JP4568380B1 - 窒化物系半導体素子およびその製造方法 - Google Patents

窒化物系半導体素子およびその製造方法 Download PDF

Info

Publication number
JP4568380B1
JP4568380B1 JP2010520377A JP2010520377A JP4568380B1 JP 4568380 B1 JP4568380 B1 JP 4568380B1 JP 2010520377 A JP2010520377 A JP 2010520377A JP 2010520377 A JP2010520377 A JP 2010520377A JP 4568380 B1 JP4568380 B1 JP 4568380B1
Authority
JP
Japan
Prior art keywords
layer
electrode
nitride
plane
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010520377A
Other languages
English (en)
Other versions
JPWO2010113406A1 (ja
Inventor
満明 大屋
俊哉 横川
篤志 山田
瑛宏 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP4568380B1 publication Critical patent/JP4568380B1/ja
Publication of JPWO2010113406A1 publication Critical patent/JPWO2010113406A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

窒化物系半導体発光素子100は、m面12を表面とするGaN基板10と、GaN基板10のm面12の上に形成された半導体積層構造20と、半導体積層構造20の上に形成された電極30とを備えている。電極30は、Zn層32と、Zn層32の上に形成されたAg層34とを含み、Zn層32は、半導体積層構造20におけるp型半導体領域の表面に接触している。
【選択図】図3

Description

本発明は、窒化物系半導体素子およびその製造方法に関する。特に、本発明は、紫外から青色、緑色、オレンジ色および白色などの可視域全般の波長域における発光ダイオード、レーザダイオード等のGaN系半導体発光素子に関する。このような発光素子は、表示、照明および光情報処理分野等への応用が期待されている。また、本発明は、窒化物系半導体素子に用いる電極の製造方法にも関する。
V族元素として窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。そのなかでも、窒化ガリウム系化合物半導体(GaN系半導体:AlxGayInzN(0≦x,y,z≦1、x+y+z=1)の研究は盛んに行なわれ、青色発光ダイオード(LED)、緑色LED、ならびに、GaN系半導体を材料とする半導体レーザも実用化されている。
GaN系半導体は、ウルツ鉱型結晶構造を有している。図1は、GaNの単位格子を模式的に示している。AlxGayInzN(0≦x,y,z≦1、x+y+z=1)半導体の結晶では、図1に示すGaの一部がAlおよび/またはInに置換され得る。
図2は、ウルツ鉱型結晶構造の面を4指数表記(六方晶指数)で表すために一般的に用いられている4つの基本ベクトルa1、a2、a3、cを示している。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面(plane)は「c面」または「(0001)面」と呼ばれている。なお、「c軸」および「c面」は、それぞれ、「C軸」および「C面」と表記される場合もある。
GaN系半導体を用いて半導体素子を作製する場合、GaN系半導体結晶を成長させる基板として、c面基板すなわち(0001)面を表面に有する基板が使用される。しかしながら、c面においてはGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、分極(Electrical Polarization)が形成される。このため、「c面」は「極性面」とも呼ばれている。分極の結果、活性層におけるInGaNの量子井戸にはc軸方向に沿ってピエゾ電界が発生する。このようなピエゾ電界が活性層に発生すると、活性層内における電子およびホールの分布に位置ずれが生じるため、キャリアの量子閉じ込めシュタルク効果により、内部量子効率が低下する。このため、半導体レーザであれば、しきい値電流の増大が引き起こされる。LEDであれば、消費電力の増大や発光効率の低下が引き起こされる。また、注入キャリア密度の上昇と共にピエゾ電界のスクリーニングが起こり、発光波長の変化も生じる。
そこで、これらの課題を解決するため、非極性面、例えば[10−10]方向に垂直な、m面と呼ばれる(10−10)面を表面に有する基板(m面GaN系基板)を使用することが検討されている。ここで、ミラー指数を表すカッコ内の数字の左に付された「−」は、「バー」を意味する。m面は、図2に示されるように、c軸(基本ベクトルc)に平行な面であり、c面と直交している。m面においてはGa原子と窒素原子は同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。その結果、m面に垂直な方向に半導体積層構造を形成すれば、活性層にピエゾ電界も発生しないため、上記課題を解決することができる。m面は、(10−10)面、(−1010)面、(1−100)面、(−1100)面、(01−10)面、(0−110)面の総称である。
なお、本明細書では、六方晶ウルツ鉱構造のX面(X=c、m)に垂直な方向にエピタキシャル成長が生じることを「X面成長」と表現する。X面成長において、X面を「成長面」と称し、X面成長によって形成された半導体の層を「X面半導体層」と称する場合がある。
特開2006−24750号公報 特許第3821128号公報
上述のように、m面基板上で成長させたGaN系半導体素子は、c面基板上で成長させたものと比較して顕著な効果を発揮し得るが、次のような問題がある。すなわち、m面基板上で成長させたGaN系半導体素子は、c面基板上で成長させたものよりもp型電極のコンタクト抵抗が高く、それが、m面基板上で成長させたGaN系半導体素子を使用する上で大きな技術的な障害となっている。
さらに、特に発光素子の電極においては、コンタクト抵抗の低減に加えて、電極部での光吸収損失を低減させることにより外部量子効率を向上させることも要求される。GaN系半導体発光素子のp型電極として通常用いられている仕事関数の大きい金属(Pd、Au、Ptなど)は光吸収が非常に大きく、これらの金属を電極として用いたのでは高い外部量子効率を実現することは不可能である。なお、外部量子効率とは、発光素子への注入キャリア数に対する発光素子外部への放射光子数の割合である。
そのような状況の中、本願発明者は、非極性面であるm面上に成長させたGaN系半導体素子が持つコンタクト抵抗が高いという課題、および、電極部における光吸収損失が高いという課題を同時に解決すべく、鋭意検討した結果、コンタクト抵抗を低くするとともに高い外部量子効率を実現することができる手段を見出した。
本発明はかかる点に鑑みてなされたものであり、その主な目的は、m面基板上で結晶成長させたGaN系半導体素子におけるコンタクト抵抗を低減し、さらには電極部での光吸収損失を低減して高い外部量子効率を実現することができるp型電極の構造および製造方法を提供することにある。
本発明の第1の窒化物系半導体素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域の前記表面上に形成された電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、前記電極は、前記p型半導体領域の前記表面に接触したZn層と、前記Zn層の上に形成されたAg層とを含む。
ある実施形態において、前記Ag層は、Agとは異なる金属からなる保護電極で覆われている。
ある実施形態において、前記Ag層は、誘電体からなる保護層で覆われている。
ある実施形態において、前記半導体積層構造は、AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層を有し、前記活性層は光を発する。
ある実施形態において、前記p型半導体領域は、p型コンタクト層である。
ある実施形態において、前記Zn層の厚さは前記Ag層の厚さ以下である。
ある実施形態において、前記半導体積層構造を支持する半導体基板を有している。
ある実施形態において、前記Zn層中のN濃度はGa濃度よりも低い。
ある実施形態において、前記p型半導体領域はGaNである。
ある実施形態において、前記Zn層および前記Ag層の少なくとも一部が合金化している。
本発明の光源は、窒化物系半導体発光素子と、前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部とを備える光源であって、前記窒化物系半導体発光素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域の前記表面上に形成された電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体からなり、前記電極は、前記p型半導体領域の前記表面に接触したZn層と、前記Zn層の上に形成されたAg層とを含む。
ある実施形態において、前記p型半導体領域はGaNである。
ある実施形態において、前記Zn層および前記Ag層の少なくとも一部が合金化している。
本発明の窒化物系半導体素子の製造方法は、基板を用意する工程(a)と、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造を前記基板上に形成する工程(b)と、前記半導体積層構造の前記p型半導体領域の前記表面上に電極を形成する工程(c)とを含み、前記工程(c)は、前記p型半導体領域の前記表面上に、Zn層を形成する工程と、前記Zn層の上にAg層を形成する工程とを含む。
ある実施形態では、前記工程(c)において、前記Zn層を加熱処理する工程を実行する。
ある実施形態において、前記加熱処理は、400℃以上700℃以下の温度で実行される。
ある実施形態において、前記加熱処理は、500℃以上600℃以下の温度で実行される。
ある実施形態において、前記工程(b)を実行した後において、前記基板を除去する工程を含む。
ある実施形態において、前記p型半導体領域はGaNである。
ある実施形態において、前記Zn層中のN濃度はGa濃度よりも低い。
ある実施形態において、前記Zn層および前記Ag層の少なくとも一部が合金化している。
本発明の第2の窒化物系半導体素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域上に設けられた電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、前記電極は、前記p型半導体領域の前記表面上に形成されたアイランド状Znと、前記アイランド状Znの上に形成されたAg層とを含む。
本発明の第3の窒化物系半導体素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域の前記表面上に形成された電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、前記電極は、前記p型半導体領域の前記表面に接触したZn層と、前記Zn層の上に形成されたAg層とを含み、前記Zn層は、Zn-Ag合金から形成されている。
本発明の第4の窒化物系半導体素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域上に設けられた電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、前記電極は、前記p型半導体領域の前記表面に接触した合金層のみから構成され、前記合金層は、ZnおよびAgから形成されている。
ある実施形態において、前記合金層は、前記p型半導体領域の前記表面に接触するZn層と、前記Zn層の上に位置するAg層とを形成した後、熱処理を行うことにより形成された層である。
ある実施形態において、前記合金層は、ZnとAgとの混合物または化合物を、前記p型半導体領域の前記表面上に蒸着した後、加熱処理を行うことにより形成された層である。
本発明の窒化物系半導体発光素子によれば、半導体積層構造上の電極がZn層を含み、そのZn層がp型不純物領域の表面(m面)に接触していることにより、そのコンタクト抵抗を低減することができる。さらに、Zn層の上に設けられたAg層によって光を反射させることにより、高い光外部量子効率を実現することができる。
GaNの単位格子を模式的に示す斜視図 ウルツ鉱型結晶構造の基本ベクトルa1、a2、a3、cを示す斜視図 (a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面模式図、(b)はm面の結晶構造を表す図、(c)はc面の結晶構造を表す図 (a)から(c)は、電極におけるZnおよびAgの分布を模式的に示す図 2つのPd/Pt電極をp型GaN層に接触させて最適温度で熱処理を行なった場合の電流−電圧特性を示すグラフ 2つのZn/Ag電極をp型GaN層に接触させて最適温度で熱処理を行なった場合の電流−電圧特性を示すグラフ Pd/Pt層からなる電極およびZn/Ag層からなる電極の、各々最適温度にて熱処理を行なった場合における固有コンタクト抵抗(Ω・cm2)の値を示すグラフ 半導体層において電極と接する面(接触面)がm面の半導体素子のコンタクト抵抗(測定値)と、接触面がc面の半導体素子のコンタクト抵抗(測定値)とを示すグラフ Pd/Pt層からなる電極およびZn/Ag層からなる電極の固有コンタクト抵抗値の熱処理温度依存性を示すグラフ TLM電極のパターン図 各温度で熱処理を行なった後の電極の表面状態を示す光学顕微鏡の図面代用写真 m面GaNの上にZn/Ag電極が配置された構造におけるGa原子の深さ方向のプロファイルを、SIMS(Secondary Ion−microprobe Mass Spectrometer)を用いて測定した結果を示すグラフ m面GaNの上にZn/Ag電極が配置された構造における窒素原子の深さ方向のプロファイルを、SIMSを用いて測定した結果を示すグラフ Zn/Ag層からなる電極を用いた発光ダイオードの電流−電圧特性を示すグラフ、および、従来のPd/Pt層からなる電極を用いた発光ダイオードの電流−電圧特性を示すグラフ (a)は本発明の実施形態に係る窒化物系半導体発光素子100の電極30の表面に保護電極50が形成された構成を示す断面図、(b)は本発明の実施形態に係る窒化物系半導体発光素子100の電極30の上に保護層51が形成された構成を示す断面図 白色光源の実施形態を示す断面図
以下、図面を参照しながら、本発明の実施の形態を説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
図3(a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面構成を模式的に示している。図3(a)に示した窒化物系半導体発光素子100は、GaN系半導体からなる半導体デバイスであり、窒化物系半導体積層構造を有している。
本実施形態の窒化物系半導体発光素子100は、m面を表面12とするGaN系基板10と、GaN系基板10の上に形成された半導体積層構造20と、半導体積層構造20の上に形成された電極30とを備えている。本実施形態では、半導体積層構造20は、m面成長によって形成されたm面半導体積層構造であり、その表面はm面である。ただし、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしもGaN系基板10の表面がm面であることが必須とならない。本発明の構成においては、少なくとも半導体積層構造20のうち、電極と接触する半導体領域の表面がm面であればよい。
本実施形態の窒化物系半導体発光素子100は、半導体積層構造20を支持するGaN基板10を備えているが、GaN基板10に代えて他の基板を備えていても良いし、基板が取り除かれた状態で使用されることも可能である。
図3(b)は、表面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示している。Ga原子と窒素原子は、m面に平行な同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。すなわち、m面は非極性面であり、m面に垂直な方向に成長した活性層内ではピエゾ電界が発生しない。なお、添加されたInおよびAlは、Gaのサイトに位置し、Gaを置換する。Gaの少なくとも一部がInやAlで置換されていても、m面に垂直な方向に分極は発生しない。
m面を表面に有するGaN系基板は、本明細書では「m面GaN系基板」と称される。m面に垂直な方向に成長した窒化物系半導体積層構造を得るには、典型的には、m面GaN基板を用い、その基板のm面上に半導体を成長させればよい。しかし、前述したように、基板の表面がm面である必要は無く、また、最終的なデバイスに基板が残っている必要もない。
参考のために、図3(c)に、表面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。Ga原子と窒素原子は、c面に平行な同一原子面上に存在しない。その結果、c面に垂直な方向に分極が発生する。c面を表面に有するGaN系基板を、本明細書では「c面GaN系基板」と称する。
c面GaN系基板は、GaN系半導体結晶を成長させるための一般的な基板である。c面に平行なGa(又はIn)の原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、c軸方向に沿って分極が形成される。
再び、図3(a)を参照する。m面GaN系基板10の表面(m面)12の上には、半導体積層構造20が形成されている。半導体積層構造20は、AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層24と、AldGaeN層(d+e=1,d≧0,e≧0)26とを含んでいる。AldGaeN層26は、活性層24を基準にしてm面12の側とは反対の側に位置している。ここで、活性層24は、窒化物系半導体発光素子100における電子注入領域である。
本実施形態の半導体積層構造20には、他の層も含まれており、活性層24と基板10との間には、AluGavInwN層(u+v+w=1,u≧0,v≧0,w≧0)22が形成されている。本実施形態のAluGavInwN層22は、第1導電型(n型)のAluGavInwN層22である。また、活性層24とAldGaeN層26との間に、アンドープのGaN層を設けてもよい。
AldGaeN層26において、Alの組成比率dは、厚さ方向に一様である必要はない。AldGaeN層26において、Alの組成比率dが厚さ方向に連続的または階段的に変化していても良い。すなわち、AldGaeN層26は、Alの組成比率dが異なる複数の層が積層された多層構造を有していても良いし、ドーパントの濃度も厚さ方向に変化していてもよい。なお、コンタクト抵抗低減の観点から、AldGaeN層26の最上部(半導体積層構造20の上面部分)は、Alの組成比率dがゼロである層(GaN層)から構成されていることが好ましい。
半導体積層構造20の上には、電極30が形成されている。本実施形態の電極30は、Zn層32と、Zn層32の上に形成されたAg層34とを含んでいる。Zn層32およびAg層34の少なくとも一部が合金化していてもよい。すなわち、Zn層32とAg層34との境界部分のみが合金化されていてもよいし、電極30の全体が合金化されていてもよい。
図4(a)から(c)は、Zn層32とAg層34との間の合金化を説明するための図である。図4(a)は、Zn層32およびAg層34の一部が合金化した状態を示している。この場合、図4(a)に示すように、電極30Aは、AldGaeN層26に接するZn層32と、Zn層32の上に存在するZn−Ag合金層61Aと、Zn−Ag合金層61Aの上に存在するAg層34とから構成されている。
図4(b)は、ZnとAgとの合金化がAldGaeN層26に接する部分まで進行した状態を示している。図4(b)に示す状態において、電極30BにおけるZn層32(電極30BのうちAldGaeN層26と接触する部分)は、Zn−Ag合金から形成されている。
図4(b)に示す電極30Bの例では、Zn層32の上には、Ag層34が存在している。
図4(c)に、Zn層およびAg層の全体が合金化されている状態の電極30Cを示す。この場合、電極30Cは、Zn−Ag合金層61Cのみから構成されている。
図4(a)から(c)に示すZn−Ag合金は、ZnおよびAgから構成されている(主成分がZnおよびAgである)。図4(a)から(c)に示す構造は、Zn層32の上にAg層34を形成した後に、熱処理を行うことによって形成することができる。なお、図4(c)に示す構造は、ZnとAgとの混合物または化合物を蒸着源として蒸着を行った後に熱処理を行うことによって形成してもよい。
Ag層34は、Agを主成分として微量の他の金属(例えば、Cu、Au、Pd、Nd、Sm、Sn、In、Bi等)を一種類以上添加して合金化したものであってもよい。これらの金属によって合金化したAg層34は、Agと比較して耐熱性や信頼性等において優れている。
Ag層は、光に対して高い反射率を有している。例えば青色光の反射率で比較した場合、Agは約97%、Ptは約55%、Auは約40%である。
電極30におけるZn層32は、半導体積層構造20のp型半導体領域に接触しており、p型電極の一部として機能する。本実施形態では、Zn層32は、第2導電型(p型)のドーパントがドープされたAldGaeN層26に接触している。AldGaeN層26には、例えば、ドーパントとしてMgがドープされている。Mg以外のp型ドーパントとして、例えばZn、Beなどがドープされていてもよい。
なお、Zn層32の少なくとも一部は、積層後の熱処理によってアイランド状(島状)に凝集を起こし、AldGaeN層26の表面上に、互いに間隔を置いて形成されていてもよい。このとき、Ag層34を構成するAgは各アイランド状Znの間に入り込んでいる。Ag層34の少なくとも一部がアイランド状に凝集されていてもよい。
本実施形態の電極30の厚さは、例えば、10nm以上200nm以下である。電極30におけるZn層32は、Ag層34の厚さよりも薄い層であり、Zn層32の好適な厚さは、例えば、0.5nm以上10nm以下である。なお、ここでのZn層32の厚さとは熱処理後のZn層の厚さを意味する。
Zn層32の厚さが10nm以下であれば、半導体積層構造20の活性層24から放射された光がZn層32にはほとんど吸収されずAg層34まで到達する。そのため、より多くの光がAg層34において反射する。Zn層32の厚さは小さいほうがよく、例えば1nm以上2nm以下であることが好ましい。Ag層34による光の反射を期待しないのであればZn層32の厚さは必ずしも10nm以下である必要はない。Zn層32の厚さが45nm以上である場合のコンタクト抵抗は従来のPd系電極を用いた場合と比較してほとんど変わらず、さらに電極剥がれの問題も生じるため、Zn層32の厚さは45nm以下とすることが望ましい。
Ag層34の厚さは、例えば10nm以上200nm以下である。Ag層34における光(例えば青色領域の波長の光)の侵入長は約10nmであるので、Ag層の厚さが侵入長の10nm以上であれば、光を十分反射させることができる。また、Zn層32がAg層34の厚さよりも薄い層であるのは、Zn層32とAg層34との歪みのバランスが崩れることによるZn層32とAldGaeN層26との間での剥離が生じないようにするものである。
また、m面の表面12を有するGaN系基板10の厚さは、例えば、100〜400μmである。これはおよそ100μm以上基板厚であればウエハのハンドリングに支障が生じないためである。なお、本実施形態の基板10は、GaN系材料からなるm面の表面12を有していれば、積層構造を有していても構わない。すなわち、本実施形態のGaN系基板10は、少なくとも表面12にm面が存在している基板も含み、したがって、基板全体がGaN系であってもよいし、他の材料との組み合わせであっても構わない。
本実施形態の構成では、基板10の上に位置するn型のAluGavInwN層(例えば、厚さ0.2〜2μm)22の一部に、電極40(n型電極)が形成されている。図示した例では、半導体積層構造20のうち電極40が形成される領域は、n型のAluGavInwN層22の一部が露出するように凹部42が形成されている。その凹部42にて露出したn型のAluGavInwN層22の表面に電極40が設けられている。電極40は、例えば、Ti層とAl層とPt層との積層構造から構成されており、電極40の厚さは、例えば、100〜200nmである。
また、本実施形態の活性層24は、Ga0.9In0.1N井戸層(例えば、厚さ9nm)とGaNバリア層(例えば、厚さ9nm)とが交互に積層されたGaInN/GaN多重量子井戸(MQW)構造(例えば、厚さ81nm)を有している。
活性層24の上には、p型のAldGaeN層26が設けられている。p型のAldGaeN層26の厚さは、例えば、0.2〜2μmである。なお、上述したように、活性層24とAldGaeN層26との間には、アンドープのGaN層を設けてもよい。
加えて、AldGaeN層26の上に、第2導電型(例えば、p型)のGaN層を形成することも可能である。そして、そのGaN層の上に、p+−GaNからなるコンタクト層を形成し、さらに、p+−GaNからなるコンタクト層上に、Zn層32を形成することも可能である。なお、GaNからなるコンタクト層を、AldGaeN層26とは別の層であると考える代わりに、AldGaeN層26の一部であると考えることもできる。
次に、図5Aから図6を参照しながら、本実施形態の特徴あるいは特異性を更に詳細に説明する。
図5Aは、2つのPd/Pt電極をp型GaN層に接触させた場合の電流−電圧特性を、図5Bは、2つのZn/Ag電極をp型GaN層に接触させた場合の電流−電圧特性を示す。Pd/Pt電極としては、p型のm面GaN層上に厚さ40nmのPd層と、厚さ35nmのPt層とを堆積した後、500℃で10分間、窒素雰囲気中で熱処理を行なうことによって形成した電極(m面GaN(Pd/Pt))を用いた。Zn/Ag電極としては、p型のm面GaN層上に厚さ7nmのZn層と、厚さ75nmのAg層とを堆積した後、600℃で10分間、窒素雰囲気中で熱処理を行なうことによって形成した電極(m面GaN(Zn/Ag))を用いた。本願に開示している全ての実験例では、Zn層およびAg層を通常の電子ビーム蒸着法によって堆積した。
Zn/Ag電極、およびPd/Pt電極は、Mgがドープされたm面GaN層に接触している。これらの電極が接触するm面GaN層では、表面から深さ20nmの領域(厚さ20nmの最表面領域)に7×1019cm-3のMgがドープされている。また、m面GaN層の表面からの深さが20nmを超える領域には、1×1019cm-3のMgがドープされている。このように、p型電極が接触するGaN層の最表面領域においてp型不純物の濃度を局所的に高めると、コンタクト抵抗を最も低くすることができる。また、このような不純物ドーピングを行なうことにより、電流―電圧特性の面内ばらつきも低減するため、駆動電圧のチップ間ばらつきを低減できるという利点も得られる。このため、本願に開示している実験例では、いずれも、電極が接触するp型GaN層の表面から深さ20nmの領域に7×1019cm-3のMgをドープし、それよりも深い領域には1×1019cm-3のMgをドープしている。
図5A、図5Bに示す電流−電圧特性の各曲線は、図5Fに示すTLM(Transmission Line Method)電極パターンの電極間距離に対応したものである。図5Fは、100μm×200μmの複数の電極が、8μm、12μm、16μm、20μmだけ間隔を空けて配置された状態を示している。
Pdはp型電極として従来用いられてきた仕事関数の大きな金属である。Pd/Pt電極ではPd層がp型GaN層に接触している。図5Aのグラフ(Pd/Pt電極の電流−電圧特性)は、ショットキー型の非オーミック特性(ショットキー電圧:約2V)を示している。一方、図5Bのグラフ(Zn/Ag電極の電流−電圧特性)にはショットキー電圧が現れておらず、このZn/Ag電極は、p型GaN層とほぼオーミックコンタクトを形成することがわかる。ショットキー電圧の消失は、発光ダイオードやレーザダイオード等のデバイス動作電圧を低減する上で非常に重要である。
図5Cは、上述のPd/Pt電極、およびZn/Ag電極の固有コンタクト抵抗(Ω・cm2)を示すグラフである。Pd/Pt電極は500℃、Zn/Ag電極は600℃で熱処理されている。図5Cの固有コンタクト抵抗を測定した試料の熱処理前の各層の厚さは、Zn/Ag電極におけるZn層が7nm、Ag層が75nmであり、Pd/Pt電極におけるPd層が40nm、Pt層が35nmである。
コンタクト抵抗はTLM法を用いて評価した。なお、縦軸に示した「1.0E−01」は「1.0×10-1」を意味し、「1.0E−02」は「1.0×10-2」を意味し、すなわち、「1.0E+X」は、「1.0×10X」の意味である。
コンタクト抵抗Rは、一般に、コンタクトの面積S(cm2)に反比例する。ここで、コンタクト抵抗をR(Ω)とすると、R=Rc/Sの関係が成立する。比例定数のRcは、固有コンタクト抵抗と称され、コンタクト面積Sが1cm2のときのコンタクト抵抗Rに相当する。すなわち、固有コンタクト抵抗の大きさは、コンタクト面積Sに依存せず、コンタクト特性を評価するための指標となる。以下、「固有コンタクト抵抗」を「コンタクト抵抗」と略記する場合がある。
図5Cに示すように、Pd/Pt電極よりもZn/Ag電極のほうが一桁近くも低い固有コンタクト抵抗(Ω・cm2)を示す。
図5Dは、半導体層において電極と接する面(接触面)がm面の半導体素子のコンタクト抵抗(測定値)と、接触面がc面の半導体素子のコンタクト抵抗(測定値)とを示すグラフである。この測定には、Zn/Ag電極およびPd/Pt電極のいずれかをp型GaN層に接触させたサンプルを用いた。いずれのサンプルにおいても、電極が接触するp型GaN層の表面から深さ20nmの領域に7×1019cm-3のMgをドープし、それよりも深い領域には1×1019cm-3のMgをドープした。
図5Dから明らかなように、接触面がc面の場合には、Pd/Pt電極よりZn/Ag電極のほうが若干高いコンタクト抵抗を示す。しかしながら、接触面がm面の場合には、Zn/Ag電極のコンタクト抵抗は、Pd/Pt電極のコンタクト抵抗と比較して顕著に低い値である。
次に、コンタクト抵抗の熱処理温度依存性を説明する。従来のPd/Pt電極と、本実施形態のZn/Ag電極のそれぞれについて述べる。図5Eは、Pd/Pt電極およびZn/Ag電極の固有コンタクト抵抗値の熱処理温度依存性を示すグラフである。図5Eの固有コンタクト抵抗を測定した試料の熱処理前における各層の厚さは、Zn/Ag電極におけるZn層が7nm、Ag層が75nmであり、Pd/Pt電極におけるPd層が40nm、Pt層が35nmである。
図5Eに示すように、m面GaN(Pd/Pt)電極の場合、m面GaNのコンタクト抵抗は、500℃の熱処理の前後で、ほとんど変化しなかった。さらに、500℃を超える熱処理温度においては、コンタクト抵抗の上昇が見られた。
一方、m面GaN(Zn/Ag)電極の場合は、400℃においてコンタクト抵抗が低下している。熱処理温度が600℃のときには、コンタクト抵抗はさらに低下している。さらに、700℃の温度では、コンタクト抵抗は600℃の温度のときよりも上昇するものの、従来のm面GaN(Pd/Pt)電極のコンタクト抵抗よりは小さい。
したがって、m面GaN(Zn/Ag)電極の熱処理温度としては、例えば、400℃以上が好ましい。700℃を超えて所定温度(例えば800℃)以上になると、電極やGaN層の膜質の劣化が進むため、上限は700℃以下が好ましい。
次に、各温度で熱処理を行なった後の電極の表面状態を示す写真を図6に示す。図6では、as−depo(熱処理を行なわない場合)、熱処理温度400℃、500℃、600℃、700℃の結果を示している。
図6からわかるように、p型のm面GaN層の上にPd層およびPt層を形成した場合(m面GaN(Pd/Pt)電極)は、600℃、700℃の熱処理において金属表面の荒れが見られ、劣化が認められる。なお、c面GaN層の上にPd/Pt電極を形成して600℃から700℃の温度で熱処理を行なっても金属表面の荒れは見られないことが本願発明者の実験からわかっている。これらの結果から、熱処理による電極の劣化が、m面GaNの電極に特有な課題であることがわかる。
一方、p型のm面GaN層の上にZn層およびAg層を形成した場合(本実施形態の構成であるm面GaN(Zn/Ag)電極)の場合は、700℃の熱処理温度ではわずかに凹凸は見られるものの、400℃、600℃、700℃のすべての熱処理温度において電極に大幅な劣化がないことを確認した。
図5Eに示すコンタクト抵抗の測定結果から、m面GaN(Zn/Ag)電極の場合には、熱処理温度が600℃近傍のときに、コンタクト抵抗が最も低くなることがわかる。一方、図6に示す結果から、m面GaN(Zn/Ag)電極では、熱処理温度が700℃まで高くなっても表面の劣化は少ないものの、熱処理温度が低いほうが電極の表面がより良好な状態に保たれることがわかる。Ag層の表面が劣化すると光反射率が低下するため、電極の表面は良好な状態に保たれることが好ましい。コンタクト抵抗の値と電極表面の状態との兼ね合いから、500℃以上600℃以下の温度で熱処理を行なうのが特に好適であると考えられる。
一般に、c面GaNに対してコンタクト抵抗の低い良好なp型電極を作製するには、仕事関数の大きい金属、例えばPd(仕事関数=5.1eV)やPt(仕事関数=5.6eV)を用いることが技術常識である。Znの仕事関数(4.3eV)は他のコンタクト電極材料の仕事関数に比べて小さく、Zn層はp型コンタクト電極の材料として好ましくないとされている。
本願発明者は、比較のため、p型のc面GaN層上にp型電極としてZn層を形成して、TLM法を用いてコンタクト抵抗を評価した。評価対象のZn層としては、厚さ200nmで堆積されたZn層に、窒素雰囲気中、500℃で10分間の熱処理を行なったものを用いた。その結果、c面GaN層上に形成されたZn層のコンタクト抵抗は、約3.0×10-1Ω・cm2という非常に高い値となった。
コンタクト抵抗が減少する理由の詳細は不明であるが、後述するように、m面GaNの表面近傍におけるGa原子およびN原子の特異な挙動に起因すると推定される。
なお、本願発明者は、m面GaNの電極材料としてAl、Ni、Au、Pd、Ptなどの仕事関数の異なるさまざまな金属を用いて、コンタクト抵抗を測定した。その結果、m面GaNの場合にも、仕事関数が大きい金属(PdやPt)ほどコンタクト抵抗が低くなることを実験的に示した(特願2009−030147号)。
本実施の形態における電極構造(Zn/Ag)をm面GaN上に配置させた場合にコンタクト抵抗が飛躍的に下がるのは、熱処理によって、Ga原子のみが電極側に拡散し、N原子は電極側に拡散していないためと推測される。GaNのうちGaのみが電極側に拡散するため、Zn層では、N濃度がGa濃度よりも低くなっている。
p型GaNにおいてGaが電極側に拡散すると、p型GaNの最表面でGa原子が不足する状態、すなわちGa空孔が形成される。Ga空孔はアクセプター的性質を有するため、電極とp型GaNとの界面の近傍でGa空孔が増加すると、この界面のショットキー障壁を正孔がトンネリングによって通過しやすくなる。これにより、m面を表面とするp型GaN層と接するようにZn層を形成した場合には、コンタクト抵抗が低減されると考えられる。
これに対し、Ga原子とともにN原子も電極側に拡散すると、p型GaNの最表面にNが不足する状態、すなわちN空孔も形成される。N空孔はドナー的性質を有するため、p型GaNの最表面では、Ga空孔とN空孔との間で電荷補償が起こる。また、N原子が抜けることによってGaN結晶の結晶性は悪化すると考えられる。そのため、Ga原子とともにN原子も電極側に拡散した場合には、p型GaN層と電極との間のコンタクト抵抗は高い。
図7Aに、m面GaNの上にZn/Ag電極が配置された構造におけるGa原子の深さ方向のプロファイルを、SIMSを用いて測定した結果を示す。図7Aには、熱処理前(as−depo)のプロファイルと、熱処理後(600℃熱処理後)のプロファイルとを示す。グラフの縦軸は強度(Ga濃度に相当)を示し、横軸は深さ方向の距離を示す。縦軸の1×101の強度は、1×1019cm-3のGa濃度に相当する。横軸の数値が「−」の領域は電極側であり、「+」の領域はp型GaN側である。横軸の原点(0μm)は、Znのピーク位置であり、p型GaN層とZn層との界面の位置にほぼ相当する。
測定に用いた試料の熱処理は、600℃の温度で10分間行った。熱処理前のZn層の厚さは7nmであり、Ag層の厚さは75nmであった。いずれの試料においても、熱処理前に、電極が接触するp型GaN層の表面から深さ20nmの領域に7×1019cm-3のMgをドーピングし、それよりも深い領域には1×1019cm-3のMgをドーピングした。
図7Aに示すように、as−depoの状態では、表面側(−側)に近づくにつれて、Ga濃度が単調に減少している。図7Aには表れていないが、as−depoの状態のGa濃度は、横軸の値が−0.05μm付近のときに検出限界以下となる。この結果から、as−depoの状態では、Gaが金属側にほとんど拡散していないことがわかる。一方、熱処理を行った後には、熱処理前と比較して、0.01μmから0μmまで、および−0.01μmから−0.04μmまでの領域においてGa濃度が高くなっている。この結果は、熱処理後の状態では、熱処理前と比較して、電極中にGaが拡散していることを示す。
次に、窒素の挙動を説明する。図7Bは、m面GaNの上にZn/Ag電極が配置された構造における窒素原子の深さ方向のプロファイルを、SIMSを用いて測定した結果を示すグラフである。グラフの縦軸は強度(N濃度に相当)であり、横軸は深さ方向の距離である。縦軸の1×101の強度は1×1019cm-3のN濃度にほぼ相当する。横軸の数値が「−」の領域は電極側であり、「+」の領域はp型GaN側である。横軸の原点(0μm)は、Znのピーク位置であり、p型GaN層とZn層との界面の位置にほぼ相当する。
測定に用いた試料の熱処理は、600℃の温度で10分間行った。熱処理前のZn層の厚さは7nmであり、Ag層の厚さは75nmであった。電極の構造およびp型GaNのドーピング条件は、図7Aに示す測定結果が得られたサンプルにおけるものと同様である。
図7Bに示すように、熱処理前(as−depo)と熱処理後(600℃熱処理後)とを同じ横軸の値(0から−0.02)で比較すると、熱処理後のほうが熱処理前よりも電極内の窒素濃度が低下しているように見える。しかしながら、これは、2つのプロファイルの深さ方向の位置がずれて観測された測定誤差に起因するものであると考えられる。熱処理前(as−depo)および熱処理後(600℃熱処理後)のいずれのプロファイルも、窒素濃度がほぼ一定の領域(p型GaN側)と、電極の表面側に近づくにつれて単調に窒素濃度が低下する領域(電極側)とを有し、類似した挙動を示す。この結果から、熱処理によって窒素がほとんど拡散していないことがわかる。
図7A、7Bに示す結果から、m面GaNでは、Ga原子のみが電極側に拡散し、窒素原子は拡散していないことがわかる。
なお、このような各元素(Ga、N)の挙動は、Zn層が接触するGaN層において、Gaの一部がAlやInで置換されていても同様に生じると推定される。また、Zn層が接触するGaN系半導体層中にドーパントとしてMg以外の元素がドープされている場合でも同様であると推定される。
次に、再び図3(a)を参照しながら、本実施形態の構成をさらに詳述する。
図3(a)に示すように、本実施形態の発光素子100では、m面GaN基板10と、基板10上に形成されたAluGavInwN層(u+v+w=1,u≧0,v≧0,w≧0)22とが形成されている。この例では、m面GaN基板10は、n型GaN基板(例えば、厚さ、100μm)であり、AluGavInwN層22は、n型GaN層(例えば、厚さ2μm)である。AluGavInwN層22の上には活性層24が形成されている。言い換えると、m面GaN基板10の上には、少なくとも活性層24を含む半導体積層構造20が形成されている。
半導体積層構造20において、AlxGayInzN層22の上には、AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層24が形成されている。活性層24は、例えば、In組成比が約25%のInGaN井戸層とGaNバリア層で構成され、井戸層の厚さは9nm、バリア層の厚さは9nm、井戸層周期は3周期である。活性層24の上には、第2導電型(p型)のAldGaeN層(d+e=1,d≧0,e≧0)26が形成されている。第2導電型(p型)のAldGaeN層(d+e=1,d≧0,e≧0)26は例えば、Al組成比が10%のAlGaN層で厚さは0.2μmである。本実施形態のAldGaeN層26には、p型のドーパントとして、Mgがドープされている。ここでMgは、AldGaeN層26に対して、例えば、1018cm-3程度ドープされている。またこの例では、活性層24とAldGaeN層26との間に、アンドープのGaN層(不図示)が形成されている。
さらに、この例においては、AldGaeN層26の上には、第2導電型(例えば、p型)のGaN層(不図示)が形成されている。さらに、p+−GaNからなるコンタクト層上には、Zn層32が形成されており、その上にAg層34が形成されている。このZn層32とAg層34の積層構造が電極(p型電極)30となる。
なお、半導体積層構造20には、AluGavInwN層22の表面を露出させる凹部(リセス)42が形成されており、凹部42の底面に位置するAluGavInwN層22には、電極(n型電極)40が形成されている。凹部42の大きさは、例えば、幅(または径)20μmであり、深さは1μmである。電極40は、例えば、Ti層とAl層とPt層(例えば、厚さはそれぞれ、5nm、100nm、10nm)の積層構造から成る電極である。
本実施形態の窒化物系半導体発光素子100によれば、動作電圧(Vop)を、従来のPd/Pt電極を用いたm面LEDの場合よりも約2.0V低減させることができ、その結果、消費電力を低減できることがわかった。
さらに、Ag層34による光の反射効果により、従来のPd/Pt電極を用いたm面LEDの場合よりも外部量子効率が大幅に向上することを確認した。
次に、引き続き図3(a)を参照しながら、本実施形態の窒化物系半導体発光素子100の製造方法を説明する。
まず、m面基板10を用意する。本実施形態では、基板10として、GaN基板を用いる。本実施形態のGaN基板は、HVPE(Hydride Vapor Phase Epitaxy)法を用いて得られる。
例えば、まずc面サファイア基板上に数mmオーダの厚膜GaNを成長する。その後、厚膜GaNをc面に垂直方向、m面で切り出すことによりm面GaN基板が得られる。GaN基板の作製方法は、上記に限らず、例えばナトリウムフラックス法などの液相成長やアモノサーマル法などの融液成長方法を用いてバルクGaNのインゴットを作製し、それをm面で切り出す方法でも良い。
基板10としては、GaN基板の他、例えば、酸化ガリウム、SiC基板、Si基板、サファイア基板などを用いることができる。基板上にm面から成るGaN系半導体をエピタキシャル成長するためには、SiCやサファイア基板の面方位もm面である方が良い。ただし、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしも成長用表面がm面であることが必須とならない場合もあり得る。少なくとも半導体積層構造20の表面がm面であれば良い。本実施形態では、基板10の上に、MOCVD(Metal Organic Chemical Vapor Deposition)法により結晶層を順次形成していく。
次に、m面GaN基板10の上に、AluGavInwN層22を形成する。AluGavInwN層22として、例えば、厚さ3μmのAlGaNを形成する。GaNを形成する場合には、m面GaN基板10の上に、1100℃でTMG(Ga(CH33)、TMA(Al(CH33)およびNH3を供給することによってGaN層を堆積する。
次に、AluGavInwN層22の上に、活性層24を形成する。この例では、活性層24は、厚さ9nmのGa0.9In0.1N井戸層と、厚さ9nmのGaNバリア層が交互に積層された厚さ81nmのGaInN/GaN多重量子井戸(MQW)構造を有している。Ga0.9In0.1N井戸層を形成する際には、Inの取り込みを行なうために、成長温度を800℃に下げることが好ましい。
次に、活性層24の上に、例えば厚さ30nmのアンドープGaN層を堆積する。次いで、アンドープGaN層の上に、AldGaeN層26を形成する。AldGaeN層26として、例えば、TMG、NH3、TMA、TMIおよびp型不純物としてCp2Mg(シクロペンタジエニルマグネシウム)を供給することにより、厚さ70nmのp−Al0.14Ga0.86Nを形成する。
次に、AldGaeN層26の上に、例えば厚さ0.5μmのp−GaNコンタクト層を堆積する。p−GaNコンタクト層を形成する際には、p型不純物としてCp2Mgを供給する。
その後、塩素系ドライエッチングを行なうことにより、p−GaNコンタクト層、AldGaeN層26、アンドープGaN層および活性層24の一部を除去して凹部42を形成し、AlxGayInzN層22のn型電極形成領域を露出させる。次いで、凹部42の底部に位置するn型電極形成領域の上に、n型電極40として、Ti/Al/Pt層を形成する。
さらに、p−GaNコンタクト層の上にZn層32を形成し、さらにZn層32上にAg層34を形成する。その後、熱処理を行なう。これにより、p型電極30を形成する。Zn層32およびAg層34は、共に、通常の真空蒸着法(抵抗加熱法、電子ビーム蒸着法など)によって形成することができる。Zn層32を形成する方法としては、真空蒸着法のほかに、スパッタリング、熱CVD法や分子線エピタキシ(MBE)を行なってもよい。
なお、その後、レーザリフトオフ、エッチング、研磨などの方法を用いて、基板10、AluGavInwN層22の一部までを除去してもよい。このとき、基板10のみを除去してもよいし、基板10およびAluGavInwN層22の一部だけを選択的に除去してもよい。もちろん、基板10、AluGavInwN層22を除去せずに残してもよい。以上の工程により、本実施形態の窒化物系半導体発光素子100が形成される。
本実施形態の窒化物系半導体発光素子100において、n型電極40とp型電極30との間に電圧を印加すると、p型電極30から活性層24に向かって正孔が、n型電極40から活性層24に向かって電子が注入され、例えば450nm波長の発光が生じる。
ここで、図8に、Zn/Ag層からなる電極(500℃、550℃、575℃、および600℃で10分間熱処理をしたもの)を用いた発光ダイオードの電流−電圧特性を示す。比較のため、発光ダイオードの窒化物系半導体の構造が同じで、Pd/Pt層からなる電極を用いた発光ダイオードの特性も示す。熱処理前における各層の厚さは、Zn/Ag電極におけるZn層が7nm、Ag層が75nmであり、Pd/Pt電極におけるPd層が40nm、Pt層が35nmである。
この発光ダイオードの構成は、m面GaN基板上に、n型GaN層、InGaN井戸層(3層)とGaNバリア層(2層)とが交互に積層された活性層、p型GaN層が積層されたものである。さらにp型GaN層上にはp型電極として、Zn/Ag電極またはPd/Pt電極を設けている。n型電極は、p型GaN層、活性層をエッチングし、n型GaN層を露出させ、n型GaN層上に形成している。
Pd/Pt層からなる電極を用いた発光ダイオードの立ち上がり電圧は約3.8Vである。これに対し、Zn/Ag層からなる電極を用いた発光ダイオードの立ち上がり電圧は約2.8Vであり、立ち上がり電圧の大幅な低減が見られる。一方、電流値20mAでの動作電圧で比較すると、Zn/Ag層からなる電極を用いた発光ダイオードでは、Pd/Pt層からなる電極を用いた発光ダイオードよりも2.0V以上小さくなっていることがわかる。
本実施形態では、図9(a)に示すように、Zn層32およびAg層34からなる電極30の表面を、Ag以外の金属(例えばTi、Pt、Mo、Pd、Au、Wなど)からなる保護電極50で覆ってもよい。ただし、これらの金属の光吸収損失はAgの光吸収損失と比較して大きいので、Ag層34の厚みを光の侵入長である10nm以上にすることによって、すべての光をAg層34で反射させて保護電極50まで透過しないようにすることが好ましい。光吸収損失が比較的小さい金属を保護電極50として用いる場合には、この保護電極50が反射膜の効果をも併せ持つことになるため、Ag層34の厚さは10nm以上でなくてもよい。
保護電極50は、電極30の全体を覆ってもよいし、一部のみを覆ってもよい。保護電極50は金属であるため、保護電極50によって電極30の全体を覆う場合でも、保護電極50上にリード線(図示せず)をボンディングすれば、電極30とリード線とが導通される。ただし、保護電極50を構成する金属の抵抗が大きい場合には、保護電極50の一部に開口を設け、電極30におけるAg層34に直接リード線をボンディングすることが好ましい。
また、図9(b)に示すように、電極30を保護するために、誘電体(例えばSiO2やSiNなど)からなる保護層51を形成してもよい。このとき、電極30の全体を保護層51によって覆うと、電極30と外部とを導通させることができないため、保護層51の一部に開口52を設け、電極30におけるAg層34に直接リード線(図示せず)をボンディングする必要がある。SiO2やSiNなどの誘電体は屈折率が低い性質を有するため、保護層51を形成した場合には、光の反射率をさらに高くすることができる。
図9(a)に示す保護電極50または図9(b)に示す保護層51を形成することによって、マイグレーションしやすい性質を有するAgが拡散するのを防止することができる。また、Ag層34の表面を保護することによって、Ag層34が大気中の硫黄や酸素に接触しにくくなるため、Ag層34の硫化および酸化を防止することができる。なお、図9(a)、(b)では、図3(a)に示す窒化物系半導体発光素子100のうち、AldGaeN層26、Zn層32およびAg層34以外の構成要素の図示を省略している。
なお、前述の保護電極50または保護層51の上に、配線用の金属(Au、AuSnなど)を形成してもよい。
本実施形態では、p型電極の材料として、Pdよりも地球上に豊富に存在するZnを用いている。Znは、Mgと比較して酸化されにくい性質を有し、Zn層は通常の蒸着法によって形成することができるという利点がある。また、m面GaN層とZn層との間の密着性は良好であることを確認した。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
なお、本発明の実施形態と本質的に構成を異にするものであるが、関連する構造が特許文献1、2に開示されている。しかしながら、特許文献1及び2ともに、窒化ガリウム系半導体層の結晶面がm面であることの記載は一切無く、したがって、これらの文献の開示はc面の窒化ガリウム系半導体層の上に電極を形成した技術に関するものと考えられる。特に、特許文献1は、p型GaN層の上に薄膜金属層を堆積した後にAg合金層を堆積する構成を開示しているが、薄膜金属層に用いる金属として開示されているのは、Pt、Co、Ni、Pdのみである。これらは仕事関数の大きい金属であり、特許文献1では、仕事関数の大きい金属をp型電極として用いることが好ましいという技術常識に基づいてこれらの金属が使用されていると考えられる。m面GaNのp型電極の場合には、前述したように、単に仕事関数の大きい金属(Pd、Ni、Pt等)を用いても、これらの電極とm面GaNとはオーミックコンタクトを形成しないことが本願発明者によって確認されている。一方、特許文献2は、Ag、Ag−Ni合金,Ag−Pd合金,Ag−Rh合金、Ag−Pt合金からなる電極構造を開示している。特許文献2の電極構造では、仕事関数の大きい金属とAgとの合金が形成されており、この発想も技術常識に基づくものである。
本発明に係る上記の発光素子は、そのまま光源として使用されても良い。しかし、本発明に係る発光素子は、波長変換のための蛍光物質を備える樹脂などと組み合わせれば、波長帯域の拡大した光源(例えば白色光源)として好適に使用され得る。
図10は、このような白色光源の一例を示す模式図である。図10の光源は、図3(a)に示す構成を有する発光素子100と、この発光素子100から放射された光の波長を、より長い波長に変換する蛍光体(例えばYAG:Yttrium Alumninum Garnet)が分散された樹脂層200とを備えている。発光素子100は、表面に配線パターンが形成された支持部材220上に搭載されており、支持部材220上には発光素子100を取り囲むように反射部材240が配置されている。樹脂層200は、発光素子100を覆うように形成されている。
図10に示す発光素子100において、Zn/Ag電極であるp型電極30は、半導体積層構造20よりも支持部材220側に配置されている。半導体積層構造20における活性層24において発生した光は、活性層24から放射状に出射する。活性層24から出射した光のうち光取り出し面10aを通過した光や反射部材240で反射された光は、樹脂層200中を進んで発光素子100の外部に取り出される。このとき、光の一部は樹脂層200に含まれる蛍光体によってより長波長の光に変換される。一方、活性層240から出射した光のうち電極30に向かって進む光は、電極30におけるAg層で反射される。このとき、Agは光に対して高い反射率を有するため、Ag層に入射した光の多くがAg層によって吸収されずに反射される。Ag層で反射された光は、半導体積層構造20および樹脂層200中を進んで外部に取り出される。その結果、白色光源から取り出される光は増加する。このように、本実施形態では、外部量子効率を高めることができる。
なお、本発明におけるコンタクト構造は、Zn層と接触するp型半導体領域がGaN系半導体、すなわちAlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体からなる場合に前述の優れた効果を発揮する。このようなコンタクト抵抗低減の効果は、当然に、LED以外の発光素子(半導体レーザ)や、発光素子以外のデバイス(例えばトランジスタや受光素子)においても得ることが可能である。Ag層による光の反射効果を利用しないとしても、Zn/Ag電極を用いることにより、m面GaNに対してコンタクト抵抗の大幅な低減を得ることができる。
なお、現実のm面は、m面に対して完全に平行な面である必要は無く、m面から僅かな角度(0〜±1°)だけ傾斜していても良い。
本発明によれば、m面を表面とするp型半導体領域とp型電極との間のコンタクト抵抗を低減することができ、かつp型電極における光吸収損失を少なくすることができるため、発光ダイオード(LED)として特に好適に利用される。
10 基板(GaN系基板)
10a 光取り出し面
12 基板の表面(m面)
20 半導体積層構造
22 AluGavInwN層
24 活性層
26 AldGaeN層
30、30A、30B、30C p型電極
32 Zn層
34 Ag層
40 n型電極
42 凹部
50 保護電極
51 保護層
52 開口
61A、61C Zn-Ag合金層
100 窒化物系半導体発光素子
200 波長を変換する蛍光体が分散された樹脂層
220 支持部材
240 反射部材

Claims (26)

  1. 表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
    前記p型半導体領域の前記表面上に形成された電極と
    を備え、
    前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、
    前記電極は、前記p型半導体領域の前記表面に接触したZn層と、前記Zn層の上に形成されたAg層とを含む、窒化物系半導体素子。
  2. 前記Ag層は、Agとは異なる金属からなる保護電極で覆われている、請求項1に記載の窒化物系半導体素子。
  3. 前記Ag層は、誘電体からなる保護層で覆われている、請求項1に記載の窒化物系半導体素子。
  4. 前記半導体積層構造は、
    AlaInbGacN層(a+b+c=1,a≧0,b≧0,c≧0)を含む活性層を有し、前記活性層は光を発する、請求項1に記載の窒化物系半導体素子。
  5. 前記p型半導体領域は、p型コンタクト層である、請求項1に記載の窒化物系半導体素子。
  6. 前記Zn層の厚さは前記Ag層の厚さ以下である、請求項1に記載の窒化物系半導体素子。
  7. 前記半導体積層構造を支持する半導体基板を有している、請求項1に記載の窒化物系半導体素子。
  8. 前記Zn層中のN濃度はGa濃度よりも低い、請求項1に記載の窒化物系半導体素子。
  9. 前記p型半導体領域はGaNである、請求項1に記載の窒化物系半導体素子。
  10. 前記Zn層および前記Ag層の少なくとも一部が合金化している、請求項1に記載の窒化物系半導体素子。
  11. 窒化物系半導体発光素子と、
    前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部と
    を備える光源であって、
    前記窒化物系半導体発光素子は、
    表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
    前記p型半導体領域の前記表面上に形成された電極と
    を備え、
    前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体からなり、
    前記電極は、前記p型半導体領域の前記表面に接触したZn層と、前記Zn層の上に形成されたAg層とを含む、光源。
  12. 前記p型半導体領域はGaNである、請求項11に記載の光源。
  13. 前記Zn層および前記Ag層の少なくとも一部が合金化している、請求項11に記載の光源。
  14. 基板を用意する工程(a)と、
    表面がm面であるp型半導体領域を有する窒化物系半導体積層構造を前記基板上に形成する工程(b)と、
    前記半導体積層構造の前記p型半導体領域の前記表面上に電極を形成する工程(c)とを含み、
    前記工程(c)は、
    前記p型半導体領域の前記表面上に、Zn層を形成する工程と、前記Zn層の上にAg層を形成する工程とを含む、窒化物系半導体素子の製造方法。
  15. 前記工程(c)において、前記Zn層を加熱処理する工程を実行する、請求項14に記載の窒化物系半導体素子の製造方法。
  16. 前記加熱処理は、400℃以上700℃以下の温度で実行される、請求項15に記載の窒化物系半導体素子の製造方法。
  17. 前記加熱処理は、500℃以上600℃以下の温度で実行される、請求項16に記載の窒化物系半導体素子の製造方法。
  18. 前記工程(b)を実行した後において、前記基板を除去する工程を含む、請求項14から17の何れか一つに記載の窒化物系半導体素子の製造方法。
  19. 前記p型半導体領域はGaNである、請求項14に記載の窒化物系半導体素子の製造方法。
  20. 前記Zn層中のN濃度はGa濃度よりも低い、請求項14に記載の窒化物系半導体素子の製造方法。
  21. 前記Zn層および前記Ag層の少なくとも一部が合金化している、請求項15に記載の窒化物系半導体素子の製造方法。
  22. 表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
    前記p型半導体領域上に設けられた電極と
    を備え、
    前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、
    前記電極は、前記p型半導体領域の前記表面上に形成されたアイランド状Znと、前記アイランド状Znの上に形成されたAg層とを含む、窒化物系半導体素子。
  23. 表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
    前記p型半導体領域の前記表面上に形成された電極と
    を備え、
    前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、
    前記電極は、前記p型半導体領域の前記表面に接触したZn層と、前記Zn層の上に形成されたAg層とを含み、
    前記Zn層は、Zn-Ag合金から形成されている、窒化物系半導体素子。
  24. 表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
    前記p型半導体領域上に設けられた電極と
    を備え、
    前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成され、
    前記電極は、前記p型半導体領域の前記表面に接触した合金層のみから構成され、
    前記合金層は、ZnおよびAgから形成されている、窒化物系半導体素子。
  25. 前記合金層は、前記p型半導体領域の前記表面に接触するZn層と、前記Zn層の上に位置するAg層とを形成した後、熱処理を行うことにより形成された層である、請求項24に記載の窒化物系半導体素子。
  26. 前記合金層は、ZnとAgとの混合物または化合物を、前記p型半導体領域の前記表面上に蒸着した後、加熱処理を行うことにより形成された層である、請求項24に記載の窒化物系半導体素子。
JP2010520377A 2009-04-03 2010-03-17 窒化物系半導体素子およびその製造方法 Expired - Fee Related JP4568380B1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009091514 2009-04-03
JP2009091514 2009-04-03
JPPCT/JP2009/007284 2009-12-25
PCT/JP2009/007284 WO2010113238A1 (ja) 2009-04-03 2009-12-25 窒化物系半導体素子およびその製造方法
PCT/JP2010/001921 WO2010113406A1 (ja) 2009-04-03 2010-03-17 窒化物系半導体素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP4568380B1 true JP4568380B1 (ja) 2010-10-27
JPWO2010113406A1 JPWO2010113406A1 (ja) 2012-10-04

Family

ID=42827570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520377A Expired - Fee Related JP4568380B1 (ja) 2009-04-03 2010-03-17 窒化物系半導体素子およびその製造方法

Country Status (5)

Country Link
US (2) US8334199B2 (ja)
EP (1) EP2352184A4 (ja)
JP (1) JP4568380B1 (ja)
CN (1) CN102007610B (ja)
WO (2) WO2010113238A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792136B2 (ja) * 2010-01-18 2011-10-12 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4820465B1 (ja) * 2010-04-02 2011-11-24 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2013005391A1 (ja) * 2011-07-06 2013-01-10 パナソニック株式会社 窒化物半導体発光素子およびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971364B (zh) 2008-11-06 2013-05-15 松下电器产业株式会社 氮化物类半导体元件及其制造方法
JP5392611B2 (ja) * 2009-09-14 2014-01-22 スタンレー電気株式会社 半導体発光装置および半導体発光装置の製造方法
WO2011077704A1 (ja) * 2009-12-25 2011-06-30 パナソニック株式会社 窒化物系半導体素子およびその製造方法
CN102696122A (zh) * 2010-04-01 2012-09-26 松下电器产业株式会社 氮化物系半导体元件及其制造方法
EP2565943A1 (en) 2010-04-28 2013-03-06 Panasonic Corporation Nitride-type semiconductor element and process for production thereof
JP5146626B2 (ja) * 2011-04-20 2013-02-20 パナソニック株式会社 半導体積層基板、半導体チップおよび半導体積層基板の製造方法
JP5641505B2 (ja) * 2011-04-22 2014-12-17 パナソニックIpマネジメント株式会社 窒化物系半導体発光素子の製造方法
CN103081138A (zh) 2011-05-18 2013-05-01 松下电器产业株式会社 氮化物类半导体发光元件及其制造方法
WO2013008380A1 (ja) * 2011-07-14 2013-01-17 パナソニック株式会社 窒化物系半導体発光素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026392A (ja) * 2000-06-30 2002-01-25 Toshiba Corp 半導体発光素子とその製造方法、及び半導体発光装置
JP2007109915A (ja) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd 発光ダイオード
JP2007180504A (ja) * 2005-12-26 2007-07-12 Samsung Electro Mech Co Ltd 垂直構造の窒化物半導体発光素子及びその製造方法
WO2007136097A1 (ja) * 2006-05-23 2007-11-29 Meijo University 半導体発光素子
JP2008103674A (ja) * 2006-10-18 2008-05-01 Samsung Electro Mech Co Ltd 多層反射膜電極及びそれを備えた化合物半導体発光素子
JP2008140841A (ja) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd 発光素子
JP2008153285A (ja) * 2006-12-14 2008-07-03 Rohm Co Ltd 窒化物半導体装置および窒化物半導体製造方法
JP2008277323A (ja) * 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 半導体発光素子およびウエハ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308462A (ja) 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
KR100558890B1 (ko) 2001-07-12 2006-03-14 니치아 카가쿠 고교 가부시키가이샤 반도체 소자
JP2003332697A (ja) 2002-05-09 2003-11-21 Sony Corp 窒化物半導体素子及びその製造方法
KR100612832B1 (ko) * 2003-05-07 2006-08-18 삼성전자주식회사 고성능의 질화갈륨계 광소자 구현을 위한 니켈계 고용체를 이용한 오믹 접촉 형성을 위한 금속박막 및 그 제조방법
KR100571816B1 (ko) * 2003-09-08 2006-04-17 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
KR100647278B1 (ko) * 2003-10-27 2006-11-17 삼성전자주식회사 III - V 족 GaN 계 화합물 반도체 및 이에적용되는 p-형 전극
US7960746B2 (en) * 2004-01-06 2011-06-14 Samsung Led Co., Ltd. Low resistance electrode and compound semiconductor light emitting device including the same
JP2006024750A (ja) 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd 発光素子
KR100896564B1 (ko) * 2004-08-31 2009-05-07 삼성전기주식회사 반사전극 및 이를 구비하는 화합물 반도체 발광소자
CN100344006C (zh) * 2005-10-13 2007-10-17 南京大学 一种m面InGaN/GaN量子阱LED器件结构的生长方法
WO2007095137A2 (en) * 2006-02-10 2007-08-23 The Regents Of The University Of California Method for conductivity control of (al,in,ga,b)n
KR100725610B1 (ko) * 2006-04-18 2007-06-08 포항공과대학교 산학협력단 오믹 전극 형성 방법 및 반도체 발광 소자
WO2007126158A1 (ja) * 2006-04-27 2007-11-08 Panasonic Corporation 半導体発光素子およびウエハ
EP2041794A4 (en) * 2006-06-21 2010-07-21 Univ California OPTOELECTRONIC AND ELECTRONIC DEVICES USING N-FACIAL OR M-PLANNED GAN SUBSTRATES PREPARED BY AMMONIOTHERMIC GROWTH
KR100845037B1 (ko) * 2006-08-02 2008-07-09 포항공과대학교 산학협력단 오믹 전극 및 그 형성 방법, 이를 구비하는 반도체 발광소자
WO2008073385A1 (en) * 2006-12-11 2008-06-19 The Regents Of The University Of California Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices
JP4763636B2 (ja) 2007-03-15 2011-08-31 富士通株式会社 光検知器
JP2008258503A (ja) 2007-04-06 2008-10-23 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法
KR100835116B1 (ko) * 2007-04-16 2008-06-05 삼성전기주식회사 질화물 반도체 발광 소자
JP4816595B2 (ja) 2007-06-22 2011-11-16 住友金属工業株式会社 冷延鋼板およびめっき鋼板ならびに該鋼板の製造方法
CN100532638C (zh) * 2008-05-16 2009-08-26 南京大学 生长非极性面GaN薄膜材料的方法及其用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026392A (ja) * 2000-06-30 2002-01-25 Toshiba Corp 半導体発光素子とその製造方法、及び半導体発光装置
JP2007109915A (ja) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd 発光ダイオード
JP2007180504A (ja) * 2005-12-26 2007-07-12 Samsung Electro Mech Co Ltd 垂直構造の窒化物半導体発光素子及びその製造方法
WO2007136097A1 (ja) * 2006-05-23 2007-11-29 Meijo University 半導体発光素子
JP2008103674A (ja) * 2006-10-18 2008-05-01 Samsung Electro Mech Co Ltd 多層反射膜電極及びそれを備えた化合物半導体発光素子
JP2008140841A (ja) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd 発光素子
JP2008153285A (ja) * 2006-12-14 2008-07-03 Rohm Co Ltd 窒化物半導体装置および窒化物半導体製造方法
JP2008277323A (ja) * 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 半導体発光素子およびウエハ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792136B2 (ja) * 2010-01-18 2011-10-12 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4820465B1 (ja) * 2010-04-02 2011-11-24 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2013005391A1 (ja) * 2011-07-06 2013-01-10 パナソニック株式会社 窒化物半導体発光素子およびその製造方法

Also Published As

Publication number Publication date
US8334199B2 (en) 2012-12-18
EP2352184A1 (en) 2011-08-03
CN102007610B (zh) 2013-02-06
WO2010113406A1 (ja) 2010-10-07
US20110253977A1 (en) 2011-10-20
CN102007610A (zh) 2011-04-06
EP2352184A4 (en) 2012-11-14
JPWO2010113406A1 (ja) 2012-10-04
US8304802B2 (en) 2012-11-06
WO2010113238A1 (ja) 2010-10-07
US20110037089A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP4568379B1 (ja) 窒化物系半導体素子およびその製造方法
JP4568380B1 (ja) 窒化物系半導体素子およびその製造方法
US8890175B2 (en) Nitride-based semiconductor element and method for fabricating the same
JP5776021B2 (ja) 窒化物系半導体素子及び光源
JP4659926B2 (ja) 窒化物系半導体素子およびその製造方法
JP4909448B2 (ja) 窒化物系半導体素子およびその製造方法
WO2011135866A1 (ja) 窒化物系半導体素子およびその製造方法
JP4820465B1 (ja) 窒化物系半導体素子およびその製造方法
JP5547279B2 (ja) 窒化物系半導体素子およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4568380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees