独立してアドレス可能である。図5(a)または図5(b)に示されているように、第5の電極39および第6の電極40は互いに嵌合していることが好ましく、また第7の電極41および第8の電極42は互いに嵌合していることが好ましい。第5〜第8の電極の各セットは、それぞれの母線に接続されていることが好ましい。またそれぞれの母線は、それぞれのインターフェースに接続されて、適切な駆動回路に接続されるようにする。
従って図4(a)のSLMは、第1の基板25上の第1の電極構造27に対して4つの接続部(第1〜第4のセットの各電極に対して1つずつ)、そして第2の基板26上の第2の電極構造35に対して4つの接続部(第5〜第8のセットの各電極に対して1つずつ)、という合計8つの電気的接続部が必要であることが分かる。これら8つの接続部は、SLMの物理的寸法とは無関係に必要である。対照的に、米国特許第6,049,424号によるSLMは、各ピクセル電極Eに対して1つの接続部を必要とする。
図4(a)のSLMでは、電子光学材料の層内のアドレス可能領域R1〜R7は、以下のように構成される。
Figure 0004629058
これは、図4(b)に概略的に示されている。図4(b)では、第1の電極31はA、第2の電極32はC、第3の電極はB、そして第4の電極はDによって示されている。下方の基板上では、第5の電極39はF、第6の電極40はH、第7の電極41はE、そして第8の電極42はGによって示されている。
上述したように、各基板に必要とされる電気的接続部は4つのみであるため、簡素な駆動回路を用いることができる。駆動回路の詳細、および必要な駆動電圧は、SLM内の電子光学材料の性質に依存する。
好ましい一実施形態では、電子光学材料は液晶材料である。原理的には、本発明によるSLM内においては、任意の適切な液晶モードを用いることができる。一例としては、簡素かつよく知られている「ねじれネマチック」液晶モードを用いることができる。このモードを用いるために、第1の基板25と、第2の基板26と、電子光学材料の層24とが、第1の偏光器43と第2の偏光器44との間に配置されるように、一対の直線偏光器43、44をSLMに備えてもよい。一実施形態では、図5(c)に示されているように、第1の直線偏光器43は、その透過軸43Tが、液晶分子の第1の基板25上において、配列方向(alignment direction)と平行になるように配置されている。図5(d)に示されているように、第2の偏光器44は、その透過軸44Tが、第1の偏光器43の透過軸に対して90°となるように配置されている。下方の基板26上における液晶分子の配列方向は、基板25上における配列方向に対して90°となるように配置されている。これによって、図5(d)に示されているように、第2の基板26上における配列方向が、下方の偏光器44の透過軸と平行になる。偏光器の透過軸および配列方向をこのように配置することによって、「ノーマリーホワイト」モードが得られる。「ノーマリーホワイト」モードでは、液晶層全体に電圧が印加されていないときに、SLMの透過率が最大となる。SLMの一領域は、液晶層のその領域全体に適切な電圧を印加することによって不透過性となる。このモードでは、第1の基板25と第2の基板26との間隔は、液晶モードの第1の極小条件(minimum condition)を満たすように選択される必要がある。
上記液晶層は、一般的には、例えば周波数が200Hzの方形波などの交流(ac)信号によって駆動されてもよい。第1〜第8のセットの電極31〜34、39〜42はそれぞれ、この駆動信号またはゼロ信号を受信する。液晶層内にあるアドレス可能領域のいずれか特定の1つの両側に配置された電極が同じ種類の信号を受信した場合(つまり、これらが両方ともac駆動信号を受信した場合、あるいはこれらが両方ともゼロ信号を受信した場合)は、液晶層の上記領域全体において合成電界(resultant electric field)が生じず、また上記領域は切り替えられず、その透過率も最大のままである(「ノーマリーホワイト」モードの場合)。一方、液晶層の一領域の一方の電極がac駆動信号を受信し、そして上記領域の他方の電極がゼロ信号を受信した場合は、液晶層の上記領域全体において合成電界が生じ、液晶層の上記領域が切り替えられて黒くなる。
なお上記例では、「オフ」である電極は、真のゼロボルト信号に接続される必要があり、単に遮断されて浮遊されているわけではないことに留意されたい。
しかし本発明は、上述した特定の駆動構造に限定されるものではなく、都合の良い任意の駆動信号を組み合わせて用いて、液晶層を黒の状態に切り替えるために必要な正確な合成電界を生成するようにしてもよい。
図4(c)は、第1〜第8の電極に印加される駆動信号を適切に組み合わせることによって、液晶層のアドレス可能領域R1〜R7のいずれが透過性になり、いずれが不透過性となるのかをいかに制御できるか、ひいては視差バリアの効果的な位置はどこなのかを示している。表の左手部分における「1」は、ゼロではない適切な駆動信号が電極に印加されたことを示し、そして「0」は、「ゼロ」駆動信号が電極に印加されたことを示している。表の右手部分における「1」は、液晶層の関連する領域が切り替えられて不透過状態を生じさせていることを示す一方、「0」は、液晶層の関連する領域が切り替えられずに、最大の透過率を維持していることを示している。図4(c)の左手部分に示されている駆動信号は全て、7セットのアドレス可能領域R1〜R7のうち4セットが不透過性にされ、かつ残り3セットが透過性にされた視差バリアを提供しており、この結果、視差バリアの透過性スリットが、視差バリアのピッチの7分の3を占めていることが分かる。図4(c)に示されている駆動信号を順に印加することによって、視差バリアの不透過領域が、SLM全体を側方に移動することができる。例えば、ゼロでない駆動信号が第1および第3のセットの電極に印加され、ゼロ駆動信号がその他全てのセットの電極に印加される第1のセットの駆動信号は、アドレス可能領域R1、R2、R3、およびR4が不透過性になるように駆動し、そしてアドレス可能領域R5、R6、およびR7が透過性になるように駆動する。図4(c)に示されている第2の駆動構造では、ゼロ駆動信号が第5および第8のセットの電極に印加され、そしてゼロでない駆動信号がその他全てのセットの電極に印加される。この第2の駆動構造は、アドレス可能領域R2〜R5が不透過性となるように駆動し、アドレス可能領域R6、R7、およびR1が透過性となるように駆動する。この結果、第1の駆動構造から第2の駆動構造へ切り替えることによって、視差バリアの不透過領域が、アドレス可能な一領域の幅分、SLM全体を側方に移動する。図4(c)に示されている第3の駆動構造へ切り替えることによって、視差バリアの不透過領域が、ここでもまたアドレス可能な一領域の幅分、SLM全体をさらに移動する。そして、図4(c)に示されている残りの駆動構造に関しても、同様に移動が行われる。
図4(a)に示されている実施形態では、第1〜第4の電極のいずれか1つが有する幅は、第1〜第4の電極のその他が有する幅の半分と等しくなる必要があることについて留意されたい。図4(a)に示されている実施形態では、第4の各電極34は、第1〜第3の電極31〜33の幅の半分である。同様に、第7の各電極41の幅は、第5の電極39、第6の電極40、および第7の電極42の幅の半分である。
図4(d)は、本発明によるSLMが視差バリアとして用いられたマルチビュー指向性ディスプレイの動作原理を示した概略ブロック図である。まず工程1において、ディスプレイの観察者の位置が特定される。これは、例えば欧州特許出願第98302989.3による方法を用いて、例えばビデオカメラ、およびこのビデオカメラからの画像を解析して観察者の位置を検出するための画像解析手段(図1のアナライザ63など)をディスプレイに備えることによって実施可能である。
工程2では、ユーザの位置に関する情報から、視差バリアの最適な位置が特定される。バリアの「最適な位置」を特定することによって、観察者の位置に適した視野領域を提供する視差バリアの不透過領域14および透過領域15の位置が特定される。例えば裸眼立体3次元ディスプレイの場合では、観察者の位置を認識することによって、観察者の両眼の位置を認識することができる。また視差バリアの「最適な位置」は、観察者の左目および右目それぞれの特定された位置と一致する左視野ウィンドウおよび右視野ウィンドウを提供する視差バリア全体における、透過領域および不透過領域の位置である。
工程2は、参照テーブルを準備することによって都合良く実施することができる。この参照テーブルは、ディスプレイの視野ウィンドウ19および20の位置と、SLM全体における視差バリアの位置とを関連付ける。この場合、工程2は、参照テーブルから視差バリアの最適な位置を検索する工程を含んでいる。
工程3では、適切なセットの駆動信号が、SLMの第1〜第8のセットの電極に印加される。例えば、視差バリアの最適な位置が、図4(c)の右手部分の最終列によって得られる位置であると特定された場合、図4(d)の工程3において印加される適切な信号セットは、図4(c)の左手部分の最下列に示されている信号セットである。工程3において適切な信号セットが印加されたときに、視差バリアの不透過領域および透過領域の位置は工程4に従って設定される。工程3は、図1の制御部64などの制御部によって実施することができる。工程2もまた制御部によって実施されてよく、あるいは別々のデバイス(図1には示さず)によって行われてもよい。
図4(a)の実施形態では、液晶材料内に構成されたアドレス可能領域R1〜R7は、互いにほぼ同じ幅を有している。しかし本発明はこれに限定されるものではなく、液晶材料のアドレス可能領域の幅は互いに異なっていてもよい。特に、ピクセルセットに対応する視差バリア部分の中心付近のアドレス可能領域が、ピクセルセットに対応する視差バリア部分の縁にあるアドレス可能領域より狭くなるように、画像ディスプレイSLMのピクセルセットに対応するアドレス可能領域を配置することが望ましい(観察者の意図する視野位置が、ほぼディスプレイの軸上にある場合)。これによって、観察者が中心位置に近接しているときには観察者の追跡がより精緻に制御される一方、ディスプレイの軸から遠く離れた位置にいる観察者の追跡はより粗雑に制御される。これは、観察者が、意図する視野位置に大部分の時間いると予想される場合に好都合である。(意図する視野位置がディスプレイの軸上にない場合は、狭い方のアドレス可能領域は、ピクセルセットに対応する視差バリア部分において中心からはずれる。)
これは、本発明による別のSLMの概略断面図を示した図6(a)に示されている。図6(a)は、画像ディスプレイSLMのピクセルセットに対応するSLM部分を示している。図4(b)と同様に、ピクセルセットに対応する視差バリア部分は、電子光学材料内に構成された7つのアドレス可能領域R1〜R7を含んでいる。この実施形態では、ピクセルセットに対応するSLM部分の中心または中心付近にある3つのアドレス可能領域R3、R4、R5は、上記部分の縁に向かうR1、R2、R6、およびR7より狭い。図6(a)が、その他のピクセルセットに対応するアドレス可能領域を含むように修正されているとすると、上記アドレス可能領域は、次のような繰り返し構造を有することになる。この繰り返し構造は、R1 幅広、R2 幅広;R3 幅狭、R4 幅狭、R5 幅狭;R6 幅広、R7 幅広;R1 幅広、R2 幅広;R3 幅狭、R4 幅狭、R5 幅狭;R6 幅広、R7 幅広などとなる。
図6(a)の実施形態では、中心アドレス可能領域R3、R4、R5は、その他のアドレス可能領域の幅のほぼ半分である。しかし本発明は、アドレス可能領域の幅が、この厳密な比率に限定されるものではない。好ましい一実施形態では、図6(a)に示されているように、アドレス可能領域の幅は、ピクセルセットに対応するSLM部分の中心に対してほぼ対称に変化する。
図6(a)に示されているアドレス可能領域は互いに連続していない。しかしこの実施形態は、各アドレス可能領域が、隣り合うアドレス可能領域と連続または重複しているSLMに適用することができる。
図6(a)に示されているような幅の異なるアドレス可能領域は、図6(d)に示されているように、単に電極の幅を変えることによって得ることができる。図6(a)に示されている幅(中心アドレス可能領域R3、R4、R5の幅が、その他のアドレス可能領域の幅の半分)を有するアドレス可能領域は、第1の電極31の幅を5P/12にし、第2の電極32および第3の電極33の幅をP/6にし、そして第4の電極34の幅をP/4にすることによって得ることができる。第2の電極構造では、第5の電極39の幅はP/4であり、第6の電極40の幅はP/3であり、第7の電極41の幅はP/12であり、そして第8の電極42の幅はP/3である。対照的に、図4(a)の実施形態では、全ての電極の幅は、幅がそれぞれP/7である第4の電極34および第7の電極41を除いては、2P/7である。図5(a)および図5(b)に示されているように、Pは変調器のピッチである。
図6(a)の実施形態における視差バリアのマークと空間との比率は、いずれの3つの領域が透過性となるように選択されるのかに応じて変わる。(視差バリアのマークと空間との比率は、不透過領域の幅と透過領域の幅との比率である。)従って、マークと空間との比率を一定に維持することが望ましいアプリケーションでは、マークと空間との比率が同一のバリア構造を用いる必要がある。そしてこれによって、用いることのできるバリアの側方位置の数が制限される。例えば、図6(a)では、幅狭領域の2つおよび幅広領域の1つが透過性であり、かつ幅広領域の3つおよび幅狭領域の1つが不透過性であるバリア構造のみを用いることによって、一定のマーク/空間比率を得ることが可能となっている。
図4(a)の実施形態では、第1および第2の各電極構造は、2つの電極層を有している。しかし本発明はこれに限定されるものではなく、これら電極構造の1つまたは両方は、3つ(あるいは3つ以上)の電極層を有していてもよい。図6(c)は、各電極構造が3つの電極層を有している、本発明の別の実施形態を示している。第1の基板25上の第1の電極構造27は、3つの電極層45、46、および47を有している。各電極層45、46、および47は、パターン形成されて電極を構成する。第1の電極層45は、パターン形成されて1セットの電極45Aを構成する。第2の電極層46は、パターン形成されて2セットの電極46Aおよび46Bを構成する。第3の電極47は、パターン形成されて2セットの電極47Aおよび47Bを構成する。第2の電極層46内に構成された2セットの電極46Aおよび46Bは互いに嵌合しており、例えば図5(b)に示されているように、互いに独立してアドレス可能である。第3の電極47内に構成された2セットの電極47Aおよび47Bは互いに嵌合しており、例えば図5(b)に示されているように、互いに独立してアドレス可能である。従って第1の電極構造27には、5つの電気的接続部が必要である。各電極45A、46A、46B、47A、47Bは、図6(c)の紙面に伸びるストライプ電極の形状をしている。これらの電極の幅は互いに同じであり、この幅はP/5と等しい(Pは視差バリアのピッチである)。これらの電極は、それぞれの電極が、隣り合う電極と連続するように構成されている。第1の電極層と第2の電極層との間、および第2の電極層と第3の電極層との間には、電気的絶縁層30が配置されている。
第2の基板26上に配置された第2の電極構造は、3つの電極層48、49、および50を有している。この第4、第5、および第6の各電極層は、パターン形成されて電極を構成する。
第4の電極層48は、パターン形成されて2セットの電極48Aおよび48Bを形成する。第5のセットの電極49は、パターン形成されて2セットの電極49Aおよび49Bを形成する。第6の電極層50は、パターン形成されて2セットの電極50Aおよび50Bを形成する。第4の電極層48内に構成された2セットの電極48Aおよび48Bは互いに嵌合しており、また互いに独立してアドレス可能である。第5の電極層49内に構成された2セットの電極49Aおよび49Bは、嵌合した群として配置されており、また互いに独立してアドレス可能である。第6の電極層50内に構成された2セットの電極50Aおよび50Bは、嵌合した群として配置されており、また互いに独立してアドレス可能である。従って第2の電極構造35には、6つの電気的接続部が必要である。各電極48A、48B、49A、49B、50A、50Bは、図6(c)の紙面に伸びるストライプ電極の形状をしている。
第4の電極層の電極48Aおよび48Bの幅は、それぞれP/4である。これらの電極間の間隔は均一ではなく、P/10および8P/20の間隔が開いている。
第5の電極層の電極49Aおよび49Bの幅は、それぞれP/20である。これらの電極間の間隔は均一ではなく、また1セットの電極49Aは、その他のセットの電極49Bの2倍の数の電極を有している。つまり、1セットの電極49Aの2つの電極からなる一群は、その他のセットの電極49Bの1つと嵌合している。1セットからなる2つの電極49Aは、8P/20だけ隔てられており、またこれら電極間には、第2のセットの電極49Bが挟まれている(2つの電極49Aから、6P/20およびP/20だけ隔てられている)。
第6の電極層の1セットの電極50Aの幅はそれぞれP/20であり、第6の電極層のその他のセットの電極50Bの幅はP/4である。これらの電極間の間隔は均一ではなく、また1セットの電極50Aは、その他のセットの電極50Bの2倍の数の電極を有している。つまり、1セットの電極50Aの2つの電極からなる一群は、その他のセットの電極50Bの1つと嵌合している。1セットからなる一群の2つの電極50Aは、6P/20だけ隔てられており、第2のセットの電極50Bは、さらにP/20だけ隔てられている。
これらの電極は、各電極が、隣り合う電極と連続するように配置されている。第4の電極層48と第5の電極層49との間、および第5の電極層49と第6の電極層50との間には、電気的絶縁層38が配置されている。
図6(c)の第2の電極構造35は、6つの電気的接続部が必要である(各電極層に対して2つずつ)。
図6(b)は、図6(c)の電極構造によって得られるアドレス可能領域の平面図である。図6(b)は、画像ディスプレイSLMの1ピクセルセットに対応するアドレス可能領域を示している。1ピクセルセットに対応する視差バリア部分は、電子光学材料内に構成された10個のアドレス可能領域R1〜R10を有している。この実施形態では、上記ピクセルセットに対応したSLM部分の中心または中心付近にある6つのアドレス可能領域R3、R4、R5、R6、R7、R8は、上記部分の縁に向かう領域R1、R2、R9、およびR10よりも狭い。図6(b)の実施形態では、中心のアドレス可能領域R3〜R8は、その他のアドレス可能領域の幅の約半分である。しかし本発明は、アドレス可能領域の幅が、この厳密な比率に限定されるものではない。
本発明による電極構造は、任意の適切な技術によって製造可能である。例えば、図4(a)の上方の電極構造27を製造するためには、まず上方の基板25の表面が洗浄されることで準備され、次に上記表面上に導電層を蒸着させる。この層は、例えばインジウムすず酸化物、またはその他の透明かつ導電性の材料からなる層であってもよい。次に上記層は、任意の適切な技術によってパターン形成されて、第1のセットの電極31および第2のセットの電極32を形成する。例えば、上記層は、この層の全表面上にフォトレジストを蒸着させ、所望の電極の形状と一致するマスクを用いて上記フォトレジストをマスクし、そしてマスクを介してフォトレジストを露光して、照射された領域からフォトレジストを除去することによってパターン形成することができる。次に、露光された導電層の領域は、適切なエッチング技術によって除去され、このとき所望のセットの電極が配される。そして、フォトレジストの残りの部分が除去される。
次に、第1のセットの電極31および第2のセットの電極32上に、絶縁層が堆積される。
次に、上記絶縁層上に別の導電層が堆積される。この層は、上述したようにパターン形成されて、第3のセットの電極33および第4のセットの電極34を形成する。
絶縁層30は、第1の導電層の上部に容易に形成可能であると共に適切な絶縁特性を有する、任意の適切な材料を含んでいてもよい。例えば、上記絶縁層は、焼き付けまたは回転塗布によって基板上に塗布される高分子材料を含んでいてもよい。あるいは、上記絶縁層は、酸化ケイ素材料の溶液であってもよい。さらに上記絶縁層は、スパッタリングまたは真空蒸着法(例えばプラズマ化学気相成長法)によって塗布される、酸化ケイ素または窒化ケイ素などの材料であってもよい。
必要に応じて、絶縁層30のための材料は、絶縁層30が、電気的に絶縁させる以外のさらなる機能を実行できるように選択してもよい。例えば、電気的絶縁層30が液晶ポリマーから形成されている場合は、これらの絶縁層は光学リターダー層(optical retarder layer)をさらに含んでいてもよく、これによってSLMの光学特性が変化する。
第1の電極層28は、一般的に薄い(厚さは一般的に約100nm)。このため第1の電極層28は、エッチングされて電極が形成された後に、平坦化される必要は通常はない。さらに絶縁層30は、平坦化層として機能する。
図4(a)の実施形態では、絶縁層30は、SLMの全領域に伸びている。従って、第1の電極31または第2の電極32に印加される駆動電圧を、第3の電極33および第4の電極34に印加される駆動電圧より高くして、絶縁層30全体において生じる電圧を補償する必要がある。必要とされる駆動電圧の上昇を最小限に抑えるために、絶縁層30を選択的にパターン形成して、図7に示されているように、絶縁層30が、第1および第2の電極の縁付近の領域のみを覆うようにすることが望ましい。このように絶縁層30をパターン形成することによって、第1の電極31および第2の電極32の領域の大部分が絶縁層30によって覆われることがなくなる。
同様に、図4(a)の実施形態では、絶縁層38もまたSLMの全領域に伸びている。従って、第7の電極41または第8の電極42に印加される駆動電圧を、第5の電極39および第6の電極40に印加される駆動電圧より高くして、絶縁層38全体において生じる電圧を補償する必要がある。必要に応じて、下方の基板26上の絶縁層38を、上方の基板25上の絶縁層30と同様にパターン形成して、図7にも示されているように、絶縁層38が第7の電極41および第8の電極42の縁付近の領域のみを覆うようにしてもよい。
本発明によるSLMが、マルチビューディスプレイ内に視差バリアを備えるために用いられる場合、本発明によって、ディスプレイ内に2つ(または2つ以上)の視差バリアを効果的に備えることができる。上述した例では、2つまたは2つ以上の視差バリアは互いに同一またはほぼ同一であるが、その不透過領域および透過領域は、SLMの異なる側方位置に備えられている。これによって、視差バリアが、視野ウィンドウの位置を変えて観察者の動きを追跡するために、画像ディスプレイ層に対して側方に効果的に移動できるようになる。しかし本発明は、この特定の用途に限定されるものではない。
例えば、本発明によるSLMは、マルチビュー3次元画像を提供できるディスプレイ内における視差バリアとして用いることができる。図8は、4つの異なる視野を表示することのできるディスプレイ51を示している。各視野は、それぞれの視野ウィンドウ52〜55へ表示される。4つの異なる視野を提供することによって、解像度を劣化させることになるが、視野自由度および実体性(realism)が高まる。ディスプレイ51は、視差バリア5が本発明の一実施形態による変調器から構成されていることを除いては、一般的に図1のディスプレイ1と一致する。ディスプレイ51のこれら構成要素に関する説明は、図1のディスプレイ1と同じであるため、ここでは繰り返さないこととする。
この実施形態では、視差バリアは、2つの選択的な定位置視差バリアを提供している。第1の視差バリアのピッチは、ピクセルピッチの約2倍である。つまり「ピクセルセット」は、2つの視野を有する2つのピクセルである。他方の視差バリアのピッチは、ピクセルピッチの約4倍である。つまり「ピクセルセット」は、4つの視野を有する4つのピクセルである。ユーザは、2視野の3次元ディスプレイを見るためには一方の視差バリアを、そして4視野の3次元ディスプレイを見るためには他方の視差バリアを選択することができる(2視野での解像度が2分の1であるのに対して、4視野モードは、各視野の解像度が4分の1であるという不都合な点を有している)。4視野モードによって、視野ウィンドウ52および53と、視野ウィンドウ53および54と、視野ウィンドウ54および55とに一致する、3つの異なる3次元の視野位置が可能になる。4視野モードはまた、「見回り」視野(”look-around” viewing)を与えるのに用いられてもよい。なお、この実施形態は、観察者追跡を備えていない。
必要であれば、ディスプレイ51は、観察者の位置を特定するための位置特定部(図8には図示せず)を備えていてもよい。上記位置特定部は、上記位置特定部からの入力を受けて視差バリア5を制御するための制御部64を有している。上記位置特定部は、例えば、図1の位置特定部61と一致するものであってもよい。
図9は、本発明の別の用途を概略的に示している。この実施形態では、本発明によるSLMは、図8に示されているタイプの2つの視差バリアを備えている。これら2つの視差バリアの一方は、2視野の3次元裸眼立体ディスプレイに適しており、そして他方は、マルチビュー3次元裸眼立体ディスプレイに適している。図9の例では、SLMの基板の1つには、2つの電極層57および56が備えられている。これらの各電極層56、57は、パターン形成されて、紙面に伸びる複数のストライプ電極を形成する。図9では、これらの電極層は、第2の基板26上に配置された第2の電極構造35を形成している状態で示されているが、上方の基板25上にも同様に配置させることができる。電極層56の1つは、パターン形成されて、2視野の3次元ディスプレイモードに適した視差バリアをSLM内に構成することのできる電極を構成する。他方の電極層57は、パターン形成されて、マルチビュー3次元ディスプレイモードを提供するのに適した視差バリアをSLM内に構成することのできる電極を構成する。図示されているように、電極層57内に構成された(マルチビュー3次元ディスプレイモード用の)視差バリアのピッチは、電極層56内に構成された(2視野の3次元ディスプレイモード用の)視差バリアのピッチの、少なくとも2倍の長さである。
別の基板25(図示せず)上には、電極構造が形成されている。これは、別の基板の領域全体に配置された簡素な対向電極であってもよい。適切な駆動電圧を、第1の電極層56の電極と当該対向電極との間に印加することによって、2視野の3次元ディスプレイモードに適した視差バリアがSLM内に構成される。一方、適切な駆動電圧を、第2の電極層57と上記対向電極との間に印加することによって、マルチビュー3次元ディスプレイモードに適した視差バリアがSLM内に構成される。このように、本発明によるSLMを、裸眼立体3次元ディスプレイ内における視差バリアとして用いて、適切な視差バリアを形成するようにSLMを駆動することによって、(そして、これに応じてディスプレイ層をアドレスすることによって、)2視野の3次元ディスプレイモードと、マルチビュー3次元ディスプレイモードとは容易に切り替えられる。
マルチビュー指向性ディスプレイのさらに別の用途としては、上述したように、各ユーザが見れるように、別々の方向に2つ(2つ以上)の独立した画像を表示する「デュアルビュー」ディスプレイが知られている。図10は、デュアルビューディスプレイ58の概略平面図である。デュアルビューディスプレイ58は、第1の視野ウィンドウ59内にいるユーザに対して第1の画像を表示し、そして第2の視野ウィンドウ60内にいる第2のユーザに対して第2の独立した画像を表示することができる。ディスプレイ58は、視差バリア5が、本発明の一実施形態による変調器から構成されていることを除いては、一般的に図1のディスプレイ1と一致する。ディスプレイ58のこれら構成要素に関する説明は、図1のディスプレイ1と同じであるため、ここでは繰り返さないこととする。
デュアルビューディスプレイの視野ウィンドウ59および60の、視距離における幅が、3次元ディスプレイの視野ウィンドウの、視距離における幅よりも大きいことを除き、デュアルビューディスプレイは、原理的に裸眼立体3次元ディスプレイと類似している。マルチビューディスプレイを、デュアルビューディスプレイモードから3次元裸眼立体ディスプレイモードへ切り替えるためには、視差バリアを再構成して、適切な寸法の視野ウィンドウを備える必要がある。本発明によるSLMを用いて、デュアルビューディスプレイモードと裸眼立体3次元ディスプレイモードとの間で再構成できるディスプレイ内に、視差バリアを形成してもよい。一方の電極層が、パターン形成されて、デュアルビューディスプレイモード用の視差バリアを構成する電極を形成し、そして第2の電極層が、パターン形成されて、裸眼立体3次元ディスプレイモード用の視差バリアを構成する電極を形成する点を除いて、適切なSLMは、図9のSLMと原理的に類似している。
必要に応じて、ディスプレイ58は、観察者の位置を特定するための位置特定部(図10には図示せず)を備えていてもよい。上記位置特定部は、上記位置特定部からの入力を受けて視差バリア5を制御するための制御部64を有している。上記位置特定部は、例えば、図1の位置特定部61と一致するものであってもよい。
本発明は、上述してきた実施形態の説明に限定されるものではなく、当業者であれば、特許請求の範囲内において変更を加えることができる。それぞれの実施形態において開示した技術手段を適切に組み合わせた実施形態は、本発明の技術範囲内に包含される。
従来の裸眼立体3次元ディスプレイの概略平面図である。 図1のディスプレイの視差バリアの断面図である。 図1のディスプレイの視差バリアの平面図である。 米国特許第6,049,424号による再構成可能な視差バリアを示す図である。 米国特許第6,049,424号による再構成可能な視差バリアを示す図である。 米国特許第6,049,424号による再構成可能な視差バリアを示す図である。 本発明による空間光変調器の断面図および平面図である。 図4の空間光変調器のアドレッシングを示す図である。 図4の空間光変調器の動作を示すブロックフローチャートである。 図4の空間光変調器の電極層を示す平面図である。 図4の空間光変調器の電極層を示す平面図である。 図4の空間光変調器の可能な液晶配置を示す図である。 図4の空間光変調器の可能な液晶配置を示す図である。 本発明の第2の実施形態による空間光変調器の概略平面図である。 本発明の第3の実施形態による空間光変調器の概略平面図である。 本発明の第3の実施形態による空間光変調器の概略断面図である。 本発明の第3の実施形態による空間光変調器の概略断面図である。 本発明のさらなる実施形態による空間光変調器の部分断面図である。 本発明による空間光変調器を内蔵したマルチビュー裸眼立体3次元ディスプレイの概略平面図である。 本発明のさらなる実施形態による空間光変調器の部分断面図である。 本発明による空間光変調器を内蔵したデュアルビューディスプレイの概略平面図である。
符号の説明
5 視差バリア(空間光変調器)
24 電子光学材料の層
25 第1の基板
26 第2の基板
27 第1の電極構造
28 第1の電極層
29 第2の電極層
35 第2の電極構造
48 第4の電極層(第3の電極層)
49 第5の電極層(第4の電極層)

Claims (25)

  1. 画像表示層と、
    上記画像表示層を通る光路内に配置された空間光変調器と、
    視差バリアを構成するために上記空間光変調器をアドレスするための手段とを備えた、マルチビュー指向性ディスプレイであって、
    上記空間光変調器は、第1の基板と、第2の基板と、上記第1の基板と上記第2の基板との間に配置された電子光学材料の層と、上記第1の基板上に配置された第1の電極構造と、上記第2の基板上に配置された第2の電極構造と、を備え、上記第1の電極構造と第2の電極構造とが、使用中において、上記電子光学材料の層内に、複数のアドレス可能領域を構成するために共に作用するものであり、
    上記第1の電極構造は、上記第1の基板上に配置された第1および第2の電極層を有しており、
    上記第1の電極層と上記第1の基板との間隔は、上記第2の電極層と上記第1の基板との間隔とは異なっており、
    上記第1の電極層は、第1の電極と、第2の電極とをそれぞれ複数有しており、
    上記第2の電極層は、第3の電極と、第4の電極とをそれぞれ複数有しており、
    上記第1の電極、上記第3の電極、上記第2の電極、および上記第4の電極は、この順で上記第1の基板に沿って繰り返し設けられており、
    上記第3の電極は、上記第1の電極と上記第2の電極との隙間と一致するように設けられており、
    上記第4の電極は、上記第3の電極が配置されていない、上記第1の電極と上記第2の電極との隙間と一致するように設けられており、
    上記第1の電極のそれぞれおよび上記第2の電極構造は、使用中において、上記電子光学材料内に、少なくとも第1及び第2のセットのアドレス可能領域を構成するために共に作用するように構成されており、
    上記第2の電極のそれぞれおよび上記第2の電極構造は、使用中において、上記電子光学材料内に、少なくとも第5及び第6のセットのアドレス可能領域を構成するために共に作用するように構成されており、
    上記第3の電極のそれぞれおよび上記第2の電極構造は、使用中において、上記電子光学材料内に、少なくとも第3及び第4のセットのアドレス可能領域を構成するために共に作用するように構成されており、
    上記第4の電極のそれぞれおよび上記第2の電極構造は、使用中において、上記電子光学材料内に、少なくとも第7のセットのアドレス可能領域を構成するために共に作用するように構成されており、
    これによって、上記電子光学材料の層内に構成された上記アドレス可能領域は、上記第1〜第7のセットのアドレス可能領域を少なくとも含んでおり、
    上記第1〜第7のセットのアドレス可能領域の各アドレス可能領域は、この順に連続している、ことを特徴とするマルチビュー指向性ディスプレイ。
  2. 記第1の電極のそれぞれは、上記第2の電極のそれぞれとは独立してアドレス可能である、請求項1に記載のマルチビュー指向性ディスプレイ
  3. 上記第1の電極は、上記第2の電極と嵌合している、請求項2に記載のマルチビュー指向性ディスプレイ
  4. 記第3の電極のそれぞれは上記第4の電極のそれぞれとは独立してアドレス可能である、請求項1、請求項2または請求項3に記載のマルチビュー指向性ディスプレイ
  5. 上記第3の電極は、上記第4の電極と嵌合している、請求項4に記載のマルチビュー指向性ディスプレイ
  6. 上記第1の電極は、上記第3の電極と上記第4の電極との隙間と少なくとも連続している、請求項1〜請求項5のいずれか1項に記載のマルチビュー指向性ディスプレイ
  7. 上記第2の電極は、上記第3の電極と上記第4の電極との隙間と少なくとも連続している、請求項1〜請求項6のいずれか1項に記載のマルチビュー指向性ディスプレイ
  8. 上記第1の電極は、上記第2の電極の幅と実質的に等しい幅を有している、請求項1〜請求項7のいずれか1項に記載のマルチビュー指向性ディスプレイ
  9. 上記第4の電極は、上記第3の電極の幅の半分と実質的に等しい幅を有している、請求項1〜請求項8のいずれか1項に記載のマルチビュー指向性ディスプレイ
  10. 上記第2の電極構造は、上記第2の基板上に配置された第3および第4の電極層を有しており、
    上記第3の電極層と上記第2の基板との隙間は、上記第4の電極層と上記第2の基板との隙間とは異なっている、請求項1〜請求項9のいずれか1項に記載のマルチビュー指向性ディスプレイ
  11. 上記第3の電極層は、第5の電極と、第6の電極とをそれぞれ複数有しており、
    上記第5の電極および上記第6の電極は、上記第2の基板に沿って繰り返し設けられており、
    上記第5の電極のそれぞれは、第6の電極のそれぞれとは独立してアドレス可能である、請求項10に記載のマルチビュー指向性ディスプレイ
  12. 上記第5の電極は、上記第6の電極と嵌合している、請求項11に記載のマルチビュー指向性ディスプレイ
  13. 上記第4の電極層は、第7の電極と、第8の電極とをそれぞれ複数有しており、
    上記第7の電極および上記第8の電極は、上記第2の基板に沿って繰り返し設けられており、
    上記第7の電極のそれぞれは、第8の電極のそれぞれとは独立してアドレス可能である、請求項11に記載のマルチビュー指向性ディスプレイ
  14. 上記第7の電極は、上記第8の電極と嵌合している、請求項13に記載のマルチビュー指向性ディスプレイ
  15. 上記電子光学材料の層は液晶材料の層である、請求項1〜請求項14のいずれか1項に記載のマルチビュー指向性ディスプレイ
  16. 上記第1の電極層と上記第2の電極層との間に配置された電気的絶縁層をさらに有している、請求項1〜請求項15のいずれか1項に記載のマルチビュー指向性ディスプレイ
  17. 上記電気的絶縁層は、上記第1の電極および第2の電極の縁付近のみの上記第2の基板側に、並びに、上記第3の電極および第4の電極の上記第1の基板側に配置されている、請求項16に記載のマルチビュー指向性ディスプレイ。
  18. 上記第3の電極層と上記第4の電極層との間に配置された電気的絶縁層をさらに有している、請求項13または請求項14に記載のマルチビュー指向性ディスプレイ
  19. 上記電気的絶縁層は、上記第7の電極および第8の電極の縁付近のみの上記第1の基板側に、並びに、上記第5の電極および第6の電極の上記第2の基板側に配置されている、請求項18に記載のマルチビュー指向性ディスプレイ
  20. 上記第1の電極構造内に構成された上記第1の電極、第2の電極および第3の電極のうちの少なくとも1つは、上記第5の電極、第6の電極、第7の電極および第8の電極のうちの2つの電極の少なくとも一部と対向している、請求項13に記載のマルチビュー指向性ディスプレイ
  21. 上記第2の電極構造内に構成された上記第6の電極、第7の電極および第8の電極のうちの少なくとも1つの電極は、上記第1の電極構造の上記第1の電極、第2の電極、第3の電極および第4の電極のうちの2つの電極の少なくとも一部と対向している、請求項13に記載のマルチビュー指向性ディスプレイ
  22. 上記画像表示層は、ピクセル化された画像表示層であって、
    上記画像表示層の1ピクセルセットに対応する上記視差バリアの中心付近のアドレス可能領域の幅は、1ピクセルセットに対応する上記視差バリアの縁にあるアドレス可能領域より狭い、請求項1〜請求項7のいずれか1項に記載のマルチビュー指向性ディスプレイ
  23. 請求項22に記載のマルチビュー指向性ディスプレイであって、
    デュアルビューディスプレイである、マルチビュー指向性ディスプレイ。
  24. 請求項22に記載のマルチビュー指向性ディスプレイであって、
    裸眼立体3次元ディスプレイである、マルチビュー指向性ディスプレイ。
  25. 観察者の位置を特定するための位置特定手段と、
    上記観察者の特定された位置に従って、上記空間光変調器を制御するための制御部とをさらに備えている、請求項24に記載のマルチビュー指向性ディスプレイ。
JP2007020129A 2006-02-07 2007-01-30 マルチビュー指向性ディスプレイ Expired - Fee Related JP4629058B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/348,602 US7359105B2 (en) 2006-02-07 2006-02-07 Spatial light modulator and a display device

Publications (2)

Publication Number Publication Date
JP2007293270A JP2007293270A (ja) 2007-11-08
JP4629058B2 true JP4629058B2 (ja) 2011-02-09

Family

ID=38016443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020129A Expired - Fee Related JP4629058B2 (ja) 2006-02-07 2007-01-30 マルチビュー指向性ディスプレイ

Country Status (3)

Country Link
US (1) US7359105B2 (ja)
EP (1) EP1816510B1 (ja)
JP (1) JP4629058B2 (ja)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007242A2 (en) * 2005-07-08 2007-01-18 Koninklijke Philips Electronics N.V. Device for controlling the shape and direction of light
KR100739067B1 (ko) * 2005-11-30 2007-07-12 삼성에스디아이 주식회사 입체 영상 표시 장치
US20080094335A1 (en) * 2006-10-23 2008-04-24 Samsung Electronics Co., Ltd., Liquid crystal display and method of driving the same
TWI345653B (en) * 2006-12-29 2011-07-21 Chimei Innolux Corp Liquid crystal display device and display method of same
US20120268451A1 (en) * 2007-06-25 2012-10-25 Industrial Technology Research Institute Three-dimensional (3d) display
KR20080114310A (ko) * 2007-06-27 2008-12-31 삼성모바일디스플레이주식회사 전자 영상 기기
KR101419233B1 (ko) * 2007-12-14 2014-07-16 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
GB2457691A (en) * 2008-02-21 2009-08-26 Sharp Kk Display with regions simultaneously operable in different viewing modes
KR100922355B1 (ko) * 2008-03-07 2009-10-21 삼성모바일디스플레이주식회사 전자 영상 기기
WO2009119865A1 (ja) * 2008-03-25 2009-10-01 シチズンホールディングス株式会社 表示パネル及びカメラ
KR101015846B1 (ko) * 2009-01-16 2011-02-23 삼성모바일디스플레이주식회사 전자 영상 기기
DE102009009443B3 (de) * 2009-02-14 2010-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monitor und Verfahren zum Darstellen autostereoskopisch wahrnehmbarer Bilder
JP5705420B2 (ja) * 2009-07-03 2015-04-22 株式会社ジャパンディスプレイ 液晶パララックスバリア、表示装置及び液晶表示装置
TWI407195B (zh) * 2009-12-30 2013-09-01 Unique Instr Co Ltd A full-screen three-dimensional image display device
US8964013B2 (en) * 2009-12-31 2015-02-24 Broadcom Corporation Display with elastic light manipulator
US9247286B2 (en) * 2009-12-31 2016-01-26 Broadcom Corporation Frame formatting supporting mixed two and three dimensional video data communication
US8823782B2 (en) * 2009-12-31 2014-09-02 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test
US8854531B2 (en) * 2009-12-31 2014-10-07 Broadcom Corporation Multiple remote controllers that each simultaneously controls a different visual presentation of a 2D/3D display
US20110234605A1 (en) * 2010-03-26 2011-09-29 Nathan James Smith Display having split sub-pixels for multiple image display functions
ES2537070T3 (es) * 2010-05-21 2015-06-02 Koninklijke Philips N.V. Dispositivo de visualización de modo único-multivista conmutable
KR101147425B1 (ko) * 2010-05-25 2012-05-22 삼성모바일디스플레이주식회사 표시 장치
KR101777121B1 (ko) * 2010-07-28 2017-09-12 엘지디스플레이 주식회사 입체 영상 표시 장치
CN101923257B (zh) * 2010-08-06 2011-12-14 友达光电股份有限公司 视差控制元件、显示装置及自动立体影像的形成方法
JP5648361B2 (ja) * 2010-08-10 2015-01-07 ソニー株式会社 表示装置
KR101695819B1 (ko) 2010-08-16 2017-01-13 엘지전자 주식회사 입체영상 디스플레이 장치 및 입체영상 디스플레이 방법
KR20120034581A (ko) * 2010-10-01 2012-04-12 삼성전자주식회사 배리어를 이용하는 3d 디스플레이 장치 및 그 구동 방법
KR101732131B1 (ko) 2010-11-12 2017-05-04 삼성전자주식회사 사용자 위치 기반의 영상 제공 장치 및 방법
WO2012096025A1 (ja) * 2011-01-14 2012-07-19 株式会社村田製作所 気体搬送装置および車両
JP2012185307A (ja) * 2011-03-04 2012-09-27 Nec Saitama Ltd 画像表示ユニット、画像表示制御方法および画像表示制御プログラム
GB2488979A (en) * 2011-03-07 2012-09-19 Sharp Kk Switchable Optics with GRIN lenses formed in liquid crystal layer
JP2012185395A (ja) * 2011-03-07 2012-09-27 Sony Corp 表示装置およびその駆動方法、ならびにバリア装置およびその製造方法
KR101762251B1 (ko) * 2011-03-18 2017-07-31 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
WO2012137879A1 (ja) * 2011-04-08 2012-10-11 シャープ株式会社 表示装置
US9036014B2 (en) * 2011-06-20 2015-05-19 Electronics And Telecommunications Research Institute Dual layer parallax barrier-based 3D display device and method
KR101769782B1 (ko) * 2011-06-20 2017-08-30 한국전자통신연구원 이중 패럴랙스 배리어 기반의 3d 디스플레이 장치 및 방법
US9036013B2 (en) * 2011-06-20 2015-05-19 Electronics And Telecommunications Research Institute Segmented dual layer parallax barrier-based 3D display device and method
KR101461186B1 (ko) 2011-07-07 2014-11-13 엘지디스플레이 주식회사 입체 영상 표시 장치 및 그 구동 방법
JP5669945B2 (ja) * 2011-08-09 2015-02-18 シャープ株式会社 立体表示装置
KR20130025767A (ko) * 2011-09-02 2013-03-12 엘지디스플레이 주식회사 배리어 패널 및 이를 포함하는 입체영상 표시장치
KR101896695B1 (ko) * 2011-10-05 2018-09-10 한국전자통신연구원 입체 영상 패널, 입체 영상 패널을 포함하는 입체 영상 표시 장치 및 그 구동 방법
CN103163650A (zh) * 2011-12-08 2013-06-19 武汉天马微电子有限公司 裸眼3d光栅结构
KR20130106217A (ko) * 2012-03-19 2013-09-27 삼성디스플레이 주식회사 3차원 영상 표시 방법 및 이를 수행하기 위한 표시 장치
EP2653906B1 (en) 2012-04-20 2022-08-24 Dolby Laboratories Licensing Corporation A system for delivering stereoscopic images
CN103376561A (zh) * 2012-04-25 2013-10-30 东莞万士达液晶显示器有限公司 立体显示装置及主动式光学元件
CN103472633A (zh) * 2012-06-08 2013-12-25 上海立体数码科技发展有限公司 视差栅栏以及包括其的全视角立体显示系统
KR101476884B1 (ko) * 2012-06-22 2014-12-26 엘지디스플레이 주식회사 패럴랙스 배리어 타입의 입체영상 표시장치
CN103676286A (zh) * 2012-08-31 2014-03-26 京东方科技集团股份有限公司 一种液晶光栅面板、立体显示装置及显示方法
JP6057647B2 (ja) * 2012-09-27 2017-01-11 三菱電機株式会社 表示装置
JP2014081534A (ja) * 2012-10-17 2014-05-08 Toshiba Corp 液晶光学装置及び表示装置
KR20140054532A (ko) * 2012-10-29 2014-05-09 삼성디스플레이 주식회사 능동 배리어 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
KR20140102449A (ko) * 2013-02-14 2014-08-22 한국전자통신연구원 분할 패럴랙스 배리어를 기반으로 하는 디스플레이 패널, 3d 디스플레이 장치 및 디스플레이 방법
JP5923456B2 (ja) * 2013-03-29 2016-05-24 株式会社ジャパンディスプレイ 表示装置
WO2014181567A1 (ja) * 2013-05-09 2014-11-13 シャープ株式会社 立体表示装置
EP3006990B1 (en) * 2013-05-29 2019-08-07 RealD Spark, LLC Stereoscopic images display apparatus comprising flexible barrier pattern
JP6207355B2 (ja) * 2013-11-18 2017-10-04 株式会社ジャパンディスプレイ 3次元表示装置
JP5782144B2 (ja) * 2014-01-30 2015-09-24 株式会社ジャパンディスプレイ 液晶パララックスバリア、表示装置及び液晶表示装置
CN104102053A (zh) * 2014-06-16 2014-10-15 京东方科技集团股份有限公司 偏光控制面板及其制作方法和显示装置
CN104090417B (zh) 2014-07-10 2016-11-23 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN104155824B (zh) 2014-08-08 2018-03-30 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法
JP2016071073A (ja) * 2014-09-29 2016-05-09 株式会社ジャパンディスプレイ 表示装置及び電子装置
CN104298019B (zh) * 2014-09-30 2017-10-03 京东方科技集团股份有限公司 一种3d面板及其制备方法、3d显示装置
GB2540377A (en) * 2015-07-14 2017-01-18 Sharp Kk Parallax barrier with independently controllable regions
GB2540376A (en) 2015-07-14 2017-01-18 Sharp Kk Parallax barrier with independently controllable regions
WO2017122595A1 (ja) * 2016-01-13 2017-07-20 シャープ株式会社 表示装置、液晶パネルの駆動方法
US10534208B2 (en) * 2016-02-29 2020-01-14 Japan Display Inc. Display device comprising a separator having a plurality of first and second electrodes respectively forming first and second unit separators at different pitches from each other
US10390008B2 (en) * 2017-01-10 2019-08-20 Sharp Kabushiki Kaisha Dual-pitch parallax barrier
KR101960391B1 (ko) 2017-09-08 2019-03-20 엘지디스플레이 주식회사 배리어 패널을 포함하는 입체 영상 표시 장치
JP2019105758A (ja) * 2017-12-13 2019-06-27 シャープ株式会社 立体表示装置
CN108540791B (zh) * 2018-04-25 2020-01-24 京东方科技集团股份有限公司 一种双视显示方法和装置
CN117570340B (zh) * 2023-12-20 2024-06-07 重庆不将就文化传播有限公司 一种用于旅游景区文化传播播放装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287514A (ja) * 1989-04-28 1990-11-27 Sharp Corp 液晶光シャッタ
JPH0383936U (ja) * 1989-12-13 1991-08-26
JPH06138468A (ja) * 1992-10-23 1994-05-20 Pioneer Electron Corp 線順次駆動型液晶シャッタ
JPH09197344A (ja) * 1995-11-15 1997-07-31 Sanyo Electric Co Ltd 立体映像表示装置
JPH10142572A (ja) * 1996-09-27 1998-05-29 Sharp Corp 空間光変調器、方向性ディスプレイ、および方向性光源
JPH1195240A (ja) * 1997-07-31 1999-04-09 Sharp Corp 空間光変調器および表示装置
JP2005258013A (ja) * 2004-03-11 2005-09-22 Sharp Corp 表示パネルおよび表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277786A (en) 1979-07-19 1981-07-07 General Electric Company Multi-electrode liquid crystal displays
JPS56150785A (en) * 1980-04-23 1981-11-21 Hitachi Ltd Liquid crystal display unit
US5042918A (en) * 1988-11-15 1991-08-27 Kabushiki Kaisha Toshiba Liquid crystal display device
US5245450A (en) * 1990-07-23 1993-09-14 Hosiden Corporation Liquid crystal display device with control capacitors for gray-scale
JPH05122733A (ja) 1991-10-28 1993-05-18 Nippon Hoso Kyokai <Nhk> 3次元画像表示装置
JP3401049B2 (ja) * 1993-05-26 2003-04-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 階調液晶表示パネル
JP2975844B2 (ja) * 1993-06-24 1999-11-10 三洋電機株式会社 液晶表示装置
US5610739A (en) * 1994-05-31 1997-03-11 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit with a plurality of subpixels
WO1996033483A1 (en) * 1995-04-18 1996-10-24 Cambridge Display Technology Limited A display
KR100473314B1 (ko) * 1996-08-05 2005-08-05 도레이 가부시끼가이샤 액정표시소자용기판및그것을포함한액정표시장치
GB2324428A (en) 1997-04-17 1998-10-21 Sharp Kk Image tracking; observer tracking stereoscopic display
US6177968B1 (en) * 1997-09-01 2001-01-23 Canon Kabushiki Kaisha Optical modulation device with pixels each having series connected electrode structure
US5905557A (en) * 1997-12-22 1999-05-18 Yaniv; Zvi Multipole liquid crystal display with alignment layer
GB9811477D0 (en) * 1998-05-29 1998-07-29 Sharp Kk Liquid crystal device
US6830701B2 (en) * 2002-07-09 2004-12-14 Eastman Kodak Company Method for fabricating microelectromechanical structures for liquid emission devices
KR100959103B1 (ko) * 2005-08-25 2010-05-25 삼성모바일디스플레이주식회사 입체 영상 표시 장치 및 그 구동 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287514A (ja) * 1989-04-28 1990-11-27 Sharp Corp 液晶光シャッタ
JPH0383936U (ja) * 1989-12-13 1991-08-26
JPH06138468A (ja) * 1992-10-23 1994-05-20 Pioneer Electron Corp 線順次駆動型液晶シャッタ
JPH09197344A (ja) * 1995-11-15 1997-07-31 Sanyo Electric Co Ltd 立体映像表示装置
JPH10142572A (ja) * 1996-09-27 1998-05-29 Sharp Corp 空間光変調器、方向性ディスプレイ、および方向性光源
JPH1195240A (ja) * 1997-07-31 1999-04-09 Sharp Corp 空間光変調器および表示装置
JP2005258013A (ja) * 2004-03-11 2005-09-22 Sharp Corp 表示パネルおよび表示装置

Also Published As

Publication number Publication date
EP1816510B1 (en) 2012-10-17
US20070183015A1 (en) 2007-08-09
EP1816510A1 (en) 2007-08-08
US7359105B2 (en) 2008-04-15
JP2007293270A (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4629058B2 (ja) マルチビュー指向性ディスプレイ
KR100728112B1 (ko) 배리어 장치, 이를 이용한 입체영상 표시장치 및 그의 구동방법
JP4531644B2 (ja) 立体映像表示装置及び立体映像表示方法
JP4396984B2 (ja) 立体映像表示装置用パララックスバリヤー液晶パネル及びその製造方法
KR101113066B1 (ko) 패러렉스 베리어 액정패널 및 이를 이용한입체영상표시장치
JP5841131B2 (ja) 切り替え可能なシングル−マルチビュー・モード表示装置
KR100786468B1 (ko) 2차원 및 3차원 영상 선택 가능 디스플레이 장치
KR20120052236A (ko) 다중-뷰 자동입체 디스플레이 디바이스
KR20120011342A (ko) 2d/3d 겸용 표시 장치
GB2405543A (en) Multiple view directional display having means for imaging parallax optic or display.
JP2006018282A (ja) 縦または横に表示することのできる3dディスプレイ
EP1413149A1 (en) Colour autostereoscopic display apparatus
CN102375272A (zh) 光屏障装置和显示单元
KR100851207B1 (ko) 2차원 및 3차원 영상 선택 가능 디스플레이 장치
KR102144733B1 (ko) 입체 영상 디스플레이 장치
WO2005054930A1 (ja) 表示パネルおよび表示装置
JP6009648B2 (ja) 立体表示装置
KR100728114B1 (ko) 배리어 장치 및 이를 이용한 입체영상 표시장치
KR101646591B1 (ko) 패러랙스 배리어 및 이를 포함하는 3차원 영상 표시장치
US20130265510A1 (en) Three-dimensional display device and active optical element thereof
US10321121B2 (en) Stereoscopic images display apparatus comprising flexible barrier pattern
KR20120133719A (ko) 패럴랙스 배리어 셀 및 이를 이용한 입체 영상 표시 장치
KR20220090969A (ko) 배리어패널 및 이를 구비한 입체영상 표시장치
KR20220093876A (ko) 가변 패럴렉스 배리어 및 이를 구비한 입체영상 표시장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees