JP4590343B2 - 車両用ベルト式無段変速機の油圧制御装置 - Google Patents

車両用ベルト式無段変速機の油圧制御装置 Download PDF

Info

Publication number
JP4590343B2
JP4590343B2 JP2005325273A JP2005325273A JP4590343B2 JP 4590343 B2 JP4590343 B2 JP 4590343B2 JP 2005325273 A JP2005325273 A JP 2005325273A JP 2005325273 A JP2005325273 A JP 2005325273A JP 4590343 B2 JP4590343 B2 JP 4590343B2
Authority
JP
Japan
Prior art keywords
target
gear ratio
thrust
hydraulic
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005325273A
Other languages
English (en)
Other versions
JP2007132420A (ja
Inventor
誠一郎 高橋
チョンガブ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2005325273A priority Critical patent/JP4590343B2/ja
Publication of JP2007132420A publication Critical patent/JP2007132420A/ja
Application granted granted Critical
Publication of JP4590343B2 publication Critical patent/JP4590343B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車両にそなえられベルトをプーリに押し付けてトルク伝達を行なう車両用ベルト式無段変速機(CVT)の油圧制御装置に関する。
ベルト式無段変速機では、プライマリプーリ及びセカンダリプーリにベルトを巻回し、両プーリにベルトを押し付け、この押し付け力によって生じる摩擦力を用いることで、ベルトと各プーリ間の動力伝達を行っている。このときプーリとベルトとの間の摩擦力は、プーリに押し付け力、即ち、プーリ推力(油圧推力、又は、単に、推力ともいう)を、油圧を用いて与えること達成している。
この場合、所定のプーリ推力が得られるような目標油圧を設定し、目標油圧と実際の油圧(実油圧)との偏差に基づくフィードバック制御により、油圧が制御される。このフィードバック制御の態様として、PI制御或いはPID制御が広く用いられている。
こうしたPI制御やPID制御では、I制御(積分制御)項が含まれるため、過去の偏差の影響が与えられて制御を安定させることができる反面、作動油量の収支から速やかに作動油を供給できないこと等に起因して実油圧が目標油圧に到達せずに偏差が累積されていった後に、ようやく実油圧が目標油圧に到達した場合には、油圧のオーバーシュートやアンダーシュートが生じてしまう。
例えば、図7は、変速比ipを低速側に変更する場合における、プライマリ圧指示値Ppri *,セカンダリ圧指示値Psec *,目標変速比ip*に対して、実プライマリ圧Ppri,実セカンダリ圧Psec,実変速比ipの応答例を示す図である。目標変速比ip*を図7(b)中に点線で示すような特性で増大させていくには、プライマリ圧指示値Ppri *及びセカンダリ圧指示値Psec *を図7(a)中に点線で示すような特性で増減させていくことになる。
つまり、セカンダリ圧指示値Psec *を増加させてセカンダリプーリのプーリ推力を増大させるとともに、プライマリ圧指示値Ppri *を減少させてプライマリプーリのプーリ推力を減少させることにより、プライマリプーリ及びセカンダリプーリを移動させる。そして、プライマリプーリ及びセカンダリプーリが所定の変速比位置に接近したところで、セカンダリ圧指示値Psec *を減少させてセカンダリプーリのプーリ推力を減少させることにより、プライマリプーリ及びセカンダリプーリの移動を減速させていき、プライマリプーリ及びセカンダリプーリが所定の変速比位置に到達したところで、セカンダリ圧指示値Psec *を、プライマリプーリ及びセカンダリプーリが所定の変速比位置を保持する値に設定する。
しかしながら、例えば油圧ポンプの出力限界などによる物理的な油圧の限界値以上のセカンダリ圧指示値Psec *が設定されると、実セカンダリ圧Psecは実線で示すように指示値Psec *に達することができず、この間、フィードバック制御の積分項が累積的に増大していくため、その後、セカンダリ圧指示値Psec *が減少しても、実セカンダリ圧Psecは積分項の影響を受けて、圧力の減少が遅れることになり、いわゆる、油圧のオーバーシュートが生じることになる。また、実プライマリ圧Ppriも、実線で示すように、実セカンダリ圧Psecに対応してつれ上がり、プライマリ圧指示値Ppri *の減少に対して応答遅れを生じて、フィードバック制御の積分項が累積的に増大していくことから、いわゆる、油圧のアンダーシュートが生じることになる。この結果、実変速比ipは、実線で示すように、目標変速比ip*に対して応答遅れを生じた後にオーバーシュートを生じることになる。
このように、実変速比ipがオーバーシュートを生じると、変速フィーリングが著しく低下するので好ましくない。
このように、積分制御が含まれる油圧フィードバックコントローラにおいては、油圧のオーバーシュートを防止することが必要であるが、これに関する従来技術としては、現在の油圧に対し所定値以上離れた油圧が指示された場合には1次遅れのフィルタを通して目標値をなまし、油圧のオーバーシュートを防止するという技術(特許文献1)や、フィードフォワードとフィードバックを含む2自由度制御系において、一定時間遅らせた目標値に対してフィードバック制御を行なうという技術(特許文献2)がある。
これらの技術は油圧フィードバックコントローラに対して目標油圧を変更し、目標油圧と実油圧の偏差が過大になるのを防ぐことにより油圧フィードバックコントローラの積分器に蓄積する誤差を小さくし、油圧のオーバーシュートを防止するものである。
特開2004−125015号公報 特開平6−207657号公報
しかしながら、このような油圧フィードバックコントローラにおいて、以下のような課題がある。
・第1の課題
変速時において油量収支等の物理的な限界で目標とする油圧が出ない場合の油圧限界値や油圧変化量の限界値を知ることが難しいため、油量収支から求めた油圧限界の設定が難しく、上述の従来技術では油圧目標値に対する1次遅れフィルタの時定数及び一定時間遅らせるための遅れ時間等の設定が難しい。
・第2の課題
また、変速時、プライマリ側及びセカンダリ側のうち、一方の油圧が大きくなった時には他方の低圧側の油圧がつれ上がり、油圧が上昇する現象が起こる。このような場合に低圧側で積分器の含まれる油圧フィードバック制御を行なえば、変速終了等でつれ上がりの現象が無くなると実油圧はアンダーシュートを起こし、ベルト滑りが発生するおそれがあるが、上述の従来技術では、このような課題の解決は困難である。
本発明は、上述の課題に鑑み創案されたもので、変速時において油量収支等の物理的な限界で目標とする油圧が出ない場合にも油圧のオーバーシュートが生じることがなく、低圧側の油圧が高圧側の油圧につれ上がりを生じても油圧のアンダーシュートが生じることがないようにして、変速フィーリングを良好にすると共にベルト滑りを防止することができるようにした、車両用ベルト式無段変速機の油圧制御装置を提供することを目的とする。
上記の課題を解決するために、本発明の車両用ベルト式無段変速機の油圧制御装置は、駆動側プーリと従動側プーリとをベルトで連結し、前記両プーリに与える油圧(油圧に対応するパラメータを含む)を調整することにより前記両プーリにおける前記ベルトの回転半径を変化させ、変速比を調整する車両用ベルト式無段変速機の油圧制御装置であって、前記油圧に応じて前記駆動側プーリ及び前記従動側プーリの前記回転半径を変化させる油圧式アクチュエータと、車両情報を検出する車両情報検出手段と、前記車両情報検出手段により検出された車両情報に基づいて、目標変速比を設定する目標変速比設定手段と、前記油圧の実値を検出する油圧検出手段と、前記目標変速比設定手段により設定された目標変速比に基づいて、前記駆動側プーリ及び前記従動側プーリに対する目標油圧を演算し、該目標油圧と前記油圧検出手段により検出された実油圧とに基づく比例制御及び積分制御を含むフィードバック制御によって前記油圧式アクチュエータを制御するアクチュエータ制御手段とを有するコントロールユニットとを備えるとともに、前記変速比の実値を検出する変速比検出手段をそなえ、前記アクチュエータ制御手段は、変速比の切り換え時には、前記積分制御の制御ゲインを、前記目標変速比設定手段により設定された目標変速比と前記変速比検出手段により検出された実変速比との偏差に応じて可変に設定する制御ゲイン設定手段をそなえていることを特徴としている。
前記積分制御の制御ゲインは、前記目標変速比と前記実変速比との偏差が大きい第1領域では、該偏差が小さい第2領域よりも小さく設定されることが好ましい。
あるいは、前記積分制御の制御ゲインは、前記目標変速比と前記実変速比との偏差が大きいほど小さく、該偏差が小さいほど大きく設定されることが好ましい。
さらに、前記目標変速比設定手段は、車両情報検出手段により検出された車両情報に基づいて、前記目標変速比である変速完了後の第1目標変速比を設定するとともに、予め設定された変化率以下で該第1目標変速比に漸近する第2目標変速比を設定し、前記アクチュエータ制御手段は、該第2目標変速比と前記油圧検出手段により検出された実油圧とに基づいて前記フィードバック制御を行なうことが好ましい。
本発明の車両用ベルト式無段変速機の油圧制御装置によれば、駆動側プーリと従動側プーリとに与える油圧を、比例制御及び積分制御を含むフィードバック制御によって制御する際に、積分制御の制御ゲインを目標変速比と実変速比の偏差により可変としているので、油圧のオーバーシュートやアンダーシュートの発生を抑制することができ、変速フィーリングを良好にすると共にベルト滑りを防止することができるようになる。
例えば、積分制御の制御ゲインを、目標変速比と実変速比との偏差が大きい第1領域では、この偏差が小さい第2領域よりも小さく設定したり、或いは、積分制御の制御ゲインを、目標変速比と実変速比との偏差が大きいほど小さく、該偏差が小さいほど大きく設定したりすることで、変速時において油量収支等の物理的な限界で目標とする油圧が出ない場合にも油圧のオーバーシュートが生じることがなく、低圧側の油圧が高圧側の油圧につれ上がりを生じても油圧のアンダーシュートが生じることがないようにして、変速フィーリングを良好にすると共にベルト滑りを防止することができるようになる。
また、車両情報検出手段により検出された車両情報に基づいて、目標変速比である変速完了後の第1目標変速比を設定するとともに、予め設定された変化率以下で第1目標変速比に漸近する第2目標変速比を設定し、この第2目標変速比と油圧検出手段により検出された実油圧とに基づいてフィードバック制御を行なうようにすれば、上記のオーバーシュートやアンダーシュートの抑制により一層効果がある。
以下、図面により、本発明の実施の形態について説明する。
[実施形態]
図1〜図6は、本発明の一実施形態を説明するもので、図1はそのCVT油圧制御装置を搭載した車両のシステム構成図、図2〜図4はその制御系の構成図、図5はその油圧制御部で用いる積分ゲイン設定マップを示す図、図6はそのCVT油圧制御による各目標値と実際値とを対比して示す図である。
[CVT油圧制御装置搭載車両のシステム構成]
図1は、CVT油圧制御装置(車両用ベルト式無段変速機の油圧制御装置)を搭載した車両(自動車)のシステム構成図である。エンジン10の動力はトルクコンバータ20及び前後進クラッチ30を介してCVT(変速部)300に伝達される。CVT300は駆動側のプライマリプーリ310及び従動側のセカンダリプーリ320からなり、両者の間に介在されたベルト330により動力伝達を行なう。
かかるCVT300ではこれらの駆動側及び従動側双方のプーリ310,320にかかる油圧を独立して制御することで変速が行われ、プライマリプーリ(駆動側プーリ)310及びセカンダリプーリ(従動側プーリ)320はそれぞれプライマリスライドプーリ311及びセカンダリスライドプーリ321を備えている。このプライマリスライドプーリ311及びセカンダリスライドプーリ321を油圧によりスライドさせることで、プライマリプーリ310及びセカンダリプーリ320におけるベルト回転半径を独立に変化させて変速を行なう。なお、プライマリスライドプーリ311及びセカンダリスライドプーリ321を油圧によりスライドさせる機構については詳細には示さないが、この機構を油圧アクチュエータと称する。
オイルポンプ40は、第1調圧弁51を介してプライマリ調圧弁71及びセカンダリ調圧弁72に油を供給し、第2調圧弁52を介してプライマリソレノイド108及びセカンダリソレノイド109に油を供給する油圧源である。また、プライマリソレノイド108及びセカンダリソレノイド109はCVTコントロールユニット100により制御されるソレノイドバルブであり、それぞれプライマリ調圧弁71及びセカンダリ調圧弁72と接続して信号圧を送ることで制御を行なう。なお、コントロールユニット100による各スライドプーリ311,321の油圧アクチュエータを制御する機能を、アクチュエータ制御手段とする。
[CVTプーリの油圧制御]
オイルポンプ40により発生した油圧は第1調圧弁51によりライン圧に調整され、プライマリ調圧弁71及びセカンダリ調圧弁72に供給される。また、第2調圧弁52によりパイロット圧とされてプライマリソレノイド108及びセカンダリソレノイド109に供給される。CVTコントロールユニット100はプライマリソレノイド108及びセカンダリソレノイド109を制御し、供給されたパイロット圧を所望の信号圧に調整してプライマリ調圧弁71及びセカンダリ調圧弁72に供給する。
プライマリ調圧弁71及びセカンダリ調圧弁72は、供給された信号圧に基づいてライン圧を調圧し、それぞれプライマリスライドプーリ311及びセカンダリスライドプーリ321に油圧を供給してスライドさせる。以上示されるように、CVTコントロールユニット100によってプライマリソレノイド108及びセカンダリソレノイド109を制御することで、CVT300の変速を達成する。
[CVTコントロールユニットの制御構成]
図2は、CVTコントロールユニット100の概略制御ブロック図である。CVTコントロールユニット100は、目標変速比演算部101,実変速比演算部102,入力トルク演算部103,変速制御部200,推力油圧換算部220,油圧制御部230,油圧電流換算部250,電流制御部260の各機能要素を備えている。
また、本ベルト式無段変速機の油圧制御装置を搭載した車両には、車速センサ,エンジン回転センサ,スロットル開度センサ,プライマリプーリ310の回転数を検出するプライマリ回転センサ,セカンダリプーリ320の回転数を検出するセカンダリ回転センサが設けられ、これらの各センサの検出信号はCVTコントロールユニット100へ出力される。
目標変速比演算部101は、車速センサから入力された車速VSP,プライマリ回転センサから入力されたプライマリプーリ回転数Npri及びスロットル開度センサから入力されたスロットル開度TV0に基づき目標変速比ip*を演算し、変速制御部200へ出力する。
実変速比演算部102は、プライマリ回転センサ及びセカンダリ回転センサから入力されたプライマリプーリ回転数Npri及びセカンダリプーリ回転数Nsecに基づき実変速比ipを演算し、変速制御部200へ出力する。
入力トルク演算部103は、車両情報検出手段としてのエンジン回転センサ,プライマリ回転センサ,スロットル開度センサから、車両情報としてのエンジン回転数Ne,プライマリプーリ回転数Npri,スロットル開度TV0の入力を受け、プライマリプーリ回転数NPri及びエンジン回転数Neに基づき速度比VSを演算し、スロットル開度TV0及びエンジン回転数Neに基づきエンジントルクTeを演算する。この速度比VS,エンジン回転数Ne及びエンジントルクTeよりプライマリプーリ310への入力トルクTinを算出し、変速制御部200へ出力する。
変速制御部200は、目標変速比演算部101により演算された目標変速比ip*と、実変速比演算部102により演算された実変速比ipと、入力トルク演算部103により演算された入力トルクTinと基づいて、プライマリプーリ310に与えるべきプライマリ推力(目標推力)Fpri及びセカンダリプーリ320に与えるべきセカンダリプーリ推力(目標推力)Fsecを演算する。この変速制御部200についての詳細は後述する。
推力油圧換算部220は各推力Fpri,Fsecの値をそれぞれ油圧値に変換する。つまり、プライマリプーリ310及びセカンダリプーリ320にそれぞれ目標推力Fpri,Fsecを発生させるためには、プライマリ調圧弁71及びセカンダリ調圧弁72を通じて各プーリ310,320に与える油圧Ppri,Psecを制御すればよく、予め把握されている推力と油圧と対応関係に基づいて、プライマリプーリ推力Fpri及びセカンダリプーリ推力Fsecの値をそれぞれプライマリプーリ油圧(目標油圧)Ppri及びセカンダリプーリ油圧(目標油圧)Psecに変換する。
油圧制御部230は、プライマリプーリ油圧Ppri及びセカンダリプーリ油圧Psecの各目標油圧に基づいてプライマリプーリ310の油圧指示値Ppri*及びセカンダリプーリ320の油圧指示値Psec*を設定する。この油圧制御部230についての詳細は後述する。
推力電流換算部250は、各油圧指示値Ppri*,Psec*の値をそれぞれ電流値に変換する。つまり、各プーリ310,320に与える油圧を制御するには、プライマリ調圧弁71及びセカンダリ調圧弁72のソレノイド108,109への供給電流を制御すればよく、予め把握されている油圧と電流と対応関係に基づいて、プライマリプーリ油圧指示値Ppri*及びセカンダリプーリ油圧指示値Psec*の値をそれぞれプライマリソレノイド108への供給電流値Ipri及びセカンダリソレノイド109への供給電流値Isecに変換する。
電流制御部260では、入力された供給電流値Ipri,Isecに基づいてプライマリソレノイド108及びセカンダリソレノイド109へ電流供給を行なう。
CVT(変速部)300に接続された油圧回路270は、プライマリソレノイド108及びセカンダリソレノイド109が電流供給に応じて作動して、油圧弁、即ち、プライマリ調圧弁71及びセカンダリ調圧弁72の開度を調整し、これにより、CVT(変速部)300では、プライマリプーリ310及びセカンダリプーリ320の推力が制御されて、変速比が調整されるようになっている。
[変速制御部の構成]
変速制御部200は、図3に示すように、滑り下限推力演算部204,推力比演算部205,基礎バランス推力演算部206,差推力演算部207,変速フィードバック制御部(変速フィードバック量演算部)209,滑り防止及び油圧最小推力配分演算部(以下、推力配分演算部)210を有している。
滑り下限推力演算部204は、実変速比演算部102により演算された実変速比ipと、入力トルク演算部103により演算された入力トルクTinとに基づきプライマリプーリ310及びセカンダリプーリ320における滑り下限推力Flp,Flsを演算し、基礎バランス推力演算部206へ出力する。
ここで、滑り下限推力Flp,Flsとは、ベルトスリップが発生せずに各プーリとベルトのトルク伝達が可能な各プーリの推力である。具体的には、プライマリプーリ310における伝達トルク及びベルト回転半径をTpri,Rpri、プーリの狭角をθ、プーリとベルトとの動摩擦係数をμとすれば、プライマリプーリ310の伝達トルクTpriは、
Tpri=Rpri×2μ×Fpri/cosθ
即ち、
Fpri=Tpri×cosθ/(2μ×Rpri)
であり、プライマリプーリ310においてベルトスリップが発生しない条件は、
プーリとベルト間の摩擦力≧伝達トルク
であるから、安全率をεpriとすれば、プライマリプーリ310における滑り下限推力Flpは、
Flp=εpri×Tpri×cosθ/(2μ×Rpri)
一方、セカンダリプーリ320における滑り下限推力Flsについても、プライマリプーリ310の場合と同様に求められ、
Fls=εsec×Tsec×cosθ/(2μ×Rsec)
ここで、プライマリプーリ310とセカンダリプーリ320におけるベルト張力Tは同一であるため、
T=Tpri/Rpri=Tsec/Rsec
したがって、
Tsec=Tpri×Rsec/Rpri
よって
Fls=εsec×(Tpri×Rsec/Rpri)×cosθ/(2μ×Rsec)
=εsec×Tpri×cosθ/(2μ×Rpri)
=(εsec/εpri)Flp
プライマリ側とセカンダリ側の安全率を同一値とすれば
Flp=Fls=F
となり、プライマリプーリ310の滑り下限推力Flpとセカンダリプーリ320の滑り下限推力Flsとは同一値Fとなる。
推力比演算部205では、実変速比演算部102により演算された実変速比ipと入力トルク演算部103により演算された入力トルクTinとに基づいて、所定の変速比を維持できる推力比RF(=Fp/Fs,Fp:プライマリ推力,Fs:セカンダリ推力)を演算し、演算部206,推力配分演算部210に出力する。
基礎バランス推力演算部206は、滑り下限推力演算部204から入力された滑り下限推力Flp,Flsと、推力比演算部205から入力された推力比RFとに基づいて、プライマリプーリ310及びセカンダリプーリ320の基礎バランス推力Fp*,Fs*を演算し、推力配分演算部210に出力する。
この基礎バランス推力Fp*,Fs*の演算について説明する。推力Fは、変速比ipが高いほど(ロー側ほど)高くなり、入力トルクTinが高いほど高くなる傾向にあり、ある入力トルクTinに対して滑り下限推力Flimの特性線(図3中の滑り下限推力演算部204のブロック内の線を参照)を設定することができる。また、推力比RFは、変速比ipが高いほど(ロー側ほど)低くなり、伝達トルクが高いほど高くなる傾向にあり(図3中の推力比演算部205のブロック内の線を参照)、伝達トルクが0の場合(無負荷時)には、変速比=1において推力比=1となるが、伝達トルクが正となるドライブ走行時には、変速比>1において推力比=1となり、伝達トルクが負となる下り坂走行時やコースト走行時には、変速比<1において推力比=1となる。
基礎バランス推力は、推力比RFがRF<1の領域では、プライマリプーリの基礎バランス推力Fp*は滑り下限推力Flimの値に設定し、セカンダリプーリの基礎バランス推力Fs*はプライマリプーリの基礎バランス推力Fp*、即ち、滑り下限推力Flimよりも推力比RFの逆数(1/RF)相当だけ高い推力の値に設定する。推力比>1の領域では、セカンダリプーリの基礎バランス推力Fs*は滑り下限推力Flimの値に設定し、プライマリプーリの基礎バランス推力Fp*はセカンダリプーリの基礎バランス推力Fs*、即ち、滑り下限推力Flimよりも推力比RF相当高い推力の値に設定する。
このような基礎バランス推力を変速比ipに対応して示せば、伝達トルクが負となるクリープ走行時やコースト走行時には、変速比<1の推力比=1を中心に、推力比<1と推力比>1と領域が区分され、基礎バランス推力Fp*1,Fs*1が決まり、伝達トルクが0の場合(無負荷時)には、変速比=1の推力比=1を中心に、推力比<1と推力比>1と領域が区分され、基礎バランス推力Fp*2,Fs*2が決まり、伝達トルクが正となるドライブ走行時には、変速比>1の推力比=1を中心に、推力比<1と推力比>1と領域が区分され、基礎バランス推力Fp*3,Fs*3が決まる。
このように、無負荷時には、変速比=1において推力比=1となり、変速比=1を境に、基礎バランス推力Fp*,Fs*を設定することができるが、有負荷時には、変速比>1において、推力比=1となるか、或いは、変速比<1において推力比=1となるので、基礎バランス推力Fp*,Fs*を算出するには、推力比RFに着目することが重要である。
そして、推力比=1を境に、これよりも変速比の大きい領域である推力比<1の領域では、プライマリプーリの基礎バランス推力Fp*は滑り下限推力Flimとして、要求される推力比に応じてセカンダリプーリの基礎バランス推力Fs*を設定するセカンダリ制御領域とし、推力比=1よりも変速比の小さい領域である推力比>1の領域では、セカンダリプーリの基礎バランス推力Fp*は滑り下限推力Flimとして、要求される推力比に応じてプライマリプーリの基礎バランス推力Fs*を設定するプライマリ制御領域とする。
差推力演算部207は、差推力と変速速度(又はストローク速度)との関係から、目標変速比に到達するまでの目標変速速度を得るための差推力dFを演算する。この差推力dFは、目標変速比ip*と実変速比ipとの差分から差推力dFを演算する。
変速フィードバック制御部209は、実変速比が目標変速に確実に追従するようにフィードバック制御量Ufbを設定する。このフィードバック制御量Ufbは、次式から求める。
Ufb=KP・e+KI∫edt+KD・de/dt
e=xSA−xSR
ただし、e:ストロークエラー,xSA:目標セカンダリストローク,xSR:実セカンダリストローク,KP:比例ゲイン,KI:積分ゲイン,KD:微分ゲイン
推力配分演算部210は、基礎バランス推力演算部206,差推力演算部207,変速フィードバック制御部209からそれぞれ入力された基礎バランス推力Fp*,Fs*,差推力dF,フィードバック制御量Ufbに基づいて、プライマリ推力指令値Fpri,セカンダリ推力指令値Fsecを演算し、油圧換算部106へ出力する。
つまり、推力配分演算部210は、推力比が1以下か否かを判断し、推力比が1以下なら、プライマリ推力指令値Fpriをプライマリ推力下限値Flpとし(Fpri=Fp*=Flp)、セカンダリ推力指令値Fsecを基礎バランス推力Fs*に差推力dFとF/B制御量を加えたものとする(Fsec=Fs*+Uin,ただし、Uin=dF+Ufb)。
さらに、推力比が1以下のもとに、セカンダリ推力がセカンダリ滑り下限値Flsより小さいかを判断し、セカンダリ推力がセカンダリ滑り下限値Flsより小さいなら、セカンダリ推力Fsecと滑り下限値Flsとの差を計算し(ΔFs=Fls−Fsec)、プライマリ推力
をFlp+ΔFsに変更し(Fpri=Flp+ΔFs)、セカンダリ推力をFlsに変更する(Fsec=Fls)。
一方、推力比が1よりも大きければ、プライマリ側に差推力とF/B制御量を加えたものをプライマリ推力指令値Fpri(Fpri=Fp*+Uin,ただし、Uin=dF+Ufb)とし、セカンダリ推力指令値Fsecをセカンダリ推力下限値Flsとする(Fsec=Fs*=Fls)。
また、推力比が1よりも大のもとに、プライマリ推力がプライマリ滑り下限値Flpよりも小さいかを判断し、プライマリ推力がプライマリ滑り下限値Flpよりも小さいなら、プライマリ推力Fpriと滑り下限値Flpとの差を計算し(ΔFp=Flp−Fpri)、プライマリ推力をプライマリ推力下限値Flpに変更しFpri=Flp)、セカンダリ推力をFlp+ΔFsに変更する(Fsec=Fls+ΔFp)。
[油圧制御部の構成]
油圧制御部230は、図4に示すように、油圧フィードフォワード制御器231と、減算器232と、比例制御器233と、積分ゲイン算出部234と、積分制御器235と、加算器236と、油圧指示演算部237と、油圧指示クリップ部238とをそなえ、プライマリプーリ油圧Ppri及びセカンダリプーリ油圧Psecの各目標油圧Ppri-t,Psec-t(以下、プライマリとセカンダリとを区別しない場合、Ptで示す)に基づいてプライマリプーリ310の油圧指示値Ppri*及びセカンダリプーリ320の油圧指示値Psec*(以下、プライマリとセカンダリとを区別しない場合、P*で示す)を設定する。なお、減算器232と、比例制御器233と、積分ゲイン算出部234と、積分制御器235と、加算器236とから、油圧フィードバック制御部が構成される。
なお、図4は、プライマリ側及びセカンダリ側の油圧制御部230を示しており、図4中の各チャートC1〜C7は、目標油圧Ptを増加させる場合を例に記載している。
油圧フィードフォワード制御器231は、目標油圧Ptに基づいてフィードフォワード制御値を設定する。このフィードフォワード制御値は、例えば、図4に示すチャートC1のように目標油圧Ptがα0からα1に変化した際に、この到達目標圧(第1目標変速比に相当する油圧)α1をそのまま目標油圧(第2目標変速比に相当する油圧)Ptとするのではなく、チャートC2に示すように、まず、到達目標圧α1の半分程度の増加量に抑制した値(≒α0+(α1+α0)/2)を目標油圧Ptとして、その後、目標油圧Pt一旦減少させた後、到達目標圧α1まで増加するように設定される。
減算器232は、フィルタ232aによりチャートC3に示すようにフィルタ処理をした目標油圧Ptfと実油圧Prとの差(油圧誤差)ΔPを算出する。フィルタ232aでは、フィルタ処理により、目標油圧Ptが予め設定された変化率以下で到達目標圧α1に漸近するように、即ち、目標油圧Ptの急変を抑えるようにして、目標油圧(第2目標変速比に相当する油圧)Ptfを設定する。したがって、フィルタ処理後の目標油圧Ptfと実油圧Prとの差ΔPについては、チャートC4に示すように急激な変化が抑制される。
比例制御器233は、このような差ΔPに基づいてフィードバック制御の比例項を算出する。
積分ゲイン算出部234は、フィードバック制御の積分項のゲインGIを算出する。この積分ゲインGIは、図5に示すように、変速比誤差Δip(目標変速比ip*と実変速比ipとの差,Δip=ip*−ip)が所定の範囲内であれば、最大値(例えば1)に、変速比誤差の大きさが所定の範囲を超えると、超えた量に応じて減少するように設定される。ここでは、線形に減少される。
積分制御器235は、差Δip及び積分ゲインGIに基づいてフィードバック制御の積分項を算出する。上述のように、積分ゲインGIは変速比誤差Δipに応じて設定されるので、フィードバック制御の積分項も変速比誤差に応じたものになる。つまり、変速比誤差Δipが大きいと積分ゲインGIが小さくなるので、変速比誤差Δipが大きくなってもフィードバック制御の積分項の増大が抑えられることになる。
加算器236では、比例制御器233で算出されたフィードバック制御の比例項と積分制御器235で算出されたフィードバック制御の積分項とを加算して、例えばチャートC5に示すように、フィードバック制御値を設定する。
油圧指示演算部237では、このようにして油圧フィードフォワード制御器231で設定されたフィードフォワード制御値と、減算器232,比例制御器233,積分制御器235,及び加算器236からなる油圧フィードバック制御部で設定されたフィードバック制御値とから、油圧指示値を設定する。この場合、フィードフォワード制御値とフィードバック制御値とを単純に加算するか、又は、それぞれにゲインをかけて加算をして、油圧指示値を設定する。
油圧指示クリップ部238では、例えばチャートC6に示すような変換特性で、油圧指示演算部237で設定された油圧指示値をプライマリ油圧又はセカンダリ油圧の供給範囲の限界値にクリップする。なお、チャートC6では、横軸が入力された油圧指示値、縦軸がクリップして出力する油圧指示値であり、入力された油圧指示値が過大又は過小になるとこれを限界値とする。そして、例えばチャートC7に示すように、油圧指示値を出力する。
[本実施形態の作用,効果]
本発明の一実施形態としての車両用ベルト式無段変速機の油圧制御装置は、上述のように構成されているので、図2に示すように、CVTコントロールユニット100では、目標変速比演算部101によって、それぞれ検出された車速VSP,プライマリプーリ回転数Npri及びススロットル開度TV0に基づき目標変速比ip*が演算され、実変速比演算部102によって、それぞれ検出されたプライマリ回転数Npri及びセカンダリプーリ回転数Nsecに基づき実変速比ipが演算される。また、入力トルク演算部103によって、入力トルクTinが入力される。
さらに、変速制御部200によって、演算された目標変速比ip*,実変速比ip,入力トルクTin基づいて、プライマリ推力(目標推力)Fpri及びセカンダリプーリ推力(目標推力)Fsecが演算され、推力油圧換算部220により各推力Fpri,Fsecの値がそれぞれ油圧値に変換され、油圧制御部230により、プライマリプーリ油圧Ppri及びセカンダリプーリ油圧Psecの各目標油圧に基づいてプライマリプーリ310の油圧指示値Ppri*及びセカンダリプーリ320の油圧指示値Psec*が設定される。
そして、推力電流換算部250により、各油圧指示値Ppri*,Psec*の値がそれぞれ供給電流値Ipri,Isecに変換され、電流制御部260により、これらの供給電流値Ipri,Isecに基づいてプライマリソレノイド108及びセカンダリソレノイド109へ電流供給が行なわれる。
これにより、油圧回路270では、プライマリソレノイド108及びセカンダリソレノイド109が電流供給に応じて作動して、各油圧弁71,72の開度を調整することで、CVT(変速部)300におけるプライマリプーリ310及びセカンダリプーリ320の推力が制御されて、変速比が調整される。
本装置では、油圧制御部230において、油圧指示値Ppri*,Psec*の設定にあたり積分ゲイン算出部234が、図5に示すように、変速比誤差Δipの大きさが所定の範囲を超えると、超えた量に応じて減少するように設定され、積分制御器235が、この積分ゲインGIと差Δipとに基づいてフィードバック制御の積分項を算出するので、変速比誤差Δipが大きい場合にも、フィードバック制御の積分項の増大は抑えられる。
したがって、変速時において油量収支等の物理的な限界で目標とする油圧が出ない場合であっても、油圧のオーバーシュートの発生を抑制することができ、低圧側の油圧が高圧側の油圧につれ上がりを生じても、アンダーシュートの発生を抑制することができ、変速フィーリングを良好にすると共にベルト滑りを防止することができるようになる。
また、油圧制御部230では、目標油圧Ptが変化した場合に、油圧フィードフォワード制御器231において、到達目標圧α1よりも増加量を抑制した値に目標油圧Ptを設定し、油圧フィードバック部において、そのフィルタ232aにより、目標油圧Ptが、予め設定された変化率以下で到達目標圧α1に漸近するように、即ち、急変しないように設定される。このように目標油圧Ptの急変を抑制した上でフィードバック制御を行なうようにするため、これによっても、上記のオーバーシュートやアンダーシュートの抑制効果が得られる。
例えば、図6は本装置による効果を説明する図であり、図7に対応するキックダウン等のシフトダウン時を示しており、変速比ipを低速側にシフトダウンする場合、プライマリ圧指示値Ppri *,セカンダリ圧指示値Psec *,目標変速比ip*が、従来例に比して緩やかに変化するように与えられるため、実セカンダリ圧Psec,実変速比ipはオーバーシュートが抑制され、実プライマリ圧Ppriはアンダーシュートが抑制される。
[その他]
以上、本発明を実施するための最良の形態を実施形態に基づいて説明してきたが、本発明の具体的な構成は各実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、上記の実施形態では、積分制御の制御ゲインは、目標変速比と実変速比との偏差の大きさが大きいほど小さく、この偏差の大きさが小さいほど大きく設定されるが、よりシンプルに、予め設定された基準の偏差に基づいて、偏差(の大きさ)が大きい領域(第1領域)では制御ゲインを相対的に小さい一定値に、偏差が小さい領域(第2領域)では制御ゲインを相対的に大きい一定値に設定するようにしてもよい。
本発明の一実施形態にかかるCVT油圧制御装置を搭載した車両のシステム構成図である。 図1のCVT油圧制御装置のCVTコントロールユニットの概略構成図である。 図2のCVTコントロールユニットの変速制御部の構成図である。 図2のCVTコントロールユニットの油圧制御部の構成図である。 図4の油圧制御部で用いる積分ゲイン設定マップを示す図である。 本発明の一実施形態のCVT油圧制御による各目標値と実際値とを対比して示す図であり、(a)は油圧に関し、(b)は変速比に関する。 従来のCVT油圧制御による各目標値と実際値とを対比して示す図であり、(a)は油圧に関し、(b)は変速比に関する。
符号の説明
10 エンジン
20 トルクコンバータ
30 前後進クラッチ
40 オイルポンプ
51 第1調圧弁
52 第2調圧弁
71 プライマリ調圧弁
72 セカンダリ調圧弁
100 コントロールユニット
101 車速センサ
102 プライマリ回転センサ
103 セカンダリ回転センサ
104 エンジン回転センサ
105 スロットル開度センサ
108 プライマリソレノイド
109 セカンダリソレノイド
106 油圧換算部
107 電流変換部
200 変速比制御部
201 目標変速比演算部
202 実変速比演算部
203 入力トルク演算部
204 滑り下限推力演算部
205 推力比演算部
206 基礎バランス推力演算部
207 差推力演算部
209 変速フィードバック制御部(変速フィードバック量演算部)
210 滑り防止及び油圧最小推力配分演算部(以下、推力配分演算部)
230 油圧制御部
231 油圧フィードフォワード制御器
232 減算器
233 比例制御器
234 積分ゲイン算出部
235 積分制御器
236 加算器
237 油圧指示演算部
238 油圧指示クリップ部
310 プライマリプーリ
311 プライマリスライドプーリ
320 セカンダリプーリ
321 セカンダリスライドプーリ
330 ベルト

Claims (4)

  1. 駆動側プーリと従動側プーリとをベルトで連結し、前記両プーリに与える油圧を調整することにより前記両プーリにおける前記ベルトの回転半径を変化させ、変速比を調整する車両用ベルト式無段変速機の油圧制御装置であって、
    前記油圧に応じて前記駆動側プーリ及び前記従動側プーリの前記回転半径を変化させる油圧式アクチュエータと、
    車両情報を検出する車両情報検出手段と、
    前記車両情報検出手段により検出された車両情報に基づいて、目標変速比を設定する目標変速比設定手段と、
    前記油圧の実値を検出する油圧検出手段と、
    前記目標変速比設定手段により設定された目標変速比に基づいて、前記駆動側プーリ及び前記従動側プーリに対する目標油圧を演算し、該目標油圧と前記油圧検出手段により検出された実油圧とに基づく比例制御及び積分制御を含むフィードバック制御によって前記油圧式アクチュエータを制御するアクチュエータ制御手段とを有するコントロールユニットとを備えるとともに、
    前記変速比の実値を検出する変速比検出手段をそなえ、
    前記アクチュエータ制御手段は、変速比の切り換え時には、前記積分制御の制御ゲインを、前記目標変速比設定手段により設定された目標変速比と前記変速比検出手段により検出された実変速比との偏差に応じて可変に設定する制御ゲイン設定手段をそなえている
    ことを特徴とする、車両用ベルト式無段変速機の油圧制御装置。
  2. 前記積分制御の制御ゲインは、前記目標変速比と前記実変速比との偏差が大きい第1領域では、該偏差が小さい第2領域よりも小さく設定される
    ことを特徴とする、請求項1記載の車両用ベルト式無段変速機の油圧制御装置。
  3. 前記積分制御の制御ゲインは、前記目標変速比と前記実変速比との偏差が大きいほど小さく、該偏差が小さいほど大きく設定される
    ことを特徴とする、請求項1記載の車両用ベルト式無段変速機の油圧制御装置。
  4. 前記目標変速比設定手段は、車両情報検出手段により検出された車両情報に基づいて、前記目標変速比である変速完了後の第1目標変速比を設定するとともに、予め設定された変化率以下で該第1目標変速比に漸近する第2目標変速比を設定し、
    前記アクチュエータ制御手段は、該第2目標変速比と前記油圧検出手段により検出された実油圧とに基づいて前記フィードバック制御を行なう
    ことを特徴とする、請求項1〜3のいずれかの項に記載の車両用ベルト式無段変速機の油圧制御装置。
JP2005325273A 2005-11-09 2005-11-09 車両用ベルト式無段変速機の油圧制御装置 Active JP4590343B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325273A JP4590343B2 (ja) 2005-11-09 2005-11-09 車両用ベルト式無段変速機の油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325273A JP4590343B2 (ja) 2005-11-09 2005-11-09 車両用ベルト式無段変速機の油圧制御装置

Publications (2)

Publication Number Publication Date
JP2007132420A JP2007132420A (ja) 2007-05-31
JP4590343B2 true JP4590343B2 (ja) 2010-12-01

Family

ID=38154249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325273A Active JP4590343B2 (ja) 2005-11-09 2005-11-09 車両用ベルト式無段変速機の油圧制御装置

Country Status (1)

Country Link
JP (1) JP4590343B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9441733B2 (en) 2012-06-08 2016-09-13 Jatco Ltd Continuously variable transmission and a hydraulic control method thereof
WO2018124022A1 (ja) * 2016-12-26 2018-07-05 ジヤトコ株式会社 無段変速機の制御装置及び無段変速機の制御方法
JP6958447B2 (ja) * 2018-03-16 2021-11-02 トヨタ自動車株式会社 無段変速機の制御装置
JP7221602B2 (ja) * 2018-07-05 2023-02-14 株式会社Subaru オイルポンプの固着検知装置
JP7136610B2 (ja) * 2018-07-05 2022-09-13 株式会社Subaru オイルポンプの固着検知装置
JP7033216B2 (ja) * 2018-12-21 2022-03-09 ジヤトコ株式会社 ベルト式無段変速機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249759A (ja) * 1984-05-23 1985-12-10 Nissan Motor Co Ltd 無段変速機の制御装置
JPS6343837A (ja) * 1986-08-12 1988-02-24 Nissan Motor Co Ltd 無段変速機の変速制御装置
JPH02292562A (ja) * 1989-05-02 1990-12-04 Nissan Motor Co Ltd 無段変速機の変速制御装置
JPH08326857A (ja) * 1995-06-05 1996-12-10 Mitsubishi Electric Corp 無段変速機の変速制御装置
JP2000035120A (ja) * 1998-07-17 2000-02-02 Denso Corp システム制御装置
JP2000035119A (ja) * 1998-07-22 2000-02-02 Denso Corp システム制御装置
JP2002081538A (ja) * 2000-09-05 2002-03-22 Nissan Motor Co Ltd 無段変速機の変速比制御システム
JP2004360725A (ja) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd 無段変速機の変速比制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249759A (ja) * 1984-05-23 1985-12-10 Nissan Motor Co Ltd 無段変速機の制御装置
JPS6343837A (ja) * 1986-08-12 1988-02-24 Nissan Motor Co Ltd 無段変速機の変速制御装置
JPH02292562A (ja) * 1989-05-02 1990-12-04 Nissan Motor Co Ltd 無段変速機の変速制御装置
JPH08326857A (ja) * 1995-06-05 1996-12-10 Mitsubishi Electric Corp 無段変速機の変速制御装置
JP2000035120A (ja) * 1998-07-17 2000-02-02 Denso Corp システム制御装置
JP2000035119A (ja) * 1998-07-22 2000-02-02 Denso Corp システム制御装置
JP2002081538A (ja) * 2000-09-05 2002-03-22 Nissan Motor Co Ltd 無段変速機の変速比制御システム
JP2004360725A (ja) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd 無段変速機の変速比制御装置

Also Published As

Publication number Publication date
JP2007132420A (ja) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4849870B2 (ja) 自動車用無段変速機の制御装置
US8133140B2 (en) Control apparatus for continuously-variable transmission of vehicle
US8002654B2 (en) Control system for belt-type continuously variable transmission
US8412636B2 (en) Belt type continuously variable transmission and control method thereof
JP4762875B2 (ja) ベルト式無段変速機の変速制御装置
JP4755970B2 (ja) ベルト式無段変速機の変速制御装置
US7039516B2 (en) Belt type continuously variable transmission
JP4034148B2 (ja) ベルト式無段変速機
JP4590343B2 (ja) 車両用ベルト式無段変速機の油圧制御装置
EP2042778A2 (en) Belt continuously variable transmission and line pressure control method thereof
JP5376054B2 (ja) 車両用変速制御装置
JP4729387B2 (ja) 車両用ベルト式無段変速機の油圧制御装置
JP4212541B2 (ja) 無段変速機の制御装置
JP2008057588A (ja) 車両用無段変速機の変速制御装置
JP5783123B2 (ja) 無段変速機の制御装置
CN111022638B (zh) 动力传递机构的控制装置
JP4479332B2 (ja) 無段変速機の制御装置
JP6830189B2 (ja) 無段変速機の制御方法及び無段変速機
JP2007170595A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Ref document number: 4590343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350