JP4367820B2 - X線反射率測定装置 - Google Patents

X線反射率測定装置 Download PDF

Info

Publication number
JP4367820B2
JP4367820B2 JP2001094136A JP2001094136A JP4367820B2 JP 4367820 B2 JP4367820 B2 JP 4367820B2 JP 2001094136 A JP2001094136 A JP 2001094136A JP 2001094136 A JP2001094136 A JP 2001094136A JP 4367820 B2 JP4367820 B2 JP 4367820B2
Authority
JP
Japan
Prior art keywords
ray
sample
angle
incident
sample surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001094136A
Other languages
English (en)
Other versions
JP2002286658A (ja
Inventor
清爾 川戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2001094136A priority Critical patent/JP4367820B2/ja
Publication of JP2002286658A publication Critical patent/JP2002286658A/ja
Application granted granted Critical
Publication of JP4367820B2 publication Critical patent/JP4367820B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、X線を試料表面に低角度で照射し、該試料表面から反射してきたX線の強度変化を検出することにより、試料の物性を非破壊で分析するためのX線反射率測定装置およびその方法に関する。
【0002】
【従来の技術】
X線を用いた測定方法として、X線の鏡面反射現象を利用して試料の物性を評価するX線反射率測定方法がある。このX線反射率測定方法は、例えば、基板材料の表面に形成した単層あるいは多層よりなる薄膜の厚さ、密度、薄膜表面の粗さ、および薄膜と基板材料との界面の粗さ等の評価に適している。このX線反射率測定方法の原理は、以下の通りである(図8〜図11)。
【0003】
図8において、表面が平坦な物質201の表面すれすれの低角度θでX線を照射すると、物質201に特有の臨界角度以下ではX線が全反射する。この臨界角度は非常に小さく、例えばCuKαのX線に対し、Siやガラス板では0.22°、Niでは0.42°、そしてAuでは0.57°である。
【0004】
この臨界角度は、物質の電子密度に依存して変化する。X線の照射角度がこの臨界角度よりも大きくなるにしたがって、X線は次第に物質中へ深く入り込んでいく。理想的な平面をもった物質では、図9に曲線Aで示すように、X線の照射角度θが臨界角度θc以上となると、X線反射率がθ−4に比例して急激に減少する。さらに、物質の表面が粗れていると、減少の程度は破線Bで示すように一層大きくなる。図の縦軸において、Iは照射X線強度であり、Iは反射X線強度である。
【0005】
図10に示すように、このような物質を基板201として、その基板201上に電子密度の異なる別の物質を均一に積層して薄膜202を形成する。そして、X線を低角度で照射すると、基板201と薄膜202との間の界面、および薄膜202の表面で反射したX線が、互いに強めあったり弱めあったりする。その結果、図11に示すように、反射率曲線にX線の干渉による振動パターンCが現れる。
【0006】
この振動パターンCの周期から、薄膜202の厚さを決定でき、また振動パターンの振幅の角度依存性から、表面および界面の情報が得られる。さらに、振動パターンの周期と振幅の両方を併せて検討することにより、薄膜202の密度を求めることができる。通常のX線反射率測定では、試料表面へのX線の照射角度θを0°〜5°程度、広い範囲の場合で0°〜10°の範囲で変化させ、試料表面で反射したX線の強度を照射X線の光路に対して2θの方向で検出する。
【0007】
図12は、従来のX線反射率測定装置の構成を示す平面模式図である。
同図に示すX線反射率測定装置300では、Cuターゲットを用いたポイントフォーカスのX線源301から出射したX線302を、Ge(111)結晶単色器303によりCuKα1線のみの単色平行X線に変換して、試料表面304に低角度で照射する。そして、試料表面304から反射してきたX線307を、NaIシンチレーション計数管を用いた検出器305で検出している。試料表面304に対するX線の入射角度と反射角度の走査は、最小走査角度幅0.001°のゴニオメータ306を用いて行っている。
【0008】
また、特開平7−311163号公報に開示されたX線反射率測定装置は、ポイントフォーカスのX線源および結晶単色器を含むX線照射ユニットを第1アームで支持し、また検出器を含む検出器ユニットを第2アームで支持して、試料を水平に支持したままで、各アームを昇降装置によってタンジェントバー方式で独自に同期して各アームの試料表面に対する角度を走査し、X線の照射角度の走査および検出器の照射X線の光路に対する角度の走査を行っている。
【0009】
【発明が解決しようとする課題】
上述した従来のX線反射率測定装置においては、ポイントフォーカスのX線源から取り出されるX線の長さ寸法が小さく、試料表面の限定された一部のみにX線を照射して、該部分のX線反射率を測定する手法が採られていた。したがって、試料表面の全領域にわたり諸特性の変化等を分析するエリアマッピングを行うには、測定領域を変更して多数回のX線反射率測定を実施する必要があり、煩雑であった。
【0010】
この問題に対し、ラインフォーカスのX線を発生するX線源を用いて、試料表面に対する測定可能領域を拡大した構成のX線反射率測定装置も知られている。図13は、この種のX線反射率測定装置の従来例を示す図である。同図に示すX線反射率測定装置400は、特開平5−322804号公報に開示されているもので、長手寸法が30mmのラインフォーカスのX線源401を用いてX線402を生成し、このX線402を単色化した後、試料表面403に低角度で照射してX線反射率測定を行う構成として、試料表面403上のX線402の照射領域を広げている。
【0011】
しかしながら、測定対象によっては上記従来のX線反射率測定装置400を用いても、多数のエリアマッピングが必要となる大形のものがある。例えば、半導体ウェハ、特にシリコンウェハにおいては、LSI製造のコストパフォーマンス向上の観点から大口径化が進んでおり、近年では、直径200mmから300mmのウェハが用いられるようになってきている。このため、半導体ウェハのX線反射率測定(エリアマッピング)においては、膜表面上の測定領域が拡大する傾向にある。
【0012】
本発明は、このような事情に鑑みてなされたものであり、一度に行える測定領域を更に拡大し、試料表面の広い範囲にわたる効率的なX線反射率測定を実現することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、ラインフォーカスのX線をモノクロメータを介し単色化して試料表面に照射するとともに、試料表面で反射してきたX線を検出するX線反射率測定装置において、X線の入射角度に対し非対称な角度にX線を反射させる非対称反射部材を、モノクロメータと試料との間のX線光路上に配置し、任意の角度で非対称反射部材にX線を入射させることにより、ラインフォーカスの長手方向に拡大したX線を該非対称反射部材から取り出して試料表面に照射する構成としたことを特徴とする。
【0014】
また、請求項2の発明は、ラインフォーカスのX線源と、X線源から出射したX線を単色化するモノクロメータと、モノクロメータから出射したX線をラインフォーカスの長手方向に拡大する非対称反射部材と、試料を保持し、試料表面に入射するX線の入射角を調整するθ軸を少なくとも有するゴニオメータと、試料表面で反射したX線を検出するX線検出部と、を備えたことを特徴とする。
【0015】
これら発明によれば、非対称反射部材により、X線源から出射されたX線の長手方向を拡大して試料表面に照射する構成としたので、試料表面上のX線照射領域が広がり、一度に測定できる試料表面上の領域を拡大することができる。したがって、例えば、半導体ウェハのX線反射率測定のようにウェハ表面上の広い領域にわたる測定を行う場合にあっても、測定回数を低減することができ、効率的にX線反射率測定を行うことができる。
【0016】
また、試料をゴニオメータのθ軸を含み該試料表面に沿った平面上を移動させて該試料表面におけるX線の照射領域を変更するX線照射領域変更手段を備えた構成としても(請求項3)、試料表面上のX線照射位置を任意に移動調整することが可能となる。
【0017】
さらに、X線検出部が、二次元位置敏感型のX線記録手段を搭載するとともに、試料表面に対するX線の入射角の走査に同期して、ゴニオメータのθ軸を中心として2θ回転し、かつX線記録手段を該X線検出部上で移動させる構成を有すれば(請求項4)、X線記録手段における反射X線の記録密度を自在に広げて読取精度(分解能)を向上させることが可能となる。
【0018】
また、X線反射率測定方法に関する請求項5の発明は、ラインフォーカスのX線をモノクロメータを介し単色化して試料表面に照射するとともに、試料表面で反射してきたX線を検出するX線反射率測定方法において、X線の入射角度に対し非対称な角度にX線を反射させる非対称反射部材に、単色化したX線を入射させることにより、ラインフォーカスの長手方向に拡大したX線を該非対称反射部材から取り出して試料表面に照射することを特徴とする。
【0019】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して詳細に説明する。
《第1実施形態》
図1はこの発明の第1実施形態に係るX線反射率測定装置の概要を示す斜視図、図2は同じくX線反射率測定装置を示す正面構成図である。
【0020】
これらの図に示すように、X線反射率測定装置1は、X線源10、モノクロメータ20、非対称反射部材30、ゴニオメータ40、試料装着装置50、X線検出部60、および制御系70を含んでいる。なお、本明細書においては、ラインフォーカスの長辺をX線の長手方向、短辺をX線の幅方向と定義している。
【0021】
X線源10は、Cuターゲットの回転対陰極X線管をラインフォーカスとして用いており、このX線源10からラインフォーカスのX線2が出射される。X線源10の焦点サイズは、例えば、幅0.1mm、長さ10mmとする。この場合、X線源10から長さ10mmのラインフォーカスのX線2が出射される。
【0022】
なお、X線源10の陰極側には、LaBを用いた非巻線型陰極を使用して、X線源10から出射されるX線2の強度の均一性を確保している。この陰極側には、Wフィラメントを用いた巻線型陰極を使用してもよく、この場合には、X線管をライン方向にわずかに往復運動をさせて、X線源10から出射されるX線2の均一化を図ることが好ましい。
このX線源10から出射されたX線2は、発散制限スリット11を介し長手方向および幅方向への発散を制限して平板単結晶からなるモノクロメータ20に入射される。
【0023】
モノクロメータ20は、X線源10から入射したX線2を単色化する機能を有している。すなわち、モノクロメータ20にX線2を入射すると、X線源10の対陰極を構成している物質に応じた特性X線2a(例えば、物質がCuならば、CuKα1)が取り出される。
【0024】
このモノクロメータ20は、表面を(111)格子面と平行に切り出し、無ひずみのメカニカル・ケミカル・ポリッシュ仕上げしたFZ法シリコン単結晶により形成してあり、入射したX線2をブラッグ角14.2°で対称反射させて、CuKα1のみの単色X線2aを取り出す機能を有している。この単色化されたX線2aは、発散制限スリット21を介し長手方向および幅方向への発散を制限して非対称反射部材30に入射される。なお、発散制限スリット21は、例えば、X線源10から300mm程度離して設置し、長手方向のスリット間隔をX線2aの長さと同じ10mm、幅方向のスリット間隔を0.2mmとする。
【0025】
非対称反射部材30は、モノクロメータ20から入射したX線2aを、長手方向に拡大して取り出す機能を有している。
すなわち、図3に示すように、非対称反射部材30は、X線2aが入射される表面31に対し、非対称反射部材30を構成する結晶の格子面32を角度βだけ傾斜して形成してあり、この非対称反射部材30の表面31にX線2aを角度αで入射させると、結晶格子面32上でブラッグ角(α+β)のブラッグ反射を生じ、非対称反射部材30の表面31に対しては、角度(α+2β)で反射、つまり非対称に反射する。
【0026】
本実施形態にあっては、非対称反射部材30の表面31に対するX線2bの反射角度がX線2aの入射角度よりも大きくなるように非対称反射部材30が形成されており、入射側のX線2aの長さAよりも出射側のX線2bの長さBを拡大してX線2bを取り出すことができる。
【0027】
本実施形態では、[001]方向に成長させたFZ法シリコン単結晶インゴットを、成長軸から10.6°傾けて切り出した、長さ300mm、幅30mm、厚さ10mm程度のシリコン単結晶板を、非対称反射部材30として用いており、その結晶板の全表面を、無ひずみのメカニカル・ケミカルポリッシュ仕上げしてある。
【0028】
この非対称反射部材30は、入射角度調整機構33および結晶傾斜・位置調整機構34を含んだ駆動装置35に装着されている。図4はこの駆動装置による非対称反射部材の駆動方向を示す斜視図である。
入射角度調整機構33は、回転軸Oを中心に矢印a方向に非対称反射部材30を回転駆動して、非対称反射部材30の表面に対するX線2aの入射角度を調整する機能を有している。この入射角度調整機構33によりX線2aの入射角度を調整することで、非対称反射部材30から平行性が良くかつ長手方向に拡大されたX線2bを取り出すための適正な入射角度の設定が可能となる。
【0029】
結晶傾斜・位置調整機構34は、非対称反射部材30のあおり角を調整するあおり角調整手段、非対称反射部材30を面内回転させる面内角調整手段、および非対称反射部材30を入射X線2aの光軸に沿って平行移動させるX線照射位置調整手段としての各機能を有している。
すなわち、この結晶傾斜・位置調整機構34により、非対称反射部材30を図示矢印b方向に回転駆動することで、同部材30のあおり角を調整することができる。このあおり角の調整によって、試料表面3aに対するX線2bの照射位置を粗調整することが可能となる。
【0030】
また、結晶傾斜・位置調整機構34により、非対称反射部材30を図示矢印c方向に面内回転することで、試料表面3aに対するX線2bの照射位置を微調整することが可能となる。この回転操作により、試料表面3aに照射するX線2bの長手方向を後述するゴニオメータ40のθ−2θ回転軸と平行に合わせれば、試料表面3a上におけるX線照射領域の長手方向と平行になる。その結果、X線2bの全照射領域において、ほぼ同一条件でのX線反射率測定を実現することができる。
【0031】
さらに、結晶傾斜・位置調整機構34により、非対称反射部材30を図示矢印d方向(入射X線2aの光軸方向)に平行移動することで、非対称反射部材30から取り出されるX線2bを長手方向に平行移動させることができる。これにより、試料表面3aでθ軸方向のX線照射位置を任意に移動調整することが可能となる。
【0032】
非対称反射部材30により長手方向に拡大して取り出されたX線2bは、入射スリット36を介して長手方向および幅方向への発散を制限して試料表面3aの中央部分にあるθ軸と平行な細長い測定領域4に照射される。なお、入射スリット36は、駆動装置37に装着されており、この駆動装置37により、非対称反射部材30により取り出されたX線2bの長さに応じて長手方向のスリット間隔ならびに幅方向のスリット間隔の調整を行うとともに、入射スリット36の水平性の確保および幅方向の位置調整が可能となっている。
【0033】
ゴニオメータ40は、試料角度走査機構41および検出器アーム角度走査機構42を有しており、これら走査機構41,42は、同じ回転軸(以下、θ−2θ回転軸という)を中心に回転自在となっている。また、ゴニオメータ40には、幅方向位置調節機構43が備えてあり、この機構43によりゴニオメータ40の幅方向の位置の調節が可能となっている。
【0034】
試料角度走査機構41には、X線反射率測定を行う試料3を保持した試料装着装置50が取り付けられており、同機構41により試料装着装置50をθ−2θ回転軸を中心に回転(θ回転)して、非対称反射部材30から入射するX線2bの試料表面3aに対する入射角度θを調整できる構成となっている。
【0035】
また、試料装着装置50は、試料支持台51を有しており、この試料支持台51により試料3が水平に保持される。試料支持台51には、面内回転機構52が備えられており、同機構52により試料3の面内回転が可能となっている。
【0036】
これら試料支持台51および面内回転機構52は、ステージ53に搭載されており、このステージ53は、水平方向駆動機構(X線照射位置調整手段)54および幅方向駆動機構55を備えている。すなわち、水平方向駆動機構54により、試料3を水平に保持したまま、ステージ53をX線2bの光軸に沿った図示Y方向に平行移動することができる。したがって、この水平方向駆動機構54により、試料表面3a上のX線2bの照射位置を変更することができる。
【0037】
また、幅方向駆動機構55により、ステージ53を幅方向に移動することができ、試料3の幅方向の位置を微調整可能となっている。なお、ステージ53の幅方向の位置は、標準的な厚さの試料を試料支持台51に保持したときに、この試料3の表面3a上にゴニオメータ40のθ−2θ回転軸がおかれるように、あらかじめ設定されている。
【0038】
検出器アーム角度走査機構42には、検出器アーム44が装着され、この検出器アーム44にX線検出部60が取り付けられている。この機構42により、試料3のθ回転に同期させて、X線検出部60を回転(2θ回転)させることができる。
【0039】
このX線検出部60は、試料表面3aから反射してきたX線2cの強度を検出するX線検出器61と、このX線2cの強度を記録する二次元位置敏感型検出器(X線記録手段)63とを含んでいる。
X線検出器61には、小型のシンチレーション・カウンターを用いており、試料表面3aから反射してきたX線2cを、図示せぬ細隙スリットを介し長手方向および幅方向への発散を制限して入射させ、X線2cの強度検出を行っている。なお、X線検出器61に入射するX線2cの長さは、細隙スリットにより5mm程度に制限されている。
【0040】
このX線検出器61は駆動装置62に装着されており、駆動装置62によりX線検出器61を長手方向に移動可能となっている。すなわち、X線検出器61により試料表面3aから反射してきたX線2cの強度を検出するときは、このX線2cの長さに応じて、駆動装置62によりX線検出器61を長手方向に順次移動させて反射してきたX線2cの全長さにわたる強度を検出する。
【0041】
本実施形態では、二次元位置敏感型検出器63としてイメージングプレートを用いており、このイメージングプレートに試料表面3aから反射してきたX線2cの強度を記録する。この二次元位置敏感型検出器63は、入射してくるX線2cを全長さにわたり記録可能な長さを有している。さらに、二次元位置敏感型検出器63は、駆動装置64に装脱自在に装着されており、この駆動装置64により幅方向に沿った図示Z方向に移動可能となっている。これにより、例えば、上述した試料装着装置50の水平方向駆動機構54により試料3をY方向に平行移動して試料表面3a上のX線2bの照射領域を変更する場合には、駆動装置64により二次元位置敏感型検出器63をZ方向に移動して、イメージングプレート上の別の領域に試料表面3aで反射したX線2cの強度を記録することができる。
【0042】
なお、X線検出部60は検出スリット65を含んでおり、この検出スリット65は、二次元位置敏感型検出器63に対しX線2cの光路の上流側に備えてある。試料表面3aから反射してきたX線2cは、この検出スリット65を介し長手方向および幅方向への発散を制限してX線検出部60に入射される。
【0043】
X線反射率測定装置1の制御系70は、制御装置71、記憶装置72、および表示装置73から構成されている。
制御装置71は、X線反射率測定装置1の各部を制御する中央制御部(CPU)としての機能を有している。また、記憶装置72は、X線検出器61により検出されるX線2cの強度データを記録する機能を有している。さらに、表示装置73は、このX線2cの強度データに基づいて作成されるX線反射率曲線を表示する機能を有している。
【0044】
[各構成部の位置調整]
次に、上述したX線反射率測定装置1における各構成部の位置調整方法について、図1および図2を参照して説明する。
まず、試料3を試料装着装置50の試料支持台51に保持する。この試料3の厚さが標準的な試料の厚さと異なる場合には、制御装置71がゴニオメータ40を介して試料装着装置50の幅方向駆動機構55に動作指令を出力してステージ53を移動させ、試料表面3a上にゴニオメータ40のθ−2θ回転軸がくるようにする。
【0045】
次いで、制御装置71が非対称反射部材30の駆動装置35に動作指令を出力して、この駆動装置35を動作させ、結晶傾斜・位置調整機構34により、非対称反射部材30のあおり角調整、面内角調整、およびX線2aの光軸に沿った位置調整を行うとともに、入射角度調整機構33により非対称反射部材30の表面31とモノクロメータ20から入射されるX線2aとの角度調整を行う。
【0046】
本実施形態にあっては、モノクロメータ20により単色化されたX線2aの入射角度を非対称反射部材30の表面31に対して1.6°に設定して、この表面31にX線2aが入射したときに非対称333反射が起こるようにしておく。この操作によって、長さ約300mmに拡大したX線2bが得られ、例えば、直径300mmの大型シリコンウェハ表面に形成した酸化膜あるいは金属薄膜のX線反射率測定を行う場合にあっても、ウェハ表面の長手方向すなわち図示X方向の全体にわたる測定を一度に行うことができる。
【0047】
続いて、制御装置71は入射スリット36の駆動装置37に動作指令を出力して、この入射スリット36の水平性の確保および幅方向の調整を行うとともに、長手方向のスリット間隔をX線2bと同長さの300mm、幅方向のスリット間隔を1mm以下に設定する。
【0048】
さらに、制御装置71はゴニオメータ40の幅方向位置調節機構43に動作指令を出力し、同機構43を動作させて、ラインフォーカスのX線2bが試料表面3aの全体に平行に照射され、かつ、試料3によってこのX線2bが幅方向に半割されるようにゴニオメータ40の幅方向の位置を微調節する。
そして、制御装置71は試料装着装置50の水平方向駆動機構54に動作指令を出力し、同機構54により試料3をY方向に平行移動してX線2bの照射位置と試料表面3aの測定領域4aとの位置合わせを行い、この測定領域4aに非対称反射部材30により取り出されたX線2bが照射されるようにしておく。
【0049】
その後、制御装置71はゴニオメータ40の試料角度走査機構41および検出器アーム角度走査機構42に動作指令を出力して、これら機構41,42を動作させ、試料3のθ回転およびX線検出部60の2θ回転を行い、試料表面3aに対するX線2bの照射角度θの設定およびX線2bの光路に対する2θ方向へのX線検出部60の移動を行う。なおこの段階では、二次元位置敏感型検出器63は未装着として、試料表面3aから反射してくるX線2cを、X線検出器61により検出可能な状態としておく。
【0050】
[X線反射率測定]
次に、上述したX線反射率測定装置1を用いたX線反射率測定方法について、図1および図2を主に参照して説明する。
X線源10から長さ10mmのラインフォーカスのX線2を出射して、このX線2をモノクロメータ20によって単色化したのち、非対称反射部材30により長さ300mmに拡大して試料表面3aの測定領域4aに照射する。そして、ゴニオメータ40により所定の範囲(例えば、0〜10°)で試料3をθ回転するとともに、X線検出部60を2θ回転して、試料表面3aから反射してくるX線2cの強度をX線検出器61で検出する。
【0051】
制御装置71は、このX線検出器61で検出されたX線2cの強度データに基づき所定のデータ分析を実行し、その分析結果を記憶装置72に保存するとともに、表示装置73に表示する。なお、試料表面3aに照射したX線2bがブラッグ反射を生じる場合には、制御装置71により試料装着装置50の面内回転機構52を制御して、ブラッグ反射が生じない角度位置まで試料3を面内回転させる。
【0052】
次いで、制御装置71は動作指令をX線検出器61の駆動装置62に出力して、X線検出器61を長手方向に移動し、上記と同様の手順によって、試料表面3aの測定領域4a内の異なる位置で反射したX線2cの強度を順次検出し、測定領域4aのX方向の全体にわたるデータ分析を実行する。
【0053】
このようにして得られたX線反射率に局所的な変化が認められた場合は、二次元位置敏感型検出器63を駆動装置64に装着する。そして、ゴニオメータ40により試料3のθ回転およびX線検出部60の2θ回転を行い、試料表面3aの測定領域4a内で反射したX線2cの強度変化データを、図5に示すように二次元位置敏感型検出器63の記録領域63aに記録する。
【0054】
このX線2cの強度変化データの記録は、例えば、制御装置71により試料3のθ回転、並びにX線検出部60の2θ回転と同期させた動作指令を、二次元位置敏感型検出器63の駆動装置64に出力して、同駆動装置64を駆動し、二次元位置敏感型検出器63を図2のZ方向に移動させながら行う。
【0055】
このようにX線2cの強度変化データを記録することとすれば、試料3のθ回転の角度変化量と二次元位置敏感型検出器63のZ方向の移動量とが関連づけられるので、二次元位置敏感型検出器63へのX線2cの強度変化データの記録範囲をZ方向に広げて、強度変化データの読取精度を向上させることができる。
【0056】
このX線強度の記録データは、試料表面3aの測定領域4aのX方向を横軸とし、試料表面3aへのX線2bの照射角度を縦軸(θ)として、二次元位置敏感型検出器63の記録領域63aに記録される(図5参照)。なお、縦軸のX線2bの照射角度θは、二次元位置敏感型検出器63のZ方向の移動量とθ回転の角度変化量等から換算した値を表記している。
【0057】
二次元位置敏感型検出器63の記録領域63aに、試料表面3aにおいて反射したX線2cの強度変化データの記録が終了すると、制御装置71は、動作指令を試料装着装置50の水平方向駆動機構54に出力し、同機構54を駆動して、試料3をY方向に平行移動し、測定領域を領域4aから領域4bに変更する。また、制御装置71は、二次元位置敏感型検出器63の駆動装置64に動作指令を出力して、二次元位置敏感型検出器63を図2のZ方向に移動させ、X線2cの強度変化データの記録領域を領域63aから領域63bに変更する。
【0058】
そして、制御装置71は、上述と同様に、ゴニオメータ40に動作指令を出力して、ゴニオメータ40の試料角度走査機構41および検出器アーム角度走査機構42を駆動し、試料3をθ回転、並びにX線検出部60を2θ回転させる。そして、それらと同期した信号を、二次元位置敏感型検出器63の駆動装置64に出力して、同駆動装置64を駆動し、二次元位置敏感型検出器63をZ方向に移動させ、図5の記録領域63bに、X線2bの照射角度θをパラメータとしたX線2cの強度変化データを記録する。
【0059】
さらに、上述と同様の操作により、試料表面3a上の別の細長い測定領域4cにおける測定データを、二次元位置敏感型検出器63の記録領域63cに記録する。なお、図5には、二次元位置敏感型検出器63の3記録領域63a〜63cに、測定領域4a〜4cで反射したX線2cの強度変化データをそれぞれ記録する場合を示しているが、X線2bの照射角度θの走査範囲を狭めたり、あるいは、大型のイメージングプレートを使用するなどして、容易に測定領域の数を増すことができる。
【0060】
最後に、二次元位置敏感型検出器63に記録されたX線2cの強度変化データを、公知あるいは周知のイメージングプレート読み取り装置を用いてオフラインで読み取り、同装置にX線2bの照射角度θをパラメータとした通常のX線反射率曲線を表示する。
【0061】
《第2実施形態》
図6は本発明の第2実施形態に係るX線反射率測定装置を示す斜視図である。なお、試料3の上流側(X線源10から入射スリット36)については、第1実施形態に係るX線反射率測定装置1と同じ構成としており、図6においては当該部分を省略して示している。
同図に示す第2実施形態のX線反射率測定装置100は、駆動ドラム122の周面にイメージングプレートを装着して二次元位置敏感型検出器121を形成し、二次元位置敏感型検出器121の反射X線強度データの記録可能な領域を広げている。したがって、上述した記録領域の数を容易に増加させることができ、一層効率的なX線反射率測定を行うことができる。
【0062】
この二次元位置敏感型検出器121においては、駆動ドラム122を含む構成としているので、上述した第1実施形態の二次元位置敏感型検出器63よりもその重量は大きくなる。このため、このような二次元位置敏感型検出器121にあっても無理なく角度走査が行えるように、本実施形態にあっては、検出器アームによる二次元位置敏感型検出器121の走査機構を採用せずに、図6に示すようなゴニオメータ110の走査機構を採用している。
【0063】
すなわち、このゴニオメータ110では、二次元位置敏感型検出器121を含むX線検出部120の角度走査を行う検出器走査台角度走査機構112を試料3の角度走査を行う試料角度走査機構111と同軸回転機構とせずに、支持台114の異なる位置に独立に設置する構成としている。
【0064】
試料角度走査機構111には、上述した第1実施形態と同様に試料装着装置50が装着されており、同機構111により試料装着装置50を走査して、非対称反射部材30により取り出されたX線2bと試料表面3aとの角度(θ)の走査を可能としている。
【0065】
一方、検出器走査台角度走査機構112には、検出器角度走査台113が装着されており、この検出器角度走査台113にX線検出部120が取り付けられている。
検出器角度走査台113は、検出器走査台角度走査機構112に設けられた円弧形状のレール112aに沿って走査可能となっており、この走査台113をレール112aに沿って走査することにより、試料3のθ回転軸を中心としたX線検出部120の2θ回転が可能となっている。なお、この走査台113には、上述した駆動ドラム122の回転機構が内蔵されており、この回転機構により二次元位置敏感型検出器121の回転駆動を行ない、試料表面3aの測定領域4の変更に対応した二次元位置敏感型検出器121の記録領域の変更が可能となっている。
【0066】
このX線検出部120では、二次元位置敏感型検出器121に対しX線2cの光路の上流側にX線検出器123およびX線遮蔽板124を備えており、X線検出器123と二次元位置敏感型検出器121との間にX線遮蔽板124が設けられている。
【0067】
すなわち、試料表面3aから反射してきたX線2cの強度をX線検出器123により検出するときには、駆動機構125によりX線2cの光路上にX線遮蔽板124を移動して二次元位置敏感型検出器121にX線2cが入射しないようにし、一方で、試料表面3aから反射してきたX線2cの強度を二次元位置敏感型検出器121に記録するときは、駆動機構125によりX線2cの光路外にX線遮蔽板124を移動して、X線2cが二次元位置敏感型検出器121に入射するようにしておく。
【0068】
以上、本発明の第1実施形態および第2実施形態について説明したが、本発明はこれら実施形態に限定されるものではなく、特許請求の範囲に記載された本発明に係る技術的思想を逸脱しない範囲であれば、例えば設計等に応じて種々の変更が可能であることは勿論である。
【0069】
例えば、X線源10により出射されたX線2を単色化するためのモノクロメータ20に用いる光学素子として、一枚の平板単結晶による1回のブラッグ反射を利用することとしているが、2回のブラッグ反射を利用するチャネルカット結晶に置き換えた構成としてもよい。その場合には、X線源10により出射されるX線2と、モノクロメータ20から出射されるX線2aとは平行になる。
あるいは、図7に示すように、多層膜傾斜放物ミラー130とGe(220)非対称チャネルカット結晶131に置き換えて、より強度の大きい単色化されたX線2aを取り出す構成としてもよい。
【0070】
また、上述した実施形態においては、イメージングプレートに記録されたデータを、オフラインの読み取り装置で読み取ることとしているが、二次元位置敏感型検出器63,121の周囲を囲い、レーザと光電子増倍管よりなる読み取り機構並びに消去用光源を併設して、オンラインで、データの記録、読み取り、および消去を順次繰り返して読み取る装置を採用してもよい。
【0071】
【発明の効果】
以上説明したように、本発明によれば、非対称反射部材により、X線源から出射されたX線の長さを拡大して試料表面に照射する構成としたので、試料表面上のX線照射領域が広がり、一度に測定できる試料表面上の領域を拡大することができる。
【図面の簡単な説明】
【図1】この発明の第1実施形態に係るX線反射率測定装置の構成を示す斜視図である。
【図2】同じくX線反射率測定装置を示す正面構成図である。
【図3】非対象反射部材による非対称反射の原理を説明するための模式図である。
【図4】駆動装置による非対称反射部材の駆動方向を示す斜視図である。
【図5】二次元位置敏感型検出器の記録領域の一例を示す図である。
【図6】本発明の第2実施形態に係るX線反射率測定装置の構成を示す斜視図である。
【図7】本発明の変形例を示す平面構成図である。
【図8】X線反射率測定の原理を説明するための模式図である。
【図9】X線反射率曲線の一例を示すグラフである。
【図10】他のX線反射率測定の原理を説明するための模式図である。
【図11】他のX線反射率曲線の一例を示すグラフである。
【図12】X線反射率測定に用いられる従来のX線反射率測定装置を示す平面構成図である。
【図13】X線反射率測定に用いられる従来の他のX線反射率測定装置を示す平面構成図である。
【符号の説明】
1:X線反射率測定装置
2:X線
3:試料
3a:試料表面
4:X線反射率測定領域
10:X線源
11:発散制限スリット
20:モノクロメータ
21:発散制限スリット
30:非対称反射部材
31:表面
32:結晶格子面
33:結晶角度調整機構
34:結晶傾斜・位置調整機構
35:駆動装置
36:入射スリット
37:駆動装置
40:ゴニオメータ
41:試料角度走査機構
42:検出器アーム走査機構
43:幅方向位置調節機構
44:検出器アーム
50:試料装着装置
51:試料支持台
52:面内回転機構
53:ステージ
54:水平方向駆動機構
55:幅方向駆動機構
60:X線検出部
61:X線検出器
62:駆動装置
63:二次元位置敏感型検出器
64:駆動装置
65:検出スリット
70:制御系
71:制御装置
72:記憶装置
73:表示装置
100:X線反射率測定装置
110:ゴニオメータ
111:試料角度走査機構
112:検出器走査台角度走査機構
113:検出器角度走査台
114:支持台
120:X線検出部
121:二次元位置敏感型検出器
122:駆動ドラム
123:X線検出器
124:X線遮蔽板
125:駆動機構
130:多層膜傾斜放物ミラー
131:Ge(220)非対称チャネルカット結晶

Claims (4)

  1. ラインフォーカスのX線源と、
    前記X線源から出射したラインフォーカスのX線を入射させ、当該入射X線を含む平面に対し所定の回折角度方向に単色化されたX線を取り出すモノクロメータと、
    前記モノクロメータから出射したX線の長手方向および幅方向への発散を制限する発散制限スリットと、
    前記モノクロメータから出射したX線を含む平面上で当該X線を反射してラインフォーカスの長手方向に拡大する非対称反射部材と、
    前記非対称反射部材により長手方向に拡大して取り出されたX線の長手方向および幅方向への発散を制限して試料に入射させる入射スリットと、
    試料を保持し、試料表面に入射するX線の入射角を調整するθ軸を少なくとも有するゴニオメータと、
    試料表面で反射したX線を検出するX線検出部と、
    を備えたことを特徴とするX線反射率測定装置。
  2. 前記非対称反射部材のあおり角を調整するあおり角調整手段、前記非対称反射部材を面内回転させる面内角調整手段、および前記非対称反射部材を入射X線の光軸に沿って平行移動させるX線照射位置調整手段としての各機能を有する結晶傾斜・位置調整機構を備えたことを特徴とする請求項1のX線反射率測定装置。
  3. 請求項1又は2記載のX線反射率測定装置において、
    試料を前記ゴニオメータのθ軸を含み該試料表面に沿った平面上を移動させて該試料表面におけるX線の照射領域を変更するX線照射領域変更手段を備えたことを特徴とするX線反射率測定装置。
  4. 請求項1乃至3のいずれか一項に記載のX線反射率測定装置において、
    前記X線検出部は、二次元位置敏感型のX線記録手段を搭載するとともに、試料表面に対するX線の入射角の走査に同期して、前記ゴニオメータのθ軸を中心として2θ回転し、かつ前記X線記録手段を該X線検出部上で移動させる構成を有していることを特徴とするX線反射率測定装置。
JP2001094136A 2001-03-28 2001-03-28 X線反射率測定装置 Expired - Fee Related JP4367820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094136A JP4367820B2 (ja) 2001-03-28 2001-03-28 X線反射率測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094136A JP4367820B2 (ja) 2001-03-28 2001-03-28 X線反射率測定装置

Publications (2)

Publication Number Publication Date
JP2002286658A JP2002286658A (ja) 2002-10-03
JP4367820B2 true JP4367820B2 (ja) 2009-11-18

Family

ID=18948378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094136A Expired - Fee Related JP4367820B2 (ja) 2001-03-28 2001-03-28 X線反射率測定装置

Country Status (1)

Country Link
JP (1) JP4367820B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072906A1 (ja) * 2005-12-21 2007-06-28 Kyoto University 曲率分布結晶レンズの製造方法、偏光制御装置、x線反射率測定装置およびx線反射率測定方法
JP5324735B2 (ja) * 2006-04-20 2013-10-23 株式会社リガク 結晶方位測定方法及びその装置
WO2009028613A1 (ja) * 2007-08-31 2009-03-05 Kyoto University 曲率分布結晶レンズおよびx線反射率測定装置
JP5825602B2 (ja) * 2011-02-14 2015-12-02 国立研究開発法人物質・材料研究機構 中性子線イメージングの方法及び装置
US10145808B2 (en) 2014-03-27 2018-12-04 Rigaku Corporation Beam generation unit and X-ray small-angle scattering apparatus
JP5935231B2 (ja) * 2015-03-11 2016-06-15 国立研究開発法人物質・材料研究機構 X線イメージングの方法及び装置
JP7165400B2 (ja) * 2019-03-19 2022-11-04 株式会社リガク X線分析装置

Also Published As

Publication number Publication date
JP2002286658A (ja) 2002-10-03

Similar Documents

Publication Publication Date Title
JP3697246B2 (ja) X線回折装置
US7551719B2 (en) Multifunction X-ray analysis system
US8767918B2 (en) X-ray scattering measurement device and X-ray scattering measurement method
JP5031215B2 (ja) 多機能x線分析システム
JP4367820B2 (ja) X線反射率測定装置
JP3919775B2 (ja) X線反射率測定方法及び装置
JP3109789B2 (ja) X線反射率測定方法
JP2720131B2 (ja) X線反射プロファイル測定方法及び装置
JP2821585B2 (ja) 面内分布測定方法及び装置
JP2003194741A (ja) X線回折装置、反射x線測定方法および逆格子空間マップ作成方法
JP2001066398A (ja) X線測定装置
JP4581126B2 (ja) X線回折分析方法およびx線回折分析装置
JP4447801B2 (ja) X線トポグラフ装置およびx線トポグラフ方法
JPH05196583A (ja) 全反射x線分析装置
JP2005528594A (ja) X線回折装置及び方法
JP2904191B2 (ja) X線回折顕微方法およびx線回折顕微装置
JP3903184B2 (ja) X線反射率測定装置およびx線反射率測定方法
JP2002005858A (ja) 全反射蛍光x線分析装置
JP2006105748A (ja) ビーム入射を伴う分析方法
JP4052951B2 (ja) 薄膜分析法および薄膜分析装置
US20230273134A1 (en) Transmission x-ray diffraction apparatus and related method
JP2748892B2 (ja) X線回折顕微装置およびx線回折顕微方法
JPH05296946A (ja) X線回折装置
JPH10282021A (ja) 全反射蛍光x線分析における入射角設定方法および装置
JP2999272B2 (ja) 平行ビーム法x線回折装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees