JP4471370B2 - 燃料蒸気処理装置 - Google Patents

燃料蒸気処理装置 Download PDF

Info

Publication number
JP4471370B2
JP4471370B2 JP2004354507A JP2004354507A JP4471370B2 JP 4471370 B2 JP4471370 B2 JP 4471370B2 JP 2004354507 A JP2004354507 A JP 2004354507A JP 2004354507 A JP2004354507 A JP 2004354507A JP 4471370 B2 JP4471370 B2 JP 4471370B2
Authority
JP
Japan
Prior art keywords
passage
detection
fuel vapor
pump
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004354507A
Other languages
English (en)
Other versions
JP2006161690A (ja
Inventor
政雄 加納
晋祐 高倉
典保 天野
伸介 清宮
勇作 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2004354507A priority Critical patent/JP4471370B2/ja
Priority to US11/295,729 priority patent/US7246608B2/en
Publication of JP2006161690A publication Critical patent/JP2006161690A/ja
Application granted granted Critical
Publication of JP4471370B2 publication Critical patent/JP4471370B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

本発明は、燃料蒸気処理装置に関する。
従来、燃料タンク内で発生した燃料蒸気をキャニスタに一時的に吸着させ、必要に応じてキャニスタから脱離させた燃料蒸気を内燃機関の吸気通路に導いてパージさせる燃料蒸気処理装置が知られている。このような燃料蒸気処理装置の一種として、吸気通路に導かれる混合気中の燃料蒸気濃度をパージに先立ち測定しておくことで、燃料蒸気を短期間に大量パージ可能としたものが特許文献1,2に開示されている。かかる特許文献1,2に開示の燃料蒸気処理装置では、混合気を吸気通路に導く通路において混合気の流量又は密度を検出すると共に、大気開放された通路において空気の流量又は密度を検出し、それら検出結果の比から燃料蒸気濃度を算出するようにしている。
特開平5−18326号公報 特開平6−101534号公報
特許文献1,2に開示の燃料蒸気処理装置では、吸気通路の負圧を各通路に作用させることで混合気若しくは空気をそれら各通路に流しつつ、流量又は密度の検出を行っている。それ故、吸気通路の負圧に脈動が生じると、流量又は密度に変動が生じてしまうため、そのような流量又は密度の検出結果に基づく燃料蒸気濃度の算出精度は悪化することとなる。また、吸気通路の負圧が小さい場合には、各通路における混合気若しくは空気の流量が減少するため、流量又は密度の検出自体を実施し得なくなる。
そこで本発明者らは、絞りを有する検出用通路をポンプで減圧して当該検出用通路に空気及び混合気を順次流しつつ、絞り両端間の差圧変化を監視し、その監視結果に基づいて燃料蒸気濃度を算出する燃料蒸気処理装置について鋭意研究を行ってきた。かかる燃料蒸気処理装置では、検出用通路がポンプによって減圧されるので、検出条件の変更がない限り検出対象の差圧が安定し、また検出用通路において空気又は混合気の流量が十分に確保され得る。しかし、本発明者らがさらに研究を進めた結果、検出用通路に混合気を流しつつ差圧を検出する場合、ポンプの減圧作用により検出用通路に取り込まれた混合気が絞りを通過してポンプに吸入されると、暫くの間、差圧の検出結果が変動することが判明した。この問題は、混合気がポンプに達する前後においてポンプ特性が変化することに起因していると考えられることから、ポンプ特性が安定するのを待って差圧検出を行うことで解消され得る。ところが、ポンプ特性の安定を待って差圧検出を行う場合、燃料蒸気濃度測定の全体時間が増大するため、濃度測定後のパージ時間が減少して実際にパージされる量(以下、実パージ量という)が低下するといった新たな問題を招いてしまうのである。
以上より、本発明の目的は、燃料蒸気濃度を短時間にて精確に測定する燃料蒸気処理装置を提供することにある。
請求項1に記載の発明では、混合気を吸気通路に導くパージ通路を通路切換手段が検出用通路に連通させ且つ検出用通路をポンプが減圧することで混合気が検出用通路中途部の絞りを通過した後、ポンプに達する前までの期間が検出期間とされる。かかる検出期間においては、混合気の吸入によるポンプ特性の変化が生じないため、差圧検出手段により検出される絞りの両端間の差圧は、安定した値となる。このように安定した差圧値に基づくことで濃度算出手段は、燃料蒸気濃度を精確に算出することができる。しかも、混合気通過時の絞り両端間の差圧を混合気のポンプ到達前に検出することから、当該検出時間、ひいては燃料蒸気濃度測定の全体時間を短縮することができる。したがって、濃度測定後のパージ時間を増大して実パージ量を十分に確保することが可能となる。
請求項2に記載の発明によると、検出期間後、混合気がポンプに達する前までに、ポンプが検出用通路の減圧を停止する。これにより、検出期間後において混合気がポンプに達し難くなるので、検出期間後に混合気がポンプに吸入されて次の差圧検出時のポンプ特性に影響を及ぼすことを抑制できる。
請求項3に記載の発明によると、検出期間後において連通制御手段は、絞りとポンプとの間において検出用通路に連通する第一中継通路と、キャニスタに連通する第二中継通路とを連通させる。これにより検出期間後においては、検出用通路に残留した混合気を第一及び第二中継通路に掃き出してさらにキャニスタへと導くことができるので、検出用通路の残留混合気が次の差圧検出時のポンプ特性に影響を及ぼすことを抑制できる。
請求項4に記載の発明によると、キャニスタは、第二中継通路に連通し当該第二中継通路から流入する混合気中の燃料蒸気を吸着する第一吸着部と、パージ通路に連通し第一吸着部から脱離した燃料蒸気及び燃料タンク内で発生した燃料蒸気を吸着する第二吸着部とを有する。そして、それら第一吸着部と第二吸着部とは空間部を介して連通するので、第二中継通路から第一吸着部への流入混合気中の燃料蒸気は時間をかけて第二吸着部に達することとなる。これにより検出期間後においては、第二中継通路からキャニスタに混合気が流入しても、キャニスタから脱離してパージ通路に導かれる燃料蒸気が増大することを抑制できるので、実際にパージされる燃料蒸気の濃度(以下、実パージ濃度という)が濃度算出手段の算出値からずれる事態を回避することができる。
請求項5に記載の発明によると、検出期間後のパージ期間において、連通制御手段が第一中継通路と第二中継通路とを連通させ且つパージ制御手段がパージ通路と吸気通路とを連通させる。これによりパージ期間には、吸気通路の負圧がパージ通路、キャニスタ、第一中継通路、第二中継通路及び検出用通路に順次作用する。したがって、吸気通路の負圧がパージ通路及びキャニスタに作用することで、燃料蒸気をキャニスタから脱離させて吸気通路にパージすることができる。それと共に、吸気通路の負圧がキャニスタ、第一及び第二中継通路並びに検出用通路に作用することで、検出用通路の残留混合気を確実にキャニスタへと導くことができる。
請求項6に記載の発明によると、パージ期間後において、連通制御手段が第一中継通路と第二中継通路との連通を遮断する。これによりパージ期間後においては、検出用通路に連通する第一中継通路と、キャニスタに連通する第二中継通路とが非連通となるので、パージ期間に掃気されて燃料蒸気を除去された検出用通路にキャニスタからの脱離蒸気が誤って導かれる事態を回避することができる。
請求項7に記載の発明によると、検出期間において、パージ制御手段がパージ通路と吸気通路との連通を遮断する。これにより検出期間においては、パージ通路の混合気を検出用通路に確実に取り込むことができると共に、吸気通路の負圧脈動が検出用通路の混合気に伝播することを防止できる。
請求項8に記載の発明によると、検出用通路は、絞りとポンプとの間において通路容積を拡大する容積部を有する。これにより、混合気が容積部を抜けてポンプに達する直前までの時間、即ち絞りにおいて両端間の差圧が安定する時間を増大させることができる。したがって、このような請求項8に記載の発明によれば、パージ時間に大きく影響しない範囲で検出期間を長くとることができるので、差圧の検出精度ひいては燃料蒸気濃度の算出精度が高められる。
請求項9に記載の発明によると、検出用通路は、絞りに連通する第一連通部と、ポンプに連通し第一通路部よりも上方に設置される第二連通部と、第一連通部と第二連通部との間を連通する第三連通部とを有する。これにより、空気に対する比重が1よりも大きい燃料蒸気を含む混合気が第三連通部を流動する速度は低下するので、絞りを通過した混合気がポンプに達する直前までの時間、即ち絞りにおいて両端間の差圧が安定する時間を増大させることができる。したがって、このような請求項9に記載の発明によれば、パージ時間に大きく影響しない範囲で検出期間を長くとることができるので、差圧の検出精度ひいては燃料蒸気濃度の算出精度が高められる。
請求項10に記載の発明によると、検出用通路は、絞りに連通する第一連通部と、ポンプに連通し第一通路部よりも下方に設置される第二連通部と、第一連通部と第二連通部との間を連通する第三連通部とを有する。これにより、空気に対する比重が1よりも小さい燃料蒸気を含む混合気が第三連通部を流動する速度は低下するので、絞りを通過した混合気がポンプに達する直前までの時間、即ち絞りにおいて両端間の差圧が安定する時間を増大させることができる。したがって、このような請求項10に記載の発明によれば、パージ時間に大きく影響しない範囲で検出期間を長くとることができるので、差圧の検出精度ひいては燃料蒸気濃度の算出精度が高められる。
請求項11に記載の発明によると、検出用通路は、絞りとポンプとの間を蛇行して延びる蛇行部を有する。これにより、絞りを通過した混合気が蛇行部を抜けてポンプに達する直前までの時間、即ち絞りにおいて両端間の差圧が安定する時間を増大させることができる。したがって、このような請求項11に記載の発明によれば、パージ時間に大きく影響しない範囲で検出期間を長くとることができるので、差圧の検出精度ひいては燃料蒸気濃度の算出精度が高められる。
請求項12に記載の発明によると、蛇行部のポンプ側端部は、当該端部に直近の蛇行点よりも上方に設置される。これにより、空気に対する比重が1よりも大きい燃料蒸気を含む混合気が蛇行部のポンプ側端部に直近の蛇行点から当該端部に至るまでの移動速度は低下するので、差圧の安定時間の増大効果が促進される。
請求項13に記載の発明によると、蛇行部のポンプ側端部は、当該端部に直近の蛇行点よりも下方に設置される。これにより、空気に対する比重が1よりも小さい燃料蒸気を含む混合気が蛇行部のポンプ側端部に直近の蛇行点から当該端部に至るまでの移動速度は低下するので、差圧の安定時間の増大効果が促進される。
請求項14に記載の発明によると、ポンプ制御手段は、検出期間においてポンプの回転数を一定に制御する。これにより、検出期間におけるポンプ特性が一定となるため、ポンプ特性が変化することによる差圧の検出誤差ひいては燃料蒸気濃度の算出誤差が発生し難くなる。
請求項15に記載の発明によると、第一差圧検出期間においては、通路開閉手段がパージ通路及び大気通路よりもポンプ側において検出用通路を開放し且つ通路切換手段が大気通路を検出用通路に連通させ且つポンプが検出用通路を減圧した状態で、差圧検出手段が絞り両端間の差圧を検出する。この検出結果である第一差圧は、絞りを空気が通過するときの差圧となる。また、検出期間としての第二差圧検出期間においては、通路開閉手段がパージ通路及び大気通路よりもポンプ側において検出用通路を開放し且つ通路切換手段がパージ通路を検出用通路に連通させ且つポンプが検出用通路を減圧した状態で、差圧検出手段が絞り両端間の差圧を検出する。この検出結果である第二差圧は、混合気が絞りを通過した後、ポンプに達する前までの差圧となる。またさらに締切圧検出期間においては、通路開閉手段がパージ通路及び大気通路よりもポンプ側において検出用通路を閉塞し且つポンプが検出用通路を減圧した状態で、差圧検出手段がポンプの締切圧を検出する。以上のようにして検出される第一及び第二差圧並びに締切圧から燃料蒸気濃度を算出する濃度算出手段は、特に第二差圧が安定した値となることによって精確な濃度算出を実現することができる。
ポンプの締切圧は、絞りを空気が通過するときの差圧である第一差圧よりも大きくなる。そのため、第一差圧検出期間と締切圧検出期間とを連続させる場合には、第一差圧検出期間よりも締切圧検出期間を後に設定することで、それら期間においてポンプ特性ひいては差圧を安定させるのに必要な時間の合計を短くすることができる。そこで、請求項16に記載の発明によると、締切圧検出期間は第一差圧検出期間後に連続して設定されるので、燃料蒸気濃度測定の全体時間の短縮効果が向上する。
第一差圧又は締切圧検出期間よりも前に第二差圧検出期間が設定される場合、第二差圧検出期間において検出用通路に取り込まれた混合気が第一差圧又は締切圧検出期間においてポンプに吸入されると、混合気がポンプから排出されるまでポンプ特性が不安定となる。この場合、ポンプ特性が安定するのを待って第一差圧又は締切圧の検出を行う必要があるため、第一差圧及び締切圧検出期間の合計時間が増大してしまう。そこで、請求項17に記載の発明によると、第二差圧検出期間は、第一差圧及び締切圧検出期間よりも後に設定されるので、第二差圧検出期間において検出用通路に取り込まれた混合気が第一差圧及び締切圧検出期間のポンプ特性に影響を及ぼすことがない。したがって、第一差圧及び締切圧検出期間においてポンプ特性ひいては差圧を安定させるのに必要な時間の合計を短くすることができるので、燃料蒸気濃度測定の全体時間の短縮効果が向上する。
尚、第一差圧検出期間、第二差圧検出期間及び締切圧検出期間の順序については、請求項16,17に記載の順序以外であってもよい。
請求項18に記載の発明によると、締切圧検出期間においては、通路開閉手段が検出用通路を絞りとポンプとの間で閉塞することにより、ポンプ特性ひいては差圧の安定に必要な時間を短くすることができる。したがって、燃料蒸気濃度測定の全体時間の短縮効果が向上する。
以下、本発明の複数の実施形態を図面に基づいて説明する。
(第一実施形態)
図1は、本発明の第一実施形態による燃料蒸気処理装置10を車両の内燃機関(以下、エンジンという)1に適用した例を示している。
まず、エンジン1について説明する。
エンジン1は、燃料タンク2内に収容されたガソリン燃料を用いて動力を発生させるガソリンエンジンである。エンジン1の吸気通路3には、例えば燃料噴射量を制御する燃料噴射装置4、吸気量を制御するスロットル装置5、吸気量を検出するエアフローセンサ6、吸気圧を検出する吸気圧センサ7等が設置されている。また、エンジン1の排気通路8には、例えば空燃比を検出する空燃比センサ9等が設置されている。
次に、燃料蒸気処理装置について説明する。
燃料蒸気処理装置10は、燃料タンク2内で発生した燃料蒸気を処理してエンジン1に供給するものであり、キャニスタ12、ポンプ14、差圧センサ16、複数の弁18〜23、複数の通路26〜36及び電子制御ユニット(ECU)38を備えている。
キャニスタ12は、ケース42内を隔壁43によって仕切られることで二つの吸着部44,45を形成している。各吸着部44,45には、活性炭等からなる吸着材46,47が充填されている。メイン吸着部44には、燃料タンク2内に連通する導入通路26が連通している。したがって、燃料タンク2内で発生した燃料蒸気は、導入通路26を通じてメイン吸着部44に流入し、当該メイン吸着部44の吸着材46に脱離可能に吸着される。メイン吸着部44にはさらに、吸気通路3と連通するパージ通路27が連通している。ここでパージ通路27の吸気通路側端には、電磁駆動式の二方弁からなるパージ制御弁18が設置されており、パージ制御弁18はその開閉作動によって、パージ通路27と吸気通路3との連通を制御する。これによりパージ制御弁18の開状態では、吸気通路3のスロットル装置5よりも下流側に発生する負圧がパージ通路27を通じてメイン吸着部44に作用する。したがって、メイン吸着部44に負圧が作用するときには、メイン吸着部44の吸着材46から燃料蒸気が脱離し、その脱離蒸気が空気と混合してパージ通路27に導かれることで、当該混合気中の燃料蒸気が吸気通路3へとパージされる。尚、パージ通路27を通じて吸気通路3にパージされた燃料蒸気は、燃料噴射装置4からの噴射燃料と共にエンジン1内で燃焼されることとなる。
サブ吸着部45には、ケース42内底部の空間部48を介してメイン吸着部44が連通している。また、サブ吸着部45には、検出用通路28の中途部に連通する中継通路29が連通している。ここで中継通路29の中途部には、電磁駆動式の二方弁からなる連通制御弁19が設置されており、連通制御弁19はその開閉作動によって、中継通路29の当該弁19よりも検出用通路側部分29aとサブ吸着部側部分29bとの間の連通を制御する。これにより、連通制御弁19及びパージ制御弁18の開状態では、吸気通路3の負圧がパージ通路27、メイン吸着部44、空間部48を通じてサブ吸着部45に作用し、さらに中継通路29及び検出用通路28にも作用する。したがって、検出用通路28に混合気が存在している状態でサブ吸着部45に負圧が作用すると、検出用通路28の混合気が中継通路29を通じてサブ吸着部45に流入し、当該混合気中の燃料蒸気がサブ吸着部45の吸着材47に脱離可能に吸着される。また、サブ吸着部45に負圧が作用するときには、サブ吸着部45の吸着材47から燃料蒸気が脱離するが、その脱離蒸気は空間部48で一旦滞留した後、メイン吸着部44に吸着されることとなる。
通路切換弁20は、電磁駆動式の三方弁から構成されている。通路切換弁20は、フィルタ49を介して大気に開放された第一大気通路30に接続されている。また、通路切換弁20は、メイン吸着部44とパージ制御弁18との間においてパージ通路27から分岐する分岐通路31に接続されている。またさらに通路切換弁20は、検出用通路28の一端に接続されている。このような接続形態の通路切換弁20は、検出用通路28に連通する通路を第一大気通路30とパージ通路27の分岐通路31との間で切り換える。したがって、第一大気通路30が検出用通路28に連通する第一状態では、第一大気通路30を通じて空気が検出用通路28に流入可能となる。また、分岐通路31が検出用通路28に連通する第二状態では、パージ通路27の燃料蒸気を含む混合気が分岐通路31を通じて検出用通路28に流入可能となる。
ポンプ14は、例えば電動式のベーンポンプから構成されている。ポンプ14の吸入口は、検出用通路28の絞り50を挟んで通路切換弁20とは反対側端に連通しており、ポンプ14の排出口は第一排出通路32に連通している。これによりポンプ14の作動時には、検出用通路28が減圧され、検出用通路28から吸入された気体が第一排出通路32に排出されることとなる。
検出用通路28において中継通路29の連通部分と通路切換弁20との間となる中途部には、検出用通路28の通路面積を絞る絞り50が形成されている。また、検出用通路28において中継通路29の連通部分と絞り50との間となる中途部には、電磁駆動式の二方弁からなる通路開閉弁21が設置されており、通路開閉弁21はその開閉作動によって、検出用通路28の当該弁21よりも通路切換弁側部分28aとポンプ側部分28bとの間の連通を制御する。ここで部分28a,28bの非連通時には、通路30,31に繋がる通路切換弁20とポンプ14との間において検出用通路28が閉塞された状態となり、逆に部分28a,28bの連通時には検出用通路28が開放された状態となる。即ち通路開閉弁21は、ポンプ14よりも通路30,31側において、より詳細にはポンプ14と絞り50との間において検出用通路28を開閉するものである。
差圧センサ16は、通路開閉弁21とポンプ14との間において検出用通路28から分岐する導圧通路33に連通している。これにより差圧センサ16は、検出用通路28の絞り50よりもポンプ14側から導圧通路33を通じて受ける圧力と、大気圧との差圧を検出する。したがって、ポンプ14の作動時に差圧センサ16が検出する差圧は、通路開閉弁21の開状態において絞り50の両端間の差圧に実質的に等しくなる。また、通路開閉弁21の閉状態では、ポンプ14の吸入側において検出用通路28が閉塞されるため、ポンプ14の作動時に差圧センサ16が検出する差圧は、ポンプ14の締切圧に実質的に等しくなる。
排出切換弁22は、電磁駆動式の三方弁から構成されている。排出切換弁22は、フィルタ51を介して大気に開放された第二大気通路34に接続されている。また、排出切換弁22は、キャニスタ12の空間部48に連通する第二排出通路35に接続されている。またさらに排出切換弁22は、ポンプ14の排出側の第一排出通路32に接続されている。このような接続形態の排出切換弁22は、第一排出通路32に連通する通路を第二大気通路34と第二排出通路35との間で切り換える。したがって、第二大気通路34が第一排出通路32に連通する第一状態では、ポンプ14から排出された気体が第一排出通路32及び第二大気通路34を通じて大気中に放散される。また、第二排出通路35が第一排出通路32に連通する第二状態では、ポンプ14からの排出気体が第一排出通路32及び第二排出通路35を通じて空間部48に流入可能となる。
キャニスタクローズ弁23は、電磁駆動式の二方弁から構成されており、連通制御弁19とサブ吸着部45との間において中継通路29から分岐する第三大気通路36の中途部に設置されている。第三大気通路36において、キャニスタクローズ弁23を挟んで中継通路29とは反対側端はフィルタ52を介して大気に開放されている。したがって、キャニスタクローズ弁23の開状態では、第三大気通路36及び中継通路29を通じてサブ吸着部45が大気開放されることとなる。
ECU38は、CPU及びメモリを有するマイクロコンピュータを主体に構成されており、燃料蒸気処理装置10のポンプ14、差圧センサ16及び弁18〜23並びにエンジン1の各要素4〜7,9と電気接続されている。ECU38は、例えば各センサ16,6,7,9の検出結果、エンジン1の冷却水温度、車両の作動油温度、エンジン1の回転数、車両のアクセル開度、イグニションスイッチのオンオフ状態等に基づいてポンプ14及び弁18〜23の各作動を制御する。さらに本実施形態のECU38は、例えば燃料噴射装置4の燃料噴射量、スロットル装置5の開度、エンジン1の点火時期等、エンジン1を制御する機能も備えている。
次に、燃料蒸気処理装置10の特徴的な主作動のフローを図2に基づいて説明する。尚、本主作動は、イグニションスイッチがオンされてエンジン1が始動するに伴い開始されるものである。
まず、ステップS101では、濃度測定条件が成立しているか否かをECU38により判定する。ここで濃度測定条件の成立とは、例えばエンジン1の冷却水温度、車両の作動油温度、エンジン1の回転数等、車両状態を表す物理量が所定の領域にあることを意味する。そして、かかる濃度測定条件は、例えばエンジン1の始動直後に成立するように予め設定されて、ECU38のメモリに記憶されている。
ステップS101において肯定判断された場合には、ステップS102に移行して、濃度測定処理を実行する。この濃度測定処理により、パージ制御弁18の閉状態でパージ通路27の燃料蒸気濃度が測定されると、ステップS103に移行して、パージ条件が成立しているか否かをECU38により判定する。ここでパージ条件の成立とは、例えばエンジン1の冷却水温度、車両の作動油温度、エンジン1の回転数等、車両状態を表す物理量が上記濃度測定条件の場合とは異なる所定の領域にあることを意味する。そして、かかるパージ条件は、例えばエンジン1の冷却水温度が所定値以上となってエンジン1の暖機が完了したとき成立するように予め設定されて、ECU38のメモリに記憶されている。
ステップS103において肯定判断された場合には、ステップS104に移行して、パージ処理を実行する。このパージ処理により、パージ制御弁18の開状態でパージ通路27から吸気通路3に燃料蒸気がパージされ、パージ停止条件が成立すると、ステップS105に移行する。ここでパージ停止条件の成立とは、例えばエンジン1の回転数、アクセル開度等、車両の状態を表す物理量が上記濃度測定条件及び上記パージ条件とは異なる所定の領域にあることを意味する。そして、かかるパージ停止条件は、例えばアクセル開度が所定値以下となって車両が減速したとき成立するように予め設定されて、ECU38のメモリに記憶されている。
また、ステップS103において否定判断された場合には、ステップS105に直接移行する。
ステップS105では、ステップS102の濃度測定処理の終了から設定時間が経過したか否かをECU38により判定する。このステップS105において肯定判断された場合には、ステップS101へと戻り、また一方、ステップS105において否定判断された場合には、ステップS103へと戻る。尚、ステップS105の判断基準となる上記設定時間は、燃料蒸気濃度の経時変化と濃度の要求精度とを考慮して予め設定され、ECU38のメモリに記憶されている。
以上、ステップS101において肯定判断された場合の後続処理ステップS102〜S105について説明したが、以下、ステップS101において否定判断された場合の後続処理ステップS106について説明する。
ステップS106では、イグニションスイッチがオフされたか否かをECU38により判定する。このステップS106において否定判断された場合には、ステップS101へと戻り、また一方、ステップS106において肯定判断された場合には、主作動を終了する。尚、燃料蒸気処理装置10では、主作動が終了した後、各弁18〜23を図3に示す状態にしてキャニスタ12を図4の如く大気開放するキャニスタ開放作動が実施される。
ここで、上記ステップS102の濃度測定処理についてさらに詳しく説明する。
まず、燃料蒸気処理装置10における燃料蒸気濃度の測定原理について説明する。
例えばベーンポンプからなるポンプ14では、負荷に応じて内部漏れ量が変化することから、図5に示すようにポンプ14の圧力(P)−流量(Q)特性曲線CPmpは下記の一次式(1)にて表される。尚、式(1)においてK1,K2はポンプ14に固有の定数である。
Q=K1・P+K2 ・・・(1)
ここでポンプ14の締切圧をPtとすると、P=Ptとなるポンプ14の吸入側の締切時にはQ=0となることから、下記の式(2)が得られる。
K2=−K1・Pt ・・・(2)
燃料蒸気処理装置10では、検出用通路28の絞り50よりもポンプ14側において流通気体の圧力損失が無視できる程度に小さくされている。これにより通路開閉弁21の開状態では、ポンプ14の圧力Pと絞り50の両端間の差圧(以下、単に差圧という)ΔPとが実質的に等しくなると考えられる。したがって、空気が絞り50を通過するときの通過流量QAir及び差圧ΔPAirは、式(1),(2)から得られる下記式(3)の関係を満たす。
Air=K1・(ΔPAir−Pt) ・・・(3)
また、燃料蒸気を含む混合気(以下、単に混合気という)が絞り50を通過するときの通過流量QGas及び差圧ΔPGasも同様に、式(1),(2)から得られる下記式(4)の関係を満たす。
Gas=K1・(ΔPGas−Pt) ・・・(4)
さて、絞り50における気体の差圧(ΔP)−流量(Q)特性曲線は、絞り50を通過する気体の密度ρを用いて下記の式(5)にて表される。尚、式(5)においてK3は絞り50に固有の定数であり、絞り50の穴径及び流量係数をそれぞれd及びαとしたとき、下記の式(6)にて表される値である。
Q=K3・(ΔP/ρ)1/2 ・・・(5)
K3=α・π・d2/4・21/2 ・・・(6)
したがって、図5に示す空気のΔP−Q特性曲線CAirは、空気の密度ρAirを用いて下記の式(7)にて表される。
Air=K3・(ΔPAir/ρAir1/2 ・・・(7)
また、図5に示す混合気のΔP−Q特性曲線CGasは、混合気の密度ρGasを用いて下記の式(8)にて表される。尚、ここで混合気の密度ρGasは、燃料蒸気の成分である炭化水素(HC)の密度をρHCとしたとき、混合気中の燃料蒸気濃度D(%)との間に下記式(9)の関係を有している。
Gas=K3・(ΔPGas/ρGas1/2 ・・・(8)
D=100・ρAir・(1−ρGas/ρAir)/(ρAir−ρHC) ・・・(9)
以上より、式(3)=式(7)及び式(4)=式(8)が成立するので、下記の式(10)及び(11)が得られる。
ρAir=K32・ΔPAir/{K12・(ΔPAir−Pt2} ・・・(10)
ρGas=K32・ΔPGas/{K12・(ΔPGas−Pt2} ・・・(11)
したがって、式(10)と式(11)とからK1,K3を消去してなる下記の式(12)が得られ、さらにこの式(12)と式(9)とから燃料蒸気濃度の算出式(13)が下記のように得られる。
ρGas/ρAir=ΔPGas/ΔPAir・(ΔPAir−Pt2/(ΔPGas−Pt2
・・・(12)
D=100・ρAir・{1−ΔPGas/ΔPAir・(ΔPAir−Pt2/(ΔPGas−Pt2}/(ρAir−ρHC) ・・・(13)
こうして得られる燃料蒸気濃度Dの算出式(13)において、ρAir,ρHCは物理定数として決められた値であり、本実施形態では式(13)の一部としてECU38のメモリに記憶されている。したがって、式(13)を用いて燃料蒸気濃度Dを算出するには、絞り50を空気及び混合気が通過するときの各差圧ΔPAir,ΔPGasとポンプ14の締切圧Ptとが必要となる。そこで、上記ステップS102の濃度測定処理では、差圧ΔPAir,ΔPGas及び締切圧Ptを検出してそれらの値から燃料蒸気濃度Dを算出する。以下、かかる濃度測定処理のフローを図6に基づいて説明する。尚、濃度測定処理の直前においては、ポンプ14が停止状態、パージ制御弁18及び連通制御弁19が閉状態、通路切換弁20及び排出切換弁22が第一状態、通路開閉弁21及びキャニスタクローズ弁23が開状態となっているものとする。
まず、ステップS201では、ECU38によりポンプ14を一定の回転数となるように駆動して、検出用通路28を吸気通路3の負圧よりも小さな圧力で減圧する。このとき、各弁18〜23の状態は図3の如く濃度測定処理直前の状態と同一であるので、図7に示すように第一大気通路30から検出用通路28に空気が流入し、差圧センサ16により検出される差圧が図8の如く所定値ΔPAirにまで低下する。そこで本ステップS201では、差圧センサ16の検出差圧が安定したところで、その安定値を空気通過時の差圧ΔPAirとしてECU38のメモリに記憶する。尚、本ステップS201において、ポンプ14から第一排出通路32に排出される空気は、第二大気通路34のフィルタ51を通じて大気中に放散される。
次にステップS202では、ECU38により、ステップS201と同様なポンプ駆動を継続しつつ、通路開閉弁21を閉状態とする。これにより、各弁18〜23の状態は図3に示す状態となるので、図9に示すように検出用通路28が閉塞され、差圧センサ16により検出される差圧が図8の如くポンプ14の締切圧Ptにまで低下する。そこで本ステップS202では、差圧センサ16の検出差圧が安定したところで、その安定値をポンプ14の締切圧PtとしてECU38のメモリに記憶する。尚、本ステップS202において、差圧センサ16の検出差圧が安定するまでにポンプ14から第一排出通路32に排出される空気は、第二大気通路34のフィルタ51を通じて大気中に放散される。
続いてステップS203では、ECU38により、ステップS201と同様なポンプ駆動を継続しつつ、通路切換弁20及び排出切換弁22を第二状態とすると共に、通路開閉弁21を開状態とする。これにより、各弁18〜23の状態は図3に示す状態となるので、図10に示すようにパージ通路27の分岐通路31から検出用通路28に混合気が流入し、差圧センサ16により検出される差圧が図8の如く上昇する。そして、検出用通路28への流入混合気が絞り50を通過すると、差圧センサ16の検出差圧が燃料蒸気濃度Dに応じた値ΔPGasで一旦安定する。しかし、絞り50を通過した混合気がポンプ14に達して吸入される場合、図8に一点鎖線で示す如く差圧センサ16の検出差圧が不安定となってしまう。そこで本ステップS203では、混合気が絞り50を通過することにより差圧センサ16の検出差圧が安定した後、混合気がポンプ14に達する前までに、その安定値を混合気通過時の差圧ΔPGasとしてECU38のメモリに記憶し、次のステップS204に移行する。
尚、このようなステップS203においては、混合気がポンプ14に吸入されて第一排出通路32に排出されることが理論的にはない。但し、ステップS203において検出差圧の安定後にステップS204に移行するまでの時間は、混合気がポンプ14に達しないように予め設定されたものであり、それ故、例えば外乱によって混合気がポンプ14に達するおそれがある。しかし、ステップS203において弁20〜22は図3の状態とされるので、万が一、混合気がポンプ14に達し第一排出通路32に排出されても、要素28,31,27,12,35を通じて第一排出通路32に作用するポンプ14の吸入圧(負圧)により、混合気をキャニスタ12へと確実に導くことができる。
ステップS204では、絞り50を通過した混合気がポンプ14に達する前までに、ECU38によってポンプ14を停止させる。さらに本実施形態のステップS204では、通路切換弁20及び排出切換弁22を第一状態に戻しておく。
この後、ステップS205では、ステップS201及びS203において記憶された差圧ΔPAir及びΔPGasと、ステップS202において記憶された締切圧Ptと、予め記憶されている式(13)とをECU38のメモリからCPUに読み出す。さらに、ステップS205では、ECU38により差圧ΔPAir,ΔPGas及び締切圧Ptを式(13)に代入して燃料蒸気濃度Dを算出し、その算出値をメモリに記憶する。
以上、濃度測定処理について説明した。続いて、上記ステップS104のパージ処理のフローを図11に基づいて説明する。尚、パージ処理の直前において各弁18〜23の状態は、濃度測定処理のステップS204で実現された状態となっている。
まず、ステップS301では、濃度測定処理のステップS205において記憶された燃料蒸気濃度DをECU38のメモリからCPUに読み出す。さらに、ステップS301ではECU38により、車両のアクセル開度等の車両状態を表す物理量と、読み出された燃料蒸気濃度Dとに基づいてパージ制御弁18の開度を設定し、その設定値をメモリに記憶する。
次にステップS302では、ECU38により、パージ制御弁18及び連通制御弁19を開状態、キャニスタクローズ弁23を閉状態として、第一パージ処理を実施する。これにより、弁18〜23の状態は図3に示す状態となるので、図12に示すように検出用通路28及び第一排出通路32が大気開放されて、吸気通路3の負圧が要素27,12,29,28,14に作用する。したがって、燃料蒸気がメイン吸着部44から脱離して吸気通路3にパージされる。それと共に、濃度測定処理によって検出用通路28に残留した混合気がサブ吸着部45に流入し、当該混合気中の燃料蒸気がサブ吸着部45に吸着される。ステップS302の第一パージ処理では、このようにして検出用通路28から残留混合気を掃出することを目的としている。そこで、ステップS302の実行時間、即ち第一パージ処理の処理時間Tpは、例えば下記(A)又は(B)の如く設定される。
(A)濃度測定処理のステップS203の実行時間をTcとしたとき、Tp≧Tcとなるように処理時間Tpを設定する。濃度測定処理のステップS201〜S203においてポンプ14の吸入圧は吸気通路3の負圧よりも小さいので、このような処理時間Tpの設定によって検出用通路28を十分に掃気することができる。
(B)検出用通路28において中継通路29の連通部分よりもポンプ14側と通路切換弁20側とをそれぞれ掃気するのに必要な時間Tx,Tyのうち長い方を処理時間Tpに設定する。これにより、検出用通路28を十分に掃気することができる。尚、掃気時間Txについては、中継通路29の連通部分よりもポンプ14側と通路切換弁20側との圧損比からポンプ14側における流量Qxを算出し、その算出された流量Qxとポンプ14側の容積Vxとの比をとることで予測することができる。また、掃気時間Tyについても同様に予測することができる。
尚、ステップS302では、ステップS301でメモリに記憶された設定開度がCPUに読み出され、当該設定開度に一致するようにパージ制御弁18の開度が制御される。
以上のようにして、ステップS302の実行開始から時間Tpが経過すると、次のステップS303に移行する。
ステップS303では、ECU38により、連通制御弁19を閉状態とすると共に、キャニスタクローズ弁23を開状態として、第二パージ処理を実施する。これにより、弁18〜23の状態は図3に示す状態となるので、図13に示すように第三大気通路36及び中継通路29のサブ吸着部側部分29bが大気開放されて、吸気通路3の負圧が要素27,12に作用する。したがって、燃料蒸気がメイン吸着部44から脱離して吸気通路3にパージされる。尚、ステップS303においても、ステップS302と同様にしてパージ制御弁18の設定開度が読み出され、当該設定開度に一致するようにパージ制御弁18の開度が制御される。また、ステップS303は、先に説明したパージ停止条件が成立すると終了する。
以上説明した第一実施形態によると、濃度測定処理のステップS203において、混合気が絞り50を通過することにより差圧センサ16の検出差圧が安定した後、混合気がポンプ14に達する前までに、当該差圧の安定値が差圧ΔPGasとして検出される。したがって、濃度測定処理のステップS205では、そのように安定した値ΔPGasに基づいて燃料蒸気濃度Dが算出されるので、当該算出値Dは精確なものとなる。
また、第一実施形態によると、濃度測定処理のステップS203においてはパージ制御弁18が閉じられるので、パージ通路27の混合が検出用通路28に確実に取り込まれ、また吸気通路3の負圧脈動が検出用通路28への流入混合気に伝播することもない。したがって、絞り50における混合気の流量不足や脈動伝播による差圧ΔPGasの検出誤差を低減することができる。
さらに第一実施形態によると、濃度測定処理においてポンプ14の回転数が一定に制御されるので、ポンプ14のP−Q特性が安定した状態で差圧ΔPAir,ΔPGas及び締切圧Ptが検出される。したがって、ポンプ14のP−Q特性が変化することによる差圧ΔPAir,ΔPGas及び締切圧Ptの検出誤差を低減することができる。
このように第一実施形態によれば、濃度測定処理において差圧ΔPAir,ΔPGas及び締切圧Ptを精確に検出することができるので、燃料蒸気濃度Dの算出精度が向上する。
またさらに第一実施形態によると、図8の如く締切圧Ptが差圧ΔPAirよりも大きくなる。したがって、締切圧Ptを検出するステップS202を、差圧ΔPAirを検出するステップS201後に連続して実施する濃度測定処理によれば、それら各ステップにおいて差圧センサ16の検出差圧を安定させるための時間の合計を実施順が逆の場合よりも短くできる。また、濃度測定処理のステップS202では、絞り50とポンプ14との間において検出用通路28が閉塞されるので、このことによっても差圧センサ16の検出差圧を短時間にて安定させることができる。
さらにまた、第一実施形態によると、差圧ΔPAir及び締切圧Ptを検出した後のステップS203において差圧ΔPGasを検出する濃度測定処理を採用しているので、差圧ΔPGasの検出に用いた混合気が差圧ΔPAir及び締切圧Ptの検出時に検出用通路28に残留しているようなことがない。したがって、差圧ΔPAir及び締切圧Ptの検出時に差圧センサ16の検出差圧を安定させるための時間が検出用通路28の混合気によって延長することがない。しかもステップS203では、絞り50を通過した混合気がポンプ14に到達する前に差圧ΔPGasの検出が完了するので、ステップS203の実行時間を短くすることができる。
このように第一実施形態によれば、濃度測定処理のステップS201〜S203を短時間で実行することができるので、濃度測定処理の全体時間の短縮が図られる。これにより、パージ処理の時間が増大して実パージ量が十分に確保され得る。
加えて第一実施形態によると、濃度測定処理において差圧ΔPGasの検出後に実行されるステップS204では、混合気がポンプ14に達する前までにポンプ14が停止されるので、混合気がポンプ14に達し難い。したがって、混合気がポンプ14に吸入されて次の濃度測定処理に影響を及ぼすことを抑制できる。
さらに加えて第一実施形態では、濃度測定処理後に実施される第一パージ処理において、パージ制御弁18及び連通制御弁19が開かれて吸気通路3の負圧が検出用通路28に作用し、検出用通路28に残留している混合気がサブ吸着部45に導入される。即ち検出用通路28が掃気されるので、先の濃度測定処理により検出用通路28に取り込まれた燃料蒸気が次の濃度測定処理に影響を及ぼす事態を回避することができる。また、第一パージ処理においてサブ吸着部45に吸着される燃料蒸気は、空間部48の存在によって、時間をかけてメイン吸着部44に達することとなる。これにより第一パージ処理においては、メイン吸着部44から脱離してパージ通路27に導かれる燃料蒸気の増大が発生しないようになる。したがって、第一パージ処理における実パージ濃度が当該処理直前の濃度測定処理における算出値Dからずれることを防止できる。
しかも第一実施形態によると、主作動が終了した後においては、通常、連通制御弁19が閉じられる。その結果、第一パージ処理によりサブ吸着部45に吸着された燃料蒸気が主作動終了後に脱離して検出用通路28に誤って到達することを防止できる。したがって、そのようなサブ吸着部45からの脱離蒸気が次の濃度測定処理に影響を及ぼす事態を回避することができる。
以上、第一実施形態では、第一大気通路30が特許請求の範囲に記載の「大気通路」に相当し、通路切換弁20が特許請求の範囲に記載の「通路切換手段」に相当し、差圧センサ16が特許請求の範囲に記載の「差圧検出手段」に相当し、ECU38が特許請求の範囲に記載の「濃度算出手段」に相当する。また、第一実施形態では、連通制御弁19が特許請求の範囲に記載の「連通制御手段」に相当し、中継通路29の検出用通路側部分29aが特許請求の範囲に記載の「第一中継通路」に相当し、中継通路29のサブ吸着部側部分29bが特許請求の範囲に記載の「第二中継通路」に相当する。またさらに第一実施形態では、サブ吸着部45が特許請求の範囲に記載の「第一吸着部」に相当し、メイン吸着部44が特許請求の範囲に記載の「第二吸着部」に相当し、パージ制御弁18が特許請求の範囲に記載の「パージ制御手段」に相当し、ECU38が特許請求の範囲に記載の「ポンプ制御手段」に相当する。加えて第一実施形態では、通路開閉弁21が特許請求の範囲に記載の「通路開閉手段」に相当し、差圧ΔPAirが特許請求の範囲に記載の「第一差圧」に相当し、差圧ΔPGasが特許請求の範囲に記載の「第二差圧」に相当する。
(第二実施形態)
図14に示すように、本発明の第二実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第二実施形態の燃料蒸気処理装置100では、ポンプ14と絞り50との間において検出用通路110の長さが第一実施形態の場合よりも長くされており、それにより検出用通路110の通路容積が拡大されている。以下、かかる構成を採用した理由について説明する。
濃度測定処理の各ステップS201,S202,S203では、図15に示すように、実行開始から差圧センサ16の検出差圧が安定するまでに所定の時間T1,T2,T3を必要とする。そして、これら時間T1,T2,T3の総和Tは、検出用通路110の絞り50からポンプ14までの第一容積V1と、検出用通路110の絞り50から通路開閉弁21までの第二容積V2とに対して、図16(a)の如き相関を有している。即ち総和時間Tは、第一及び第二容積V1,V2が小さくなるほど減少することとなる。尚、総和時間Tが短いほど、燃料蒸気濃度測定の全体時間の短縮に繋がる。
また、濃度測定処理のステップS203では、混合気が絞り50を通過してから差圧センサ16の検出差圧が安定傾向を示す時間T4(図15参照)が、第一及び第二容積V1,V2に対して、図16(b)の如き相関を有している。即ち安定時間T4は、第二容積V2に対しては依存しないが、第一容積V1が大きくなるほど増大する。尚、安定時間T4は、差圧の安定値ΔPGasを見極めるための時間であるとも言えるので、当該時間T4が長いほど差圧ΔPGasの検出精度が高精度になる。
以上より、総和時間Tと安定時間T4とは第一容積V1に対して相反する関係にあることが判る。そこで第二実施形態では、図16(c)に示すように、総和時間Tが限界時間Tth未満となり且つ安定時間T4が必要時間T4th以上となる最適範囲において、第一容積V1が可及的に大きく且つ第二容積V2が可及的に小さく設定されている。したがって、第二実施形態では特に、第一容積V1を大きくするために、検出用通路110の要素14,50間の長さを伸ばしているのである。尚、限界時間Tth及び必要時間T4thについては、パージ処理に必要な時間を確保できるように適宜定められる値である。
このような第二実施形態によると、検出用通路110が長くされて第一容積V1が拡大されているので、パージ処理の時間に大きく影響しない範囲で安定時間T4を確保することができる。したがって、差圧ΔPGasの検出精度ひいては燃料蒸気濃度Dの算出精度が向上する。しかも、差圧センサ16の検出差圧を安定させるために浪費される時間Tが長くなり過ぎないようにして検出用通路110の各容積V1,V2が設定されるので、燃料蒸気濃度測定の全体時間の短縮効果が向上する。
以上、第二実施形態では、検出用通路110の絞り50からポンプ14に至るまでの部分が特許請求の範囲に記載の「容積部」に相当する。
(第三〜第五実施形態)
図17〜図19に示すように、本発明の第三〜五実施形態は第二実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第三〜五実施形態の燃料蒸気処理装置150,200,250では、第二実施形態とは異なる構造により検出用通路160,210,260の第一容積V1を拡大させている。
具体的に第三〜第五実施形態では、ポンプ14と絞り50との間において、より詳細にはポンプ14と中継通路29の連通部分との間において検出用通路160,210,260の通路面積が拡大され、それにより第一容積V1が拡大されている。したがって、第二実施形態と同様な効果を享受することができる。尚、第三〜第五実施形態の検出用通路160,210,260において、通路面積が拡大される部分(以下、単に拡大部分という)162,212,262は、中継通路29の連通部分よりもポンプ14側に配置され、それによりパージ処理のステップS302における掃気性が高められている。
以上、第三〜第五実施形態では、検出用通路160,210,260の拡大部分162,212,262が特許請求の範囲に記載の「容積部」に相当する。
またさらに第四実施形態では、検出用通路210のうち拡大部分212の両側部分213,214が上下に別れて配置されている。これにより、拡大部分212のポンプ14側に連通する部分213は、拡大部分212の通路開閉弁21(絞り50)側に連通する部分214よりも上方に配置されている。ここで、ガソリン燃料から蒸発するHCは空気に対する比重が1よりも大きいので、当該HCを含む混合気は、拡大部分212をポンプ14側に流動する際に速度低下する。このような流動速度の低下は安定時間T4の増大をもたらすので、燃料蒸気濃度Dの算出精度の向上に大きく貢献することができる。
以上、第四実施形態では、検出用通路210の各部分214,213,212がそれぞれ、特許請求の範囲に記載の「第一連通部」、「第二連通部」、「第三連通部」に相当する。
また一方、第五実施形態では、検出用通路260の拡大部分262内が複数の隔壁263によって仕切られることで蛇行部264を形成している。この蛇行部264は上下に蛇行している。したがって、空気よりも重いHCを含む混合気は、蛇行部264を上方に流動する際に速度低下する。そして特に第五実施形態では、蛇行部264のポンプ側端部265が当該端部265に直近の蛇行点266よりも上方に配置されているので、混合気は蛇行点266から端部265へと流動する際に確実に速度低下する。このような流動速度の低下は安定時間T4の増大をもたらすので、燃料蒸気濃度Dの算出精度の向上に大きく貢献することができる。
(第六実施形態)
図20に示すように、本発明の第六実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第六実施形態の燃料蒸気処理装置300では、三方弁からなる通路切換弁20の代わりに、電磁駆動式の二方弁からなる通路連通弁310,312がECU38に電気接続されている。
具体的に第一通路連通弁310は、第一大気通路30と、検出用通路28のポンプ14とは反対側端とに接続されている。かかる接続形態の第一通路連通弁310はその開閉作動によって、第一大気通路30と検出用通路28との間の連通を制御する。したがって、第一通路連通弁310の開状態では、第一大気通路30を通じて空気が検出用通路28へと流入可能となる。
第二通路連通弁312は、パージ通路27の分岐通路31に接続されている。また、第二通路連通弁312は、第一通路連通弁310と絞り50との間において検出用通路28から分岐する分岐通路314に接続されている。このような接続形態の第二通路連通弁312はその開閉作動によって、パージ通路27及び検出用通路28の各分岐通路31,314間の連通を制御する。したがって、第二通路連通弁312の開状態では、パージ通路27の混合気が分岐通路31を通じて検出用通路28に流入可能となる。
このような第六実施形態では、第一実施形態の主作動及びキャニスタ開放作動において各弁18,19,21〜23,310,312の状態が図21の如く切り換わるように実施することで、第一実施形態と同様な作用、効果が奏され得る。
以上、第六実施形態では、第一及び第二通路連通弁310,312の組が特許請求の範囲に記載の「通路切換手段」に相当する。
尚、第六実施形態では、図22の変形例の如く通路開閉弁21を設けないようにしてもよい。この場合には、第一実施形態の主作動及びキャニスタ開放作動において各弁18,19,22,23,310,312の状態が図23の如く切り換わるように実施することで、第一実施形態と同様な作用、効果が奏され得る。
(第七実施形態)
図24に示すように、本発明の第七実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第七実施形態の燃料蒸気処理装置350では、排出切換弁22に接続される第二排出通路360が、第三大気通路36のキャニスタクローズ弁23よりも中継通路側部分に連通している。したがって、排出切換弁22の第二状態では、ポンプ14からの排出気体が第一排出通路32、第二排出通路360、第三大気通路36及び中継通路29を経由してキャニスタ12のサブ吸着部45に流入可能となる。
このような第七実施形態では、第一実施形態の主作動及びキャニスタ開放作動において各弁18〜23の状態が図25の如く切り換わるように実施することで、第一実施形態と同様な作用、効果が奏され得る。
(第八実施形態)
図26に示すように、本発明の第八実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第八実施形態の燃料蒸気処理装置400では、二方弁からなる連通制御弁19及びキャニスタクローズ弁23の代わりに、電磁駆動式の三方弁からなる連通切換弁410がECU38に電気接続されている。
具体的に連通切換弁410は、通路開閉弁21(絞り50)とポンプ14との間において中継通路29の代わりに検出用通路28に連通する第一中継通路412と接続されている。また、連通切換弁410は、第三大気通路36の開放端とは反対側端に接続されている。またさらに連通切換弁410は、中継通路29の代わりにサブ吸着部45に連通する第二中継通路414と接続されている。このような接続形態の連通切換弁410は、第二中継通路414に連通する通路を第一中継通路412と第三大気通路36との間で切り換える。したがって、第三大気通路36が第二中継通路414に連通する第一状態では、それら通路36,414を通じてサブ吸着部45が大気開放されることとなる。また、第一中継通路412が第二中継通路414に連通する第二状態では、パージ制御弁18が開かれると、サブ吸着部45に作用する吸気通路3の負圧がさらに第二中継通路414、第一中継通路412及び検出用通路28にも作用する。したがって、検出用通路28に混合気が存在している状態でサブ吸着部45に負圧が作用すると、検出用通路28の混合気が第一及び第二中継通路412,414を通じてサブ吸着部45に流入する。
このような第八実施形態では、第一実施形態の主作動及びキャニスタ開放作動において各弁18,20〜22,410の状態が図27の如く切り換わるように実施することで、第一実施形態と同様な作用、効果が奏され得る。
以上、第八実施形態では、連通切換弁410が特許請求の範囲に記載の「連通制御手段」に相当する。
(第九実施形態)
図28に示すように、本発明の第九実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第九実施形態の燃料蒸気処理装置450では、三方弁からなる排出切換弁22の代わりに、電磁駆動式の二方弁からなる排出連通弁460,462がECU38に電気接続されている。
具体的に第一排出連通弁460は、第二大気通路34の開放端とは反対側端と、ポンプ14の排出側の第一排出通路32とに接続されている。かかる接続形態の第一排出連通弁460はその開閉作動によって、第二大気通路34と第一排出通路32との間の連通を制御する。したがって、第一排出連通弁460の開状態では、ポンプ14から排出された気体が第一排出通路32及び第二大気通路34を通じて大気中に放散される。
第二排出連通弁462は、第二排出通路35と、第一排出通路32の中途部から分岐する分岐通路464とに接続されている。かかる接続形態の第二排出連通弁462はその開閉作動によって、第二排出通路35と第一排出通路32の分岐通路464との間の連通を制御する。したがって、第二排出連通弁462の開状態では、ポンプ14からの排出気体が第一排出通路32及び第二排出通路35を通じてキャニスタ12の空間部48に流入可能となる。
このような第九実施形態では、第一実施形態の主作動及びキャニスタ開放作動において各弁18〜21,23,460,462の状態が図29の如く切り換わるように実施することで、第一実施形態と同様な作用、効果が奏され得る。
(第十実施形態)
図30に示すように、本発明の第十実施形態は第一実施形態の変形例であり、第一実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第十実施形態の燃料蒸気処理装置500においてECU38に電気接続される差圧センサ510は、導圧通路33に加え、通路切換弁20と絞り50との間において検出用通路28から分岐する導圧通路512にも連通している。これにより差圧センサ510は、検出用通路28の絞り50よりもポンプ14側から導圧通路33を通じて受ける圧力と、検出用通路28の絞り50よりも通路切換弁20側から導圧通路512を通じて受ける圧力との差圧を検出する。したがって、ポンプ14の作動時に差圧センサ510が検出する差圧は、通路開閉弁21の開状態において絞り50の両端間の差圧に実質的に等しくなる。また、通路開閉弁21の閉状態且つ通路切換弁20の第一状態では、ポンプ14の吸入側において検出用通路28が閉塞されると共に導圧通路512が大気圧となるので、ポンプ14の作動時に差圧センサ510が検出する差圧は、ポンプ14の締切圧に実質的に等しくなる。
このような第十実施形態によれば、濃度測定処理において差圧ΔPAir,ΔPGas及び締切圧Ptをより精確に検出することができるので、燃料蒸気濃度Dの算出精度が向上する。
以上、第十実施形態では、差圧センサ510が特許請求の範囲に記載の「差圧検出手段」に相当する。
(第十一実施形態)
図31に示すように、本発明の第十一実施形態は第十実施形態の変形例であり、第十実施形態と実質的に同一の構成部分には同一の符号を付すことで説明を省略する。
第十一実施形態の燃料蒸気処理装置550では、差圧センサ510の代わりに、ECU38に電気接続された絶対圧センサ560,562がそれぞれ導圧通路33,512に連通している。これにより絶対圧センサ560は、検出用通路28の絞り50よりもポンプ14側から導圧通路33を通じて受ける圧力を検出し、絶対圧センサ562は、検出用通路28の絞り50よりも通路切換弁20側から導圧通路512を通じて受ける圧力を検出する。したがって、ポンプ14の作動時に各絶対圧センサ560,562が検出する圧力の差分値は、通路開閉弁21の開状態において絞り50の両端間の差圧に実質的に等しくなる。また、通路開閉弁21の閉状態且つ通路切換弁20の第一状態では、ポンプ14に対して検出用通路28が閉塞されると共に導圧通路512が大気圧となるので、ポンプ14の作動時に各絶対圧センサ560,562が検出する圧力の差分値は、ポンプ14の締切圧に実質的に等しくなる。
このような第十一実施形態では、濃度測定処理のステップS201〜S203において差圧センサ16の検出差圧を監視する代わりに、絶対圧センサ560,562の検出圧力の差分値を監視することとなる。したがって、第十一実施形態によれば、濃度測定処理において差圧ΔPAir,ΔPGas及び締切圧Ptをより精確に検出することができるので、燃料蒸気濃度Dの算出精度が向上する。
以上、第十一実施形態では、絶対圧センサ560,562の組が特許請求の範囲に記載の「差圧検出手段」に相当する。
尚、上述においては本発明の複数の実施形態を説明してきたが、本発明はそれらの実施形態に限定して解釈されるものではない。
例えば第一〜第十一実施形態では、図32(同図は第一実施形態の変形例)の如く第一及び第二大気通路30,34の各開放端を一つに纏めることによって、フィルタ数を低減するようにしてもよい。あるいは第一〜第十一実施形態では、キャニスタ12の蒸気吸着能力が十分に高い場合に、図33(同図は第一実施形態の変形例)の如く第一〜第三大気通路30,34,36の各開放端を一つに纏めることによって、フィルタ数のさらなる低減を図るようにしてもよい。
また、第一〜第十一実施形態では、図34(同図は第一実施形態の変形例)の如くサブ吸着部45の吸着材47を複数に分割して、当該分割吸着材47a,47bの間に空間部47cを形成するようにしてもよい。この場合、中継通路29(第八実施形態では第二中継通路414)からサブ吸着部45への流入混合気に含まれる燃料蒸気がメイン吸着部44に達するまでに要する時間を増大させることができるので、第一パージ処理における実パージ濃度が燃料測定処理における算出値Dからずれることをより効果的に防止できる。
さらに第一〜第十一実施形態では、濃度測定処理のステップS201とステップS202との前後を入れ換えて実施するようにしてもよい。また、第一〜第十一実施形態では、濃度測定処理のステップS201〜S203においてポンプ14の回転数制御を実施しないようにしてもよい。
またさらに第一〜第十一実施形態では、第一パージ処理において、中継通路29の連通部分よりも通路切換弁20側で検出用通路28の掃気が完了した場合に、通路開閉弁21を閉状態にして中継通路29の連通部分よりもポンプ14側で検出用通路28の掃気を継続するようにしてもよい。また、第一〜第十一実施形態では、第二パージ処理において連通制御弁19を開状態に保持するようにしてもよい。これにより、中継通路29を通る流量分、第二パージ処理時の圧力損失を小さくすることができるので、より多くのパージ量を確保することが可能となる。
さらにまた第一〜第十一実施形態では、濃度測定処理のステップS203において、燃料蒸気を含む混合気がポンプ14に到達する前までに差圧ΔPGasの検出が終了する。そこで、図35(同図は第一実施形態の変形例)の如く、ステップS203においてポンプ14の排出気体をキャニスタ12へと戻すための排出切換弁22(第九実施形態では排出連通弁460,462)を設けずに、ポンプ14の排出口を第二大気通路34に直接連通させるようにしてもよい。
加えて第一〜第十一実施形態では、図36(同図は第一実施形態の変形例)の如くキャニスタ12を一つの吸着部600から構成し、吸着材602を挟んで導入通路26及びパージ通路27とは反対側に、第三大気通路36と繋がる中継通路29を連通させるようにしてもよい。尚、この場合には、例えば排出切換弁22(第九実施形態では排出連通弁460,462)を設けずに、ポンプ14の排出口に直接連通させた第二大気通路34を第三大気通路36の開放端に連通させるようにしてもよい。
さらに加えて第三〜第五実施形態では、検出用通路160,210,260において通路開閉弁21と中継通路29の連通部分との間となる箇所に通路面積の拡大部分162,212,262を設けるようにしてもよい。また、燃料タンク2内で発生する燃料蒸気の空気に対する比重が1よりも小さい場合に第四実施形態では、拡大部分212のポンプ14側に連通する部分213を、拡大部分212の通路開閉弁21(絞り50)側に連通する部分214よりも下方に配置することが望ましい。これにより、拡大部分212における混合気の流動速度が低下するからである。同様に、燃料蒸気の空気に対する比重が1よりも小さい場合に第五実施形態では、蛇行部264のポンプ側端部265を当該端部265に直近の蛇行点266よりも下方に配置することが望ましい。これにより、拡大部分262における混合気の流動速度が低下するからである。
またさらに加えて第六〜第十一実施形態では、第二〜第五実施形態の検出用通路110,160,210,260のうちいずれか一つを検出用通路28の代わりに設けてもよい。また、第七〜第十一実施形態では、第六実施形態に準じて、二方弁からなる通路連通弁310,312を三方弁からなる通路切換弁20の代わりに設けてもよい。
さらに加えて第九〜第十一実施形態では、第七実施形態に準じて、第三大気通路36に連通する第二排出通路360を、キャニスタ12の空間部48に連通する第二排出通路35の代わりに設けてもよいし、第八実施形態に準じて、三方弁からなる連通切換弁410を二方弁からなる連通制御弁19及びキャニスタクローズ弁23の代わりに設けてもよい。また、第十及び第十一実施形態では、第九実施形態に準じて、二方弁からなる排出連通弁460,462を三方弁からなる排出切換弁22の代わりに設けてもよい。
第一実施形態による燃料蒸気処理装置を示す構成図である。 第一実施形態による燃料蒸気処理装置の主作動を説明するためのフローチャートである。 第一実施形態による燃料蒸気処理装置の主作動及びキャニスタ開放作動を説明するための模式図である。 第一実施形態による燃料蒸気処理装置のキャニスタ開放作動を説明するための模式図である。 図2の濃度測定処理を説明するための特性図である。 図2の濃度測定処理を説明するためのフローチャートである。 図2の濃度測定処理を説明するための模式図である。 図2の濃度測定処理を説明するための特性図である。 図2の濃度測定処理を説明するための模式図である。 図2の濃度測定処理を説明するための模式図である。 図2のパージ処理を説明するためのフローチャートである。 図2のパージ処理を説明するための模式図である。 図2のパージ処理を説明するための模式図である。 第二実施形態による燃料蒸気処理装置を説明するための要部構成図である。 第二実施形態による燃料蒸気処理装置の濃度測定処理を説明するための特性図である。 第二実施形態による燃料蒸気処理装置の濃度測定処理を説明するための特性図である。 第三実施形態による燃料蒸気処理装置の要部を示す構成図である。 第四実施形態による燃料蒸気処理装置の要部を示す構成図である。 第五実施形態による燃料蒸気処理装置の要部を示す構成図である。 第六実施形態による燃料蒸気処理装置を示す構成図である。 第六実施形態による燃料蒸気処理装置の主作動及びキャニスタ開放作動を説明するための模式図である。 第六実施形態の変形例による燃料蒸気処理装置を示す構成図である。 第六実施形態の変形例による燃料蒸気処理装置の主作動及びキャニスタ開放作動を説明するための模式図である。 第七実施形態による燃料蒸気処理装置を示す構成図である。 第七実施形態による燃料蒸気処理装置の主作動及びキャニスタ開放作動を説明するための模式図である。 第八実施形態による燃料蒸気処理装置を示す構成図である。 第八実施形態による燃料蒸気処理装置の主作動及びキャニスタ開放作動を説明するための模式図である。 第九実施形態による燃料蒸気処理装置を示す構成図である。 第九実施形態による燃料蒸気処理装置の主作動及びキャニスタ開放作動を説明するための模式図である。 第十実施形態による燃料蒸気処理装置を示す構成図である。 第十一実施形態による燃料蒸気処理装置を示す構成図である。 第一実施形態の変形例による燃料蒸気処理装置を示す構成図である。 第一実施形態の変形例による燃料蒸気処理装置を示す構成図である。 第一実施形態の変形例による燃料蒸気処理装置を示す構成図である。 第一実施形態の変形例による燃料蒸気処理装置を示す構成図である。 第一実施形態の変形例による燃料蒸気処理装置を示す構成図である。
符号の説明
1 エンジン(内燃機関)、2 燃料タンク、3 吸気通路、10,100,150,200,250,300,350,400,450,500,550 燃料蒸気処理装置、12 キャニスタ、14 ポンプ、16,510 差圧センサ(差圧検出手段)、18 パージ制御弁(パージ制御手段)、19 連通制御弁(連通制御手段)、20 通路切換弁(通路切換手段)、21 通路開閉弁(通路開閉手段)、22 排出切換弁、23 キャニスタクローズ弁、26 導入通路、27 パージ通路、28,110,160,210,260 検出用通路、29 中継通路、29a 検出用通路側部分(第一中継通路)、29b サブ吸着部側部分(第二中継通路)、30 第一大気通路(大気通路)、31 分岐通路、32 第一排出通路、33,512 導圧通路、34 第二大気通路、35,360 第二排出通路、36 第三大気通路、38 ECU(濃度算出手段、ポンプ制御手段)、44 メイン吸着部(第二吸着部)、45 サブ吸着部(第一吸着部)、48 空間部、50 絞り、162、262 拡大部分(容積部)、212 拡大部分(容積部、第三連通部)、213 部分(第二連通部)、214 部分(第一連通部)、264 蛇行部、265 ポンプ側端部、266 蛇行点、310 第一通路連通弁(通路切換手段)、312 第二通路連通弁(通路切換手段)、314 分岐通路、410 連通切換弁(連通制御手段)、412 第一中継通路、414 第二中継通路、460 第一排出連通弁、462 第二排出連通弁、464 分岐通路、560,562 絶対圧センサ(差圧検出手段)、600 吸着部

Claims (18)

  1. 燃料タンク内で発生した燃料蒸気を脱離可能に吸着するキャニスタと、
    前記キャニスタから脱離した燃料蒸気を含む混合気を内燃機関の吸気通路に導いて当該燃料蒸気をパージするパージ通路と、
    大気に開放される大気通路と、
    中途部に絞りを有する検出用通路と、
    前記検出用通路に連通する通路を前記パージ通路と前記大気通路との間で切り換える通路切換手段と、
    前記絞りを挟んで前記通路切換手段とは反対側において前記検出用通路に連通するポンプと、
    前記絞りの両端間の差圧を検出する差圧検出手段と、
    前記差圧検出手段の検出結果に基づいて前記混合気中の燃料蒸気濃度を算出する濃度算出手段と、
    を備え、
    前記通路切換手段が前記パージ通路を前記検出用通路に連通させ且つ前記ポンプが前記検出用通路を減圧することにより前記混合気が前記絞りを通過した後、当該混合気が前記ポンプに達する前までの検出期間において、前記差圧検出手段が前記差圧を検出することを特徴とする燃料蒸気処理装置。
  2. 前記検出期間後、前記混合気が前記ポンプに達する前までに、前記ポンプが前記検出用通路の減圧を停止することを特徴とする請求項1に記載の燃料蒸気処理装置。
  3. 前記絞りと前記ポンプとの間において前記検出用通路に連通する第一中継通路と、
    前記キャニスタに連通する第二中継通路と、
    前記第一中継通路と前記第二中継通路との連通を制御する連通制御手段とをさらに備え、
    前記検出期間において、前記連通制御手段が前記第一中継通路と前記第二中継通路との連通を遮断し、
    前記検出期間後において、前記連通制御手段が前記第一中継通路と前記第二中継通路とを連通させることを特徴とする請求項1又は2に記載の燃料蒸気処理装置。
  4. 前記キャニスタは、前記第二中継通路に連通し当該第二中継通路から流入する前記混合気中の燃料蒸気を吸着する第一吸着部と、前記パージ通路に連通し前記第一吸着部から脱離した燃料蒸気及び前記燃料タンク内で発生した燃料蒸気を吸着する第二吸着部とを有し、それら第一吸着部と第二吸着部とは空間部を介して連通することを特徴とする請求項3に記載の燃料蒸気処理装置。
  5. 前記パージ通路と前記吸気通路との連通を制御して燃料蒸気のパージを制御するパージ制御手段をさらに備え、
    前記検出期間後のパージ期間において、前記連通制御手段が前記第一中継通路と前記第二中継通路とを連通させ且つ前記パージ制御手段が前記パージ通路と前記吸気通路とを連通させることを特徴とする請求項3又は4に記載の燃料蒸気処理装置。
  6. 前記パージ期間後において、前記連通制御手段が前記第一中継通路と前記第二中継通路との連通を遮断することを特徴とする請求項5に記載の燃料蒸気処理装置。
  7. 前記パージ通路と前記吸気通路との連通を制御して燃料蒸気のパージを制御するパージ制御手段をさらに備え、
    前記検出期間において、前記パージ制御手段が前記パージ通路と前記吸気通路との連通を遮断することを特徴とする請求項1〜6のいずれか一項に記載の燃料蒸気処理装置。
  8. 前記検出用通路は、前記絞りと前記ポンプとの間において通路容積を拡大する容積部を有することを特徴とする請求項1〜7のいずれか一項に記載の燃料蒸気処理装置。
  9. 前記燃料タンク内から、空気に対する比重が1よりも大きい燃料蒸気が発生し、
    前記検出用通路は、前記絞りに連通する第一連通部と、前記ポンプに連通し前記第一通路部よりも上方に設置される第二連通部と、前記第一連通部と前記第二連通部との間を連通する第三連通部とを有することを特徴とする請求項1〜8のいずれか一項に記載の燃料蒸気処理装置。
  10. 前記燃料タンク内から、空気に対する比重が1よりも小さい燃料蒸気が発生し、
    前記検出用通路は、前記絞りに連通する第一連通部と、前記ポンプに連通し前記第一通路部よりも下方に設置される第二連通部と、前記第一連通部と前記第二連通部との間を連通する第三連通部とを有することを特徴とする請求項1〜8のいずれか一項に記載の燃料蒸気処理装置。
  11. 前記検出用通路は、前記絞りと前記ポンプとの間を蛇行して延びる蛇行部を有することを特徴とする請求項1〜8のいずれか一項に記載の燃料蒸気処理装置。
  12. 前記燃料タンク内から、空気に対する比重が1よりも大きい燃料蒸気が発生し、
    前記蛇行部の前記ポンプ側の端部は、当該端部に直近の蛇行点よりも上方に設置されることを特徴とする請求項11に記載の燃料蒸気処理装置。
  13. 前記燃料タンク内から、空気に対する比重が1よりも小さい燃料蒸気が発生し、
    前記蛇行部の前記ポンプ側の端部は、当該端部に直近の蛇行点よりも下方に設置されることを特徴とする請求項11に記載の燃料蒸気処理装置。
  14. 前記検出期間において前記ポンプの回転数を一定に制御するポンプ制御手段をさらに備えることを特徴とする請求項1〜13のいずれか一項に記載の燃料蒸気処理装置。
  15. 前記パージ通路及び前記大気通路よりも前記ポンプ側において前記検出用通路を開閉する通路開閉手段をさらに備え、
    前記通路開閉手段が前記検出用通路を開放し且つ前記通路切換手段が前記大気通路を前記検出用通路に連通させ且つ前記ポンプが前記検出用通路を減圧した状態で、前記差圧検出手段が前記差圧を第一差圧として検出する第一差圧検出期間と、
    前記通路開閉手段が前記検出用通路を開放し且つ前記通路切換手段が前記パージ通路を前記検出用通路に連通させ且つ前記ポンプが前記検出用通路を減圧した状態で、前記差圧検出手段が前記差圧を第二差圧として検出する前記検出期間としての第二差圧検出期間と、
    前記通路開閉手段が前記検出用通路を閉塞し且つ前記ポンプが前記検出用通路を減圧した状態で、前記差圧検出手段が前記ポンプの締切圧を検出する締切圧検出期間と、
    が設定されており、
    前記濃度算出手段は、前記第一差圧、前記第二差圧及び前記締切圧から前記混合気中の燃料蒸気濃度を算出することを特徴とする請求項1〜14のいずれか一項に記載の燃料蒸気処理装置。
  16. 前記締切圧検出期間は、前記第一差圧検出期間後に連続して設定されることを特徴とする請求項15に記載の燃料蒸気処理装置。
  17. 前記第二差圧検出期間は、前記第一差圧検出期間及び前記締切圧検出期間よりも後に設定されることを特徴とする請求項15又は16に記載の燃料蒸気処理装置。
  18. 前記通路開閉手段は、前記絞りと前記ポンプとの間において前記検出用通路を開閉することを特徴とする請求項15〜17のいずれか一項に記載の燃料蒸気処理装置。
JP2004354507A 2004-12-07 2004-12-07 燃料蒸気処理装置 Expired - Fee Related JP4471370B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004354507A JP4471370B2 (ja) 2004-12-07 2004-12-07 燃料蒸気処理装置
US11/295,729 US7246608B2 (en) 2004-12-07 2005-12-07 Fuel vapor processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354507A JP4471370B2 (ja) 2004-12-07 2004-12-07 燃料蒸気処理装置

Publications (2)

Publication Number Publication Date
JP2006161690A JP2006161690A (ja) 2006-06-22
JP4471370B2 true JP4471370B2 (ja) 2010-06-02

Family

ID=36638941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354507A Expired - Fee Related JP4471370B2 (ja) 2004-12-07 2004-12-07 燃料蒸気処理装置

Country Status (2)

Country Link
US (1) US7246608B2 (ja)
JP (1) JP4471370B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562191B2 (ja) * 2005-04-08 2010-10-13 株式会社デンソー 燃料蒸気処理装置
JP4550672B2 (ja) * 2005-06-15 2010-09-22 株式会社デンソー 蒸発燃料処理装置
JP4678729B2 (ja) * 2005-09-16 2011-04-27 株式会社デンソー 蒸発燃料処理装置
JP2007132339A (ja) * 2005-10-13 2007-05-31 Hitachi Ltd 内燃機関の燃料供給装置
JP4598193B2 (ja) * 2005-10-21 2010-12-15 株式会社デンソー 蒸発燃料処理装置
US7464698B2 (en) * 2006-04-26 2008-12-16 Denso Corporation Air-fuel ratio control apparatus of internal combustion engine
US8020534B2 (en) 2010-03-16 2011-09-20 Ford Global Technologies, Llc Carbon canister
US8630786B2 (en) * 2010-06-25 2014-01-14 GM Global Technology Operations LLC Low purge flow vehicle diagnostic tool
DE102010048313A1 (de) * 2010-10-14 2012-04-19 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Tankentlüftungssystems
JP6225805B2 (ja) * 2014-04-07 2017-11-08 株式会社デンソー 蒸発燃料処理装置
JP6339001B2 (ja) * 2014-11-07 2018-06-06 愛三工業株式会社 蒸発燃料処理装置
US10202914B2 (en) * 2015-09-01 2019-02-12 Ford Global Technologies, Llc Method to determine canister load
JP6668145B2 (ja) * 2016-03-30 2020-03-18 愛三工業株式会社 蒸発燃料処理装置
JP6625471B2 (ja) * 2016-03-30 2019-12-25 愛三工業株式会社 蒸発燃料処理装置
JP6591336B2 (ja) * 2016-03-30 2019-10-16 愛三工業株式会社 蒸発燃料処理装置
JP6619280B2 (ja) * 2016-03-30 2019-12-11 愛三工業株式会社 蒸発燃料処理装置
JP6599284B2 (ja) * 2016-05-30 2019-10-30 愛三工業株式会社 蒸発燃料処理装置
JP6797724B2 (ja) * 2017-03-09 2020-12-09 愛三工業株式会社 蒸発燃料処理装置、パージガスの濃度検出方法及び蒸発燃料処理装置の制御装置
JP2019152169A (ja) * 2018-03-05 2019-09-12 愛三工業株式会社 蒸発燃料処理装置及びそれを備えたエンジンの燃料噴射制御装置
DE102018112731A1 (de) * 2018-05-28 2019-11-28 Volkswagen Aktiengesellschaft Verfahren zur Ansteuerung eines Regelventils
US20200149484A1 (en) * 2018-11-09 2020-05-14 GM Global Technology Operations LLC Vehicle stop prediction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518326A (ja) 1991-07-05 1993-01-26 Honda Motor Co Ltd 内燃エンジンの蒸発燃料制御装置
JPH06101534A (ja) 1992-09-21 1994-04-12 Nissan Motor Co Ltd エンジンの蒸発燃料処理装置
US6695895B2 (en) * 2001-05-02 2004-02-24 Toyota Jidosha Kabushiki Kaisha Fuel vapor handling apparatus and diagnostic apparatus thereof
US6786207B2 (en) * 2002-04-17 2004-09-07 Toyota Jidosha Kabushiki Kaisha Evaporative fuel emission control system
JP2004162685A (ja) * 2002-09-18 2004-06-10 Nippon Soken Inc 蒸発燃料漏れ検査装置
JP4322799B2 (ja) * 2004-03-25 2009-09-02 株式会社日本自動車部品総合研究所 内燃機関の蒸発燃料処理装置

Also Published As

Publication number Publication date
US20060144373A1 (en) 2006-07-06
US7246608B2 (en) 2007-07-24
JP2006161690A (ja) 2006-06-22

Similar Documents

Publication Publication Date Title
JP4471370B2 (ja) 燃料蒸気処理装置
JP4562191B2 (ja) 燃料蒸気処理装置
JP4361889B2 (ja) リーク検査装置及び燃料蒸気処理装置
JP4614355B2 (ja) 蒸発燃料処理装置
JP4570149B2 (ja) 気体密度比検出装置、濃度検出装置及び燃料蒸気処理装置
JP4379496B2 (ja) 蒸発燃料処理装置
JP4322799B2 (ja) 内燃機関の蒸発燃料処理装置
US7409947B2 (en) Fuel vapor treatment apparatus
JP4607770B2 (ja) 蒸発燃料処理装置
JP4506821B2 (ja) 燃料蒸気処理装置
US10570857B2 (en) Fuel evaporative emission control device
US9863375B2 (en) Device and method for diagnosing evaporated fuel processing device
US8099999B2 (en) Purge gas concentration estimation apparatus
JP2007231813A (ja) 燃料性状判定装置、漏れ検査装置、および燃料噴射量制御装置
JP2009062967A (ja) ハイブリッド自動車用制御装置
US7331335B2 (en) Fuel vapor treatment system for internal combustion engine
JP4579166B2 (ja) 蒸発燃料処理装置
US7316228B2 (en) Evaporated fuel treatment system for internal combustion engine
JP5935746B2 (ja) 燃料タンクの異常検知装置
JP2007292000A (ja) 内燃機関の蒸発燃料処理装置
JP2007332918A (ja) 内燃機関の燃料蒸気処理装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees