JP3947502B2 - Manufacturing method of sealing member made of anisotropic conductive film - Google Patents

Manufacturing method of sealing member made of anisotropic conductive film Download PDF

Info

Publication number
JP3947502B2
JP3947502B2 JP2003199650A JP2003199650A JP3947502B2 JP 3947502 B2 JP3947502 B2 JP 3947502B2 JP 2003199650 A JP2003199650 A JP 2003199650A JP 2003199650 A JP2003199650 A JP 2003199650A JP 3947502 B2 JP3947502 B2 JP 3947502B2
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
sealing member
semiconductor chip
acf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003199650A
Other languages
Japanese (ja)
Other versions
JP2004006935A (en
Inventor
義則 閑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003199650A priority Critical patent/JP3947502B2/en
Publication of JP2004006935A publication Critical patent/JP2004006935A/en
Application granted granted Critical
Publication of JP3947502B2 publication Critical patent/JP3947502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors

Description

【0001】
【発明の属する技術分野】
本発明は、特にCSP(Chip Size Package)及びMCM(Multi Chip Module)構造を持つ半導体装置の製造方法に関するもの、並びに封止部材の製造方法及び製造装置に関するものである。
【0002】
【従来の技術】
近年の高密度実装化に伴い、新しいパッケージ構造として、半導体チップを実装する時のパッケージの上面面積がほぼ半導体チップの面積に近いCSPや1個のパッケージ基板の中に複数の半導体チップを搭載するMCMが登場している。
【0003】
CSP構造を持つ半導体装置の場合について説明する。半導体チップを搭載するための基板(以後、パッケージ基板と呼ぶことにする。)の表面には電極が形成されており、一方、半導体チップのパッケージ基板と電気的に接続する方の面には、パッケージ基板上の電極に対向する位置に電極が形成されている。これらの電極はパッケージ基板に形成された回路によりパッケージ基板の裏面(半導体チップを搭載しない方の面)の外部端子である半田ボールと電気的に接続されている。パッケージ基板としては、セラミック基板あるいは有機基板が用いられる。
【0004】
近年、半導体チップと基板との接合部分の微細化が進んでおり、これらを電気的に接続するために、柔軟性に富んだ導電性物質、特に異方導電性フィルム(Anisotropic Conductive Film : ACF)を間に挟む技術が適用されている。
【0005】
この異方導電性フィルム(ACF)はその中に微小な導電性粒子を分散させた有機フィルムであり、半導体チップとパッケージ基板との間に挟んで圧力をかけて固化させることによって、半導体チップの電極とパッケージ基板の電極との間で導電性粒子同士を接触させる。この導電性粒子により、半導体チップの電極とパッケージ基板の電極が電気的に接続される。
【0006】
【発明が解決しようとする課題】
しかしながら、半導体チップとパッケージ基板との間に上記の異方導電性フィルム(ACF)を挟んで両者を電気的に接続する半導体装置においては、異方導電性フィルム(ACF)を電極が配置されたパッケージ基板上に接合すると、電極の厚みの影響で異方導電性フィルム(ACF)の半導体チップとの接合面には凹凸ができてしまう。従って、特に大型の半導体チップを使用する場合、半導体チップと異方導電性フィルム(ACF)との間の接合部に巻き込みボイドと呼ばれる空気の泡が生じやすくなる。
【0007】
この巻き込みボイド中には空気中の水分が含まれており、また、大気中の水分も異方導電性フィルムを通して巻き込みボイド中に入ってくる。この状態で半導体装置が高温状態になった場合、水分が蒸発して半導体装置外部に出て行こうとする。
【0008】
この時、半導体装置外部に出て行くことができる水分量は限られているので、半導体装置外部に出て行くことができなかった水分(蒸気)は膨張してパッケージ等の破損を招く。すなわち、パッケージ基板を実装する時の耐熱性(リフロー耐性)が劣化する。また、基板を実装する際に前述のような問題が生じなくとも、実際に使用する時に耐湿性の劣化を生じ、動作不良に至る。
【0009】
本発明は、上記の問題点を除去し、半導体装置の耐湿信頼性及びリフロー耐性を向上させることを目的とし、さらに様々な半導体チップに対して応用すること、装置製造工程の短縮、部材管理の軽減をも目的とする。
【0010】
【課題を解決するための手段】
本発明では、以下に述べるような手段を用いて上記の課題を解決する。半導体装置の製造方法において、半導体装置の耐湿信頼性を向上させるために、パッケージ基板の封止部材との接合面上に凸部を設ける。この凸部は、パッケージ基板上の電極で囲まれた領域内に設けられる。そして、凸部の形状は、パッケージ基板上に接合した封止部材の形状を、半導体チップとパッケージ基板の接合時に半導体チップの中央部分から接合し始めて、その後半導体チップの周縁部分に向かって順に接合していくような形状にすることができる形状になっている。
【0011】
また、電極が半導体チップの片面の周縁部のみに配置された半導体チップだけでなく、全域に配置された半導体チップをパッケージ基板に接合する場合においても、半導体装置の耐湿信頼性を向上させるために、半導体装置の製造方法において、中央部分の断面形状が凸状になった封止部材を用いる。
【0012】
さらに、装置製造工程の短縮、部材管理の軽減のために、中央部分が断面形状の封止部材を形成する工程と、その封止部材を挟んで半導体チップとパッケージ基板を接合する工程を同一工程内で行う。
【0013】
【発明の実施の形態】
本発明の実施の形態をCSP(Chip Size Package)に適用する場合において、以下に図を参照しながら説明する。
【0014】
図1は、本発明の第1の実施の形態を示す半導体装置の製造方法を表す。図1(a)に示すように、半導体チップ11には、その周縁部分にのみ電極12が配置されている。一方、パッケージ基板13の半導体チップ11を搭載する方の面(パッケージ基板の表面)にも、半導体チップ11の電極12に対向する位置に電極14が配置されている。そして、パッケージ基板の電極14で囲まれた範囲(ボンディングエリア)の実質的な中央部分には、凸部15が設けられている。この凸部15は、パッケージ基板の半導体チップを搭載する方の面からの高さが、その実質的な中央部分が最も高く、その周縁部分に向かって順に低くなった形状になっている。また、凸部15は、半導体チップとパッケージ基板とを異方導電性フィルム(ACF)16を間に挟んで電気的に接続させた時に、その凸部15の最上面と半導体チップ11との間隔が半導体チップ11の電極12とパッケージ基板13の電極14との間隔よりも広くなるように設けられている。16は異方導電性フィルム(ACF)で、柔軟性に富み、かつ内部に微小な導電性粒子を分散させた有機フィルムである。
【0015】
次に図1(b)に示すように、異方導電性フィルム(ACF)16を凸部15が設けられたパッケージ基板13の表面に接合させると、異方導電性フィルム(ACF)16は、前述の凸部15の形状を反映した形状になる。
【0016】
次に図1(c)に示すように、半導体チップ11とパッケージ基板13と電気的に接続させるために両者を近付ける。この時まず、半導体チップ11の中央部分が凸状になった異方導電性フィルム(ACF)16と接触する。
【0017】
その後、図1(d)に示すように、さらに半導体チップ11を上方から圧着させると、半導体チップ11と異方導電性フィルム(ACF)16とがそれらの中央部分から周縁部分に向かって順に接合していく。この時同時に、半導体チップ11の中央部分から周縁部分に向かって空気が押し出される。
【0018】
従って、半導体チップ11とパッケージ基板13との間の巻き込みボイド発生を防止することができる。また、凸部15を設けることによって、その凸部15の体積分だけ従来よりも半導体装置内部に含まれる異方導電性フィルム(ACF)16の量を低減させることができる。半導体装置内部に含まれる異方導電性フィルム(ACF)16の量が減少すれば、異方導電性フィルム(ACF)16の吸湿量も絶対的に減少する。
【0019】
また、凸部15は、半導体チップとパッケージ基板とを異方導電性フィルム(ACF)16を間に挟んで電気的に接続させた時に、その凸部15の最上面と半導体チップ11との間隔が半導体チップ11の電極12とパッケージ基板13の電極14との間隔よりも広くなるように設けられている。すなわち、半導体チップ11とパッケージ基板13とを、異方導電性フィルム(ACF)16を間に挟んで電気的に接続させるために圧着させても、凸部15は半導体チップ11に接触することはない。従って、凸部15によって半導体チップ11に損傷や反りが発生することはない。
【0020】
これらの結果、半導体チップの損傷や反りを発生させることなく、半導体装置内に吸収される水分量を低減、つまり半導体装置の耐湿信頼性を向上させ、半導体装置の保管時の吸湿によるパッケージのリフロー耐性の低下を防止することができる。
【0021】
図2は、本発明の第2の実施の形態を示す。図2(a)において、半導体チップ21とパッケージ基板23には、それぞれ電極22あるいは電極24が形成されており、電極22と電極24は対向した位置にある。また、これらの電極は、半導体チップ21あるいはパッケージ基板23の周辺又は全面に位置している。26は異方導電性フィルム(ACF)で、柔軟性に富み、かつ内部に微小な導電性粒子を分散させた有機フィルムである。また、異方導電性フィルム(ACF)26は、少なくとも一つのフィルム面の中央部断面形状が凸状になっている。
【0022】
次に、図2(b)に示すように、異方導電性フィルム(ACF)26をパッケージ基板23上に接合させた後、半導体チップ21を上方から圧着させると、半導体チップ21と異方導電性フィルム(ACF)26がそれらの中央部分から接合し始め、その後図2(c)に示すように、周縁部分に向かって順に接合していく。この時同時に、半導体チップ21と異方導電性フィルム(ACF)26との接合部分の中央部分から周縁部分に向かって空気が押し出されていく。その結果、半導体チップ21とパッケージ基板23との間の巻き込みボイドの発生を防止することができ、耐湿信頼性が向上する。
【0023】
また、第2の実施の形態では、第1の実施の形態のようにパッケージ基板23上に凸部を設ける必要がないため、従来から使用していたパッケージ基板23をそのまま使用することができるので価格の増加を抑えることができる。
【0024】
図3は、本発明の第3の実施の形態を示しており、中央部分断面形状が凸状に形成された異方導電性フィルム(ACF)の製造方法である。
【0025】
図3(a)において、35は、断面形状が凹状になった凸状異方導電性フィルム形成部、36は中央部断面形状が凸状に形成される前の異方導電性フィルムである。
【0026】
まず、図3(b)に示すように、中央部断面形状が凸状に形成される前の異方導電性フィルム(ACF)36に、断面形状が凹状になった凸状異方導電性フィルム形成部35を圧接して、異方導電性フィルムの中央部断面形状を凸状に形成する。
【0027】
次に、図3(c)に示すように、凸状異方導電性フィルム形成部35を異方導電性フィルムから離す。この時、凸状異方導電性フィルム形成部35の温度は異方導電性フィルム(ACF)36が軟化する温度付近に保持されており、かつ、凸状異方導電性フィルム形成部35における異方導電性フィルム(ACF)36との接触部分は異方導電性フィルム(ACF)36との離型性が良くなるように、例えばテフロン(登録商標)加工されているか、あるいは異方導電性フィルム(ACF)36との離型性が良好な素材でできているので、異方導電性フィルム(ACF)36から凸状異方導電性フィルム形成部35を離しても、中央部分の断面形状が凸状に保持されたままの異方導電性フィルム(ACF)37を形成することができる。
【0028】
最後に、図3(d)に示すように、パッケージ基板上のボンディングエリアよりも大きい面積の形状に切り離す。
【0029】
ここでは、凸状異方導電性フィルム形成部35は異方導電性フィルム(ACF)36を圧接することしかできないような形状になっているが、圧接と切り離しが同時にできるように図3(e)のような形状にすれば、製造工程の短縮が可能となる。
【0030】
図4は、本発明の第4の実施の形態である半導体装置の製造方法を示す。まず、図4(a)に示すように、パッケージ基板上のボンディングエリアよりも大きい面積を有するサイズに加工した異方導電性フィルム(ACF)46をパッケージ基板43上に接合させる。
【0031】
次に、図4(b)に示すように、異方導電性フィルム(ACF)46の軟化する温度付近に温度を保持した凸状異方導電性フィルム(ACF)形成部45を異方導電性フィルム(ACF)46に圧接して、異方導電性フィルム(ACF)46の中央部分の断面形状が凸状になるようにする。
【0032】
最後に、図4(c)に示すように、半導体チップ41とパッケージ基板43の接続温度に保った半導体チップを保持する機器47を用いて、半導体チップ41を上方から異方導電性フィルム(ACF)46に圧接する。その結果、図4(d)に示すように、半導体装置内における巻き込みボイドの発生を防止した半導体装置を製造することができる。
【0033】
以上のように、中央部分の断面形状が凸状になった異方導電性フィルム(ACF)を形成する工程と、それを挟んで半導体チップ41とパッケージ基板43とを電気的に接続する工程とを同一工程で実行できるようにしたので、各パッケージ毎に異方導電性フィルム(ACF)の在庫を持つ必要がなくなる。その結果、部材管理を軽減することができる。
【0034】
また、パッケージ基板43の温度を、半導体チップ41とパッケージ基板43が接続する時の温度に加熱しておけば、半導体チップを保持する機器47の温度を下げることができるので、半導体チップ41とパッケージ基板43の接合後の熱収縮により生じる応力を緩和することができる。その結果、半導体チップ41やパッケージ基板43の損傷や接続不良を防止することができる。
【0035】
また、図5及び図6に示すように、基板に複数の半導体チップを搭載するMCM(Multi Chip Module)構造を持つ半導体装置を製造する場合にも、上記の第1から第4の実施の形態を実行することができる。
【0036】
【発明の効果】
本発明に係る半導体装置の製造方法では、パッケージ基板上に設けられた凸部により、その凸部上に接合した柔軟性に富む導電性物質(実施の形態における異方導電性フィルム(ACF))は、半導体チップとパッケージ基板の接合時には半導体チップの中央部分から周縁部分に向かって順に接合していくような形状になるので、半導体装置の中央部分から周縁部分に向かって空気が押し出される。従って、半導体装置内における巻き込みボイドの発生を防止し、半導体装置の耐湿信頼性を向上させることができる。
【0037】
また、本発明に係る半導体装置の製造方法では、半導体チップとパッケージ基板とを電気的に接続する際に用いる封止部材として、一方の面の中央部分の断面形状が凸状になっている異方導電性フィルム(ACF)を使用することにより、半導体チップとパッケージ基板の接合時に半導体チップの中央部分から周縁部分に向かって異方導電性フィルム(ACF)が順に接合していく。この時、半導体装置の中央部分から周縁部分に向かって空気が押し出されるので、半導体装置内における巻き込みボイドの発生を防止することができる。その結果、半導体装置の耐湿信頼性を向上させることができる。
【0038】
その上、パッケージ基板の中央部分に凸部を設けずに、異方導電性フィルム(ACF)の中央部分の断面形状を凸状にしているので、その異方導電性フィルム(ACF)を半導体チップとパッケージ基板の間に挟めば、電極を半導体チップの片方の全面に配置したエリアバンプ型の半導体チップをその半導体チップに対応したパッケージ基板に接合しても、半導体装置内における巻き込みボイドの発生を防止し、半導体装置の耐湿信頼性を向上させることができる。
【0039】
さらに、中央部分の断面形状が凸状になった異方導電性フィルム(ACF)を形成する工程と、その異方導電性フィルム(ACF)を間に挟んで半導体チップとパッケージ基板とを電気的に接続する工程を同一装置内に組み込むことにより、各パッケージ毎に異方導電性フィルム(ACF)の在庫を持つ必要がなくなる。その結果、部材管理を軽減することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態におけるパッケージ基板上に凸部を設けた半導体装置の断面図である。
【図2】本発明の第2の実施の形態における中央部分の断面形状が凸状になった異方導電性フィルム(ACF)を用いて製造する半導体装置の断面図である。
【図3】本発明の第3の実施の形態における中央部分の断面形状が凸状になった異方導電性フィルム(ACF)の製造方法である。
【図4】本発明の第4の実施の形態における中央部分の断面形状が凸状になった異方導電性フィルム(ACF)を用いた半導体装置の製造方法である。
【図5】半導体チップ搭載面の中央部に凸部を設けたパッケージ基板に複数の半導体チップを搭載する半導体装置の製造方法である。
【図6】中央部分の断面形状が凸状になった異方導電性フィルム(ACF)を用いることによって複数の半導体チップを搭載する半導体装置の製造方法である。
【符号の説明】
11,21,41,51,61:半導体チップ
12,22,42,52,62:電極(半導体チップ側)
13,23,43,53,63:パッケージ基板
14,24,44,54,64:電極(パッケージ基板側)
15,55:凸部
16,26,36,46,56,66:異方導電性フィルム(ACF)
35,45,65:凸状異方導電性フィルム(ACF)形成部
37:凸状異方導電性フィルム(ACF)
38:圧接と切り離しが同時にできる凸状異方導電性フィルム(ACF)形成部
47:半導体チップを保持する機器
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a method for manufacturing a semiconductor device having a CSP (Chip Size Package) and an MCM (Multi Chip Module) structure, and a method and apparatus for manufacturing a sealing member.
[0002]
[Prior art]
Along with the recent high-density mounting, a new package structure is to mount a plurality of semiconductor chips in a CSP or a single package substrate where the top surface area of the package when mounting a semiconductor chip is almost the area of the semiconductor chip. MCM has appeared.
[0003]
A case of a semiconductor device having a CSP structure will be described. Electrodes are formed on the surface of a substrate for mounting a semiconductor chip (hereinafter referred to as a package substrate), while on the surface electrically connected to the package substrate of the semiconductor chip, An electrode is formed at a position facing the electrode on the package substrate. These electrodes are electrically connected to solder balls, which are external terminals on the back surface (the surface on which the semiconductor chip is not mounted) of the package substrate, by a circuit formed on the package substrate. A ceramic substrate or an organic substrate is used as the package substrate.
[0004]
In recent years, the junction between the semiconductor chip and the substrate has been miniaturized, and in order to electrically connect them, a flexible conductive material, especially an anisotropic conductive film (ACF) The technology which puts between is applied.
[0005]
This anisotropic conductive film (ACF) is an organic film in which minute conductive particles are dispersed. The semiconductor film is solidified by applying pressure between the semiconductor chip and the package substrate. Conductive particles are brought into contact with each other between the electrode and the electrode of the package substrate. Due to the conductive particles, the electrode of the semiconductor chip and the electrode of the package substrate are electrically connected.
[0006]
[Problems to be solved by the invention]
However, in the semiconductor device in which the anisotropic conductive film (ACF) is sandwiched between the semiconductor chip and the package substrate to electrically connect the two, the anisotropic conductive film (ACF) is provided with electrodes. When bonded onto the package substrate, unevenness is formed on the bonding surface of the anisotropic conductive film (ACF) with the semiconductor chip due to the influence of the electrode thickness. Therefore, especially when using a large semiconductor chip, air bubbles called entangled voids are likely to occur at the joint between the semiconductor chip and the anisotropic conductive film (ACF).
[0007]
The entrainment void contains moisture in the air, and moisture in the air also enters the entrainment void through the anisotropic conductive film. When the semiconductor device reaches a high temperature in this state, the moisture evaporates and tries to go out of the semiconductor device.
[0008]
At this time, since the amount of moisture that can go out of the semiconductor device is limited, the moisture (vapor) that could not go out of the semiconductor device expands and causes damage to the package and the like. That is, the heat resistance (reflow resistance) when the package substrate is mounted deteriorates. Further, even when the above-described problems do not occur when the substrate is mounted, the moisture resistance is deteriorated during actual use, resulting in malfunction.
[0009]
The present invention aims to eliminate the above-mentioned problems and improve the moisture resistance reliability and reflow resistance of semiconductor devices. Further, the present invention can be applied to various semiconductor chips, shortening of device manufacturing processes, and member management. Also aimed at mitigation.
[0010]
[Means for Solving the Problems]
In the present invention, the above-described problems are solved by using the following means. In the method for manufacturing a semiconductor device, in order to improve the moisture resistance reliability of the semiconductor device, a convex portion is provided on the joint surface of the package substrate with the sealing member. The convex portion is provided in a region surrounded by the electrodes on the package substrate. The shape of the convex portion is that the shape of the sealing member bonded on the package substrate starts to be bonded from the central portion of the semiconductor chip when the semiconductor chip and the package substrate are bonded, and is then bonded sequentially toward the peripheral portion of the semiconductor chip. It is a shape that can be made to shape.
[0011]
In order to improve the moisture resistance reliability of the semiconductor device not only when the semiconductor chip is disposed only on the peripheral edge of one surface of the semiconductor chip but also when the semiconductor chip disposed over the entire region is bonded to the package substrate. In the method for manufacturing a semiconductor device, a sealing member having a convex cross section at the center is used.
[0012]
Further, in order to shorten the device manufacturing process and reduce the member management, the process of forming the sealing member having a cross-sectional shape at the center and the process of joining the semiconductor chip and the package substrate with the sealing member interposed therebetween are the same process. Do it within.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the case where the embodiment of the present invention is applied to a CSP (Chip Size Package), a description will be given below with reference to the drawings.
[0014]
FIG. 1 shows a method for manufacturing a semiconductor device according to a first embodiment of the present invention. As shown in FIG. 1A, the semiconductor chip 11 is provided with electrodes 12 only at the peripheral portion thereof. On the other hand, an electrode 14 is arranged on the surface of the package substrate 13 on which the semiconductor chip 11 is mounted (the surface of the package substrate) at a position facing the electrode 12 of the semiconductor chip 11. A convex portion 15 is provided at a substantial central portion of a range (bonding area) surrounded by the electrodes 14 of the package substrate. The convex portion 15 has a shape in which the height from the surface of the package substrate on which the semiconductor chip is mounted is the highest at the substantial central portion thereof and gradually decreases toward the peripheral portion. The convex portion 15 is a distance between the uppermost surface of the convex portion 15 and the semiconductor chip 11 when the semiconductor chip and the package substrate are electrically connected with an anisotropic conductive film (ACF) 16 interposed therebetween. Is provided to be wider than the distance between the electrode 12 of the semiconductor chip 11 and the electrode 14 of the package substrate 13. Reference numeral 16 denotes an anisotropic conductive film (ACF), which is an organic film that is highly flexible and has fine conductive particles dispersed therein.
[0015]
Next, as shown in FIG. 1B, when the anisotropic conductive film (ACF) 16 is bonded to the surface of the package substrate 13 provided with the convex portions 15, the anisotropic conductive film (ACF) 16 is The shape reflects the shape of the convex portion 15 described above.
[0016]
Next, as shown in FIG. 1C, the semiconductor chip 11 and the package substrate 13 are brought closer together in order to be electrically connected. At this time, first, the central portion of the semiconductor chip 11 is in contact with the anisotropic conductive film (ACF) 16 having a convex shape.
[0017]
Thereafter, as shown in FIG. 1D, when the semiconductor chip 11 is further pressure-bonded from above, the semiconductor chip 11 and the anisotropic conductive film (ACF) 16 are sequentially joined from the central portion toward the peripheral portion. I will do it. At the same time, air is pushed out from the central portion of the semiconductor chip 11 toward the peripheral portion.
[0018]
Accordingly, it is possible to prevent the generation of a void between the semiconductor chip 11 and the package substrate 13. Further, by providing the convex portion 15, the amount of the anisotropic conductive film (ACF) 16 included in the semiconductor device can be reduced by the volume of the convex portion 15 than in the prior art. If the amount of the anisotropic conductive film (ACF) 16 contained in the semiconductor device decreases, the moisture absorption amount of the anisotropic conductive film (ACF) 16 also decreases absolutely.
[0019]
The convex portion 15 is a distance between the uppermost surface of the convex portion 15 and the semiconductor chip 11 when the semiconductor chip and the package substrate are electrically connected with an anisotropic conductive film (ACF) 16 interposed therebetween. Is provided to be wider than the distance between the electrode 12 of the semiconductor chip 11 and the electrode 14 of the package substrate 13. That is, even if the semiconductor chip 11 and the package substrate 13 are pressure-bonded so as to be electrically connected with the anisotropic conductive film (ACF) 16 interposed therebetween, the protrusion 15 does not contact the semiconductor chip 11. Absent. Therefore, the semiconductor chip 11 is not damaged or warped by the convex portion 15.
[0020]
As a result, the amount of moisture absorbed in the semiconductor device is reduced without causing damage or warpage of the semiconductor chip, that is, improving the moisture resistance reliability of the semiconductor device, and reflowing the package due to moisture absorption during storage of the semiconductor device. A reduction in resistance can be prevented.
[0021]
FIG. 2 shows a second embodiment of the present invention. In FIG. 2A, an electrode 22 or an electrode 24 is formed on the semiconductor chip 21 and the package substrate 23, respectively, and the electrode 22 and the electrode 24 are in a position facing each other. These electrodes are located on the periphery or the entire surface of the semiconductor chip 21 or the package substrate 23. Reference numeral 26 denotes an anisotropic conductive film (ACF), which is an organic film that is highly flexible and has fine conductive particles dispersed therein. The anisotropic conductive film (ACF) 26 has a convex cross section at the center of at least one film surface.
[0022]
Next, as shown in FIG. 2B, after the anisotropic conductive film (ACF) 26 is bonded onto the package substrate 23, when the semiconductor chip 21 is pressure-bonded from above, the semiconductor chip 21 and the anisotropic conductive film are bonded. The adhesive film (ACF) 26 starts to be joined from the central portion thereof, and then joined sequentially toward the peripheral portion as shown in FIG. At the same time, air is pushed out from the central portion of the joint portion between the semiconductor chip 21 and the anisotropic conductive film (ACF) 26 toward the peripheral portion. As a result, it is possible to prevent entrainment voids between the semiconductor chip 21 and the package substrate 23, and the moisture resistance reliability is improved.
[0023]
Further, in the second embodiment, since it is not necessary to provide a convex portion on the package substrate 23 unlike the first embodiment, the package substrate 23 that has been conventionally used can be used as it is. Increase in price can be suppressed.
[0024]
FIG. 3 shows a third embodiment of the present invention, which is a method of manufacturing an anisotropic conductive film (ACF) having a central partial cross-sectional shape formed into a convex shape.
[0025]
In FIG. 3A, 35 is a convex anisotropic conductive film forming portion having a concave cross-sectional shape, and 36 is an anisotropic conductive film before the central cross-sectional shape is formed in a convex shape.
[0026]
First, as shown in FIG. 3B, a convex anisotropic conductive film having a concave cross-sectional shape is formed on the anisotropic conductive film (ACF) 36 before the central cross-sectional shape is formed in a convex shape. The formation part 35 is press-contacted and the center part cross-sectional shape of an anisotropic conductive film is formed in convex shape.
[0027]
Next, as shown in FIG.3 (c), the convex anisotropic conductive film formation part 35 is separated from an anisotropic conductive film. At this time, the temperature of the convex anisotropic conductive film forming portion 35 is maintained near the temperature at which the anisotropic conductive film (ACF) 36 is softened, and the temperature of the convex anisotropic conductive film forming portion 35 is different. The contact portion with the anisotropic conductive film (ACF) 36 is, for example, processed with Teflon (registered trademark) so as to improve the releasability with the anisotropic conductive film (ACF) 36, or the anisotropic conductive film. (ACF) 36 is made of a material having good releasability, so even if the convex anisotropic conductive film forming portion 35 is separated from the anisotropic conductive film (ACF) 36, the cross-sectional shape of the central portion is An anisotropic conductive film (ACF) 37 that is held in a convex shape can be formed.
[0028]
Finally, as shown in FIG. 3D, the substrate is cut into a shape having an area larger than the bonding area on the package substrate.
[0029]
Here, the convex anisotropic conductive film forming portion 35 has such a shape that only the anisotropic conductive film (ACF) 36 can be pressure-contacted. ), The manufacturing process can be shortened.
[0030]
FIG. 4 shows a method for manufacturing a semiconductor device according to the fourth embodiment of the present invention. First, as shown in FIG. 4A, an anisotropic conductive film (ACF) 46 processed to a size having a larger area than the bonding area on the package substrate is bonded onto the package substrate 43.
[0031]
Next, as shown in FIG. 4 (b), the anisotropic conductive film (ACF) forming portion 45 is maintained at a temperature near the softening temperature of the anisotropic conductive film (ACF) 46. The film (ACF) 46 is pressed to make the cross-sectional shape of the central portion of the anisotropic conductive film (ACF) 46 convex.
[0032]
Finally, as shown in FIG. 4C, the semiconductor chip 41 is attached from above to the anisotropic conductive film (ACF) using a device 47 that holds the semiconductor chip maintained at the connection temperature between the semiconductor chip 41 and the package substrate 43. ) 46. As a result, as shown in FIG. 4D, it is possible to manufacture a semiconductor device that prevents the occurrence of entrainment voids in the semiconductor device.
[0033]
As described above, a step of forming an anisotropic conductive film (ACF) in which the cross-sectional shape of the central portion is convex, and a step of electrically connecting the semiconductor chip 41 and the package substrate 43 with the sandwich therebetween Can be executed in the same process, so there is no need to have an anisotropic conductive film (ACF) inventory for each package. As a result, member management can be reduced.
[0034]
Also, if the temperature of the package substrate 43 is heated to the temperature at which the semiconductor chip 41 and the package substrate 43 are connected, the temperature of the device 47 that holds the semiconductor chip can be lowered. The stress caused by the thermal contraction after the bonding of the substrate 43 can be relaxed. As a result, damage and poor connection of the semiconductor chip 41 and the package substrate 43 can be prevented.
[0035]
As shown in FIGS. 5 and 6, the first to fourth embodiments described above are also used when manufacturing a semiconductor device having an MCM (Multi Chip Module) structure in which a plurality of semiconductor chips are mounted on a substrate. Can be executed.
[0036]
【The invention's effect】
In the method for manufacturing a semiconductor device according to the present invention, a flexible conductive material (an anisotropic conductive film (ACF) in the embodiment) joined to the convex portion by the convex portion provided on the package substrate. Since the semiconductor chip and the package substrate are joined together in order from the central portion of the semiconductor chip toward the peripheral portion, air is pushed out from the central portion of the semiconductor device toward the peripheral portion. Accordingly, it is possible to prevent the occurrence of entrainment voids in the semiconductor device and improve the moisture resistance reliability of the semiconductor device.
[0037]
Further, in the method of manufacturing a semiconductor device according to the present invention, as a sealing member used when electrically connecting the semiconductor chip and the package substrate, the cross-sectional shape of the central portion of one surface is convex. By using the anisotropic conductive film (ACF), the anisotropic conductive film (ACF) is sequentially joined from the central part to the peripheral part of the semiconductor chip when the semiconductor chip and the package substrate are joined. At this time, since air is pushed out from the central portion of the semiconductor device toward the peripheral portion, it is possible to prevent the occurrence of entrainment voids in the semiconductor device. As a result, the moisture resistance reliability of the semiconductor device can be improved.
[0038]
In addition, the anisotropic conductive film (ACF) has a convex cross section at the center of the package substrate without providing a protrusion at the center of the package substrate. If an area bump type semiconductor chip having an electrode arranged on one entire surface of the semiconductor chip is bonded to the package board corresponding to the semiconductor chip, the generation of voids in the semiconductor device will occur. And the moisture resistance reliability of the semiconductor device can be improved.
[0039]
Furthermore, a step of forming an anisotropic conductive film (ACF) having a convex cross-sectional shape at the center portion, and the semiconductor chip and the package substrate are electrically sandwiched between the anisotropic conductive film (ACF). By incorporating the process of connecting into the same device, it is not necessary to have an anisotropic conductive film (ACF) inventory for each package. As a result, member management can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor device in which a protrusion is provided on a package substrate in a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a semiconductor device manufactured using an anisotropic conductive film (ACF) in which a cross-sectional shape of a central portion is convex in the second embodiment of the present invention.
FIG. 3 is a method for manufacturing an anisotropic conductive film (ACF) in which the cross-sectional shape of a central portion is convex in the third embodiment of the present invention.
FIG. 4 is a method for manufacturing a semiconductor device using an anisotropic conductive film (ACF) in which the cross-sectional shape of the central portion is convex in the fourth embodiment of the present invention.
FIG. 5 is a method of manufacturing a semiconductor device in which a plurality of semiconductor chips are mounted on a package substrate having a convex portion provided at the center of the semiconductor chip mounting surface.
FIG. 6 is a method for manufacturing a semiconductor device in which a plurality of semiconductor chips are mounted by using an anisotropic conductive film (ACF) having a convex cross-sectional shape at a central portion.
[Explanation of symbols]
11, 21, 41, 51, 61: Semiconductor chips 12, 22, 42, 52, 62: Electrodes (semiconductor chip side)
13, 23, 43, 53, 63: Package substrate 14, 24, 44, 54, 64: Electrode (package substrate side)
15, 55: Protrusions 16, 26, 36, 46, 56, 66: Anisotropic conductive film (ACF)
35, 45, 65: Convex anisotropic conductive film (ACF) forming part 37: Convex anisotropic conductive film (ACF)
38: Convex anisotropic conductive film (ACF) forming part 47 capable of simultaneously pressing and separating 47: Equipment for holding a semiconductor chip

Claims (2)

少なくとも一方の面の中央部断面形状が凸状になっている半導体チップを封止する異方導電性フィルムからなる封止部材の製造方法において、
配置される異方導電性フィルムからなる封止部材の表面と対向するように設けられている封止部材を象る部分と、前記封止部材を象る部分を前記封止部材の前記表面に圧接する機構とを備えた封止部材製造装置を用いており、
前記封止部材を象る部分は、その周縁部分から中央部分に向かって窪んだ形状を備え、かつ、前記周縁部分に尖端形状を備え、
前記封止部材製造装置の前記封止部材を象る部分と前記表面が対向するように前記封止部材を配置し、前記封止部材を象る部分を前記封止部材の前記表面に圧接することにより、前記封止部材の前記表面の中央部断面形状を凸状に形成する工程と前記封止部材を切り離す工程とを同時に行なうことを特徴とする異方導電性フィルムからなる封止部材の製造方法。
In the method for manufacturing a sealing member made of an anisotropic conductive film for sealing a semiconductor chip in which the central cross-sectional shape of at least one surface is convex,
A portion that embodies the sealing member that is provided so as to face the surface of the sealing member that is formed of the anisotropic conductive film, and a portion that embodies the sealing member on the surface of the sealing member And a sealing member manufacturing apparatus equipped with a mechanism for pressure contact,
The part that embodies the sealing member has a shape that is recessed from the peripheral part toward the central part, and has a pointed shape on the peripheral part,
The sealing member is disposed so that the surface of the sealing member manufacturing apparatus is shaped to face the portion of the sealing member, and the portion of the sealing member is pressed against the surface of the sealing member. A sealing member comprising an anisotropic conductive film , wherein the step of forming the central cross-sectional shape of the surface of the sealing member into a convex shape and the step of separating the sealing member are performed simultaneously. Production method.
請求項1記載の異方導電性フィルムからなる封止部材の製造方法において、前記封止部材製造装置を、前記封止部材がその軟化点温度に保持されたまま前記封止部材に圧接することを特徴とする異方導電性フィルムからなる封止部材の製造方法。The method for manufacturing a sealing member comprising the anisotropic conductive film according to claim 1, wherein the sealing member manufacturing apparatus is pressed against the sealing member while the sealing member is maintained at a softening point temperature thereof. The manufacturing method of the sealing member which consists of an anisotropic conductive film characterized by these.
JP2003199650A 2003-07-22 2003-07-22 Manufacturing method of sealing member made of anisotropic conductive film Expired - Fee Related JP3947502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199650A JP3947502B2 (en) 2003-07-22 2003-07-22 Manufacturing method of sealing member made of anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199650A JP3947502B2 (en) 2003-07-22 2003-07-22 Manufacturing method of sealing member made of anisotropic conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19584797A Division JP3558498B2 (en) 1997-07-22 1997-07-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2004006935A JP2004006935A (en) 2004-01-08
JP3947502B2 true JP3947502B2 (en) 2007-07-25

Family

ID=30438478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199650A Expired - Fee Related JP3947502B2 (en) 2003-07-22 2003-07-22 Manufacturing method of sealing member made of anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3947502B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569676B2 (en) * 2007-03-28 2014-08-13 日本電気株式会社 Electronic component mounting method
KR100763474B1 (en) * 2007-06-01 2007-10-04 박창준 Chair with posture correction and traction massage function
KR100907576B1 (en) 2008-02-13 2009-07-14 엘에스엠트론 주식회사 Semiconductor device for prevention short circuit between electrode and semiconductor package using the same
JP5238593B2 (en) * 2009-04-20 2013-07-17 新光電気工業株式会社 Manufacturing method of semiconductor package
JP2014103176A (en) * 2012-11-16 2014-06-05 Shin Etsu Chem Co Ltd Sealing material with support base material, substrate having sealed semiconductor element mounted thereon, wafer having sealed semiconductor element formed thereon, semiconductor device, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2004006935A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4023159B2 (en) Manufacturing method of semiconductor device and manufacturing method of laminated semiconductor device
US6515357B2 (en) Semiconductor package and semiconductor package fabrication method
US6787395B2 (en) Method of manufacturing a multi-chip module
JP5366674B2 (en) Mounting structure and mounting method
TW200414471A (en) Semiconductor device and manufacturing method for the same
JP2004172489A (en) Semiconductor device and its manufacturing method
US8980692B2 (en) Semiconductor device manufacturing method
US7663254B2 (en) Semiconductor apparatus and method of manufacturing the same
JP2000332055A (en) Flip-chip mounting structure and mounting method
US8217517B2 (en) Semiconductor device provided with wire that electrically connects printed wiring board and semiconductor chip each other
JP3947502B2 (en) Manufacturing method of sealing member made of anisotropic conductive film
JP3558498B2 (en) Method for manufacturing semiconductor device
JP4035949B2 (en) Wiring board, semiconductor device using the same, and manufacturing method thereof
JP4085572B2 (en) Semiconductor device and manufacturing method thereof
JPH10125734A (en) Semiconductor unit and manufacturing method thereof
JP2002231765A (en) Semiconductor device
JP3906914B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH11340352A (en) Mounting structure
JP3547270B2 (en) Mounting structure and method of manufacturing the same
JP3879319B2 (en) Semiconductor device and manufacturing method thereof
JP2001077295A (en) Manufacture of semiconductor device
TWI264101B (en) Method of flip-chip packaging including chip thermocompression
JP2000332390A (en) Manufacture of semiconductor device
JP4540216B2 (en) Manufacturing method of semiconductor module
JP2024039842A (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061013

A521 Written amendment

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Effective date: 20061227

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070327

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110420

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees