JP3598058B2 - Circuit board - Google Patents

Circuit board Download PDF

Info

Publication number
JP3598058B2
JP3598058B2 JP2000364015A JP2000364015A JP3598058B2 JP 3598058 B2 JP3598058 B2 JP 3598058B2 JP 2000364015 A JP2000364015 A JP 2000364015A JP 2000364015 A JP2000364015 A JP 2000364015A JP 3598058 B2 JP3598058 B2 JP 3598058B2
Authority
JP
Japan
Prior art keywords
bump
semiconductor element
bumps
pad portion
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000364015A
Other languages
Japanese (ja)
Other versions
JP2002170849A (en
Inventor
将文 久高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000364015A priority Critical patent/JP3598058B2/en
Publication of JP2002170849A publication Critical patent/JP2002170849A/en
Application granted granted Critical
Publication of JP3598058B2 publication Critical patent/JP3598058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板に関し、特に、配線基板の実装面上にフェースダウン方式で半導体素子を実装した回路基板に有効な技術に関するものである。
【0002】
【従来の技術】
近年の半導体素子の配線基板への実装技術の動向は、電子機器の超小型化、高密度化に伴い、微細化、薄型化の傾向にある。半導体素子と配線基板との間の接合方法として、従来からのワイヤボンディング、半田付けよりも微細化、薄型化のできる異方性導電樹脂を用いた実装技術が大いに注目されている。
以下、この実装技術について説明する。図5はバンプ付き半導体素子を配線基板に接合した状態を示す断面図である。また、図6は図5のバンプ周辺の状態を示す拡大断面図である。
図において、50は回路基板、1は半導体素子、2はバンプ、4は異方性導電樹脂層、5は配線基板、6はパッド部である。また、異方性導電樹脂層4は、熱硬化性樹脂41中に導電粒子11が分散している。さらに、導電粒子11は、核材13の周囲がメッキ部12で被覆されている。また、パッド部6は、配線基板5上の表面配線導体の一部を構成している。
【0003】
この実装技術は、まず、複数のバンプ2が配置された半導体素子1を準備する。次に、複数のパッド部6が形成された配線基板5の実装面のチップ塔載領域に、例えばエポキシ系の熱硬化型異方性導電樹脂を塗布する。次に、配線基板5の実装面に半導体素子1の実装面を当接させた状態で、異方性導電樹脂層4を介して半導体素子1を載置する。次に、加熱しながら半導体素子1を押圧し、配線基板5のパッド部6と半導体素子1のバンプ2を接続する。すなわち、異方性導電樹脂層4は、熱硬化性樹脂41に多数の導電粒子11を分散している。これによって、バンプ2とパッド部6とは、それらの間に位置した導電粒子11によって電気的導通が達成されるが、バンプ2−パッド部6以外の導電粒子11は熱硬化性樹脂41(絶縁樹脂)中に疎の状態で分散するため、電気的導通はない。したがって、バンプ2とパッド部6のみが導通する。なお、機械的接続は、半導体素子1の実装面と配線基板5の実装面の間に位置した熱硬化性樹脂41の接着力で接続される。これにより、配線基板5の実装面上に半導体素子1が実装される。
【0004】
このようにして半導体素子1の実装を行う実装技術においては、隣接し合うパッド部6間の間隔が非常に小さい場合も、隣接するパッド部6同士を導通させることなく、精度良い実装が可能になる。従って、この実装技術は、配線基板の実装面上にフェースダウン方式で半導体素子を実装した回路基板に有効である。
【0005】
ところで、上記半導体素子1の実装方法において、半導体素子1と配線基板5は、異方性導電樹脂層4を構成する熱硬化性樹脂41で接着されているだけなので、半導体素子1と配線基板5の熱膨張係数差による応力歪み等により、バンプ2と配線基板5のパッド部6の接続信頼性を満足しないという不具合があった。
【0006】
そこで、配線基板と半導体素子との間の接続信頼性を向上させるために、半導体素子の実装面に接合のみを行うバンプを形成するとともに、それに対応した配線基板上のパッドを設け、実質的に接合強度を高めていた回路基板が、特開2000−195900号公報、特開2000−232200号公報に開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、図5に示す回路基板50では、半導体素子1の熱膨張係数が配線基板5の熱膨張係数より小さいため、例えば、温度サイクル試験等を行った場合、この熱膨張係数の差により発生する応力で、異方性導電樹脂層4が疲労劣化してしまう。
【0008】
以上の不具合を図面を参照して説明する。異方性導電樹脂層4の硬化温度、例えば200℃で半導体素子1と配線基板5が接合した後、常温付近での温度における応力の発生状況を図7に示す。種々の実験によれば、配線基板5の中央付近に向かって応力(図では矢印)が発生し、その結果、図の点線で示すように、配線基板5の中央付近が、半導体素子1に対して離れる方向に変形する傾向がある。
【0009】
ここで、特開2000−195900号公報、特開2000−232200号公報に開示された回路基板によれば、樹脂を塗布後に、配線基板のパッド部に半導体素子のバンプを圧接するのではなく、半導体素子のバンプと配線基板のパッドを当接した後に、少なくとも半導体素子と配線基板との間を含む領域に樹脂を充填していた。一方、図5〜7のような半導体素子1の実装方法では、半導体素子1と配線基板5は、異方性導電樹脂層4を構成する熱硬化性樹脂41で接着されており、バンプ2同士は元々接合には寄与していないため、バンプの数を増やしても、半導体素子1と配線基板5の接合強度を向上させることはできなかった。
【0010】
本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、温度サイクル試験等において、回路基板の中央部分に発生する応力により、半導体素子のバンプと配線基板のパッド部が剥離することを抑制し、半導体素子と配線基板が確実に安定して電気的に接続した高品質の回路基板を、簡単且つ安価な工程で提供することにある。
【0011】
【課題を解決するための手段】
本発明の回路基板は、実装面の周縁部に沿って第1及び第2のバンプを形成させた半導体素子を、前記第1及び第2のバンプと対応する位置に第1及び第2のパッド部を含む表面配線導体を形成した配線基板に接合させた回路基板であって、前記第1のバンプ及び前記第1のパッド部を、異方性導電樹脂層を介して互いに当接させるとともに、それぞれ信号の入出力及び電源供給等が行われる接続バンプ及び接続パッド部とし、且つ、前記第2のバンプ及び前記第2のパッド部を、半田により接合するとともに、それぞれ接合のみを行う接合バンプ及び接合パッド部としたことを特徴とするものである。
また本発明の回路基板は、実装面の周縁部に沿って第1及び第2のバンプを形成させた半導体素子を、前記第1及び第2のバンプと対応する位置に第1及び第2のパッド部を含む表面配線導体を形成した配線基板に接合させた回路基板であって、前記第1のバンプを前記半導体素子の角部付近に形成するとともに、該第1のバンプ及び前記第1のパッド部を異方性導電樹脂層を介して互いに当接させ、前記第2のバンプ及び前記第2のパッド部を半田により接合したことを特徴とするものである。
更に本発明の回路基板は、前記異方性導電樹脂層が前記半導体素子と前記配線基板との間に介在されていることを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0013】
図1は、本発明の回路基板の一実施例の断面図である。図2は、図1の回路基板の半導体素子のバンプ配置を示す実装面の平面図である。
【0014】
図において、10は回路基板、1は半導体素子、2は第1のバンプ、3は第2のバンプ、4は異方性導電樹脂層、5は配線基板、6は第1のパッド部、7は第2のパッド部である。また、第1のパッド部6、第2のパッド部7は、表面配線導体の一部を構成し、表面配線としては、パッド部の他、電子部品を半田により搭載するための導体、これらの導体間を電気的に結合する導体等が挙げられる。
【0015】
半導体素子1は、例えばシリコンにトランジスタ等を能動素子を形成するため、ドーパンド材を拡散したり、また、保護層を形成するため、部分的に酸化または窒化したり、さらに、第1、第2のバンプの形成領域に電極部材を被着したりして構成されている。
【0016】
配線基板5は、例えば、アルミナ、サファイア、窒化アルミニウム、ガラスセラミックス、石英等の耐熱性を有する絶縁基板である。
【0017】
半導体素子1は、実装面を配線基板5の実装面に対向させた、いわゆるフェースダウン方式で配線基板5に接合されている。具体的に説明すると、半導体素子1の実装面には、複数の第1及び第2のバンプ2、3が形成されている。
また、配線基板5の実装面には、第1、第2のパッド部6、7が形成されている。そして、半導体素子1は、複数の第1のバンプ2、第2のバンプ3がそれぞれ対応する第1のパッド部6、第2のパッド部7に接続されることになる。
第1及び第2のバンプ2、3は、Au等よりなり、突起量は20〜50μm程度である。第1及び第2のバンプ2、3は、例えばAu線によるワイヤボンディング方法のファーストボンディングを利用して形成し、半導体素子1の実装面の周辺において、その角部付近には第1のバンプ2が形成され、各辺の中央付近には第2のバンプ3が形成されている。第2のバンプ3は各辺中央近傍に少なくとも1個設け、半導体素子1サイズにより適宜第2のバンプ3の数を設定すればよい。ここで、第2のバンプ3を設ける領域は、半導体素子1の各辺の中央部を含んで長さの30〜40%の範囲にあることが望ましい。
【0018】
第1のパッド部6、第2のパッド部7の厚みは7〜15μm程度であり、材質はAu、Ag、Cu、あるいはこれらの合金よりなる。
【0019】
また、第1のバンプ2と第2のバンプ3とは同じ材料で構成されるとしたが、第1のバンプ2と第2のバンプ3とを異なる材料で構成してもよい。あるいは、第1のバンプ2と第2のバンプ3とを異なる形状にしてもよい。例えば、第2のバンプ3として、電気的特性が低下するが接合強度の大きい材料、あるいは形状を用いてもよい。
【0020】
そして、配線基板5と半導体素子1の間には、異方性導電樹脂層4が介在されている。異方性導電樹脂層4を形成するための異方性導電樹脂は、熱硬化性樹脂中に導電粒子が分散している。さらに、樹脂成分が液状のものあるいは固体状のもののいずれをも好適に採用することができ、また樹脂成分としてはエポキシ樹脂等の熱硬化性樹脂が、導電粒子としては金属粒子や樹脂粒子の表面に金メッキ等が施されて、導電性が付与されたものが用いられる。
また、第1のバンプ2及び第1のパッド部6を異方性導電樹脂層4を介して互いに接続しているとともに、第2のバンプ3及び第2のパッド部7を半田8により接合している。
さらに、第1のバンプ2及び第1のパッド部6をそれぞれ信号の入出力及び電源供給等が行われる接続バンプ及び接続パッド部とし、且つ第2のバンプ3及び第2のパッド部7をそれぞれ接合のみを行う接合バンプ及び接合パッド部としている。
【0021】
次に本発明の回路基板10における、半導体素子1と配線基板5との接合方法について説明する。
【0022】
まず、セラミック等よりなる配線基板5の第1のパッド部6、第2のパッド部7を有する面に熱硬化型異方性導電樹脂ペースト(Anisotropic Conductive Paste:ACPとも略す)を塗布する。主成分は、アクリル,エポキシ等である。次に、半導体素子1の第1のバンプ2と配線基板5の第1のパッド部6、半導体素子1の第2のバンプ3と配線基板5の第2のパッド部7とをそれぞれ位置決めし当接させる。その後、半導体素子1を配線基板5に加圧ツールにより加圧しつつ、あらかじめ配線基板5上に塗布した異方性導電樹脂ペーストを、硬化温度、例えば200℃で加熱硬化させる。すなわち、第1のバンプ2と第1のパッド部6間で、異方性導電樹脂ペーストに含まれている導電性粒子が変形し良好な電気的接続を得ることができる。また、加熱することにより、予め第2のパッド部7上に形成していた半田膜が溶解し、第2のバンプ3と第2のパッド部7間が半田8により接合される。このため、良好な機械的接続を得ることができる。次に、加圧ツールを取り除く。この時、半導体素子1は異方性導電樹脂により固着されるとともに、硬化時の樹脂成分の収縮力により、半導体素子1と配線基板5間に互いに引き合う力が作用する。
【0023】
かくして、実装面の少なくとも周縁部に沿って第1及び第2のバンプ2、3を形成させた半導体素子1を、第1及び第2のバンプ2、3と対応する位置に第1及び第2のパッド部6、7を含む表面配線導体を形成した配線基板5に接合させた回路基板10が達成できる。この時、第1のバンプ2及び第1のパッド部6を異方性導電樹脂層4を介して互いに当接しているために、電気的接続が達成できる。また、第2のバンプ3及び第2のパッド部7が半田8により接合されているため、温度サイクル試験等において、異方性導電樹脂層4にかかる応力によって、半導体素子1のバンプ2と配線基板5のパッド部6間に、剥離を発生させることを防止し、半導体素子1と配線基板5が確実に安定して電気的に接続した高品質の回路基板を提供することができる。
【0024】
また、第1のバンプ2及び第1のパッド部6は、それぞれ信号の入出力及び電源供給等が行われる接続バンプ及び接続パッド部である。また、第2のバンプ3及び第2のパッド部7は、それぞれ接合のみを行う接合バンプ及び接合パッド部である。そして、第2のバンプ3と第2のパッド部7は、半田8接合により、半導体素子1と配線基板5の間で、確実な電気接合と高い実装強度を満足できる。第2のバンプ3は、信号の入出力及び電源の供給等が行われないため、第2のバンプ3と第2のパッド部7を半田8により接合することにより、第2のバンプ3(第2のパッド部7)間で導通が生じたとしても、問題とはならない。さらに、第2のバンプ3を設けることにより、半導体素子1で発生した熱を効率よく放散することが可能になるという効果もある。
また、第1のバンプ2を半導体素子1の角部付近に形成したため、温度サイクル試験等において、半導体素子1と配線基板5との熱膨張係数の違いにより、繰り返し発生する応力で異方性導電樹脂層4が疲労した場合も、半導体素子1と配線基板5の接合不良を防ぐことができる。さらに、第2のバンプ3及び第2のパッド部7の存在により、半導体素子1と配線基板5との接続間隔を規制すると共に、半導体素子1が配線基板5に対して傾くことがなくなり、平行に搭載できるため、第1のバンプ2に加わる歪量を全て等しくする効果がある。
【0025】
また、異方性導電樹脂層4を半導体素子1と配線基板5との間隔に介在させたため、異方性導電樹脂を塗布後に加熱硬化させることにより、第1のバンプ2と第1のパッド部6を電気的に接続させる方法を採用でき、従来のラインを大きく変更する必要がないため、回路基板10を簡単且つ安価な工程で精度良く製造することができる。
【0026】
なお、本発明は上記の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内での種々の変更や改良等は何ら差し支えない。
【0027】
例えば、図3に示すように、半導体素子1と配線基板5の接合強度を向上させるために、第2のバンプ3(第2のパッド部7)の径を第1のバンプ2(第1のパッド部6)の径より大きくしてもよい。また、このことにより、半導体素子1で発生した熱を効率よく放散することができるという効果もある。
【0028】
また、図4に示すように、第2のバンプ3(第2のパッド部7)間の間隔を、第1のバンプ2(第1のパッド部6)間の間隔より小さくしてもよい。このことにより、単位面積当たりの第2のバンプ3(第2のパッド部7)の数が増大するため、接合強度を向上させることができる。なお、第2のバンプ3(第2のパッド部7)は、信号の入出力及び電源の供給等が行われないため、第2のバンプ3(第2のパッド部7)間の間隔を小さくすることにより、第2のバンプ3(第2のパッド部7)間で導通が生じたとしても、問題とはならない。ただし、第2のバンプ3(第2のパッド部7)を形成する際の精度から、第2のバンプ3(第2のパッド部7)間の間隔は約40μm以上にすることが望ましい。
【0029】
また、熱硬化型異方性導電樹脂層4は、ペーストの状態から熱硬化を行ったが、フィルム(Anisotropic Conductive Film:ACFとも略す)の状態で形成してもよい。このとき、半導体素子1と同じ大きさを有するテープシート状をなすものを用いる。つまり、ACFは接着面をカバー用のテープで覆っており、使用に際してはカバー用のテープを剥がしてACFの接着面を露出し、この接着面を配線基板5の実装面に接着する。
【0030】
また、半導体素子1と配線基板5の接合強度を向上させるために、第2のバンプ3及び第2のパッド部7を半導体素子1の周辺部に囲まれた領域にも設けてもよい。
【0031】
また、実施例では、配線基板の実装面上に1つの半導体素子を接合させたが、複数の半導体素子を接合させてもよい。
【0032】
本実施例では、半導体素子1サイズが2mm角で各辺1個、4mm角で各辺2個の第2のバンプ3を設けた。配線基板5はガラスセラミックからなり電極はAuメッキが施され、第2のバンプ3は電気的接続を有していない。配線基板5の半導体実装位置に一定量の異方性導電樹脂を塗布する第1の工程と、半導体素子1の第1のバンプ2、第2のバンプ3と150℃に加熱した配線基板5の第1のパッド部6、第2のパッド部7を位置合わせし、超音波熱圧着接合する第2の工程と、接合した半導体素子1に荷重及び150℃の熱を加え、異方性導電樹脂を硬化収縮させる第3の工程により作成される。
【0033】
第1の工程で使用した異方性導電樹脂層4はガラス転移点=145℃、線膨張係数=52×10−6mm/℃、曲げ弾性率=265kgf/mmの異方性導電樹脂を使用した。配線基板5は、線膨張係数=6.3×10−6mm/℃、曲げ弾性率=12950kgf/mmよりなるガラスセラミックを使用した。ガラスセラミック配線基板5の所定の位置に、ディスペンサーにて異方性導電樹脂を塗布し、第2の工程である接合するステージに配線基板5を搬送した。
【0034】
接合ステージで基板と半導体チップを位置合わせを行うと同時に、基板を150℃に加熱すると共に、40gf/バンプの荷重と初期温度150℃を半導体素子に加えた。その後基板及び接合された半導体チップに40gf/バンプの荷重を加えながら、150℃から半田が溶融する温度に半導体素を真空吸着したツールを過熱した。本実施例では150℃から200℃に昇温し、30秒保持後150℃に降温し、20秒後加圧を開放した。樹脂を硬化を完全とするため、120℃で30分のアフタベークを行い接合を完了した。
【0035】
以上の工程で作成した回路基板10と従来の回路基板50を、温度サイクル試験(条件:−40℃〜125℃、1サイクル/30分)を行い、接続の信頼性を確認した。従来の回路基板50が300サイクルから接合不良が発生し、770サイクルでn=10個のサンプルがすべて不良となった。これに対し、本発明の回路基板10は、1200サイクル経過後も、n=10個のサンプルに接合不良が発生しなかった。
【0036】
【発明の効果】
以上に述べたように、本発明によれば、第1のバンプ及び第1のパッド部をそれぞれ信号の入出力及び電源供給等が行われる接続バンプ及び接続パッド部とし、異方性導電樹脂層を介して互いに当接させるとともに、第1のバンプを半導体素子の角部付近に形成している。一方、第2のバンプ及び第2のパッド部をそれぞれ接合のみを行う接合バンプ及び接合パッド部とし、半田により接合させている。このため、温度サイクル試験等において、回路基板の中央部分に発生する応力により、半導体素子のバンプと配線基板のパッド部が剥離することを抑制し、半導体素子と配線基板が確実に安定して電気的に接続した高品質の回路基板を、簡単且つ安価な工程で提供することができる。
【図面の簡単な説明】
【図1】本発明の回路基板の一実施例の断面図である。
【図2】図1の回路基板の半導体素子のバンプ配置を示す実装面の平面図である。
【図3】本発明の他の実施例の半導体素子のバンプ配置を示す実装面の平面図である。
【図4】本発明の他の実施例の半導体素子のバンプ配置を示す実装面の平面図である。
【図5】従来の回路基板の断面図である。
【図6】図5の回路基板のバンプ周辺の拡大断面図である。
【図7】図5の回路基板の応力を説明する断面図である。
【符号の説明】
10、50 回路基板
1 半導体素子
2 第1のバンプ
3 第2のバンプ
4 異方性導電樹脂層
5 配線基板
6 第1のパッド部
7 第2のパッド部
8 半田
11 導電粒子
12 メッキ部
13 プラスチック部
41 熱硬化性樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board, and more particularly to a technique effective for a circuit board in which a semiconductor element is mounted on a mounting surface of a wiring board by a face-down method.
[0002]
[Prior art]
In recent years, the trend of mounting technology of semiconductor elements on a wiring board tends to be miniaturized and thinned with the miniaturization and high density of electronic devices. As a bonding method between a semiconductor element and a wiring board, a mounting technique using an anisotropic conductive resin that can be made finer and thinner than conventional wire bonding and soldering has attracted much attention.
Hereinafter, this mounting technique will be described. FIG. 5 is a cross-sectional view showing a state in which a bumped semiconductor element is bonded to a wiring board. FIG. 6 is an enlarged cross-sectional view showing a state around the bump of FIG.
In the figure, 50 is a circuit board, 1 is a semiconductor element, 2 is a bump, 4 is an anisotropic conductive resin layer, 5 is a wiring board, and 6 is a pad portion. In the anisotropic conductive resin layer 4, the conductive particles 11 are dispersed in the thermosetting resin 41. Furthermore, the conductive particles 11 are covered with a plating portion 12 around the core material 13. The pad portion 6 constitutes a part of the surface wiring conductor on the wiring substrate 5.
[0003]
In this mounting technique, first, a semiconductor element 1 on which a plurality of bumps 2 are arranged is prepared. Next, for example, an epoxy-based thermosetting anisotropic conductive resin is applied to the chip mounting region of the mounting surface of the wiring board 5 on which the plurality of pad portions 6 are formed. Next, the semiconductor element 1 is placed through the anisotropic conductive resin layer 4 with the mounting surface of the semiconductor element 1 in contact with the mounting surface of the wiring substrate 5. Next, the semiconductor element 1 is pressed while heating, and the pad portion 6 of the wiring substrate 5 and the bump 2 of the semiconductor element 1 are connected. That is, the anisotropic conductive resin layer 4 has a large number of conductive particles 11 dispersed in the thermosetting resin 41. As a result, the electrical conduction between the bump 2 and the pad portion 6 is achieved by the conductive particles 11 located between them, but the conductive particles 11 other than the bump 2 -pad portion 6 are made of the thermosetting resin 41 (insulation). Resin) is dispersed in a sparse state, so there is no electrical continuity. Therefore, only the bump 2 and the pad portion 6 are conducted. The mechanical connection is established by the adhesive force of the thermosetting resin 41 located between the mounting surface of the semiconductor element 1 and the mounting surface of the wiring board 5. Thereby, the semiconductor element 1 is mounted on the mounting surface of the wiring board 5.
[0004]
In the mounting technique for mounting the semiconductor element 1 in this way, even when the distance between the adjacent pad portions 6 is very small, the adjacent pad portions 6 are not electrically connected to each other and can be accurately mounted. Become. Therefore, this mounting technique is effective for a circuit board in which a semiconductor element is mounted on the mounting surface of the wiring board by a face-down method.
[0005]
By the way, in the mounting method of the semiconductor element 1, the semiconductor element 1 and the wiring substrate 5 are simply bonded with the thermosetting resin 41 constituting the anisotropic conductive resin layer 4. There is a problem in that the connection reliability between the bump 2 and the pad portion 6 of the wiring board 5 is not satisfied due to stress distortion caused by the difference in thermal expansion coefficient.
[0006]
Therefore, in order to improve the connection reliability between the wiring board and the semiconductor element, a bump for performing bonding only is formed on the mounting surface of the semiconductor element, and a pad on the wiring board corresponding to the bump is provided. Circuit boards having increased bonding strength are disclosed in Japanese Unexamined Patent Publication Nos. 2000-195900 and 2000-232200.
[0007]
[Problems to be solved by the invention]
However, in the circuit board 50 shown in FIG. 5, since the thermal expansion coefficient of the semiconductor element 1 is smaller than the thermal expansion coefficient of the wiring board 5, for example, when a temperature cycle test or the like is performed, the thermal expansion coefficient is generated due to the difference in the thermal expansion coefficient. The anisotropic conductive resin layer 4 is fatigued by stress.
[0008]
The above problems will be described with reference to the drawings. After the semiconductor element 1 and the wiring board 5 are bonded at the curing temperature of the anisotropic conductive resin layer 4, for example, 200 ° C., the stress generation state at a temperature near room temperature is shown in FIG. According to various experiments, stress (arrow in the figure) is generated near the center of the wiring board 5, and as a result, as shown by the dotted line in the figure, the vicinity of the center of the wiring board 5 is against the semiconductor element 1. Tend to deform away.
[0009]
Here, according to the circuit boards disclosed in Japanese Patent Laid-Open Nos. 2000-195900 and 2000-232200, after applying the resin, the bumps of the semiconductor element are not pressed against the pad portions of the wiring board, After the bumps of the semiconductor element and the pads of the wiring board are brought into contact with each other, the resin is filled in at least a region including between the semiconductor element and the wiring board. On the other hand, in the mounting method of the semiconductor element 1 as shown in FIGS. 5 to 7, the semiconductor element 1 and the wiring substrate 5 are bonded with the thermosetting resin 41 constituting the anisotropic conductive resin layer 4, and the bumps 2 are connected to each other. Originally did not contribute to the bonding, so even if the number of bumps was increased, the bonding strength between the semiconductor element 1 and the wiring board 5 could not be improved.
[0010]
The present invention has been devised in view of the above-mentioned problems, and its purpose is to provide a bump portion of a semiconductor element and a pad portion of a wiring board due to stress generated in a central portion of a circuit board in a temperature cycle test or the like. Is to provide a high-quality circuit board in which a semiconductor element and a wiring board are reliably and stably electrically connected in a simple and inexpensive process.
[0011]
[Means for Solving the Problems]
According to the circuit board of the present invention, the first and second pads are arranged at positions corresponding to the first and second bumps on the semiconductor element in which the first and second bumps are formed along the peripheral edge of the mounting surface. A circuit board bonded to a wiring board on which a surface wiring conductor including a portion is formed, wherein the first bump and the first pad are brought into contact with each other via an anisotropic conductive resin layer, Connection bumps and connection pad portions that are used for signal input / output and power supply, etc., and the second bump and the second pad portion are joined by soldering, and each of the joining bumps performs only joining The bonding pad portion is a feature.
In the circuit board of the present invention, the first and second semiconductor elements in which the first and second bumps are formed along the peripheral edge of the mounting surface are positioned at positions corresponding to the first and second bumps. A circuit board bonded to a wiring board on which a surface wiring conductor including a pad portion is formed, wherein the first bump is formed near a corner of the semiconductor element, and the first bump and the first bump The pad portions are brought into contact with each other through an anisotropic conductive resin layer, and the second bump and the second pad portion are joined by solder.
Furthermore, the circuit board of the present invention is characterized in that the anisotropic conductive resin layer is interposed between the semiconductor element and the wiring board.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
FIG. 1 is a cross-sectional view of an embodiment of a circuit board according to the present invention. FIG. 2 is a plan view of the mounting surface showing the bump arrangement of the semiconductor elements of the circuit board of FIG.
[0014]
In the figure, 10 is a circuit board, 1 is a semiconductor element, 2 is a first bump, 3 is a second bump, 4 is an anisotropic conductive resin layer, 5 is a wiring board, 6 is a first pad portion, 7 Is a second pad portion. The first pad portion 6 and the second pad portion 7 constitute a part of the surface wiring conductor. As the surface wiring, in addition to the pad portion, a conductor for mounting electronic components by solder, these Examples thereof include a conductor that electrically couples between conductors.
[0015]
The semiconductor element 1 may be formed by, for example, diffusing a dopant material to form an active element such as a transistor in silicon, or partially oxidizing or nitriding to form a protective layer. An electrode member is attached to the bump formation region.
[0016]
The wiring substrate 5 is an insulating substrate having heat resistance such as alumina, sapphire, aluminum nitride, glass ceramics, quartz, and the like.
[0017]
The semiconductor element 1 is bonded to the wiring substrate 5 by a so-called face-down method in which the mounting surface faces the mounting surface of the wiring substrate 5. More specifically, a plurality of first and second bumps 2 and 3 are formed on the mounting surface of the semiconductor element 1.
Further, first and second pad portions 6 and 7 are formed on the mounting surface of the wiring board 5. The semiconductor element 1 is connected to the first pad portion 6 and the second pad portion 7 to which the plurality of first bumps 2 and second bumps 3 respectively correspond.
The 1st and 2nd bumps 2 and 3 consist of Au etc., and the amount of protrusions is about 20-50 micrometers. The first and second bumps 2 and 3 are formed by using, for example, a first bonding of a wire bonding method using Au wire, and the first bump 2 is formed near the corner of the mounting surface of the semiconductor element 1. The second bump 3 is formed near the center of each side. At least one second bump 3 may be provided near the center of each side, and the number of second bumps 3 may be set as appropriate depending on the size of the semiconductor element 1. Here, the region where the second bump 3 is provided is preferably in the range of 30 to 40% of the length including the central portion of each side of the semiconductor element 1.
[0018]
The thicknesses of the first pad portion 6 and the second pad portion 7 are about 7 to 15 μm, and the material is made of Au, Ag, Cu, or an alloy thereof.
[0019]
Although the first bump 2 and the second bump 3 are made of the same material, the first bump 2 and the second bump 3 may be made of different materials. Alternatively, the first bump 2 and the second bump 3 may have different shapes. For example, the second bump 3 may be made of a material or shape having a high bonding strength although the electrical characteristics are deteriorated.
[0020]
An anisotropic conductive resin layer 4 is interposed between the wiring board 5 and the semiconductor element 1. In the anisotropic conductive resin for forming the anisotropic conductive resin layer 4, conductive particles are dispersed in the thermosetting resin. Further, any resin component that is liquid or solid can be suitably employed, and the resin component is a thermosetting resin such as an epoxy resin, and the conductive particles are metal particles or resin particle surfaces. In this case, gold is plated to give conductivity.
In addition, the first bump 2 and the first pad portion 6 are connected to each other through the anisotropic conductive resin layer 4, and the second bump 3 and the second pad portion 7 are joined by the solder 8. ing.
Furthermore, the first bump 2 and the first pad portion 6 are used as connection bumps and connection pad portions for inputting / outputting signals and supplying power, respectively, and the second bump 3 and the second pad portion 7 are respectively used. Bonding bumps and bonding pad portions that perform only bonding are used.
[0021]
Next, a method for bonding the semiconductor element 1 and the wiring board 5 in the circuit board 10 of the present invention will be described.
[0022]
First, a thermosetting anisotropic conductive resin paste (also abbreviated as ACP) is applied to the surface of the wiring substrate 5 made of ceramic or the like having the first pad portion 6 and the second pad portion 7. The main component is acrylic, epoxy or the like. Next, the first bump 2 of the semiconductor element 1 and the first pad portion 6 of the wiring substrate 5 are positioned, and the second bump 3 of the semiconductor element 1 and the second pad portion 7 of the wiring substrate 5 are respectively positioned and applied. Make contact. Thereafter, the anisotropic conductive resin paste previously applied onto the wiring substrate 5 is heated and cured at a curing temperature, for example, 200 ° C., while the semiconductor element 1 is pressed onto the wiring substrate 5 with a pressing tool. That is, the conductive particles contained in the anisotropic conductive resin paste are deformed between the first bump 2 and the first pad portion 6 to obtain a good electrical connection. Also, by heating, the solder film previously formed on the second pad portion 7 is dissolved, and the second bump 3 and the second pad portion 7 are joined by the solder 8. For this reason, a good mechanical connection can be obtained. Next, the pressure tool is removed. At this time, the semiconductor element 1 is fixed by the anisotropic conductive resin, and a force attracting each other acts between the semiconductor element 1 and the wiring board 5 due to the shrinkage force of the resin component at the time of curing.
[0023]
Thus, the first and second semiconductor elements 1 having the first and second bumps 2 and 3 formed along at least the peripheral edge of the mounting surface are positioned at positions corresponding to the first and second bumps 2 and 3. The circuit board 10 bonded to the wiring board 5 on which the surface wiring conductor including the pad portions 6 and 7 is formed can be achieved. At this time, since the first bump 2 and the first pad portion 6 are in contact with each other via the anisotropic conductive resin layer 4, electrical connection can be achieved. In addition, since the second bump 3 and the second pad portion 7 are joined by the solder 8, the bump 2 and the wiring of the semiconductor element 1 are wired by the stress applied to the anisotropic conductive resin layer 4 in a temperature cycle test or the like. It is possible to provide a high-quality circuit board in which separation between the pad portions 6 of the substrate 5 is prevented and the semiconductor element 1 and the wiring substrate 5 are reliably and electrically connected.
[0024]
The first bump 2 and the first pad unit 6 are a connection bump and a connection pad unit for inputting / outputting signals and supplying power, respectively. Further, the second bump 3 and the second pad portion 7 are a bonding bump and a bonding pad portion that perform only bonding, respectively. The second bump 3 and the second pad portion 7 can satisfy a reliable electrical connection and a high mounting strength between the semiconductor element 1 and the wiring substrate 5 by the solder 8 bonding. Since the second bump 3 is not subjected to signal input / output, power supply, or the like, the second bump 3 (first bump) is joined by joining the second bump 3 and the second pad portion 7 with solder 8. Even if conduction occurs between the two pad portions 7), there is no problem. Furthermore, the provision of the second bump 3 also has an effect that heat generated in the semiconductor element 1 can be efficiently dissipated.
Further, since the first bump 2 is formed in the vicinity of the corner of the semiconductor element 1, anisotropic conduction is caused by stress generated repeatedly due to a difference in thermal expansion coefficient between the semiconductor element 1 and the wiring substrate 5 in a temperature cycle test or the like. Even when the resin layer 4 is fatigued, a bonding failure between the semiconductor element 1 and the wiring substrate 5 can be prevented. Further, the presence of the second bump 3 and the second pad portion 7 regulates the connection interval between the semiconductor element 1 and the wiring board 5 and prevents the semiconductor element 1 from being inclined with respect to the wiring board 5. Therefore, all the strain applied to the first bump 2 can be made equal.
[0025]
Further, since the anisotropic conductive resin layer 4 is interposed in the space between the semiconductor element 1 and the wiring substrate 5, the first bump 2 and the first pad portion are formed by heating and curing the anisotropic conductive resin after coating. 6 can be employed, and it is not necessary to greatly change the conventional line. Therefore, the circuit board 10 can be accurately manufactured by a simple and inexpensive process.
[0026]
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the scope of the present invention.
[0027]
For example, as shown in FIG. 3, in order to improve the bonding strength between the semiconductor element 1 and the wiring substrate 5, the diameter of the second bump 3 (second pad portion 7) is set to the first bump 2 (first pad). You may make it larger than the diameter of the pad part 6). This also has the effect of efficiently dissipating heat generated in the semiconductor element 1.
[0028]
Further, as shown in FIG. 4, the interval between the second bumps 3 (second pad portions 7) may be made smaller than the interval between the first bumps 2 (first pad portions 6). As a result, the number of second bumps 3 (second pad portions 7) per unit area increases, so that the bonding strength can be improved. Since the second bump 3 (second pad portion 7) is not subjected to signal input / output, power supply, or the like, the interval between the second bumps 3 (second pad portion 7) is reduced. Thus, even if conduction occurs between the second bumps 3 (second pad portions 7), there is no problem. However, the distance between the second bumps 3 (second pad portions 7) is preferably about 40 μm or more from the viewpoint of accuracy when forming the second bumps 3 (second pad portions 7).
[0029]
In addition, the thermosetting anisotropic conductive resin layer 4 is thermoset from the paste state, but may be formed in a film (also referred to as an anisotropy conductive film: ACF) state. At this time, a tape sheet having the same size as the semiconductor element 1 is used. That is, the ACF covers the adhesive surface with a cover tape, and in use, the cover tape is peeled off to expose the adhesive surface of the ACF, and this adhesive surface is adhered to the mounting surface of the wiring board 5.
[0030]
In order to improve the bonding strength between the semiconductor element 1 and the wiring substrate 5, the second bump 3 and the second pad portion 7 may be provided in a region surrounded by the peripheral portion of the semiconductor element 1.
[0031]
In the embodiment, one semiconductor element is bonded on the mounting surface of the wiring board, but a plurality of semiconductor elements may be bonded.
[0032]
In the present embodiment, the second bump 3 having a size of the semiconductor element 1 of 2 mm square and one side and 4 mm square and two sides is provided. The wiring board 5 is made of glass ceramic, and the electrode is plated with Au, and the second bump 3 has no electrical connection. A first step of applying a certain amount of anisotropic conductive resin to a semiconductor mounting position of the wiring board 5; a first bump 2 and a second bump 3 of the semiconductor element 1; and the wiring board 5 heated to 150 ° C. A second step of aligning the first pad portion 6 and the second pad portion 7 and ultrasonic thermocompression bonding, and applying a load and heat at 150 ° C. to the bonded semiconductor element 1, an anisotropic conductive resin It is created by a third step of curing and shrinking.
[0033]
The anisotropic conductive resin layer 4 used in the first step is made of an anisotropic conductive resin having a glass transition point = 145 ° C., a linear expansion coefficient = 52 × 10 −6 mm / ° C., and a flexural modulus = 265 kgf / mm 2. used. As the wiring substrate 5, a glass ceramic having a linear expansion coefficient = 6.3 × 10 −6 mm / ° C. and a flexural modulus = 12950 kgf / mm 2 was used. An anisotropic conductive resin was applied to a predetermined position of the glass ceramic wiring board 5 with a dispenser, and the wiring board 5 was transported to a stage to be joined, which is a second step.
[0034]
At the same time as aligning the substrate and the semiconductor chip on the bonding stage, the substrate was heated to 150 ° C., and a load of 40 gf / bump and an initial temperature of 150 ° C. were applied to the semiconductor element. Thereafter, while applying a load of 40 gf / bump to the substrate and the bonded semiconductor chip, the tool that vacuum-adsorbed the semiconductor element from 150 ° C. to a temperature at which the solder melts was heated. In this example, the temperature was raised from 150 ° C. to 200 ° C., held for 30 seconds, lowered to 150 ° C., and the pressure was released after 20 seconds. In order to completely cure the resin, after-baking was performed at 120 ° C. for 30 minutes to complete the bonding.
[0035]
A temperature cycle test (conditions: −40 ° C. to 125 ° C., 1 cycle / 30 minutes) was performed on the circuit board 10 and the conventional circuit board 50 created in the above process, and the reliability of connection was confirmed. In the conventional circuit board 50, bonding failure occurred from 300 cycles, and all n = 10 samples were defective in 770 cycles. On the other hand, in the circuit board 10 of the present invention, no bonding failure occurred in n = 10 samples even after 1200 cycles.
[0036]
【The invention's effect】
As described above, according to the present invention, the first bump and the first pad portion are the connection bump and the connection pad portion where signal input / output and power supply are performed, respectively, and the anisotropic conductive resin layer The first bumps are formed in the vicinity of the corners of the semiconductor element. On the other hand, the second bump and the second pad portion are respectively formed as a bonding bump and a bonding pad portion for performing only bonding, and are bonded by solder. For this reason, in a temperature cycle test or the like, the stress generated in the center portion of the circuit board is prevented from peeling off the bumps of the semiconductor element and the pad parts of the wiring board, and the semiconductor element and the wiring board are reliably and electrically connected. Connected high quality circuit boards can be provided in a simple and inexpensive process.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a circuit board of the present invention.
2 is a plan view of a mounting surface showing a bump arrangement of a semiconductor element of the circuit board of FIG. 1; FIG.
FIG. 3 is a plan view of a mounting surface showing a bump arrangement of a semiconductor device according to another embodiment of the present invention.
FIG. 4 is a plan view of a mounting surface showing a bump arrangement of a semiconductor device according to another embodiment of the present invention.
FIG. 5 is a cross-sectional view of a conventional circuit board.
6 is an enlarged cross-sectional view around a bump of the circuit board of FIG. 5;
7 is a cross-sectional view illustrating the stress of the circuit board of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10, 50 Circuit board 1 Semiconductor element 2 1st bump 3 2nd bump 4 Anisotropic conductive resin layer 5 Wiring board 6 1st pad part 7 2nd pad part 8 Solder 11 Conductive particle 12 Plating part 13 Plastic Part 41 Thermosetting resin

Claims (3)

実装面の周縁部に沿って第1及び第2のバンプを形成させた半導体素子を、前記第1及び第2のバンプと対応する位置に第1及び第2のパッド部を含む表面配線導体を形成した配線基板に接合させた回路基板であって、
前記第1のバンプ及び前記第1のパッド部を異方性導電樹脂層を介して互いに当接させるとともに、それぞれ信号の入出力及び電源供給等が行われる接続バンプ及び接続パッド部とし、
且つ、前記第2のバンプ及び前記第2のパッド部を半田により接合するとともに、それぞれ接合のみを行う接合バンプ及び接合パッド部としたことを特徴とする回路基板。
A semiconductor device having first and second bumps formed along the peripheral edge of the mounting surface is provided with a surface wiring conductor including first and second pad portions at a position corresponding to the first and second bumps. A circuit board bonded to the formed wiring board,
The first bump and the first pad portion, is brought into contact with each other through the anisotropic conductive resin layer, and connecting the bump and the connection pad portions respectively output and power supply of the signal is performed,
And, wherein the second bumps and the second pad portion, thereby bonding by solder, the circuit board, characterized in that the bonding bumps and the bonding pad portions respectively perform bonding only.
実装面の周縁部に沿って第1及び第2のバンプを形成させた半導体素子を、前記第1及び第2のバンプと対応する位置に第1及び第2のパッド部を含む表面配線導体を形成した配線基板に接合させた回路基板であって、
前記第1のバンプを前記半導体素子の角部付近に形成するとともに、該第1のバンプ及び前記第1のパッド部を異方性導電樹脂層を介して互いに当接させ前記第2のバンプ及び前記第2のパッド部を半田により接合したことを特徴とする回路基板。
A semiconductor device having first and second bumps formed along the peripheral edge of the mounting surface is provided with a surface wiring conductor including first and second pad portions at a position corresponding to the first and second bumps. A circuit board bonded to the formed wiring board,
And forming the first bump in the vicinity of the corners of the semiconductor element, brought into contact with each other through the anisotropic conductive resin layer the first bump and the first pad portion, the second bump And a circuit board, wherein the second pad portion is joined by solder.
前記異方性導電樹脂層前記半導体素子と前記配線基板との間に介在されていることを特徴とする請求項1または請求項2に記載の回路基板。The circuit board according to claim 1 or claim 2, wherein the anisotropic conductive resin layer is interposed between the wiring board and the semiconductor element.
JP2000364015A 2000-11-30 2000-11-30 Circuit board Expired - Fee Related JP3598058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000364015A JP3598058B2 (en) 2000-11-30 2000-11-30 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000364015A JP3598058B2 (en) 2000-11-30 2000-11-30 Circuit board

Publications (2)

Publication Number Publication Date
JP2002170849A JP2002170849A (en) 2002-06-14
JP3598058B2 true JP3598058B2 (en) 2004-12-08

Family

ID=18835031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000364015A Expired - Fee Related JP3598058B2 (en) 2000-11-30 2000-11-30 Circuit board

Country Status (1)

Country Link
JP (1) JP3598058B2 (en)

Also Published As

Publication number Publication date
JP2002170849A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
KR100531393B1 (en) Semiconductor device and manufacturing method of the same
JP3633559B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
TW512498B (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
JPH1070362A (en) Method and structure for coupling board
US20100207279A1 (en) Semiconductor package with ribbon with metal layers
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP3654116B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP4151136B2 (en) Substrate, semiconductor device and manufacturing method thereof
JP2000277649A (en) Semiconductor and manufacture of the same
JP3269390B2 (en) Semiconductor device
JPH1116949A (en) Acf-bonding structure
US6281437B1 (en) Method of forming an electrical connection between a conductive member having a dual thickness substrate and a conductor and electronic package including said connection
JP2002026071A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
JP3572254B2 (en) Circuit board
JP3598058B2 (en) Circuit board
JP2658967B2 (en) Supporting member for electronic package assembly and electronic package assembly using the same
JP2004247621A (en) Semiconductor device and its manufacturing method
JPH0951018A (en) Semiconductor device and its manufacturing method
JP3120837B2 (en) Resin film for electrical connection and electrical connection method using the resin film
JP3419398B2 (en) Method for manufacturing semiconductor device
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JP2748771B2 (en) Film carrier semiconductor device and method of manufacturing the same
JP3547270B2 (en) Mounting structure and method of manufacturing the same
JPH11284022A (en) Semiconductor device and manufacture thereof
JP4520052B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees