JP4520052B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4520052B2
JP4520052B2 JP2001008502A JP2001008502A JP4520052B2 JP 4520052 B2 JP4520052 B2 JP 4520052B2 JP 2001008502 A JP2001008502 A JP 2001008502A JP 2001008502 A JP2001008502 A JP 2001008502A JP 4520052 B2 JP4520052 B2 JP 4520052B2
Authority
JP
Japan
Prior art keywords
wiring pattern
substrate
semiconductor element
semiconductor device
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001008502A
Other languages
Japanese (ja)
Other versions
JP2002217236A (en
Inventor
俊雄 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001008502A priority Critical patent/JP4520052B2/en
Publication of JP2002217236A publication Critical patent/JP2002217236A/en
Application granted granted Critical
Publication of JP4520052B2 publication Critical patent/JP4520052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ドライバ素子などの縦横比の大きい細長の半導体素子が配線パターンを有したマイクロ回路基板上に突起電極を介して電気的に接続されたフリップチップ型の半導体装置およびその製造方法に関するものであり、特に回路基板と半導体素子との接続においては、軽い荷重で信頼性の高い接続を可能にし、半導体素子へのダメージを低減し、微細接続を実現した半導体装置およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、高密度実装工法として、半導体素子とマイクロ回路基板上の配線パターンとの接続には、回路基板上に絶縁性樹脂を供給した状態で、その絶縁性樹脂を挟み込む形で半導体素子の電極パッド上に形成した突起電極と、回路基板の配線パターンの電極端子部とを圧接し、挟み込まれた絶縁性樹脂の熱による硬化収縮圧力で接続するという実装工法が利用されている。
【0003】
以下、図面を参照して従来の半導体装置について説明する。図4は従来の半導体装置を示す主要な部分の断面図である。
【0004】
図4に示すように、従来の半導体装置は、絶縁材料からなるフィルム状の基材1に導電性の材料からなる配線パターン2を有した回路基板3と、その回路基板3の配線パターン2の電極端子部である入出力パターンと半導体素子4とが、半導体素子4の入出力電極パッドに設けた突起電極5を介して電気的に接続された半導体装置であり、半導体素子4と回路基板3との間隙には絶縁性樹脂6が挟み込まれた状態の半導体装置である。
【0005】
従来の半導体装置の製造方法としては、まず回路基板の半導体素子を搭載する領域上に液状の絶縁性樹脂を供給し、その絶縁性樹脂を挟み込む形で、半導体素子の入出力電極パッド上に形成した突起電極と、回路基板の配線パターンとを加熱加圧で圧接するものである。そしてその挟み込まれた絶縁性樹脂の熱による硬化収縮圧力で半導体素子と回路基板の配線パターンとの電気的な接続を得て半導体装置を得るというものである。
【0006】
以上、従来の半導体装置では、半導体素子の入出力電極パッド上に形成した突起電極と回路基板の配線パターンとを加熱加圧で圧接して接続することにより、フリップチップ型の半導体装置を実現していた。
【0007】
【発明が解決しようとする課題】
しかしながら近年、例えば液晶パネルの高精細度化,カラー化により、端子数は増加し、またそれに伴い液晶パネル駆動用の半導体素子である液晶ドライバー半導体素子においては、その実装領域を小さく、狭くするため、半導体素子のサイズが長くて細幅となり、その平面形状において縦横比の差が大きく、20対1にもなる細長の半導体素子となってきている。このようなことから半導体素子は接続端子の間隔が次第に狭く、また高密度で多ピン化し、従来のように圧接により回路基板の配線パターンと接続する技術では、種々の問題が発生してきている。
【0008】
例えば、半導体素子の入出力電極パッド、突起電極の増加により、半導体素子と回路基板との接続時には加圧力の増大を招き、その加圧力増大により、接続部分である突起電極の下地となるシリコンチップからなる半導体素子の台座部へのダメージが問題となってきている。
【0009】
また半導体素子と回路基板との間に介在する絶縁性樹脂の硬化収縮圧で突起電極と配線パターンとの接続を維持しているが、その接続部間の機械的接続が不安定であるという問題も顕在化してきている。
【0010】
図5は従来の半導体装置の断面図を示し、前述の説明で参照した図4での半導体装置における半導体素子の長さ方向の断面を示し、突起電極が回路基板上の配線パターンと不安定な接続をする状態を示した断面図である。なお、図5においては半導体素子と回路基板との間の絶縁性樹脂は省略している。
【0011】
図5に示すように、半導体素子4の入出力電極パッド上に各々形成された多数の突起電極5と回路基板3の配線パターン2との接続において、すべての接続が行われず、接続にムラが発生し、不安定な接続状態となっていることがわかる。この状態を回避するために接続時に加圧力を増大させることにより、両者の確実な接続が得られるが、前述の通り、加圧力増大により、突起電極下部の半導体素子がダメージを受けてしまう。
【0012】
したがって、安定で接続信頼性の高い半導体装置を実現するための構造的な解決手段が望まれていた。
【0013】
本発明は、半導体素子と回路基板とを電気的に接続する際、回路基板上の配線パターンの接続部分である電極端子部の形状に着目し、軽い荷重で容易に信頼性の高い接続を可能にし、半導体素子へのダメージを低減し、微細接続を実現する半導体装置およびその製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の半導体装置は、絶縁材料からなる基材に導電性の材料からなる配線パターンを有した基板と、前記基板の前記配線パターンと半導体素子とが、前記半導体素子の電極に設けた突起電極を介して電気的に接続された半導体装置であって、前記基板の配線パターンは破線状に途切れた部分を有し、前記途切れた部分で前記半導体素子の突起電極が前記配線パターンに接続されている半導体装置である。
【0015】
また具体的には、基板の配線パターンの破線状の途切れた部分において、その途切れ間隔は半導体素子の突起電極の幅方向の長さの1/3〜2/3である半導体装置である。
【0016】
また、配線パターンの途切れた部分と半導体素子の突起電極との接続は、前記途切れた部分の前後の配線パターンにまたがって前記突起電極が接続されている半導体装置である。
【0017】
また、基板において、基材は絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状基材であり、配線パターンは銅、ニッケル、アルミ、金、銀またはそれらいずれかの合金から選択された導電性金属よりなる配線パターンであり、前記配線パターンの表面には金、錫、ニッケルのいずれかの膜が形成されている半導体装置である。
【0018】
さらに、半導体素子は、液晶駆動用半導体素子であって、その平面形状において縦横比の差が大きい細長の半導体素子である半導体装置である。
【0019】
また本発明の半導体装置の製造方法は、絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状の基材と、前記基材の一表面に導電性金属よりなり、破線状に途切れた部分を有した配線パターンとを有した基板に対して、前記基板の前記配線パターンが形成された面上に接続しようとする半導体素子の突起電極側の面を対向させて位置合わせする工程と、前記半導体素子の突起電極と前記基板の配線パターンの前記途切れた部分とを加熱加圧で当接させ、前記基板上に半導体素子を電気的に接続する工程とよりなる半導体装置の製造方法である。
【0020】
また具体的には、半導体素子の突起電極と基板の配線パターンの途切れた部分とを加熱加圧で当接させ、前記基板上に半導体素子を電気的に接続する工程では、前記配線パターンの途切れた部分の前後の配線パターンにまたがって前記突起電極を当接させて接続する半導体装置の製造方法である。
【0021】
また、絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状の基材と、前記基材の一表面に導電性金属よりなり、破線状に途切れた部分を有した配線パターンとを有した基板に対して、前記基板の前記配線パターンが形成された面上に接続しようとする半導体素子の突起電極側の面を対向させて位置合わせする工程では、前記基板上の半導体素子を接続する領域に絶縁性の樹脂を供給した後に位置合わせする半導体装置の製造方法である。
【0022】
前記構成の通り、本発明の半導体装置は、配線パターンは破線状に途切れた部分を有し、その途切れた部分で半導体素子の突起電極が配線パターンに接続されているため、突起電極の前後2箇所に分割して配線パターンが接触することになり、突起電極が機械的塑性変形を伴うために強い接続構造を形成し、安定した微細接続構造を有しているものである。すなわち配線パターンの途切れた部分の前後の配線間に突起電極が押圧されて食い込むとともに、その両端の配線と接続して、確実な接続がなされ、接続の安定性を図ることができるものである。
【0023】
また半導体装置の製造方法においては、半導体素子の突起電極と基板の配線パターンとの接続では、加圧時に突起電極が接触変形するための荷重を小さくしても、突起電極の接触変形を大きくできるため、半導体素子の接続域全体にわたって、接続部間の機械的接続、接続強度を高くでき、半導体素子へのダメージを低減できるものである。また、半導体素子と基板の間に介在する絶縁性樹脂の硬化収縮力で電気的接続を維持するときにも、また半導体素子の形状が長く細くなったときに発生する基板や素子の反りなどの応力に対しても、接続部の歪による界面の浮きや、電気的な接続の不安定化を防ぎ、安定で接続信頼性の高い半導体装置を実現できる。
【0024】
【発明の実施の形態】
以下、本発明の半導体装置およびその製造方法の一実施形態について説明する。
【0025】
まず本発明の半導体装置の一実施形態について図面を参照しながら説明する。
【0026】
図1は本実施形態の半導体装置を示す図であり、図1(a)は主要な部分の断面図であり、図1(b)は半導体素子の突起電極と回路基板の配線パターンとの接続部分を示す拡大した断面図であり、図1(c)は半導体素子の突起電極と回路基板の配線パターンとの接続部分を示す拡大した平面図である。なお、図1(c)では突起電極側からの平面のため、突起電極部分を破線で示し、半導体素子、回路基板は省略している。
【0027】
図1に示すように、本実施形態の半導体装置は、絶縁材料からなり、フレキシブル性を有したフィルム状の基材1に導電性の材料からなる配線パターン2を有した回路基板3と、その回路基板3の配線パターン2と半導体素子4とが、半導体素子の入出力電極パッド(図示せず)に設けた突起電極5を介して電気的に接続された半導体装置である。そして回路基板3の配線パターン2は破線状に途切れた部分7を有し、その途切れた部分7で半導体素子4の突起電極5が配線パターンに接続されている構造である。すなわち、半導体素子4の突起電極5と接続する配線パターンの接続パッド部分は途切れた部分7を有しているものである。
【0028】
そして詳細には、図1(b),図1(c)に示すように、配線パターン2の途切れた部分7と半導体素子4の突起電極5との接続は、途切れた部分7の前後の配線パターン2にまたがって突起電極5が接続されているものである。
【0029】
また回路基板3の配線パターン2の破線状の途切れた部分7において、その途切れ間隔は、狭すぎても広すぎても接触変形を効果的に行うことができないため、半導体素子4の突起電極5の幅方向Lの長さの1/3〜2/3としている。本実施形態では突起電極5の長さの1/3に構成している。この間隔により、より接続の加圧時に突起電極の端部の接触変形を効果的に行うことができ、またその加圧力も小さくすることができる。
【0030】
また本実施形態の半導体装置の回路基板3において、基材1はポリイミドなどの絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状基材であり、配線パターン2は銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、金(Au)、銀(Ag)またはそれらいずれかの合金から選択された導電性金属よりなる配線パターンであり、配線パターン2の表面には金(Au)、錫(Sn)、ニッケル(Ni)のいずれかの金属膜がメッキまたは蒸着により形成されているものである。
【0031】
さらに、回路基板3上に接続されている半導体素子4は、液晶駆動用半導体素子であって、その平面形状においては縦横比の差が大きい細長の半導体素子を接続している。本実施形態では、一例として縦横比が10対1の半導体素子を用いている。
【0032】
なお、配線パターン2の途切れた部分7の長さは位置合わせして接続する時の位置合わせ精度による突起電極5との重なりが確保できるものであれば特に制限を加えるものではなく、さらに配線パターンの厚みや配線の幅は、電気的な配線、回路基板3との接着力を有するものであれば任意の形状に構成することが可能である。
【0033】
また図2には、半導体素子と回路基板との間隙に絶縁性樹脂を挟み込んだ構造を示している。
【0034】
図2に示すように、半導体素子4と回路基板3との間隙には絶縁性樹脂6が挟み込まれ、その挟み込まれた絶縁性樹脂6の収縮圧力で半導体素子4の突起電極5と回路基板3の配線パターン2との電気的な接続を得ているが、途切れた部分7で半導体素子4の突起電極5が配線パターン2に接続されているため、突起電極5の前後2箇所に分割して配線パターン2が接触することになり、突起電極5が機械的塑性変形を伴うために強い接続構造を形成し、半導体素子4上の全突起電極5と配線パターン2との全接続においても接続ムラなどを防止して安定した接続を実現できるものである。
【0035】
以上のように本実施形態の半導体装置では、回路基板3上に形成した配線パターン2は破線状に途切れた部分7を有し、その途切れた部分7で半導体素子4の突起電極5が配線パターン2に接続されているため、突起電極5の前後2箇所に分割して配線パターン2が接触することになり、突起電極5が機械的塑性変形を伴うために強い接続構造を形成し、安定した微細接続が可能となる。
【0036】
次に本発明の半導体装置の製造方法の一実施形態について説明する。
【0037】
図3は本実施形態の半導体装置の製造方法を示す主要な工程ごとの断面図である。
【0038】
まず図3(a)に示すように、絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状の基材1と、その基材1の一表面に導電性金属よりなり、破線状に途切れた部分7を有した配線パターン2とを有した回路基板3に対して、その回路基板3の配線パターン2が形成された面上に接続しようとする半導体素子4の突起電極5側の面を対向させて位置合わせする。また途切れた部分7を持つ配線パターン2の途切れた部分7は、半導体素子4の入出力電極パッド上の突起電極5と向かい合わせて位置合わせする相対位置にあり、その途切れた部分7の長さは相対位置にある突起電極5の長さの1/3に構成してある。
【0039】
またこの時、回路基板3上の半導体素子4を接続する領域に液状の絶縁性樹脂を塗布供給しておく。
【0040】
次に図3(b)に示すように、絶縁性樹脂6を挟み込むように、位置合わせした半導体素子4の突起電極5と回路基板3の配線パターン2の途切れた部分7とを加熱加圧で当接させ、回路基板3上に半導体素子4を電気的に接続する。ここでは途切れた部分7を持つ配線パターン2の途切れ向かい合うそれぞれの端と、相対する突起電極5の長さ方向の端に寄る部分とが、双方から圧力が加えられることにより、機械的に強度に圧接され、同時に熱を加えることにより供給された絶縁性樹脂6が熱による反応により硬化し、熱硬化時の絶縁性樹脂6の体積収縮などにより半導体素子4と回路基板3の対向面と接着力を維持しながら互いを圧接する力を内在させることで、安定な半導体装置の接続を得る。また、ここでは配線パターン2の途切れた部分7の前後の配線パターン2にまたがって突起電極5を当接させて接続するものである。そしてここでは加圧時に突起電極5が接触変形するが、加圧時に突起電極5が接触変形するための荷重を小さくしても、途切れた部分7との接触により、接触変形を大きくできるため、半導体素子4の接続域全体にわたって、接続部間の機械的接続、接続強度を高くできるものである。
【0041】
そして図3(c)に示すように、絶縁性樹脂6を硬化させることにより、間隙に絶縁性樹脂6が挟み込まれ、配線パターン2の途切れた部分7と半導体素子4の突起電極5とが、途切れた部分7の前後の配線パターン2にまたがって突起電極5が接続されている半導体装置を得るものである。これにより、半導体素子4と回路基板3の間に介在する絶縁性樹脂6の硬化収縮力で電気的接続を維持するときにも、また半導体素子4の形状が長く細くなったときに発生する回路基板3や半導体素子4自体の反りなどの応力に対しても、接続部の歪による界面の浮きや、電気的な接続の不安定化を防ぎ、安定で接続信頼性の高い半導体装置を実現できる。なお、ここで絶縁性樹脂6は半導体素子の加圧によって、半導体素子4の周端部にはみ出し、フィレット部8を形成するものであり、信頼性の高い樹脂封止構造を得るものである。
【0042】
なお、本実施形態では回路基板3の配線パターン2はフォトエッチング法やメッキ法を用いて材質が銅からなる途切れた部分7を持つ配線パターン2を形成し、さらにその表面にニッケル(Ni)、金(Au)材料をメッキ法により金属被膜として形成している。また、配線パターン2の表面には金属被膜をニッケルと金としたが、銀(Ag)、アルミニウム(Al)を使用しても支障はない。
【0043】
また、突起電極5はフォトエッチング法やメッキ技術により形成した金(Au)バンプを用いているが、金線によるネイルヘッドボンディング技術を用いてボールバンプを形成してもよい。その他、メッキ技術により形成したニッケル(Ni),錫(Sn)を材質として使用することも可能である。
【0044】
さらに、半導体素子4と回路基板3の接続を維持するために用いた絶縁性樹脂6は液状のものを用いたが、絶縁性で熱により接着力を発生させ、硬化時に体積収縮により応力を内在できるものであればフイルム状のものや、異方性導電樹脂、異方性導電膜などのように接続する上下間のみで電気的につながり、横方向、電極の隣接間との絶縁性を維持するものであれば使用することが可能である。また、事前に途切れた部分7を持つ配線パターン2と半導体素子4の突起電極5とを接合させておき、その後、対向して接合した隙間に液状の絶縁性樹脂を流し込み、熱を加えてその絶縁性樹脂を硬化させ半導体装置を形成することもできる。
【0045】
以上、本実施形態の半導体装置およびその製造方法は、配線パターン2は破線状に途切れた部分7を有し、その途切れた部分7の部分で半導体素子4の突起電極5が配線パターン2に接続されているため、突起電極5の前後2箇所に分割して配線パターン2が接触することになり、突起電極5が機械的塑性変形を伴うために強い接続構造を形成し、安定した微細接続が可能となる。
【0046】
また製造方法においては、半導体素子4の突起電極5と回路基板3の配線パターン2との接続では、加圧時に突起電極5が接触変形するための荷重を小さくしても、接触変形を大きくできるため、半導体素子4の接続域全体にわたって、接続部間の機械的接続、接続強度を高くできるものである。また、半導体素子4と回路基板3の間に介在する絶縁性樹脂6の硬化収縮力で電気的接続を維持するときにも、また半導体素子4の形状が長く細くなったときに発生する基板や素子の反りなどの応力に対しても、接続部の歪による界面の浮きや、電気的な接続の不安定化を防ぎ、安定で接続信頼性の高い半導体装置を実現できる。
【0047】
【発明の効果】
以上説明したように、本発明の半導体装置は、回路基板上の配線パターンに途切れた部分を有しているため、半導体素子の突起電極と配線パターンとの接合において突起電極の前後2箇所に分割して接触しているので、軽い荷重で機械的な接合が得られ、突起電極下の半導体素子の基板に与えるダメージを軽減できる。また突起電極の前後で接続するため、接続状態の維持安定と、小幅の配線パターンと小幅で短い突起電極との接続が、接触から機械的塑性変形を伴う強い接合を形成し、微細接合が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態の半導体装置を示す図
【図2】本発明の一実施形態の半導体装置を示す断面図
【図3】本発明の一実施形態の半導体装置の製造方法を示す断面図
【図4】従来の半導体装置を示す断面図
【図5】従来の半導体装置を示す断面図
【符号の説明】
1 基材
2 配線パターン
3 回路基板
4 半導体素子
5 突起電極
6 絶縁性樹脂
7 途切れた部分
8 フィレット部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flip chip type semiconductor device in which an elongated semiconductor element having a large aspect ratio, such as a liquid crystal driver element, is electrically connected to a microcircuit board having a wiring pattern via a protruding electrode, and a method for manufacturing the same. In particular, in connection between a circuit board and a semiconductor element, the present invention relates to a semiconductor device that realizes a fine connection by enabling reliable connection with a light load, reducing damage to the semiconductor element, and a method for manufacturing the same It is.
[0002]
[Prior art]
Conventionally, as a high-density mounting method, for connecting a semiconductor element and a wiring pattern on a micro circuit board, an insulating resin is supplied onto the circuit board and the insulating resin is sandwiched between the electrode pads of the semiconductor element. A mounting method is used in which the protruding electrode formed above and the electrode terminal portion of the wiring pattern of the circuit board are pressed against each other and connected by the curing shrinkage pressure due to the heat of the sandwiched insulating resin.
[0003]
A conventional semiconductor device will be described below with reference to the drawings. FIG. 4 is a cross-sectional view of main parts showing a conventional semiconductor device.
[0004]
As shown in FIG. 4, a conventional semiconductor device includes a circuit board 3 having a wiring pattern 2 made of a conductive material on a film-like base material 1 made of an insulating material, and a wiring pattern 2 of the circuit board 3. The semiconductor device in which the input / output pattern as the electrode terminal portion and the semiconductor element 4 are electrically connected via the protruding electrode 5 provided on the input / output electrode pad of the semiconductor element 4. Is a semiconductor device in which an insulating resin 6 is sandwiched in the gap.
[0005]
As a conventional method of manufacturing a semiconductor device, first, a liquid insulating resin is supplied onto a region of a circuit board where a semiconductor element is mounted, and the insulating resin is sandwiched between the input and output electrode pads of the semiconductor element. The protruding electrode and the wiring pattern of the circuit board are pressed against each other by heating and pressing. The semiconductor device is obtained by obtaining an electrical connection between the semiconductor element and the wiring pattern of the circuit board by the curing shrinkage pressure caused by the heat of the sandwiched insulating resin.
[0006]
As described above, the conventional semiconductor device realizes a flip-chip type semiconductor device by connecting the protruding electrode formed on the input / output electrode pad of the semiconductor element and the wiring pattern of the circuit board by press-contacting them with heat and pressure. It was.
[0007]
[Problems to be solved by the invention]
However, in recent years, the number of terminals has increased due to, for example, higher definition and colorization of liquid crystal panels, and in association therewith, liquid crystal driver semiconductor elements, which are semiconductor elements for driving liquid crystal panels, have a small and narrow mounting area. The size of the semiconductor element is long and narrow, and the planar shape has a large difference in aspect ratio, and the semiconductor element has become a long and narrow semiconductor element of 20: 1. For this reason, the semiconductor element has a gradually narrowing interval between connection terminals, a high density and a multi-pin structure, and various problems have occurred in the conventional technique of connecting to a circuit board wiring pattern by pressure contact.
[0008]
For example, an increase in input / output electrode pads and protrusion electrodes of a semiconductor element causes an increase in applied pressure when the semiconductor element is connected to a circuit board, and the increase in the applied pressure causes a silicon chip serving as a base for the protruded electrode that is a connection portion. Damage to the pedestal of the semiconductor element made of is becoming a problem.
[0009]
In addition, the connection between the protruding electrode and the wiring pattern is maintained by the curing shrinkage pressure of the insulating resin interposed between the semiconductor element and the circuit board, but the mechanical connection between the connecting portions is unstable. Has also become apparent.
[0010]
FIG. 5 shows a cross-sectional view of a conventional semiconductor device, shows a cross-section in the length direction of the semiconductor element in the semiconductor device in FIG. 4 referred to in the above description, and the protruding electrode is unstable with the wiring pattern on the circuit board. It is sectional drawing which showed the state which connects. In FIG. 5, the insulating resin between the semiconductor element and the circuit board is omitted.
[0011]
As shown in FIG. 5, in the connection between the numerous protruding electrodes 5 formed on the input / output electrode pads of the semiconductor element 4 and the wiring pattern 2 of the circuit board 3, not all the connections are made, and the connection is uneven. It can be seen that the connection is unstable. By increasing the applied pressure at the time of connection in order to avoid this state, a reliable connection between the two can be obtained. However, as described above, the semiconductor element under the protruding electrode is damaged by the increased applied pressure.
[0012]
Therefore, a structural solution for realizing a stable and highly reliable semiconductor device has been desired.
[0013]
The present invention focuses on the shape of the electrode terminal part, which is the connection part of the wiring pattern on the circuit board, when electrically connecting the semiconductor element and the circuit board, and enables easy and reliable connection with a light load. It is another object of the present invention to provide a semiconductor device that reduces damage to semiconductor elements and realizes fine connections, and a method for manufacturing the same.
[0014]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, a semiconductor device of the present invention includes a substrate having a wiring pattern made of a conductive material on a base material made of an insulating material, and the wiring pattern and the semiconductor element of the substrate, A semiconductor device electrically connected via a protruding electrode provided on the electrode of the semiconductor element, wherein the wiring pattern of the substrate has a broken portion in a broken line shape, and the cut portion of the semiconductor element In the semiconductor device, the protruding electrode is connected to the wiring pattern.
[0015]
More specifically, in the semiconductor device in which the break interval is 1/3 to 2/3 of the length in the width direction of the protruding electrode of the semiconductor element in the broken portion of the broken line in the wiring pattern of the substrate.
[0016]
The connection between the interrupted portion of the wiring pattern and the protruding electrode of the semiconductor element is a semiconductor device in which the protruding electrode is connected across the wiring pattern before and after the interrupted portion.
[0017]
In the substrate, the base material is a film-like base material having a flexible property made of an insulating resin, and the wiring pattern is a conductive material selected from copper, nickel, aluminum, gold, silver, or any alloy thereof. It is a wiring pattern made of metal, and is a semiconductor device in which a film of gold, tin, or nickel is formed on the surface of the wiring pattern.
[0018]
Further, the semiconductor element is a semiconductor device that is a semiconductor element for driving a liquid crystal, and is an elongated semiconductor element having a large difference in aspect ratio in the planar shape.
[0019]
In addition, the method for manufacturing a semiconductor device of the present invention includes a film-like base material made of an insulating resin and having a flexible property, and one surface of the base material made of a conductive metal and having a broken portion in a broken line shape. A step of aligning a surface of the semiconductor element to be connected to a surface of the substrate on which the wiring pattern is formed with respect to a substrate having the wiring pattern formed thereon, and the semiconductor element And a step of bringing the discontinuous electrode and the discontinuous portion of the wiring pattern of the substrate into contact with each other by heat and pressure, and electrically connecting a semiconductor element on the substrate.
[0020]
More specifically, in the step of bringing the projecting electrode of the semiconductor element into contact with the discontinuous portion of the wiring pattern of the substrate by heat and pressure, and electrically connecting the semiconductor element on the substrate, the discontinuity of the wiring pattern This is a method of manufacturing a semiconductor device in which the protruding electrodes are brought into contact with and connected to the wiring patterns before and after the portion.
[0021]
Further, on a substrate having a film-like base material having a flexible property made of an insulating resin, and a wiring pattern made of a conductive metal on one surface of the base material and having a broken portion in a broken line shape On the other hand, in the step of aligning the surface of the semiconductor element to be connected to the surface of the semiconductor element to be connected to the surface of the substrate on which the wiring pattern is formed, the insulating region is insulated from the region on the substrate where the semiconductor element is connected. This is a method for manufacturing a semiconductor device in which alignment is performed after supplying a functional resin.
[0022]
As described above, in the semiconductor device of the present invention, the wiring pattern has a broken portion in a broken line shape, and the protruding electrode of the semiconductor element is connected to the wiring pattern at the broken portion. The wiring patterns are divided into portions and contacted with each other, and the protruding electrodes are accompanied by mechanical plastic deformation, thereby forming a strong connection structure and having a stable fine connection structure. That is, the protruding electrode is pressed between the wirings before and after the interrupted portion of the wiring pattern and is connected to the wirings at both ends thereof, so that a reliable connection is made and the stability of the connection can be achieved.
[0023]
Further, in the method of manufacturing a semiconductor device, in the connection between the bump electrode of the semiconductor element and the wiring pattern of the substrate, the contact deformation of the bump electrode can be increased even if the load for the bump electrode to be deformed in contact with pressure is reduced. Therefore, the mechanical connection and connection strength between the connection portions can be increased over the entire connection area of the semiconductor element, and damage to the semiconductor element can be reduced. In addition, when maintaining the electrical connection by the curing shrinkage force of the insulating resin interposed between the semiconductor element and the substrate, and when the shape of the semiconductor element becomes long and thin, the warpage of the substrate and the element, etc. With respect to stress, it is possible to prevent a floating of the interface due to distortion of the connection portion and instability of electrical connection, and to realize a stable and highly reliable semiconductor device.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a semiconductor device and a manufacturing method thereof according to the present invention will be described.
[0025]
First, an embodiment of a semiconductor device of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 is a view showing a semiconductor device of the present embodiment, FIG. 1 (a) is a cross-sectional view of main parts, and FIG. 1 (b) is a connection between a protruding electrode of a semiconductor element and a wiring pattern of a circuit board. FIG. 1C is an enlarged cross-sectional view showing a portion, and FIG. 1C is an enlarged plan view showing a connection portion between a protruding electrode of a semiconductor element and a wiring pattern of a circuit board. In FIG. 1C, since the surface is from the protruding electrode side, the protruding electrode portion is indicated by a broken line, and the semiconductor element and the circuit board are omitted.
[0027]
As shown in FIG. 1, the semiconductor device of the present embodiment is made of an insulating material, a circuit board 3 having a flexible film-like base material 1 and a wiring pattern 2 made of a conductive material, In the semiconductor device, the wiring pattern 2 of the circuit board 3 and the semiconductor element 4 are electrically connected via a protruding electrode 5 provided on an input / output electrode pad (not shown) of the semiconductor element. The wiring pattern 2 of the circuit board 3 has a portion 7 which is broken in a broken line shape, and the protruding electrode 5 of the semiconductor element 4 is connected to the wiring pattern at the broken portion 7. That is, the connection pad portion of the wiring pattern connected to the protruding electrode 5 of the semiconductor element 4 has a discontinuous portion 7.
[0028]
In detail, as shown in FIGS. 1B and 1C, the connection between the disconnected portion 7 of the wiring pattern 2 and the protruding electrode 5 of the semiconductor element 4 is the wiring before and after the disconnected portion 7. The protruding electrodes 5 are connected across the pattern 2.
[0029]
Further, in the broken portion 7 in the broken line shape of the wiring pattern 2 of the circuit board 3, contact deformation cannot be effectively performed if the interval between the intervals is too narrow or too wide. 1/3 to 2/3 of the length in the width direction L. In this embodiment, the length of the protruding electrode 5 is set to 1/3. By this interval, the contact deformation of the end portion of the protruding electrode can be effectively performed at the time of pressurizing the connection, and the applied pressure can be reduced.
[0030]
Moreover, in the circuit board 3 of the semiconductor device of this embodiment, the base material 1 is a film-like base material having a flexible property made of an insulating resin such as polyimide, and the wiring pattern 2 is made of copper (Cu), nickel (Ni ), Aluminum (Al), gold (Au), silver (Ag), or any one of these alloys, and a wiring pattern made of a conductive metal. On the surface of the wiring pattern 2, gold (Au), tin ( A metal film of either Sn) or nickel (Ni) is formed by plating or vapor deposition.
[0031]
Furthermore, the semiconductor element 4 connected on the circuit board 3 is a semiconductor element for driving a liquid crystal, and is connected to an elongated semiconductor element having a large aspect ratio difference in the planar shape. In the present embodiment, a semiconductor element having an aspect ratio of 10: 1 is used as an example.
[0032]
The length of the discontinuous portion 7 of the wiring pattern 2 is not particularly limited as long as the overlapping with the protruding electrode 5 can be ensured by the alignment accuracy when the connection is performed after alignment. The thickness and the width of the wiring can be configured in any shape as long as they have electrical wiring and adhesive strength with the circuit board 3.
[0033]
FIG. 2 shows a structure in which an insulating resin is sandwiched between the semiconductor element and the circuit board.
[0034]
As shown in FIG. 2, an insulating resin 6 is sandwiched in the gap between the semiconductor element 4 and the circuit board 3, and the protruding electrode 5 of the semiconductor element 4 and the circuit board 3 are contracted by the sandwiched insulating resin 6. However, since the protruding electrode 5 of the semiconductor element 4 is connected to the wiring pattern 2 at the interrupted portion 7, the wiring pattern 2 is divided into two parts before and after the protruding electrode 5. Since the wiring pattern 2 comes into contact with each other and the protruding electrode 5 is accompanied by mechanical plastic deformation, a strong connection structure is formed. Even in the entire connection between all the protruding electrodes 5 on the semiconductor element 4 and the wiring pattern 2, connection unevenness is caused. It is possible to realize a stable connection by preventing the above.
[0035]
As described above, in the semiconductor device according to the present embodiment, the wiring pattern 2 formed on the circuit board 3 has the broken portion 7 in the broken line shape, and the protruding electrode 5 of the semiconductor element 4 is connected to the wiring pattern at the broken portion 7. 2 is divided into two parts before and after the protruding electrode 5, and the wiring pattern 2 comes into contact with each other, and since the protruding electrode 5 is accompanied by mechanical plastic deformation, a strong connection structure is formed and stable. Fine connection is possible.
[0036]
Next, an embodiment of a method for manufacturing a semiconductor device of the present invention will be described.
[0037]
FIG. 3 is a cross-sectional view for each main process showing the method of manufacturing the semiconductor device of this embodiment.
[0038]
First, as shown in FIG. 3A, a film-like substrate 1 made of an insulating resin and having a flexible property, and a portion made of a conductive metal on one surface of the substrate 1 and broken in a broken line shape. The circuit board 3 having the wiring pattern 2 having 7 is opposed to the surface on the protruding electrode 5 side of the semiconductor element 4 to be connected to the surface of the circuit board 3 on which the wiring pattern 2 is formed. Align. Further, the discontinuous portion 7 of the wiring pattern 2 having the discontinuous portion 7 is at a relative position where the discontinuous portion 7 is positioned facing the protruding electrode 5 on the input / output electrode pad of the semiconductor element 4. Is configured to be 1/3 of the length of the protruding electrode 5 in the relative position.
[0039]
At this time, a liquid insulating resin is applied and supplied to a region where the semiconductor element 4 on the circuit board 3 is connected.
[0040]
Next, as shown in FIG. 3B, the protruding electrode 5 of the aligned semiconductor element 4 and the discontinuous portion 7 of the wiring pattern 2 of the circuit board 3 are heated and pressed so as to sandwich the insulating resin 6. The semiconductor element 4 is electrically connected to the circuit board 3 by making contact. Here, each end of the wiring pattern 2 having the discontinuous portion 7 facing each other and a portion close to the end in the length direction of the opposite protruding electrode 5 are mechanically strengthened by applying pressure from both sides. The insulating resin 6 that is pressed and simultaneously supplied with heat is cured by a reaction due to heat, and the adhesive force between the opposing surfaces of the semiconductor element 4 and the circuit board 3 due to the shrinkage of the volume of the insulating resin 6 at the time of thermosetting. A stable connection of the semiconductor device can be obtained by including a force that presses each other while maintaining the above. Further, here, the protruding electrode 5 is brought into contact with and connected to the wiring pattern 2 before and after the interrupted portion 7 of the wiring pattern 2. And here, the protruding electrode 5 is contact-deformed during pressurization, but even if the load for deforming the projecting electrode 5 during pressurization is reduced, the contact deformation can be increased by contact with the broken portion 7, The mechanical connection between the connection parts and the connection strength can be increased over the entire connection region of the semiconductor element 4.
[0041]
Then, as shown in FIG. 3C, by curing the insulating resin 6, the insulating resin 6 is sandwiched in the gap, and the discontinuous portion 7 of the wiring pattern 2 and the protruding electrode 5 of the semiconductor element 4 are A semiconductor device in which the protruding electrode 5 is connected across the wiring pattern 2 before and after the interrupted portion 7 is obtained. As a result, a circuit generated when the electrical connection is maintained by the curing shrinkage force of the insulating resin 6 interposed between the semiconductor element 4 and the circuit board 3 or when the shape of the semiconductor element 4 becomes long and thin. Even when the substrate 3 or the semiconductor element 4 itself is warped or the like, it is possible to realize a stable and highly reliable semiconductor device by preventing the floating of the interface due to the distortion of the connecting portion and the unstable electrical connection. . Here, the insulating resin 6 protrudes from the peripheral end portion of the semiconductor element 4 by pressurization of the semiconductor element to form the fillet portion 8, thereby obtaining a highly reliable resin sealing structure.
[0042]
In this embodiment, the wiring pattern 2 of the circuit board 3 is formed by forming a wiring pattern 2 having a discontinuous portion 7 made of copper using a photo-etching method or a plating method, and nickel (Ni), A gold (Au) material is formed as a metal film by a plating method. Further, although the metal coating is nickel and gold on the surface of the wiring pattern 2, there is no problem even if silver (Ag) or aluminum (Al) is used.
[0043]
Further, although the protruding electrode 5 uses a gold (Au) bump formed by a photoetching method or a plating technique, a ball bump may be formed using a nail head bonding technique using a gold wire. In addition, nickel (Ni) or tin (Sn) formed by plating technology can be used as a material.
[0044]
Furthermore, although the insulating resin 6 used for maintaining the connection between the semiconductor element 4 and the circuit board 3 is liquid, it is insulative and generates adhesive force due to heat, and inherently stresses due to volume shrinkage during curing. If possible, it is electrically connected only between the upper and lower sides connected like a film-like one, anisotropic conductive resin, anisotropic conductive film, etc., maintaining the insulation in the lateral direction and between adjacent electrodes It can be used if it does. In addition, the wiring pattern 2 having the interrupted portion 7 and the protruding electrode 5 of the semiconductor element 4 are bonded in advance, and then a liquid insulating resin is poured into the gap bonded oppositely, and heat is applied to The semiconductor device can also be formed by curing the insulating resin.
[0045]
As described above, in the semiconductor device and the manufacturing method thereof according to the present embodiment, the wiring pattern 2 has the broken portion 7 in the broken line shape, and the protruding electrode 5 of the semiconductor element 4 is connected to the wiring pattern 2 at the broken portion 7. Therefore, the wiring pattern 2 is divided into two parts before and after the protruding electrode 5, and the protruding electrode 5 is accompanied by mechanical plastic deformation, thereby forming a strong connection structure and stable fine connection. It becomes possible.
[0046]
Further, in the manufacturing method, in the connection between the protruding electrode 5 of the semiconductor element 4 and the wiring pattern 2 of the circuit board 3, the contact deformation can be increased even if the load for the contact deformation of the protruding electrode 5 during pressurization is reduced. Therefore, the mechanical connection between the connection portions and the connection strength can be increased over the entire connection area of the semiconductor element 4. Further, when maintaining an electrical connection by the curing shrinkage force of the insulating resin 6 interposed between the semiconductor element 4 and the circuit board 3, and when the semiconductor element 4 becomes long and thin, Even with respect to stress such as warping of the element, floating of the interface due to distortion of the connection portion and instability of electrical connection can be prevented, and a stable and highly reliable connection semiconductor device can be realized.
[0047]
【The invention's effect】
As described above, since the semiconductor device of the present invention has a discontinuous portion in the wiring pattern on the circuit board, the semiconductor device is divided into two parts before and after the protruding electrode at the junction between the protruding electrode of the semiconductor element and the wiring pattern. Therefore, mechanical bonding can be obtained with a light load, and damage to the substrate of the semiconductor element under the protruding electrode can be reduced. In addition, since the connection is made before and after the protruding electrodes, the connection state is maintained and stabilized, and the connection between the narrow wiring pattern and the small and short protruding electrodes forms a strong bond with mechanical plastic deformation from contact, enabling fine bonding It becomes.
[Brief description of the drawings]
FIG. 1 is a diagram showing a semiconductor device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. FIG. 4 is a sectional view showing a conventional semiconductor device. FIG. 5 is a sectional view showing a conventional semiconductor device.
DESCRIPTION OF SYMBOLS 1 Base material 2 Wiring pattern 3 Circuit board 4 Semiconductor element 5 Protruding electrode 6 Insulating resin 7 Discontinuous part 8 Fillet part

Claims (10)

絶縁材料からなる基材に導電性の材料からなる配線パターンを有した基板と、
前記基板の前記配線パターンと半導体素子とが、前記半導体素子の電極に設けた突起電極を介して電気的に接続された半導体装置であって、
前記基板の配線パターンの長さ方向には途切れた部分が有り、
前記途切れた部分の互いに対向する第1断面及び第2断面は、前記基材と接し、
前記半導体素子の突起電極は、前記第1断面及び前記第2断面に接続されていることを特徴とする半導体装置。
A substrate having a wiring pattern made of a conductive material on a base material made of an insulating material;
The semiconductor device in which the wiring pattern of the substrate and the semiconductor element are electrically connected via a protruding electrode provided on the electrode of the semiconductor element,
There is a portion broken Application to the length direction of the wiring pattern of the substrate,
The first cross section and the second cross section of the discontinuous portion facing each other are in contact with the base material,
The protruding electrodes of the semiconductor element is a semiconductor device characterized by being connected to the first section and the second section.
前記途切れた部分の前記第1断面の幅方向の長さ及び前記第2断面の幅方向の長さはそれぞれ、前記基板の配線パターンの幅と同じであることを特徴とする請求項1に記載の半導体装置。2. The length in the width direction of the first cross section and the length in the width direction of the second cross section of the interrupted portion are respectively equal to the width of the wiring pattern of the substrate. Semiconductor device. 前記基板の配線パターンの途切れた部分において、その途切れ間隔である前記第1断面と前記第2断面との間の長さ前記半導体素子の突起電極の幅方向の長さの1/3〜2/3であることを特徴とする請求項1に記載の半導体装置。In developing broken portion of the wiring pattern of the substrate, 1/3 the length of the length in the width direction of the protruding electrodes of the semiconductor element between said first cross-section which is the broken distance between the second section The semiconductor device according to claim 1, wherein the semiconductor device is 2/3. 前記配線パターンの途切れた部分と前記半導体素子の突起電極との接続は、前記途切れた部分の前後の配線パターンにまたがって前記突起電極が接続されていることを特徴とする請求項1に記載の半導体装置。Connection between the bump electrodes of the broken portion and the semiconductor element of the wiring pattern, according to claim 1, characterized in that the protruding electrodes across the front and rear of the wiring pattern of said interrupted part is connected Semiconductor device. 前記基板において、前記基材は絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状基材であり、前記配線パターンは銅、ニッケル、アルミニウム、金、銀またはそれらいずれかの合金から選択された導電性金属よりなる配線パターンであり、前記配線パターンの表面には金、錫、又はニッケルのいずれかの膜が形成されていることを特徴とする請求項1に記載の半導体装置。In the substrate, the substrate is a film-shaped substrate having a flexible property made of an insulating resin, the wiring pattern of copper, nickel, aluminum, gold, silver, or conductive which they are selected from any of the alloys 2. The semiconductor device according to claim 1, wherein the wiring pattern is made of a conductive metal, and a film of gold, tin, or nickel is formed on a surface of the wiring pattern. 前記半導体素子は、液晶駆動用半導体素子であって、その平面形状において縦横比の差が大きい細長の半導体素子であることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the semiconductor element is a semiconductor element for driving a liquid crystal, and is an elongated semiconductor element having a large difference in aspect ratio in a planar shape thereof. 絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状の基材と、前記基材の一表面に導電性金属よりなり、長さ方向に途切れた部分を有した配線パターンとを有した基板に対して、前記基板の前記配線パターンが形成された面上に接続しようとする半導体素子の突起電極側の面を対向させて位置合わせする工程と、
前記半導体素子の突起電極と前記基板の配線パターンの前記途切れた部分とを加熱加圧で当接させ、前記基板上に半導体素子を電気的に接続する工程とよりなり、
前記途切れた部分の互いに対向する第1断面及び第2断面は、前記基材と接し、
前記半導体素子の突起電極は、前記第1断面及び前記第2断面に接続されていることを特徴とする半導体装置の製造方法。
A film-like substrate having a flexible property made of an insulating resin made of a conductive metal on one surface of the substrate, the substrate having a wiring pattern having a portion broken developing lengthwise On the other hand, the step of aligning the surface on the protruding electrode side of the semiconductor element to be connected to the surface of the substrate on which the wiring pattern is formed,
Wherein the bump electrode of the semiconductor element and the broken portion of the wiring pattern of the substrate is brought into contact with heat and pressure, Ri Na more and a step of electrically connecting the semiconductor element on the substrate,
The first cross section and the second cross section of the discontinuous portion facing each other are in contact with the base material,
The protruding electrode of the semiconductor element is connected to the first cross section and the second cross section .
前記途切れた部分の前記第1断面の幅方向の長さ及び前記第2断面の幅方向の長さはそれぞれ、前記基板の配線パターンの幅と同じであることを特徴とする請求項7に記載の半導体装置の製造方法。The length in the width direction of the first cross section and the length in the width direction of the second cross section of the discontinuous portion are respectively equal to the width of the wiring pattern of the substrate. Manufacturing method of the semiconductor device. 前記半導体素子の突起電極と前記基板の配線パターンの途切れた部分とを加熱加圧で当接させ、前記基板上に半導体素子を電気的に接続する工程では、
前記配線パターンの途切れた部分の前後の配線パターンにまたがって前記突起電極を当接させて接続することを特徴とする請求項に記載の半導体装置の製造方法。
The brought into contact with the interrupted portion of the substrate of the wiring pattern and the protrusion electrode of the semiconductor element with heat and pressure, in the step of electrically connecting the semiconductor element to the substrate,
8. The method of manufacturing a semiconductor device according to claim 7 , wherein the protruding electrodes are brought into contact with and connected to the wiring patterns before and after the interrupted portion of the wiring pattern.
前記絶縁性樹脂よりなるフレキシブルな性質を有したフィルム状の基材と、前記基材の一表面に導電性金属よりなり、長さ方向に途切れた部分を有した配線パターンとを有した基板に対して、前記基板の前記配線パターンが形成された面上に接続しようとする半導体素子の突起電極側の面を対向させて位置合わせする工程では、
前記基板上の半導体素子を接続する領域に絶縁性の樹脂を供給した後に位置合わせすることを特徴とする請求項に記載の半導体装置の製造方法。
Substrate wherein an insulating made of a resin flexible nature having a film-like base material made of a conductive metal on one surface of said substrate, having a wiring pattern having a portion broken developing lengthwise On the other hand, in the step of aligning the surface on the protruding electrode side of the semiconductor element to be connected to the surface of the substrate on which the wiring pattern is formed,
8. The method of manufacturing a semiconductor device according to claim 7 , wherein alignment is performed after an insulating resin is supplied to a region on the substrate where semiconductor elements are connected.
JP2001008502A 2001-01-17 2001-01-17 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4520052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008502A JP4520052B2 (en) 2001-01-17 2001-01-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008502A JP4520052B2 (en) 2001-01-17 2001-01-17 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002217236A JP2002217236A (en) 2002-08-02
JP4520052B2 true JP4520052B2 (en) 2010-08-04

Family

ID=18876115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008502A Expired - Fee Related JP4520052B2 (en) 2001-01-17 2001-01-17 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4520052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243729B1 (en) 2011-12-26 2013-03-13 주식회사 프로이천 Method for manufacturing bump in film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996053A1 (en) * 2012-09-27 2014-03-28 Commissariat Energie Atomique METHOD OF ASSEMBLING TWO ELECTRONIC COMPONENTS, OF THE FLIP-CHIP TYPE, ASSEMBLY OBTAINED ACCORDING TO THE METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151506A (en) * 1992-11-06 1994-05-31 Sony Corp Electrode structure of base for mounting flip chip
JPH08111432A (en) * 1994-10-12 1996-04-30 Fujitsu Ltd Semiconductor device and production thereof
JPH10233413A (en) * 1997-02-21 1998-09-02 Nec Kansai Ltd Semiconductor device and its manufacture and wiring board
JPH11204913A (en) * 1998-01-09 1999-07-30 Sony Corp Circuit board, mounting method and printed circuit board
JP2002016101A (en) * 2000-06-28 2002-01-18 Sharp Corp Semiconductor device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151506A (en) * 1992-11-06 1994-05-31 Sony Corp Electrode structure of base for mounting flip chip
JPH08111432A (en) * 1994-10-12 1996-04-30 Fujitsu Ltd Semiconductor device and production thereof
JPH10233413A (en) * 1997-02-21 1998-09-02 Nec Kansai Ltd Semiconductor device and its manufacture and wiring board
JPH11204913A (en) * 1998-01-09 1999-07-30 Sony Corp Circuit board, mounting method and printed circuit board
JP2002016101A (en) * 2000-06-28 2002-01-18 Sharp Corp Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243729B1 (en) 2011-12-26 2013-03-13 주식회사 프로이천 Method for manufacturing bump in film

Also Published As

Publication number Publication date
JP2002217236A (en) 2002-08-02

Similar Documents

Publication Publication Date Title
US6518649B1 (en) Tape carrier type semiconductor device with gold/gold bonding of leads to bumps
JPH10199934A (en) Mounting structure of semiconductor element and mounting method thereof
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
JP2000068328A (en) Wiring board for flip-chip mounting
JP2001223243A (en) Semiconductor device and its manufacturing method, circuit board and electronic equipment
JP4520052B2 (en) Semiconductor device and manufacturing method thereof
JPH09162230A (en) Electronic circuit device and its manufacturing method
US6281437B1 (en) Method of forming an electrical connection between a conductive member having a dual thickness substrate and a conductor and electronic package including said connection
JP2005340393A (en) Small-sized mount module and manufacturing method thereof
JP3274619B2 (en) Semiconductor device and manufacturing method thereof
JP3438583B2 (en) Anisotropic conductive film connection method
JPH10125725A (en) Semiconductor device and manufacturing method thereof
JP2004247621A (en) Semiconductor device and its manufacturing method
JP3608476B2 (en) Semiconductor chip mounting circuit board and method for mounting semiconductor chip on circuit board
JP3419398B2 (en) Method for manufacturing semiconductor device
JP2002134558A (en) Semiconductor device and its manufacturing method
JPH11284022A (en) Semiconductor device and manufacture thereof
JPH03129745A (en) Mounting of semiconductor device
JP3446608B2 (en) Semiconductor unit
JP3598058B2 (en) Circuit board
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JP3191432B2 (en) Liquid crystal device
JP4619104B2 (en) Semiconductor device
JP2000208907A (en) Mounting method for electronic component
JP2001244615A (en) Circuit board, semiconductor device using the same and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees