JP2008277323A - 半導体発光素子およびウエハ - Google Patents

半導体発光素子およびウエハ Download PDF

Info

Publication number
JP2008277323A
JP2008277323A JP2007115554A JP2007115554A JP2008277323A JP 2008277323 A JP2008277323 A JP 2008277323A JP 2007115554 A JP2007115554 A JP 2007115554A JP 2007115554 A JP2007115554 A JP 2007115554A JP 2008277323 A JP2008277323 A JP 2008277323A
Authority
JP
Japan
Prior art keywords
plane
compound semiconductor
single crystal
crystal substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007115554A
Other languages
English (en)
Inventor
Hidenori Kamei
英徳 亀井
Shuichi Shinagawa
修一 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007115554A priority Critical patent/JP2008277323A/ja
Priority to KR1020087028168A priority patent/KR20090012241A/ko
Priority to CN2007800151419A priority patent/CN101432898B/zh
Priority to EP07742997A priority patent/EP2020690A4/en
Priority to PCT/JP2007/059562 priority patent/WO2007126158A1/ja
Priority to US12/298,664 priority patent/US7915714B2/en
Publication of JP2008277323A publication Critical patent/JP2008277323A/ja
Priority to US12/689,759 priority patent/US20100187565A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】製造工程を増やすことなく、光取り出し効率の向上を図ることが可能な半導体発光素子及びウエハを提供する。
【解決手段】単結晶基板に化合物半導体層3を積層し、単結晶基板を分割して個片化することで形成された半導体発光素子1において、分割された単結晶基板である個片基板2の側面21〜24は、単結晶基板における結晶構造の劈開面とは異なる面となるように、個片基板2の基準とした側面21を、m面に対して45°の角度を成すように形成されている。
【選択図】図2

Description

本発明は、単結晶基板に化合物半導体層が積層された半導体発光素子およびウエハに関するものである。
半導体発光素子の光取り出し効率を上げ、輝度向上を図る技術として特許文献1に記載されたものがある。特許文献1に記載の窒化ガリウム系化合物半導体素子は、基板の側面が、またはこの基板上に積層された窒化ガリウム系化合物半導体素子の側面が、エッチングにより凹凸形状に形成されたものである。
このように光が出射する出射面を平滑面とするよりも凹凸面とする方が、内部からの光がその表面で光が全反射する程度を減少させることができるので、光取り出し効率の向上が望める。
特開2004−6662号公報
しかし、特許文献1に記載の窒化ガリウム系化合物半導体素子は、基板の側面を、または基板に積層された窒化ガリウム系化合物半導体の側面を、エッチングにより凹凸形状にしているので、その製造工程において基板に窒化ガリウム系化合物半導体を積層した後に、エッチング工程を追加する必要がある。そうなると製造工程が煩雑となるだけでなく製造コストも増加する。また、この方法ではエッチング深さが深くなるにつれ凹凸が小さくなってしまうので、全面に渡って凹凸形状を形成するのが困難である。
そこで本発明は、製造工程を増やすことなく、半導体発光素子の側面の全面に渡って凹凸を形成することで、光取り出し効率の向上を図ることが可能な半導体発光素子およびウエハを提供することを目的とする。
本発明の半導体発光素子は、単結晶基板に化合物半導体層を積層し、前記単結晶基板を分割して個片化することで形成された半導体発光素子において、単結晶基板は六方晶系構造を有しており、分割された単結晶基板の側面は、前記単結晶基板の劈開面とは異なる面で形成されていることを特徴とする。
本発明のウエハは、半導体発光素子を形成する化合物半導体層が積層される単結晶基板であるウエハにおいて、単結晶基板は六方晶系構造を有しており、前記単結晶基板の結晶方向を示すOF(Oriented Flat)面は、劈開面とは異なる面で形成されていることを特徴とする。
ある好適な実施形態において、化合物半導体層が積層される単結晶基板の面は、a面であり、a面と直交するc面およびm面が単結晶基板の劈開面である。ここで、a面とは面方位が(11−20)面およびこれと等価な(1−210)面と(−2110)面のことを、c面とは面方位が(0001)面のことを、m面とは面方位が(1−100)面およびこれと等価な(01−10)面と(10−10)面のことを、それぞれいう。より厳密には、面の表と裏では面方位を表す数字の符号が異なるが、本発明では、例えば(11−20)面は、(11−20)面と(−1−120)面の両方を指すこととする。c面は全てのa面およびm面と直交する関係にあるが、a面とm面が直交する組合せは、a面とm面が各々(11−20)と(1−100)、(1−210)と(10−10)、および(−2110)と(01−10)の3通りが存在する。以下、本発明においては、a面とm面は互いに直交する上記の3通りの組合せのことをいう。ここで面の表示はミラー指数による表示であり、面表示中にある−は、−の後ろに続く数字の上に付くものとする。
本発明は、製造工程で単結晶基板を分割するときに単結晶基板の側面が劈開面とは異なる面となるようにするだけでよいので、光取り出し効率を向上させるために、新たな製造工程を追加する必要がない。よって、製造コストを増加させることなく、輝度効率の高い半導体素子とすることができる。
最良の実施の形態について説明する前に、実施形態の概要について説明をする。
本願の実施形態における半導体発光素子は、単結晶基板に化合物半導体層を積層し、前記単結晶基板を分割して個片化することで形成された半導体発光素子において、単結晶基板は、a面が、前記化合物半導体が積層される積層面であり、これと直交するc面およびm面が劈開面である六方晶系結晶構造を有するものであり、分割された単結晶基板である個片基板の全ての側面は、単結晶基板の劈開面とは異なる面で形成されていることを特徴としたものである。
結晶を劈開面で割ることで、その分割面は平滑な面となるが、単結晶基板の側面を、単結晶基板における結晶構造の劈開面と異なる面とすることで、分割された単結晶基板である個片基板の側面は平滑面とならずに微小な凹凸面となる。従って、製造工程で単結晶基板を分割するときに、個片基板の側面が劈開面と異なる面となるようにするだけでよいので、光取り出し効率を向上させるために、新たな製造工程を追加する必要がない。
上記半導体発光素子において、個片基板は、積層面が略矩形状に形成され、個片基板の一側面が、劈開面であるc面とm面のいずれかに対して5°以上、85°以下の角度を成すこととしてもよい。
a面を表面とする六方晶結晶構造の基板においては、劈開面となるc面とm面はともに基板表面に垂直で互いの成す角は90°となる。従って、単結晶基板の積層面を略矩形状に分割し個片基板を形成する際に、その分割面が、c面あるいはm面のいずれかに対して所定角度を成すように分割することで、個片基板のいずれの側面も劈開面とは異なる面とすることができる。また、その所定角度を5°以上、85°以下とすることで、個片基板のいずれの側面も劈開面に対して成す角度を5°以上確保することができる。従って、劈開面を避けて分割するときに劈開面から割れてしまうことを防止することができるとともに、確実に側面に凹凸を形成することが出来る。
また、個片基板は、積層面が略矩形状に形成され、個片基板の一側面が、c面とm面のいずれかに対して30°以上、60°以下の角度を成すこととしてもよい。こうすることで、個片基板のいずれの側面も劈開面に対して成す角度を15°以上確保することができる。従って、劈開面を避けて分割するときに劈開面から割れてしまうことを、より確実に防止することができるとともに、より多くの凹凸を形成することが出来るので、より光の取り出し効率を上げることが出来る。
また、単結晶基板が、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、炭化珪素系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成されていることとしてもよい。
単結晶基板を、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、炭化珪素系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成すると、これらはc面およびm面が劈開面である六方晶系結晶構造を有するため、化合物半導体が積層される積層面をa面とし、積層面がを略矩形状となるように、また分割面が劈開面であるc面とm面のいずれかに対して所定角度を成すように、単結晶基板を分割した場合、分割された個片基板の全ての側面を劈開面とは異なる面とすることが出来る。
また、単結晶基板に積層される化合物半導体層は、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成されていることとしてもよい。
化合物半導体層は、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成することができる。特に、単結晶基板が、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体または窒化アルミニウム系化合物半導体のいずれかであるときには、化合物半導体層を結晶基板と同じ結晶方位で積層することができる。従って、単結晶基板を分割して個片基板としたときに、化合物半導体層の側面も劈開面と異なる面となるので、光取り出し効率を向上させることができる。
本願の実施形態におけるウエハは、半導体発光素子を形成する化合物半導体層が積層される単結晶基板であるウエハにおいて、単結晶基板は、a面が化合物半導体が積層される積層面であり、c面およびm面が劈開面である六方晶系結晶構造を有するものであり、単結晶基板であるウエハの結晶方向を示すOF(Oriented Flat)面は、単結晶基板の劈開面であるc面およびm面とは異なる面で形成されていることを特徴としたものである。
ウエハを分割するときや電極パターンを形成するときの基準となるOF面を、単結晶基板の劈開面であるc面およびm面とは異なる面とすることで、このウエハに化合物半導体を積層して、単結晶基板であるウエハ上に矩形状の発光素子の側面がOF面に平行または垂直になるようにパターニングし、これに沿って分割すれば、分割された単結晶基板(個片基板)の側面が劈開面とは異なる面とすることできる。個片基板の側面を劈開面と異なる面とすることで、その側面は平滑面とならずに微小な凹凸面となる。従って、製造工程で単結晶基板を分割するときに個片基板の側面が劈開面と異なる面となるようにするだけでよいので、光取り出し効率を向上させるために、新たな製造工程を追加する必要がない。
上記ウエハにおいて、OF面は、劈開面のいずれかに対して5°以上、85°以下の角度を成すこととしてもよい。
a面を表面とする六方晶結晶構造の基板においては、劈開面であるc面とm面はともに基板表面に垂直で互いの成す角は90°となる。従って、ウエハを分割するときや電極パターンを形成するときの基準となるOF面を、劈開面であるc面とm面のいずれかに対して所定角度を成す面で形成することで、このウエハに化合物半導体を積層して、単結晶基板であるウエハ上に矩形状の発光素子の側面がOF面に平行または垂直になるようにパターニングし、これに沿って分割すれば、分割された単結晶基板(個片基板)のいずれの側面も劈開面とは異なる面とすることができる。また、その所定角度を5°以上、85°以下とすることで、個片基板のいずれの側面も劈開面に対して5°以上確保することができる。従って、劈開面を避けて分割するときに劈開面から割れてしまうことを防止することができるとともに、確実に側面に凹凸を形成することが出来る。
また、OF面は、劈開面であるc面とm面のいずれかに対して30°以上、60°以下の角度を成すこととしてもよい。
ウエハを分割するときや電極パターンを形成するときの基準となるOF面を、劈開面であるc面とm面のいずれかに対して30°以上、60°以下の角度を成す面で形成することで、このウエハに化合物半導体を積層して、単結晶基板であるウエハ上に矩形状の発光素子の側面がOF面に平行または垂直になるようにパターニングし、これに沿って分割すれば、分割された単結晶基板(個片基板)のいずれの側面も劈開面に対して成す角度を30°以上確保することができる。従って、劈開面を避けて分割するときに劈開面から割れてしまうことを、より確実に防止することができるとともに、より多くの凹凸を形成することが出来るので、より光の取り出し効率を上げることが出来る。
また、単結晶基板が、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、炭化珪素系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成されていることとしてもよい。
単結晶基板を、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、炭化珪素系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成すると、これらはc面およびm面が劈開面である六方晶系結晶構造を有するため、化合物半導体が積層される積層面をa面とし、積層面がを略矩形状となるように、また分割面が劈開面であるc面とm面のいずれかに対して所定角度を成すように、単結晶基板を分割した場合、分割された個片基板の全ての側面を劈開面とは異なる面とすることが出来る。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。
(実施形態1)
実施形態1に係る半導体発光素子を図1および図2に基づいて説明する。
図1に示すように半導体発光素子1は、個片基板2と、化合物半導体層3と、n電極4と、p電極5からなり、ウエハ状態の単結晶基板の上に化合物半導体層を積層したものを分割して形成されている。単結晶基板である個片基板2は、光透過性を有するものであれば使用することができるが、本実施の形態では六方晶系結晶構造を有する窒化ガリウム系化合物半導体、炭化珪素系化合物半導体、酸化亜鉛系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成することができる。
半導体発光素子1は、図2に示すようにウエハの積層面20を略矩形状に分割することで、形成される。なお、図1は図2のA−A’線断面図である。そして個片基板2の側面21〜24は、ウエハから個片とするときに劈開面とは異なるように分割されているので、その表面は劈開面で分割したときと比較して微小な凹凸が多く形成されている。
化合物半導体層3は、この六方晶系結晶構造を有する個片基板2のa面上に積層されている。また、化合物半導体層3の結晶品質を良好なものとする為に、化合物半導体層3を積層する面を,個片基板2のa面から0.2°〜5°ずらした面とすることも可能である。
化合物半導体層3は、例えば個片基板2が窒化ガリウム系化合物半導体や、炭化珪素系化合物半導体や、酸化亜鉛系化合物半導体や、窒化アルミニウム系化合物半導体であれば、窒化ガリウム系化合物半導体層としたり、酸化亜鉛系化合物半導体であれば酸化亜鉛系化合物半導体層としたりすることができる。特に個片基板2を窒化ガリウム系化合物半導体とするときには、化合物半導体層3は窒化ガリウム系化合物半導体とするのが望ましい。また、個片基板2を酸化亜鉛系化合物半導体とするときには、化合物半導体層3は酸化亜鉛系化合物半導体層とするのが望ましい
このような材質の化合物半導体層3を単結晶基板2に成長させると、単結晶基板2の劈開面の方向と化合物半導体層3の劈開面の方向が一致した状態で化合物半導体層3が積層されるので、化合物半導体層3の側面も微小な凹凸面とすることができる。
化合物半導体層3は、n型半導体層31と、発光層32と、p型半導体層33とを備えている。n型半導体層31と個片基板2との間にバッファ層を設けることも可能である。化合物半導体層3は、単結晶基板(ウエハ)上に結晶成長装置を用いて、n型半導体層31と発光層32とp型半導体層33とを順次成長させて形成される。
n電極4は、化合物半導体層3が形成された単結晶基板を、ドライエッチングによりp型半導体層33と、発光層32と、n型半導体層31の一部とを除去して、n電極4を形成する領域を露出させ、この露出したn型半導体層31上に形成されている。単結晶基板がn型の導電性を持つ場合、ドライエッチングによりp型半導体層33と発光層32とn型半導体層31と単結晶基板の一部とを除去して、露出した単結晶基板上にn電極4を形成してもよい。また、単結晶基板の化合物半導体層3が積層された面とは反対側の面上にn電極4を形成してもよい。
p電極5は、ボンディング用の電極でありAuで形成されている。このp電極5は、多層構造とすることができる。例えばp型半導体層33とのオーミックコンタクトを得るためにコンタクト層を設けることができる。このコンタクト層は、In,Zn,Pt,Pd,Ni、または、これらの金属を少なくとも1種類以上含む合金、または導電性膜より形成することができる。またコンタクト層を、導電性膜とするときにはITO,ZnOとすることができる。
また、コンタクト層の次にp型半導体層33から通過する光を個片基板2の方向へ反射させるための反射層を設けることができる。この反射層は、Ag,Al,Rhまたは、これらの金属を少なくとも1種類以上含む合金より形成することができるが、AgまたはAg合金が高い反射率を有しているので望ましい。
ここで、化合物半導体層が積層された単結晶基板を分割して形成される半導体発光素子1について、図2、更に図3を参照しながら詳細に説明する。
図2および図3に示すようにウエハ10は、単結晶基板上に化合物半導体層3が積層され、n電極4、p電極5が形成されたものであり、スクライブされた後、スクライブラインに沿って分割して個片化され半導体発光素子1となる。このウエハ10は、ウエハを分割するときや電極パターンを形成するときの基準となるOF面11が形成された矩形の板状であり、六方晶系結晶構造を有する窒化ガリウム系化合物半導体、炭化珪素系化合物半導体、酸化亜鉛系化合物半導体または窒化アルミニウム系化合物半導体で形成されている。六方晶系結晶構造をもつこれらの半導体において、劈開面であるc面とm面との成す角は90°である。
ウエハ10上には、矩形状の発光素子の側面がOF面11に平行または垂直になるように、またその配列がOF面11に対し垂直および平行になるようにn電極4、p電極5が形成されており、このウエハ10を分割するときは、OF面11に平行方向または垂直方向に電極パターンに沿って行われる。本実施の形態では、このOF面11が劈開面であるm面に対して45°の角度を成した状態で設けられている。ウエハ10を、電極パターンに沿って分割することによって、矩形状に形成された個片基板2の側面21は、劈開面であるm面に対して45°の角度を成した状態となる。
つまり、個片基板2の側面21とm面のなす角度を45°とすることで、側面21はc面に対しても45°の角度を成すこととなる。また側面21に隣接した一方の側面22は、m面に対して45°の角度を成し、c面に対しても45°の角度を成すこととなる。
側面21の反対側となる側面23も、側面21と同様にm面に対して45°の角度を成し、c面に対しても45°の角度を成すこととなる。更に、側面22に平行である側面24は、側面22と同様にm面に対して45°の角度を成し、c面に対しても45°の角度を成すこととなる。
従って、単結晶基板とその上に積層された化合物半導体層を有するウエハ10をこのように分割して個片とすることで、個片基板2の側面21〜24を劈開面とは異なる面とすることができる。
この分割は、レーザースクライブ装置で、ウエハ10をそれぞれ個片に区分する深さ数十μmの溝を形成し、この溝に沿って割ることで容易に行うことができる。
尚、このレーザースクライブによる溝は、ウエハ10の化合物半導体層3が積層された側の面に形成しても、化合物半導体層3が積層された面とは反対側の面に形成しても良い。
このように個片基板2の側面21〜24を劈開面とは異なる面とすることで、側面21〜24が平滑面とならずに微小な凹凸が形成された面とすることができ、光取り出し効率を向上させることができる。
このように、製造工程で単結晶基板を分割するときに個片基板2の側面が劈開面と異なる面となるようにするだけでよいので、半導体発光素子1の側面に凹凸を形成して光取り出し効率を向上させるために、新たな製造工程を追加する必要がない。従って、製造時の煩雑さや、製造コストの増大を抑制することができる。
本実施の形態では、個片基板2の側面を劈開面に対して45°の角度を成すように分割した場合を説明した。これは、個片基板2の基準とした側面を劈開面に対して45°の角度を成すようにすると、いずれの劈開面に対しても45°の角度を成すことできるが、異なる劈開面同士が成す角度は必ず90°となるので、個片基板2の基準とした側面が劈開面に対して成す角度は、0°より大きく90°未満であればよい。
しかし、その角度が0°または90°に近いと劈開が容易な劈開面から割れるおそれがある。従って、その角度を5°以上、85°以下とすることで、個片基板2のいずれの側面も劈開面に対して5°以上の角度を成すことができるので、劈開面を避けて分割するときに劈開面から割れてしまうことを防止することができる。
更に、個片基板2の側面を、劈開面に対して30°以上、60°以下の角度を成すようにすると、個片基板2のいずれの側面も劈開面に対して30°以上の角度を成すことができるので、より確実に劈開面から割れてしまうことが防止できるとともに、より多くの凹凸が形成でき、光の取り出し効率をさらに高めることができる。
<実施例1>
図1に示す形状の実施形態1に係る半導体発光素子1を実際に作製した。その半導体発光素子1の製造方法の一例を、以下に説明する。
以下の説明では、主として有機金属気相成長法を用いた窒化ガリウム系化合物半導体の成長方法を示すものであるが、成長方法はこれに限定されるものではなく、分子線エピタキシー法や有機金属分子線エピタキシー法等を用いることも可能である。
分割後に個片基板2となる単結晶基板には、六方晶の結晶構造を持つ窒化ガリウムからなる厚さ約350μm、一辺が10mmの正方形からなるウエハを用いた。このウエハは、半導体層を積層する積層面20がa面であり、その表面は鏡面に仕上げられており、またOF面11が単結晶基板の劈開面であるm面に対し45°の角度を成すように形成されている。
この単結晶基板を反応管内の基板ホルダーに載置した後、単結晶基板の表面に付着している有機物等の汚れや水分を取り除く為のクリーニングを行った。
次に、SiをドープしたGaNからなるn型半導体層31、アンドープのAl0.03Ga0.97Nからなるn型クラッド層(図示せず)、アンドープのIn0.15Ga0.85Nからなる量子井戸構造の井戸層(図示せず)とアンドープのGaNからなる障壁層(図示せず)を交互に積層したMQW発光層32、MgをドープしたAl0.03Ga0.97Nからなるp型半導体層33を順次成長させた。
このようにして形成した窒化ガリウム系化合物半導体3からなる積層構造に対して、別途アニールを施すことなく、その表面上にCVD法によりSiO2膜を堆積させた後、フォトリソグラフィーとウェットエッチングにより一辺の長さが1mmの正方形状にパターンニングしてエッチング用のSiO2マスクを形成させた。そして、反応性イオンエッチング法により、p型半導体層33と発光層32とクラッド層とn型半導体層31の一部とを積層方向と逆の方向に向かって除去させて、n型半導体層31の表面を露出させた。
そして、フォトリソグラフィーとスパッタ法により、露出されたn型半導体層31の表面の一部に、Tiからなるコンタクト層とAuからなるn側ボンディング層が積層されたn電極4を形成した。さらに、エッチング用のSiO2マスクをウェットエッチングにより除去させた後、フォトリソグラフィーとスパッタ法により、p型半導体層33の表面のほぼ全面に、Ptからなるコンタクト層(図示せず)とAgからなる反射層とTiからなるバリア層とAuからなるp側ボンディング層とが積層されたp電極5を形成した。
以上3回のフォトリソグラフィーの際、矩形状の発光素子の側面がOF面11と平行又は垂直となるように、碁盤の目のようにパターニングされているフォトマスクをOF面11に合わせることにより、図2のようにエッチングパターン及びn電極4、p電極5の配列がOF面11に対し垂直および平行となったウエハ10が得られた。
この後、ウエハ10の化合物半導体層3が積層された面とは反対側の面を研磨して300μm程度の厚さに調整した。
次に、レーザースクライブ装置により、ウエハ10の化合物半導体層3が積層された面とは反対側の面に深さ40μm程度の割り溝を、OF面11に対し垂直および平行に伸びるように形成した。そして化合物半導体層3が積層された面側に割り溝の位置に合せてブレイキング装置のカッター刃を当てて、ウエハ10を割り溝に沿って分割して個片化し、一辺の長さが1mmの正方形状の半導体発光素子1を得た。
このようにして得られた半導体発光素子1は、OF面11が単結晶基板2の劈開面であるm面に対し45°の角度を成すように形成されているので、その全ての側面が劈開面に対し45°の角度を成している。
図4(A)に、m面に対し45°の角度を成した本実施例の半導体発光素子1の側面21の凹凸の状態の模式図を示す。また、図4(B)には、図5に示すようにOF面12をm面に平行に形成し、OF面12に対し垂直方向及び平行方向に割り溝を形成して分割するという、従来の方法により作製した比較例1の半導体発光素子の側面25の凹凸の状態の模式図を示す。
図4(A)に示すように、本実施例の半導体発光素子1の側面21には微小な凹凸が形成されていることが分かる。一方図4(B)に示すように、比較例1の半導体発光素子の側面25は、多少凹凸面となっているものの、図4(A)と比較すると平滑な面であることが判る。
次に、これら半導体発光素子を、電極4,5形成面側を下向きにして、Siダイオードからなるサブマウント上にAuバンプを介してそれぞれ接続し、そのサブマウントをステム上にAgペーストにより載置し、透明樹脂でモールドして、350mAの順方向電流で駆動したところ、ともにピーク発光波長460nm程度の青色で発光した。しかし、発光出力には違いが見られ、比較例1の半導体発光素子の光出力は137mWであったが、本実施例の半導体発光素子1の光出力は158mWであり、劈開面と平行方向に側面を持つ比較例1の半導体発光素子より約15%高い発光出力となった。
本発明では、新たな製造工程を追加する必要なしに、半導体発光素子の側面に凹凸を形成し、光取り出し効率を向上させることができるので、透光性基板上に半導体層を積層して形成された半導体発光素子およびウエハ等に好適である。
図1は、実施形態1に係る半導体発光素子を示す断面図である。 図2は、実施形態1に係るウエハおよびこのウエハ上に形成された化合物半導体層および電極を示す図である。 図3は、実施形態1に係るウエハを示す斜視図である。 図4(A)は、実施例1に係る半導体発光素子の側面の面粗さを示す図であり、(B)は従来の半導体発光素子である比較例1の側面の面粗さを示す図である。 図5は、比較例1に係る従来のウエハおよびこのウエハ上に形成された化合物半導体層および電極を示す図である。
符号の説明
1 半導体発光素子
2 個片基板
3 化合物半導体層
4 n電極
5 p電極
10 ウエハ
11、12 OF面
20 積層面
21〜28 側面
31 n型半導体層
32 発光層
33 p型半導体層

Claims (9)

  1. 単結晶基板に化合物半導体層を積層し、前記単結晶基板を分割して個片化することで形成された半導体発光素子において、
    前記単結晶基板は、a面が前記化合物半導体層が積層される積層面であり、a面と直交するc面及びm面が劈開面である六方晶系結晶構造を有するものであり、
    分割された単結晶基板である個片基板の全ての側面は、前記単結晶基板の前記劈開面とは異なる面で形成されていることを特徴とする半導体発光素子。
  2. 前記個片基板は、前記積層面が略矩形状に形成され、前記個片基板の一側面が、前記劈開面のいずれかに対して5°以上、85°以下の角度を成すことを特徴とする請求項1記載の半導体発光素子。
  3. 前記個片基板は、前記積層面が略矩形状に形成され、前記個片基板の一側面が、前記劈開面のいずれかに対して30°以上、60°以下の角度を成すことを特徴とする請求項1記載の半導体発光素子。
  4. 前記単結晶基板は、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、炭化珪素系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成されていることを特徴とする請求項1から3のいずれか1項に記載の半導体発光素子。
  5. 前記単結晶基板に積層される化合物半導体層は、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、窒化アルミニウム系化合物半導体のいずれかで形成されていることを特徴とする請求項1から4のいずれか1項に記載の半導体発光素子。
  6. 半導体発光素子を形成する化合物半導体層が積層される単結晶基板であるウエハにおいて、
    前記単結晶基板は、a面が前記化合物半導体層が積層される積層面であり、a面と直交するc面及びm面が劈開面である六方晶系結晶構造を有するものであり、
    前記単結晶基板の結晶方向を示すOF面は、前記劈開面とは異なる面で形成されていることを特徴とするウエハ。
  7. 前記OF面が、前記劈開面のいずれかに対して5°以上、85°以下の角度を成すことを特徴とする請求項6記載のウエハ。
  8. 前記OF面が、前記劈開面のいずれかに対して30°以上、60°以下の角度を成すことを特徴とする請求項6記載のウエハ。
  9. 前記単結晶基板は、窒化ガリウム系化合物半導体、酸化亜鉛系化合物半導体、炭化珪素系化合物半導体または窒化アルミニウム系化合物半導体のいずれかで形成されていることを特徴とする請求項6から8のいずれか1項に記載のウエハ。
JP2007115554A 2006-04-27 2007-04-25 半導体発光素子およびウエハ Pending JP2008277323A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007115554A JP2008277323A (ja) 2007-04-25 2007-04-25 半導体発光素子およびウエハ
KR1020087028168A KR20090012241A (ko) 2006-04-27 2007-04-27 반도체발광소자 및 웨이퍼
CN2007800151419A CN101432898B (zh) 2006-04-27 2007-04-27 半导体发光元件及晶片
EP07742997A EP2020690A4 (en) 2006-04-27 2007-04-27 SEMICONDUCTOR LUMINOUS ELEMENT AND WAFER
PCT/JP2007/059562 WO2007126158A1 (ja) 2006-04-27 2007-04-27 半導体発光素子およびウエハ
US12/298,664 US7915714B2 (en) 2006-04-27 2007-04-27 Semiconductor light emitting element and wafer
US12/689,759 US20100187565A1 (en) 2006-04-27 2010-01-19 Semiconductor light emitting element and wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115554A JP2008277323A (ja) 2007-04-25 2007-04-25 半導体発光素子およびウエハ

Publications (1)

Publication Number Publication Date
JP2008277323A true JP2008277323A (ja) 2008-11-13

Family

ID=40054980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115554A Pending JP2008277323A (ja) 2006-04-27 2007-04-25 半導体発光素子およびウエハ

Country Status (1)

Country Link
JP (1) JP2008277323A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558846B1 (ja) * 2009-03-11 2010-10-06 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010113406A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2011125301A1 (ja) * 2010-04-02 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP2012028445A (ja) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp 半導体素子およびその製造方法
JP2012028444A (ja) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp 半導体素子およびその製造方法
WO2013008367A1 (ja) 2011-07-14 2013-01-17 パナソニック株式会社 窒化物系半導体発光素子
US8729587B2 (en) 2010-04-01 2014-05-20 Panasonic Corporation Nitride semiconductor element and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085736A (ja) * 1999-09-10 2001-03-30 Sharp Corp 窒化物半導体チップの製造方法
JP2002329684A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd 窒化物半導体チップ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085736A (ja) * 1999-09-10 2001-03-30 Sharp Corp 窒化物半導体チップの製造方法
JP2002329684A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd 窒化物半導体チップ及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558846B1 (ja) * 2009-03-11 2010-10-06 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8309984B2 (en) 2009-03-11 2012-11-13 Panasonic Corporation Nitride-based semiconductor device having electrode on m-plane
WO2010113406A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010113238A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4568380B1 (ja) * 2009-04-03 2010-10-27 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8729587B2 (en) 2010-04-01 2014-05-20 Panasonic Corporation Nitride semiconductor element and manufacturing method therefor
WO2011125301A1 (ja) * 2010-04-02 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4820465B1 (ja) * 2010-04-02 2011-11-24 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP2012028445A (ja) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp 半導体素子およびその製造方法
JP2012028444A (ja) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp 半導体素子およびその製造方法
WO2013008367A1 (ja) 2011-07-14 2013-01-17 パナソニック株式会社 窒化物系半導体発光素子
US9117961B2 (en) 2011-07-14 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Nitride-based semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
US7915714B2 (en) Semiconductor light emitting element and wafer
JP5509394B2 (ja) 半導体発光素子、その製造方法及び光源装置
US8709845B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
EP1697983B1 (en) Highly efficient gallium nitride based light emitting diodes having surface roughening
JP4626306B2 (ja) 窒化物半導体発光素子およびその製造方法
JP5025932B2 (ja) 窒化物半導体発光素子の製造方法
JP2007273659A (ja) GaN系半導体発光素子およびランプ
JP5056799B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
JP2011211075A (ja) Iii族窒化物半導体発光素子の製造方法
EP2485281A1 (en) Light-emitting element
JP2008277323A (ja) 半導体発光素子およびウエハ
JP2007258672A (ja) 発光ダイオード及びその製造方法
JP2010098068A (ja) 発光ダイオード及びその製造方法、並びにランプ
JP2008311317A (ja) 半導体発光素子
JP4937599B2 (ja) 窒化物半導体発光素子及びその製造方法
JP2009218495A (ja) 半導体発光素子および半導体発光装置
JP2009239075A (ja) 発光素子
JP2007294804A (ja) 半導体発光素子およびウエハ
US20050079642A1 (en) Manufacturing method of nitride semiconductor device
US20130015480A1 (en) Semiconductor light emmiting device
US20040169185A1 (en) High luminescent light emitting diode
KR100889569B1 (ko) 질화물계 발광소자 및 그 제조방법
JP2009088353A (ja) 発光装置
JP2005142532A (ja) 窒化物半導体素子の製造方法
JP2009033205A (ja) 窒化物半導体発光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211