JP3547270B2 - Mounting structure and method of manufacturing the same - Google Patents

Mounting structure and method of manufacturing the same Download PDF

Info

Publication number
JP3547270B2
JP3547270B2 JP27657696A JP27657696A JP3547270B2 JP 3547270 B2 JP3547270 B2 JP 3547270B2 JP 27657696 A JP27657696 A JP 27657696A JP 27657696 A JP27657696 A JP 27657696A JP 3547270 B2 JP3547270 B2 JP 3547270B2
Authority
JP
Japan
Prior art keywords
resin layer
mounting structure
semiconductor device
circuit board
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27657696A
Other languages
Japanese (ja)
Other versions
JPH10125730A (en
Inventor
和由 天見
祐伯  聖
芳宏 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27657696A priority Critical patent/JP3547270B2/en
Publication of JPH10125730A publication Critical patent/JPH10125730A/en
Application granted granted Critical
Publication of JP3547270B2 publication Critical patent/JP3547270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus

Description

【0001】
【発明の属する技術分野】
本発明は、集積回路チップ等の半導体装置が回路基板上にフリップチップ実装されている実装構造体、およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、回路基板の入出力端子電極に半導体装置を実装する際には、半田付けを用いたワイヤボンディング方法がよく利用されてきた。しかし、近年、半導体装置のパッケージの小型化と接続端子数の増加により接続端子の間隔が狭くなり、従来の半田付け技術で対処することが次第に困難になってきた。
【0003】
そこで、最近では集積回路チップ等の半導体装置を回路基板の入出力端子電極上に直接実装することにより、実装面積を小型化して効率的使用を図る技術が提案されている。
【0004】
なかでも、半導体装置を回路基板にフェイスダウン状態でフリップチップ実装する技術は、半導体装置と回路基板との電気的接続が一括してできること、および接続後の機械的強度が強いこと等の利点があるため、有用な技術であるといえる。
【0005】
例えば、工業調査会、1980年1月15日発行、日本マイクロエレクトロニクス協会編、「IC化実装技術」には、半田メッキ法を用いた実装技術が記載されている。以下、この実装技術を図面に基づいて説明する。
【0006】
図5は、半導体装置を構成するIC基板1の電極パッド3上に、半田から成る電気的接続接点(以下「半田バンプ」という)11を形成させた状態の一部拡大断面図を示している。この半導体装置は、まずIC基板1の電極パッド3上に蒸着法によって密着金属膜13および拡散防止金属膜12が形成され、さらにその上にメッキ法によって半田バンプ11が形成されている。
【0007】
次に、図5のように構成された半導体装置を、フェイスダウン状態で回路基板に実装する。この実装した状態の一部拡大断面図を示しているのが図6である。実装の際には、回路基板5に形成されている入出力端子電極8上に半田バンプ11が当接するように位置合わせが行われ、回路基板5上に半導体装置が載置される(以下、回路基板5上に半導体装置が実装されたものを「実装構造体」という)。その後、この実装構造体を高温に加熱することにより、半田バンプ11が回路基板5の入出力端子電極8に融着する。
【0008】
また、最近では、導電性接着剤を用いて実装構造体を構成する技術も提案されている。図7は、導電性接着剤を用いて構成されている実装構造体の概略断面図を示したものである。この実装構造体は、図7に示すように、IC基板1の電極パッド3上に、ワイヤボンディング法またはメッキ法等により電気的接続接点(以下「Auバンプ」という)14が形成され、導電性接着剤(接合層)7を介して、Auバンプ14と回路基板5の入出力端子電極8とが接続されている。このような実装構造体においては、IC基板1のAuバンプ14に導電性接着剤7を転写してから、回路基板5の入出力端子電極8にAuバンプ14が当接するように位置合わせを行い、その後導電性接着剤7を硬化させて電気的接続を得ている。
【0009】
以上の各技術を用いて構成されている実装構造体においては、図6および図7に示すように、半導体装置と回路基板5との接続部の補強を行うために、半導体装置と回路基板5との間に封止樹脂を封入して封止樹脂層6を形成させる技術も提案されている。そして、この封止樹脂層6が硬化することにより、半導体装置と回路基板5との接続部が補強される。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来の技術に係る実装構造体においては、封止樹脂層の硬化の際に起こる樹脂の硬化収縮とIC基板の熱膨張との差により、歪みが発生するおそれがある。歪みが発生すると、例えばIC基板側に凸状に膨らみが発生し、実装構造体の各部に歪みが生じてしまう。このような実装構造体の各部の歪みは、IC基板、バンプ電極および回路基板のそれぞれの接続部において、断線または接触不良等を引き起こす原因となる。
【0011】
本発明は、このような課題を解決するためになされたもので、半導体装置と回路基板との接続部の安定性および信頼性の高い実装構造体を提供するとともに、この実装構造体の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するための本発明の実装構造体は、半導体装置と回路基板とがフリップチップ方式を用いて電気的に接続されている実装構造体において、前記半導体装置と前記回路基板との間に封止樹脂層が形成され、前記半導体装置の前記回路基板との接続面の裏面に熱伝導性を有するフィラを含有している樹脂層が形成されていることを特徴とする。
【0013】
本発明の構成によれば、前記封止樹脂の硬化時に発生する硬化収縮と前記半導体装置を構成するIC基板の熱膨張との差による歪みを、前記樹脂層を設けることにより緩和することができるため、前記半導体装置と前記回路基板との接続部の安定性および信頼性の高い実装構造体を得ることができる。
【0014】
また、前記樹脂層が、熱硬化性樹脂を用いて構成されていることが好ましい。さらに、前記樹脂層に貫通孔が形成されていることも好ましい。
【0015】
このような構成にすれば、前記実装構造体を構成する半導体装置等に発生する熱を効率よく発散させることができ、前記封止樹脂の硬化収縮と前記半導体装置を構成するIC基板の熱膨張との差を緩和することが可能となる。したがって、実装構造体の各部の歪みを効果的に防止し、安定性および信頼性の高い接続部を有する実装構造体を得ることができる。
【0016】
さらに、本発明は、半導体装置と回路基板とをフリップチップ方式を用いて電気的に接続する実装構造体の製造方法において、前記半導体装置と前記回路基板との間に樹脂を封入して未硬化の封止樹脂層を形成し、前記半導体装置の前記回路基板との接続面の裏面に未硬化の樹脂層を形成した後、前記封止樹脂層と前記樹脂層とをほぼ同時に硬化させることを特徴とする。
【0017】
また、前記製造方法においては、熱伝導性を有するフィラを含有している樹脂層を用いて、前記半導体装置の前記回路基板との接続面の裏面に未硬化の樹脂層を形成することが好ましく、前記未硬化の樹脂層に貫通孔を形成する工程を含むことも好ましい。さらに、シート状に形成された未硬化の樹脂層を用いて、前記半導体装置の前記回路基板との接続面の裏面に未硬化の樹脂層を形成することも好ましい。
【0018】
【発明の実施形態】
以下、本発明の実施形態に係る実装構造体を図面に基づいて説明する。
(第一の実施形態)
図1は、本発明の第一の実施形態に係る実装構造体の断面図を示している。この図1に示すように、本実施形態に係る実装構造体を構成する半導体装置は、IC基板1の電極パッド3上に電気的接続点(以下「バンプ電極」という)2が形成され、IC基板1の電極パッド3を有する面の裏面に、スクリーン印刷法を用いて熱硬化性の樹脂層4が約30μmの厚さで形成されている。
【0019】
半導体装置を回路基板5に実装する際には、バンプ電極2に半田または導電性接着剤等から成る接合層7を転写法または印刷法等によって形成し、バンプ電極2と回路基板5の入出力端子電極8とが当接するように位置合わせを行い、回路基板5上に半導体装置をフェイスダウン状態で積載する。そして、半導体装置と回路基板5との間に封止樹脂を封入して封止樹脂層6を形成させ、この封止樹脂層6とIC基板1に形成された樹脂層4とをほぼ同時に硬化させる。このようにして、実装構造体が造られる。
【0020】
本実施形態においては、以上のように、樹脂層4と封止樹脂層6とがIC基板1を挟み込む構成とし、さらにこれらの各樹脂層4,6とをほぼ同時に硬化させるようにしたので、従来封止樹脂層6の硬化時に起こる樹脂の硬化収縮とIC基板1の熱膨張との差に起因して発生していた歪みを効果的に防止することができる。したがって、実装構造体の各部の歪みも緩和されるため、半導体装置と回路基板1との接続部は補強され、安定性および信頼性の高い接続部を有する実装構造体を得ることができる。
【0021】
また、本実施形態においては、樹脂層4の形成方法としてスクリーン印刷法を用いた場合について説明したが、本発明はこれに限定されるものではなく、例えば転写法等の他の方法を用いてもよい。さらに、樹脂層4の厚みについても、特に限定する必要はなく、樹脂の硬化速度および実装構造体の歪み具合等を考慮して適宜決定すればよい。また、樹脂層4を形成させる時期は、封止樹脂層6の硬化前であればよく、特に限定する必要はない。
【0022】
(第二の実施形態)
図2は、本発明の第二の実施形態に係る実装構造体の断面図を示している。この第二の実施形態においては、IC基板1の電極パッド3を有する面の裏面に、熱伝導性を有するフィラ9を含む樹脂層24が形成されている。その他の構成については、基本的に第一の実施形態と同様である。
【0023】
本実施形態においては、以上のような構成としたので、半導体装置に発生する熱が樹脂層24中のフィラ9を介して効率よく発散する。また、封止樹脂層6の硬化時に起こる樹脂の硬化収縮とIC基板1の熱膨張との差を効果的に緩和することが可能となり、実装構造体の各部の歪みを防止することができるため、安定性および信頼性の高い接続部を有する実装構造体を得ることができる。
【0024】
(第三の実施形態)
図3は、本発明の第三の実施形態に係る実装構造体の断面図を示している。この第三の実施形態においては、IC基板1の電極パッド3を有する面の裏面に、貫通孔10を有する樹脂層34が形成されている。その他の構成については、基本的に第一の実施形態と同様である。
【0025】
IC基板1の電極パッド3を有する面の裏面に、貫通孔10を有する樹脂層34を形成する方法としては、未硬化の樹脂をシート状にして、そのシートに貫通孔10を設けた後に半導体装置のサイズに切断して(または、半導体装置のサイズに切断した後に貫通孔10を設けて)、シートを半導体装置に積載する方法がある。または、IC基板1の電極パッド3を有する面の裏面に、貫通孔10の部分を空けた状態にして樹脂を塗布する方法もある。
【0026】
本実施形態においては、以上のような構成としたので、半導体装置に発生する熱がこもらずに、貫通孔10を介して効率よく発散する。また、封止樹脂層6の硬化時に起こる樹脂の硬化収縮とIC基板1の熱膨張との差を効果的に緩和することが可能となり、実装構造体の各部の歪みを防止することができるため、安定性および信頼性の高い接続部を有する実装構造体を得ることができる。
【0027】
さらに、前記未硬化樹脂層形成方法を用いることにより、半導体装置の実装構造体を安定的に製造することができる。
(第四の実施形態)
図4は、本発明の第四の実施形態に係る実装構造体の断面図を示している。この第四の実施形態においては、IC基板1の電極パッド3を有する面の裏面に、樹脂層44が形成されている。この樹脂層44は、熱伝導性を有するフィラ9を含有しており、さらに図4に示すように貫通孔10を備えている。貫通孔10を有する樹脂層44の形成方法は、第三の実施形態と同様である。また、その他の構成については、基本的に第一の実施形態と同様である。
【0028】
本実施形態においては、以上のように、熱伝導性を有するフィラ9を含む樹脂層44に貫通孔10を設けた構成としたので、半導体装置に発生する熱がフィラ9および貫通孔10を介して効率よく発散する。また、封止樹脂層6の硬化時に起こる樹脂の硬化収縮とIC基板1の熱膨張との差を効果的に緩和することが可能となり、実装構造体の各部の歪みを防止することができるため、安定性および信頼性の高い接続部を有する実装構造体を得ることができる。
【0029】
【発明の効果】
以上説明したように、本発明によれば、半導体装置と回路基板との接続部の安定性および信頼性の高い実装構造体を得ることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態に係る実装構造体の概略断面図
【図2】本発明の第二の実施形態に係る実装構造体の概略断面図
【図3】本発明の第三の実施形態に係る実装構造体の概略断面図
【図4】本発明の第四の実施形態に係る実装構造体の概略断面図
【図5】従来技術に係る実装構造体を構成する半導体装置の一部拡大断面図
【図6】従来技術に係る実装構造体の一部拡大断面図
【図7】従来技術に係る他の実装構造体の概略断面図
【符号の説明】
1 IC基板
2 電気的接続点(バンプ電極)
3 電極パッド
4,24,34,44 樹脂層
5 回路基板
6 封止樹脂層
7 導電性接着剤(接合層)
8 入出力端子電極
9 フィラ
10 貫通孔
11 半田バンプ
12 拡散防止金属膜
13 密着金属膜
14 電気的接続点(Auバンプ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting structure in which a semiconductor device such as an integrated circuit chip is flip-chip mounted on a circuit board, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, when a semiconductor device is mounted on input / output terminal electrodes of a circuit board, a wire bonding method using soldering has been often used. However, in recent years, the size of the semiconductor device package and the increase in the number of connection terminals have reduced the distance between the connection terminals, and it has become increasingly difficult to deal with the conventional soldering technology.
[0003]
Therefore, recently, a technique has been proposed in which a semiconductor device such as an integrated circuit chip is directly mounted on input / output terminal electrodes of a circuit board to reduce the mounting area and achieve efficient use.
[0004]
Among them, the technology of flip-chip mounting a semiconductor device on a circuit board in a face-down state has the advantages that the electrical connection between the semiconductor device and the circuit board can be made collectively and that the mechanical strength after connection is strong. This is a useful technique.
[0005]
For example, a mounting technology using a solder plating method is described in "Industrial Research Council", published on January 15, 1980, edited by the Japan Microelectronics Association, "IC mounting technology". Hereinafter, this mounting technique will be described with reference to the drawings.
[0006]
FIG. 5 is a partially enlarged cross-sectional view showing a state in which an electrical connection contact (hereinafter, referred to as “solder bump”) 11 made of solder is formed on an electrode pad 3 of an IC substrate 1 constituting a semiconductor device. . In this semiconductor device, first, an adhesion metal film 13 and a diffusion prevention metal film 12 are formed on an electrode pad 3 of an IC substrate 1 by an evaporation method, and a solder bump 11 is formed thereon by a plating method.
[0007]
Next, the semiconductor device configured as shown in FIG. 5 is mounted on a circuit board in a face-down state. FIG. 6 shows a partially enlarged sectional view of the mounted state. At the time of mounting, positioning is performed so that the solder bumps 11 are in contact with the input / output terminal electrodes 8 formed on the circuit board 5, and the semiconductor device is mounted on the circuit board 5 (hereinafter, referred to as “the semiconductor device”). A semiconductor device mounted on the circuit board 5 is referred to as a “mounting structure”. Thereafter, the mounting structure is heated to a high temperature, so that the solder bumps 11 are fused to the input / output terminal electrodes 8 of the circuit board 5.
[0008]
Recently, a technique for forming a mounting structure using a conductive adhesive has also been proposed. FIG. 7 is a schematic cross-sectional view of a mounting structure constituted by using a conductive adhesive. In this mounting structure, as shown in FIG. 7, electrical connection contacts (hereinafter referred to as “Au bumps”) 14 are formed on the electrode pads 3 of the IC substrate 1 by a wire bonding method, a plating method, or the like. The Au bumps 14 and the input / output terminal electrodes 8 of the circuit board 5 are connected via an adhesive (bonding layer) 7. In such a mounting structure, the conductive adhesive 7 is transferred to the Au bumps 14 of the IC substrate 1, and then the alignment is performed so that the Au bumps 14 come into contact with the input / output terminal electrodes 8 of the circuit board 5. Thereafter, the conductive adhesive 7 is cured to obtain an electrical connection.
[0009]
As shown in FIGS. 6 and 7, in the mounting structure configured using each of the above techniques, the semiconductor device and the circuit board 5 are reinforced in order to reinforce the connection between the semiconductor device and the circuit board 5. A technique of forming a sealing resin layer 6 by encapsulating a sealing resin between them is also proposed. When the sealing resin layer 6 is cured, the connection between the semiconductor device and the circuit board 5 is reinforced.
[0010]
[Problems to be solved by the invention]
However, in the mounting structure according to the above-described conventional technique, distortion may occur due to a difference between the curing shrinkage of the resin and the thermal expansion of the IC substrate that occur when the sealing resin layer is cured. When distortion occurs, for example, a convex bulge occurs on the IC substrate side, and distortion occurs in each part of the mounting structure. Such distortion of each part of the mounting structure causes disconnection or poor contact at each connection part of the IC substrate, the bump electrode, and the circuit board.
[0011]
The present invention has been made in order to solve such a problem, and provides a mounting structure having high stability and reliability of a connection portion between a semiconductor device and a circuit board, and a method of manufacturing the mounting structure. The purpose is to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a mounting structure of the present invention is a mounting structure in which a semiconductor device and a circuit board are electrically connected using a flip-chip method. A sealing resin layer, and a resin layer containing a filler having thermal conductivity is formed on the back surface of the connection surface of the semiconductor device with the circuit board.
[0013]
According to the configuration of the present invention, the distortion caused by the difference between the curing shrinkage that occurs when the sealing resin is cured and the thermal expansion of the IC substrate that constitutes the semiconductor device can be reduced by providing the resin layer. Therefore, it is possible to obtain a mounting structure with high stability and reliability of the connection between the semiconductor device and the circuit board.
[0014]
Further, the resin layer, it is good preferable configured with a thermosetting resin. Further, it is preferable that a through hole is formed in the resin layer.
[0015]
With such a configuration, heat generated in the semiconductor device and the like forming the mounting structure can be efficiently dissipated, and the curing shrinkage of the sealing resin and the thermal expansion of the IC substrate forming the semiconductor device can be achieved. Can be reduced. Therefore, distortion of each part of the mounting structure can be effectively prevented, and a mounting structure having a stable and highly reliable connection portion can be obtained.
[0016]
Further, the present invention provides a method of manufacturing a mounting structure for electrically connecting a semiconductor device and a circuit board by using a flip-chip method, wherein a resin is sealed between the semiconductor device and the circuit board and uncured. Forming an uncured resin layer on the back surface of the connection surface of the semiconductor device with the circuit board, and then curing the sealing resin layer and the resin layer almost simultaneously. Features.
[0017]
Further, in the manufacturing method, it is preferable that an uncured resin layer is formed on a back surface of a connection surface of the semiconductor device with the circuit board using a resin layer containing a filler having thermal conductivity. Preferably, the method further includes a step of forming a through hole in the uncured resin layer. Further, it is preferable that an uncured resin layer is formed on the back surface of the connection surface of the semiconductor device with the circuit board using the uncured resin layer formed in a sheet shape.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a mounting structure according to an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a sectional view of a mounting structure according to the first embodiment of the present invention. As shown in FIG. 1, in a semiconductor device constituting a mounting structure according to the present embodiment, an electrical connection point (hereinafter, referred to as “bump electrode”) 2 is formed on an electrode pad 3 of an IC substrate 1, A thermosetting resin layer 4 having a thickness of about 30 μm is formed on the back surface of the substrate 1 having the electrode pads 3 by using a screen printing method.
[0019]
When the semiconductor device is mounted on the circuit board 5, a bonding layer 7 made of solder, a conductive adhesive, or the like is formed on the bump electrode 2 by a transfer method or a printing method. Positioning is performed so that the terminal electrodes 8 are in contact with each other, and the semiconductor device is mounted on the circuit board 5 in a face-down state. Then, a sealing resin is sealed between the semiconductor device and the circuit board 5 to form a sealing resin layer 6, and the sealing resin layer 6 and the resin layer 4 formed on the IC substrate 1 are cured almost simultaneously. Let it. In this way, a mounting structure is manufactured.
[0020]
In the present embodiment, as described above, the resin layer 4 and the sealing resin layer 6 sandwich the IC substrate 1, and the resin layers 4 and 6 are cured almost simultaneously. It is possible to effectively prevent distortion that has conventionally occurred due to the difference between the curing shrinkage of the resin that occurs when the sealing resin layer 6 is cured and the thermal expansion of the IC substrate 1. Therefore, since the distortion of each part of the mounting structure is also reduced, the connection between the semiconductor device and the circuit board 1 is reinforced, and a mounting structure having a stable and reliable connection can be obtained.
[0021]
Further, in the present embodiment, the case where the screen printing method is used as the method of forming the resin layer 4 has been described. However, the present invention is not limited to this, and for example, using another method such as a transfer method. Is also good. Furthermore, the thickness of the resin layer 4 does not need to be particularly limited, and may be appropriately determined in consideration of the curing speed of the resin, the degree of distortion of the mounting structure, and the like. The timing of forming the resin layer 4 may be any time before the sealing resin layer 6 is cured, and is not particularly limited.
[0022]
(Second embodiment)
FIG. 2 is a sectional view of a mounting structure according to a second embodiment of the present invention. In the second embodiment, a resin layer 24 including a filler 9 having thermal conductivity is formed on the back surface of the surface of the IC substrate 1 having the electrode pads 3. Other configurations are basically the same as those of the first embodiment.
[0023]
In the present embodiment, with the above configuration, heat generated in the semiconductor device is efficiently radiated through the filler 9 in the resin layer 24. In addition, the difference between the curing shrinkage of the resin and the thermal expansion of the IC substrate 1 that occurs when the sealing resin layer 6 is cured can be effectively reduced, and distortion of each part of the mounting structure can be prevented. Thus, it is possible to obtain a mounting structure having a connection portion with high stability and reliability.
[0024]
(Third embodiment)
FIG. 3 is a sectional view of a mounting structure according to a third embodiment of the present invention. In the third embodiment, a resin layer 34 having a through hole 10 is formed on the back surface of the surface of the IC substrate 1 having the electrode pads 3. Other configurations are basically the same as those of the first embodiment.
[0025]
As a method of forming the resin layer 34 having the through-holes 10 on the back surface of the IC substrate 1 having the electrode pads 3, an uncured resin is formed into a sheet, and after the through-holes 10 are provided in the sheet, the semiconductor is formed. There is a method in which the sheet is cut into the size of the device (or the through hole 10 is provided after cutting into the size of the semiconductor device) and the sheet is stacked on the semiconductor device. Alternatively, there is a method in which a resin is applied to the back surface of the surface having the electrode pads 3 of the IC substrate 1 in a state where the through hole 10 is opened.
[0026]
In the present embodiment, since the configuration is as described above, heat generated in the semiconductor device does not remain and is efficiently radiated through the through hole 10. In addition, the difference between the curing shrinkage of the resin and the thermal expansion of the IC substrate 1 that occurs when the sealing resin layer 6 is cured can be effectively reduced, and distortion of each part of the mounting structure can be prevented. Thus, it is possible to obtain a mounting structure having a connection portion with high stability and reliability.
[0027]
Further, by using the method for forming an uncured resin layer, a mounting structure of a semiconductor device can be stably manufactured.
(Fourth embodiment)
FIG. 4 is a sectional view of a mounting structure according to a fourth embodiment of the present invention. In the fourth embodiment, a resin layer 44 is formed on the back surface of the surface of the IC substrate 1 having the electrode pads 3. This resin layer 44 contains a filler 9 having thermal conductivity, and further has a through hole 10 as shown in FIG. The method for forming the resin layer 44 having the through holes 10 is the same as in the third embodiment. Other configurations are basically the same as those of the first embodiment.
[0028]
In the present embodiment, as described above, the through hole 10 is provided in the resin layer 44 including the filler 9 having thermal conductivity, so that the heat generated in the semiconductor device passes through the filler 9 and the through hole 10. And diverge efficiently. Further, the difference between the curing shrinkage of the resin and the thermal expansion of the IC substrate 1 that occurs when the sealing resin layer 6 is cured can be effectively reduced, and the distortion of each part of the mounting structure can be prevented. Thus, it is possible to obtain a mounting structure having a connection portion with high stability and reliability.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a mounting structure with high stability and reliability of the connection between the semiconductor device and the circuit board.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a mounting structure according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a mounting structure according to a second embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of a mounting structure according to a third embodiment; FIG. 4 is a schematic cross-sectional view of a mounting structure according to a fourth embodiment of the present invention; FIG. FIG. 6 is a partially enlarged cross-sectional view of a mounting structure according to the prior art. FIG. 7 is a schematic cross-sectional view of another mounting structure according to the prior art.
1 IC board 2 Electrical connection point (bump electrode)
3 electrode pads 4, 24, 34, 44 resin layer 5 circuit board 6 sealing resin layer 7 conductive adhesive (bonding layer)
8 I / O terminal electrode 9 Filler 10 Through hole 11 Solder bump 12 Diffusion preventing metal film 13 Adhesive metal film 14 Electrical connection point (Au bump)

Claims (7)

半導体装置と回路基板とがフリップチップ方式を用いて電気的に接続されている実装構造体において、
前記半導体装置と前記回路基板との間に封止樹脂層が形成され、
前記半導体装置の前記回路基板との接続面の裏面に熱伝導性を有するフィラを含有している樹脂層が形成されていることを特徴とする実装構造体。
In a mounting structure in which the semiconductor device and the circuit board are electrically connected using a flip-chip method,
A sealing resin layer is formed between the semiconductor device and the circuit board,
A mounting structure, wherein a resin layer containing a filler having thermal conductivity is formed on a back surface of a connection surface of the semiconductor device with the circuit board.
前記樹脂層が、熱硬化性樹脂を用いて構成されている請求項1記載の実装構造体。The mounting structure according to claim 1 , wherein the resin layer is formed using a thermosetting resin. 前記樹脂層に貫通孔が形成されている請求項1または2に記載の実装構造体。Mounting structure according to claim 1 or 2 through-holes are formed on the resin layer. 半導体装置と回路基板とをフリップチップ方式を用いて電気的に接続する実装構造体の製造方法において、前記半導体装置と前記回路基板との間に樹脂を封入して未硬化の封止樹脂層を形成し、前記半導体装置の前記回路基板との接続面の裏面に未硬化の樹脂層を形成した後、前記封止樹脂層と前記樹脂層とをほぼ同時に硬化させることを特徴とする実装構造体の製造方法。In a method of manufacturing a mounting structure for electrically connecting a semiconductor device and a circuit board using a flip-chip method, a resin is sealed between the semiconductor device and the circuit board to form an uncured sealing resin layer. Forming an uncured resin layer on the back surface of the connection surface of the semiconductor device with the circuit board, and then curing the sealing resin layer and the resin layer almost simultaneously. Manufacturing method. 熱伝導性を有するフィラを含有している樹脂層を用いて、前記半導体装置の前記回路基板との接続面の裏面に未硬化の樹脂層を形成する請求項4に記載の実装構造体の製造方法。The manufacturing of the mounting structure according to claim 4, wherein an uncured resin layer is formed on a back surface of a connection surface of the semiconductor device with the circuit board, using a resin layer containing a filler having thermal conductivity. Method. 前記未硬化の樹脂層に貫通孔を形成する工程を含む請求項4または5に記載の実装構造体の製造方法。The method for manufacturing a mounting structure according to claim 4 , further comprising a step of forming a through hole in the uncured resin layer. シート状に形成された未硬化の樹脂層を用いて前記半導体装置の前記回路基板との接続面の裏面に未硬化の樹脂層を形成する請求項4,5または6に記載の実装構造体の製造方法。The mounting structure according to claim 4 , wherein an uncured resin layer is formed on a back surface of a connection surface of the semiconductor device with the circuit board using the uncured resin layer formed in a sheet shape. Production method.
JP27657696A 1996-10-18 1996-10-18 Mounting structure and method of manufacturing the same Expired - Fee Related JP3547270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27657696A JP3547270B2 (en) 1996-10-18 1996-10-18 Mounting structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27657696A JP3547270B2 (en) 1996-10-18 1996-10-18 Mounting structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10125730A JPH10125730A (en) 1998-05-15
JP3547270B2 true JP3547270B2 (en) 2004-07-28

Family

ID=17571401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27657696A Expired - Fee Related JP3547270B2 (en) 1996-10-18 1996-10-18 Mounting structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3547270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093295A (en) * 2010-01-25 2010-04-22 Rohm Co Ltd Semiconductor device
JP2010212724A (en) * 2010-05-17 2010-09-24 Rohm Co Ltd Semiconductor device
JP2012054293A (en) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH10125730A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
US6515357B2 (en) Semiconductor package and semiconductor package fabrication method
JP3409957B2 (en) Semiconductor unit and method of forming the same
KR20000005915A (en) Semiconductor device and method of manufacturing same
JP2004031607A (en) Semiconductor device and method of manufacturing the same
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
JP2001298115A (en) Semiconductor device, manufacturing method for the same, circuit board as well as electronic equipment
JP3654116B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP3593833B2 (en) Semiconductor device
JP2000277649A (en) Semiconductor and manufacture of the same
JP3547270B2 (en) Mounting structure and method of manufacturing the same
JP3569585B2 (en) Semiconductor device
JP3279470B2 (en) Semiconductor device and manufacturing method thereof
JP4035949B2 (en) Wiring board, semiconductor device using the same, and manufacturing method thereof
JP3549316B2 (en) Wiring board
JP2699929B2 (en) Semiconductor device
JP4085572B2 (en) Semiconductor device and manufacturing method thereof
JP4441090B2 (en) Method of mounting a semiconductor chip on a printed wiring board
JP3563637B2 (en) Semiconductor device and manufacturing method thereof
JP3947502B2 (en) Manufacturing method of sealing member made of anisotropic conductive film
JPH10125734A (en) Semiconductor unit and manufacturing method thereof
JPH11340352A (en) Mounting structure
JP3176325B2 (en) Mounting structure and manufacturing method thereof
JP3676590B2 (en) Semiconductor device
TWI393197B (en) Chip package
JP3337922B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees