JP4540184B2 - X線応力測定方法 - Google Patents

X線応力測定方法 Download PDF

Info

Publication number
JP4540184B2
JP4540184B2 JP2000155702A JP2000155702A JP4540184B2 JP 4540184 B2 JP4540184 B2 JP 4540184B2 JP 2000155702 A JP2000155702 A JP 2000155702A JP 2000155702 A JP2000155702 A JP 2000155702A JP 4540184 B2 JP4540184 B2 JP 4540184B2
Authority
JP
Japan
Prior art keywords
ray
angle
incident
axis
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000155702A
Other languages
English (en)
Other versions
JP2001336992A (ja
Inventor
悦也 柳瀬
良徳 嵩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000155702A priority Critical patent/JP4540184B2/ja
Publication of JP2001336992A publication Critical patent/JP2001336992A/ja
Application granted granted Critical
Publication of JP4540184B2 publication Critical patent/JP4540184B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属やセラミックスや、コーティング膜等の内部、特に、表層部に残留する内部応力を測定する技術に関する。
【0002】
【従来の技術】
まず、X線応力測定方法の一般的な測定原理について説明する。図3において、被測定物(以下試料)1を矢印F方向に引っ張ると、格子面間隔dは面法線が引っ張り方向に近い結晶ほど広くなる。また、試料面法線Lと格子面法線Nがつくる角度をψとすると、格子面間隔dの変化はψが大きいほど大きく、格子面間隔dのψに対する変化は応力が大きいほど顕著となるので、X線応力測定ではこの変化を測定して応力を求める。本X線応力測定原理は、一般にsin2ψ法として知られている。
【0003】
次に、金属板等の試料1の応力を測定する場合について説明する。所定の位置に試料1を水平方向に固定し、該試料1の上方にはX線を発生するX線源2及びX線を検出するX線検出器3が設けられる。X線応力測定方法はX線の回折現象を利用して応力を求める方法であり、X線源2から出たX線r1は試料1上の照射点Pに入射すると、該試料1に入射したX線r1と試料1内の結晶格子面との間で所定の回折条件が満足されると、試料1で回折が生じその回折X線r2がX線検出器3によって検出される。
【0004】
回折角をθ、X線の波長をλとすると、この試料1の結晶粒はbraggの回折条件式(2dsinθ=nλ)を満たす間隔dを持つ格子面でX線を回折している。また、その格子面の法線Nは入射X線r1と回折X線r2とのなす角度(2η)を2分している。
【0005】
上記の測定系によって行なわれる応力測定は、大きく分けて、結晶格子面法線Nの角度位置を変更する格子面法線角度変更工程と、回折X線の回折ピーク角度を測定する回折X線角度測定工程の二つの工程を有している。なお、試料1の面法線をL、該試料面法線Lと結晶格子面法線Nとのなす角度をψ、試料面法線Lと入射X線r1とのなす角度をψ0とする。
【0006】
格子面法線の角度変更工程において、X線源2及びX線検出器3は一体状態のままX線照射点Pを中心として所定のステップ角度ごとに試料1を回転(走査)させる。つまり、光軸間角と2η値を一定に保持した状態でψ角またはψ0ステップ的に変化させる。この各ステップ毎にX線回折角度のズレ量測定を行い応力を検出するようにしている。
【0007】
回折X線の回折角度のズレ量測定工程は、ψ角が任意の一つのステップ位置に固定された状態で、X線源から試料1へX線を照射して、その時に発生する回折X線ピークを検出する。試料1内に内部応力が発生していない場合、その試料1についてのX線回折角度2θは予め判っており、ψ角またはψ0角を変化させてもその2θ値は変化しない。従って、X線源2に対するX線検出器3の角度位置をその2θ値にあわせておけば、X線検出器3によって回折ピークが検出される。
【0008】
ところが、試料1内に内部応力が発生していると、回折X線ピークは所定の2θ位置には発生せず、角度ズレが生じる。このような場合には、X線源2を固定状態にしてX線検出器3をX線照射点Pを中心として揺動させたり、または、X線源2を揺動させ、同時にX線検出器3を揺動させることにより、回折条件を満たす角度を探し、それにより、上記回折X線の回折ピーク角度が検出される。一般にX線源2及びX線検出器3の両方を揺動させる測定方法はψ角一定法と呼ばれ、X線検出器3のみを揺動させる測定方法はψ0角一定法と呼ばれている。
【0009】
以上のように、結晶格子面法線Nを決められたステップ角度ごとに、順次回転させ、各ステップ角度毎に回折X線の回折ピーク角度を測定して、測定された回折ピーク角度を図4に示すような、2θ−sin2ψ線図にプロットする。こうして得られた値を線で結ぶとその線はA・B・Cのように直線となる。試料1内に内部応力が発生していない場合は、各ψ位置又は各ψ0位置において、回折X線のピークにズレが生じないので、得られる線図はBのように傾きゼロの直線となる。また、試料内に圧縮の内部応力が発生していると、得られる線図はAのように正の傾きを有する直線となる。更に、試料内に引っ張りの内部応力が発生していると、得られる線図は直線Cのように負の傾きを有する直線となる。従って、2θ−sin2ψ線図において得られた直線の傾き方向及び傾きの大きさを読み取れば、試料1内部に発生している内部応力を知ることができる。
【0010】
従来のX線応力測定方法においては、格子面法線が試料1上のX線入射点Pを中心として、X線入射点Pと入射X線r1と回折X線r2とをとおる面により形成される面が、X線源2と検出器3が走査する面と一致する並傾法と、X線入射点Pと入射X線r1と回折X線r2とをとおる面により形成される面と、走査する面を傾斜させる側傾法が知られている。並傾法および側傾法のいずれの方法によっても、ψ角またはψ0角を変化させると、入射X線r1の角度が試料1面に対して角度が変化するのでX線の試料に対する侵入深さが異なるので、正確な測定は難しい。つまり、従来の並傾法では、X線の入射角度、つまり、角度ω(図2)を変更してψ角を変える方法では、X線の侵入深さが異なってしまうのである。つまり、入射角度が小さいと侵入深さは浅く、入射角度が大きくなると侵入深さが深くなり、例えば金属表面にメッキを施した場合の応力を測定した場合、一般に試料深さ方向に応力の分布があるため、2θ−sin2ψ線図が直線とはならず、応力値の評価が困難であった。このようなことから、回折角θが一定となるようにして応力を測定する方法が各種提案されている。例えば、特開平5−288616や特開平7−260598の技術である。
【0011】
【発明が解決しようとする課題】
特開平5−288616の技術は、試料面法線Lに対して角度ψで入射する入射X線r1の光軸を中心に試料1を180度回転させて、2位置で回折X線を測定するようにしている。しかし、2位置しかプロットできないために、データとしては不足し、正確性では劣ってしまう。また、特開平7−260598の技術では、X線源2と検出器3を固定した状態で回折角θが一定となるように、X線入射点Pと入射X線r1と回折X線r2とをとおる面と、X線入射点Pを通る試料表面と平行な面が交差する線を回転軸として、この軸を中心に試料を回転して半導体検出器により、回折ピーク角度ではなく、回折エネルギーを測定していた。しかしながら、半導体検出器を用いて回折エネルギーを測定する方法では、エネルギー分解能が悪いため、正確な値は得られなかった。そこで、本発明は入射X線r1と試料表面との間の角度を一定としたまま、ψの角度を変化させて測定することで、正確な応力を測定できるようにしたものである。
【0012】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。即ち、X線応力測定方法は、X線源2からの入射X線r1と直交し、前記入射X線が入射する被測定物1上の照射点Pを通るω軸と、前記ω軸及び前記被測定物1の法線Lに直交し、前記照射点Pを通るχ軸まわりに前記被測定物1を回転させて、前記被測定物1で回折したX線を検出して内部応力を測定するX線応力測定方法であって、被測定物1にX線を入射させ、前記被測定物1の表面と前記入射X線r1とがなす角である入射角αを一定にし、前記被測定物1を前記ω軸まわり及び前記χ軸まわりに回転させて、前記法線Lと回折面の法線Nとがなす角度ψを変化させ、前記被測定物1で回折したX線を検出して、当該検出された値に基づいて内部応力を測定するものである。
【0013】
また、前記被測定物1をχ軸まわりに回転させた後にω軸まわりに回転させて、前記角度ψを変化させるものである。
また、cosχ×sinωの値を一定にして入射角αを固定し、cosχ×cos(θ−ω)を変化させて角度ψを変化させるものである。但し、θはブラッグ角。
【0014】
【発明の実施の形態】
本発明を解決するための手段は以上の如くであり、次に本発明の実施の形態を説明する。図1は本発明のX線応力測定方法により測定するための装置の概略図、図2はX線応力測定法を示す図である。
【0015】
図1において、本発明のX線応力測定装置は、基台10上に一対の支持台11・11が載置固定され、該支持台11・11上にリング状の軸受体12・12が固定され、該軸受体12・12の軸心をω軸とする。このω軸は入射X線r1の方向を前後方向とすると、左右水平方向に配置される。該軸受体12・12の外側から両者を跨ぐように取付フレーム13が装着され、該取付フレーム13は支持部13a・13aと、該支持部13a・13aを連結する水平部13bからなり、Π形に構成されて両側の支持部13a・13aがω軸を中心に回転可能に取り付けられ、図示しないアクチュエーターによりω軸を中心に任意の角度に回転駆動可能に構成されている。そして、該取付フレーム13の水平部13bに左右方向(長手方向)に位置調整可能にX線検出器3が装着され、該X線検出器3の検出方向はω軸を向くように取り付けられている。こうして所謂、ゴニオメータが構成される。
【0016】
また、前記軸受体12・12の内側にはω軸を中心に回動可能に揺動体14の両側が支持され、図示しないアクチュエーターによりω軸を中心に任意の角度に回転駆動可能に構成されている。該揺動体14は両側のリング状の支持部14a・14a間にはω軸より偏心した位置に連結部14bが設けられ、該連結部14bの中央に上方を開放した略C字状に構成した受部14cが形成されている。該受部14cに試料受台15の回動支持部15aが受部14cに内接して回動可能に支持され、この回動の中心をχ軸とする。このχ軸はω軸を中心として該回転支持部15aを回転させることにより、X線源2からの入射X線r1と一致させることができる。該回動支持部15aは受部14cに対して図示しないアクチュエーターにより回動駆動されるようにしている。
【0017】
前記回動支持部15aの下部からω軸下方に向かってアーム15bが延設され、該アーム15b上に図示しない位置調整機構を介して試料台16が配置される。該試料台16上に載せた試料(被測定物)1の略中央表面が前記ω軸とχ軸の交点となるように設定される。なお、前記アクチュエーターはモーター等より構成されて、制御回路と接続され、自動または手動操作によって適宜位置まで駆動可能としている。
【0018】
次に、上記X線応力測定装置を用いて、sin2ψ法により応力測定を行なう方法について図1、図2より説明する。前記試料台16上に試料1を載置保持させ、位置調整機構により試料1の略中央表面がω軸上に位置するように調整する。さらに試料1を試料表面に平行な方向に駆動し、測定したい箇所とX線入射点Pを一致させる。次に、X線を入射させる角度ωを設定して、その角度となるように揺動体14を回転させ固定する。この状態でX線源側よりX線を照射し、X線検出部3でX線信号を取り出し、取付フレーム13を回転させて、回折強度曲線を得て、回折強度が最高になる角度2θを求める。
【0019】
次に、ψ角を変えながらそれぞれのψ角のときの回折強度が最高になる角度2θを求め、この求めた2θを2θ−sin2ψ線図にプロットしてその傾きより応力を求めるのであるが、従来の並傾法では、揺動体14を回動してX線の入射角度、つまり、角度ωを変更してψ角を変えるようにして、この入射角ωを変更する方法でプロットすると、図6の如くなり、sin2ψの大きい域において非線形性が見られ、直線性が劣ることにより正確な応力を測定することは難しいことがわかる。
【0020】
これに対して、本発明は並傾法と側傾法を混合して組み合わせた新規なsin2ψ測定方法であり、X線の侵入深さが一定となるように、試料1表面と入射X線r1のなす入射角度αを一定にしたままψを変化させて測定できるようにしたものである。つまり、入射角度αを設定すると、試料面法線Lと入射X線r1と回折X線r2とが同一面上に位置するときは前記と同じ測定を行い。次にψ角を変えるときには、先ず、χ軸を中心に試料受台15を回転させる。こうして回転させた状態では、前記の試料面法線Lと入射X線r1と回折X線r2とが形成する面と試料表面が交差する線と、入射X線r1との間の角度は同一であるが、入射X線r1と試料表面との間の角度は回転方向によって大きくなったり、小さくなったりする。そこで、ω軸を中心として揺動体14を回転させて、試料1に対する入射角度をαとなるようにする。但し、入射角度αを一定にするために、ω軸の代わりに、χ軸を中心として試料受台15を回転させて入射角度をαに変更する構成とすることも可能である。
【0021】
このように試料1を入射X線r1を軸として角度χで回転させながら同時にω軸を中心に回転させて、cosχ×sinωを一定(sinα)に固定しながらψ(cosψ=cosχ×cos(θ−ω)、θ:ブラッグ角で決められる)を変化させると、X線と被測定物となる試料1の表面のなす角度を一定にしたままψを変化させることができる。
こうして求めた2θを2θ−sin2ψ線図にプロットした結果が、図5で示され、良い直線性が得られたことを示している。
【0022】
以上のように、試料1に対する入射角度αを一定にしたままψを変化させて測定すると、X線の侵入深さが一定となり、所望の深さの応力測定が可能となり、また、入射角度(sinα)を変更して応力測定を行なうことによって、容易に深さ方向の応力分布を精度良く測定することができるのである。また、集合組織を持つような試料の場合であっても、回折信号強度が極大となるψを何点か測定することによって、深さ方向の応力分布を測定することもできる。
【0023】
【発明の効果】
以上の説明したように、本発明により、入射X線r1と試料表面との間の角度を一定とし、ψの角度を変化させて測定することにより、X線の侵入深さが一定となり、同一深さの試料の応力を測定でき、精度の高い測定が可能となった。そして、侵入深さを正確に位置決めして、その深さの回折を正確に測定できるので、深さ方向の応力分布分析も可能となったのである。
【図面の簡単な説明】
【図1】 本発明のX線応力測定方法により測定するための装置の概略図である。
【図2】 X線応力測定法を示す図である。
【図3】 X線応力測定原理を示す図である。
【図4】 図3で得られる2θ−sin2ψ線図である。
【図5】 本発明のX線応力測定により得られる2θ−sin2ψ線図である。
【図6】 従来の並傾法で測定して得られる2θ−sin2ψ線図である。
【符号の説明】
P X線照射点
r1 入射X線
1 被測定物(試料)
2 X線源
3 X線検出器
10 基台
13 取付フレーム
14 揺動体
15 試料受台
16 試料台

Claims (3)

  1. X線源2からの入射X線r1と直交し、前記入射X線が入射する被測定物1上の照射点Pを通るω軸と、前記ω軸及び前記被測定物1の法線Lに直交し、前記照射点Pを通るχ軸まわりに前記被測定物1を回転させて、前記被測定物1で回折したX線を検出して内部応力を測定するX線応力測定方法であって、
    被測定物1にX線を入射させ、
    前記被測定物1の表面と前記入射X線r1とがなす角である入射角αを一定にし、
    前記被測定物1を前記ω軸まわり及び前記χ軸まわりに回転させて、前記法線Lと回折面の法線Nとがなす角度ψを変化させ、
    前記被測定物1で回折したX線を検出して、当該検出された値に基づいて内部応力を測定する、X線応力測定方法。
  2. 前記被測定物1をχ軸まわりに回転させた後にω軸まわりに回転させて、前記角度ψを変化させる、請求項1に記載のX線応力測定方法。
  3. cosχ×sinωの値を一定にして入射角αを固定し、
    cosχ×cos(θ−ω)を変化させて角度ψを変化させる、請求項1に記載のX線応力測定方法。
    但し、θはブラッグ角
JP2000155702A 2000-05-26 2000-05-26 X線応力測定方法 Expired - Fee Related JP4540184B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155702A JP4540184B2 (ja) 2000-05-26 2000-05-26 X線応力測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155702A JP4540184B2 (ja) 2000-05-26 2000-05-26 X線応力測定方法

Publications (2)

Publication Number Publication Date
JP2001336992A JP2001336992A (ja) 2001-12-07
JP4540184B2 true JP4540184B2 (ja) 2010-09-08

Family

ID=18660598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155702A Expired - Fee Related JP4540184B2 (ja) 2000-05-26 2000-05-26 X線応力測定方法

Country Status (1)

Country Link
JP (1) JP4540184B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022046416A (ja) * 2020-09-10 2022-03-23 株式会社神戸製鋼所 測定システム及び測定方法
CN113358258B (zh) * 2021-06-23 2023-02-28 中国航发沈阳发动机研究所 一种发动机叶片表面残余应力测试系统及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136698A (ja) * 1994-11-09 1996-05-31 Nippon Steel Corp 円弧状スライダー駆動式ゴニオメータおよび立体角回折計
JPH11304731A (ja) * 1998-04-22 1999-11-05 Rigaku Denki Kk X線装置
JP2000035409A (ja) * 1998-07-17 2000-02-02 Rigaku Corp X線装置及びx線測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149081A (en) * 1974-10-25 1976-04-27 Hitachi Ltd Shiryono etsukususenoryokusokuteiho
JPH03148027A (ja) * 1989-11-02 1991-06-24 Sumitomo Metal Ind Ltd 薄膜試料の応力測定方法
JPH0949812A (ja) * 1995-08-08 1997-02-18 Rigaku Corp X線回折装置の試料ホルダ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136698A (ja) * 1994-11-09 1996-05-31 Nippon Steel Corp 円弧状スライダー駆動式ゴニオメータおよび立体角回折計
JPH11304731A (ja) * 1998-04-22 1999-11-05 Rigaku Denki Kk X線装置
JP2000035409A (ja) * 1998-07-17 2000-02-02 Rigaku Corp X線装置及びx線測定方法

Also Published As

Publication number Publication date
JP2001336992A (ja) 2001-12-07

Similar Documents

Publication Publication Date Title
US4426718A (en) X-Ray diffraction apparatus
US5768335A (en) Apparatus and method for measuring the orientation of a single crystal surface
US8953743B2 (en) X-ray stress measurement method and apparatus
JP6000696B2 (ja) X線応力測定装置およびx線応力測定方法
JP3109789B2 (ja) X線反射率測定方法
JP4540184B2 (ja) X線応力測定方法
JPH0689887A (ja) 結晶方位決定方法
JP2003194741A (ja) X線回折装置、反射x線測定方法および逆格子空間マップ作成方法
US7242743B2 (en) X-ray diffraction apparatus and method
JP4367820B2 (ja) X線反射率測定装置
US3808878A (en) Method for sensing the depth of cellular pits formed in a material layer
JP4227706B2 (ja) 結晶方位測定装置および結晶方位測定方法
JPH10253553A (ja) X線回折測定における単結晶試料の結晶傾き角調整方法
JPH112614A (ja) 単結晶軸方位x線測定方法及び装置
JPH11281595A (ja) 全自動極点図形測定装置
JPH05296946A (ja) X線回折装置
JP2999272B2 (ja) 平行ビーム法x線回折装置
JP2006105748A (ja) ビーム入射を伴う分析方法
JPH02266249A (ja) 結晶面のx線回折測定方法
JPH04329347A (ja) 薄膜試料x線回折装置
JP2890056B2 (ja) 探針検査方法
JPH11248652A (ja) X線回折測定法およびx線回折装置
JP2653084B2 (ja) 表面分析装置
KR20070002726A (ko) 피측정물의 결정방향 측정장치 및 그 측정방법
JPH0225738A (ja) X線回折装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees