JP2007292000A - 内燃機関の蒸発燃料処理装置 - Google Patents

内燃機関の蒸発燃料処理装置 Download PDF

Info

Publication number
JP2007292000A
JP2007292000A JP2006122582A JP2006122582A JP2007292000A JP 2007292000 A JP2007292000 A JP 2007292000A JP 2006122582 A JP2006122582 A JP 2006122582A JP 2006122582 A JP2006122582 A JP 2006122582A JP 2007292000 A JP2007292000 A JP 2007292000A
Authority
JP
Japan
Prior art keywords
fuel
pressure
canister
air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006122582A
Other languages
English (en)
Inventor
Yoshinori Maekawa
佳範 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006122582A priority Critical patent/JP2007292000A/ja
Priority to US11/729,923 priority patent/US7464698B2/en
Publication of JP2007292000A publication Critical patent/JP2007292000A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】キャニスタから吸気管に導く混合気の流量制御精度を低下させることなく、その流量制御に必要な情報を迅速に計測することができる内燃機関の蒸発燃料処理装置を提供する。
【解決手段】燃料タンク内の蒸発燃料をキャニスタ内の吸着材に一時的に吸着させ、内燃機関の運転時に、吸着材に吸着した蒸発燃料を内燃機関の吸気管に放出する蒸発燃料処理装置において、ポンプを駆動させて、所定の絞りに空気を流通させて、その絞りの前後での差圧ΔP0を検出する(S202)。次いで、3位置弁を切り替えて、燃料タンク、キャニスタ、およびその絞りが連通し、キャニスタから放出される混合気がその絞りを流通する状態とする(S203)。その後の経過時間TDが遅延時間CDとなったら、絞りの前後での差圧ΔP1を検出する(S208)。次いで、差圧比P、さらに、流量制御に用いる蒸発燃料濃度Cをその差圧比Pから算出する(S209、210)。
【選択図】図3

Description

本発明は、内燃機関の蒸発燃料処理装置に関する。
蒸発燃料処理装置は、燃料タンクで発生した蒸発燃料の大気への放散を防止するためのもので、燃料タンク内の蒸発燃料を、吸着材を収納したキャニスタ内に導入して、一時的に吸着材に吸着させる。吸着材に吸着された蒸気燃料は、内燃機関の運転時に、吸気管に発生する負圧により吸着材から離脱し、パージ通路を介して内燃機関の吸気管に放出(パージ)される。このようにして、吸着材から蒸気燃料が離脱すると、吸着材の吸着能力が回復する。
蒸発燃料をパージする際には、パージ通路に設けられたパージ制御弁により、蒸発燃料を含む混合気の流量が調節される。ただし、実際に吸気管にパージされる蒸発燃料量を、適正な空燃比となるようにパージ制御弁で調節するためには、パージ通路を流れる混合気中の蒸発燃料の濃度を高精度に計測することが重要となる。
このため、従来は、例えば特許文献1に示されるように、パージ通路及びパージ通路から分岐する大気通路に質量流量計を設置し、2つの質量流量計の出力値に基づいて、パージ通路から内燃機関の吸気管に供給される混合気中の蒸発燃料の濃度を検出するようにしている。
しかしながら、特許文献1に記載の装置では、流量計がパージ通路に設置されているので、蒸発燃料を含む混合気のパージが実施されて、パージ通路内を混合気が流れないと蒸発燃料の濃度が検出できない。このため、検出した蒸発燃料濃度を空燃比制御に反映するためには、パージした蒸発燃料がインジェクタ位置に到達するに先立って蒸発燃料濃度の検出を完了し、これを用いてインジェクタから噴射される燃料の噴射量の指令値を補正する必要がある。
しかしながら、吸気管容積の小さなエンジンの場合や、吸入空気の流速の速い運転領域では、パージした蒸発燃料がインジェクタ位置に到達するまでの所要時間が、蒸発燃料の濃度の測定を完了するのに要する時間よりも短い場合が生じ、パージの開始初期から、測定した蒸発燃料濃度を空燃比制御に反映することができない場合がある。このため、配管のレイアウトなどのエンジン構造や、パージを開始する運転領域が制限されることになる。
特開平5−18326号公報
上記問題を解決する手段として、絞りに空気および蒸発燃料を含む混合気を流通させ、絞りによる空気の圧力変化量と、絞りによる混合気の圧力変化量とを検出し、その2つの圧力変化量に基づいてキャニスタから内燃機関の吸気管に導く混合気の流量を制御することが考えられる。
絞りによる圧力変化量は、ベルヌーイの法則として知られているように、その絞りを流通する流体の密度によって変化する。そのため、絞りに基準となる蒸発燃料0%の気体(すなわち空気)を流通させたときの圧力変化量と、絞りに蒸発燃料を含む混合気を流通させたときの圧力変化量を比較すれば、両気体の密度差を検出することができる。そして、密度差は混合気の蒸発燃料濃度に対応する。従って、2つの圧力変化量に基づいて、混合気の蒸発燃料濃度を知ることができるのである。なお、本出願人は、この考えに基づいた内燃機関の蒸発燃料処理装置に係る発明をすでに出願した(特願2004−377452号)。
ここで、パージ実施中は、蒸発燃料を含む混合気を、キャニスタからパージ管を介して吸気管に導く必要があるので、絞りにその混合気を導くことができるようにするためには、切替手段を設けて混合気の流路を切り替え可能としておく必要がある。
また、混合気が絞りを流通する側へ流路を切り替えた直後は、流路の切替によって流路内圧が不安定となる。流路内圧が不安定の状態で絞りによる圧力変化量を計測すると、それに基づいて制御される混合気の流量制御精度が低下してしまうので、内燃機関に導入する気体の理論空燃比からのずれが大きくなってしまう可能性がある。
従って、絞りによる混合気の圧力変化量の計測は、流路の切替に基づく圧力変動が収束した後に行うことが好ましい。流路を切り替えた後、十分に時間が経過した後であれば、流路の切替に基づく圧力変動は収束していると考えることができる。そこで、そのような十分な時間が経過した後に、絞りによる混合気の圧力変化量を計測することが考えられる。しかし、この場合には、絞りによる混合気の圧力変化量を得るまでに長時間を要してしまう。絞りによる混合気の圧力変化量を得るまでの時間が長くなってしまうと、パージ実施時間がその分だけ短くなってしまい、キャニスタに吸着された蒸発燃料を十分に処理できない可能性も生じてしまう。
本発明は、この事情に基づいて成されたものであり、その目的とするところは、キャニスタから吸気管に導く混合気の流量制御精度を低下させることなく、その流量制御に必要な情報を迅速に計測することができる内燃機関の蒸発燃料処理装置を提供することにある。
本発明者は、前記目的を達成するために検討を重ねた結果、燃料タンク内の空間容積が小さいほど、混合気の流路を切り替えた後、流路内圧が安定するまでの時間が短いとの知見を見出した。燃料タンク内の空間容積が小さくなるほど、タンク内が平衡状態となるのに要する時間が短くなるからである。さらに、燃料タンク内の燃料温度が高いほど、混合気の流路を切り替えた後、流路内圧が安定するまでの時間が短いとの知見も見出した。燃料温度が高いほど、単位時間当たりの蒸発量が多くなるので、短時間で平衡状態まで到達するからである。以下の発明は、かかる知見に基づいてなされたものである。
前記目的を達成するための請求項1記載の発明は、燃料タンク内の蒸発燃料を蒸発燃料通路を介してキャニスタに導入して、キャニスタ内の吸着材に一時的に吸着させ、内燃機関の運転時に、前記吸着材に吸着した蒸発燃料を、前記キャニスタからパージ管を介して前記内燃機関の吸気管に放出する内燃機関の蒸発燃料処理装置であって、
途中に絞りを有する計測通路と、その計測通路の絞りを通過するガス流を発生させるポンプと、その計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通する状態と、その計測通路が前記パージ管と連通しない状態とに切り替える切替手段と、その切替手段が切り替えられて、前記計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通させられた状態で、前記ポンプによってガス流を発生させることによって、前記キャニスタから放出される蒸発燃料を含む混合気が前記絞りを流通する第1の計測状態において、その絞りによる混合気の圧力変化量を検出する第1圧力検出手段と、その第1圧力検出手段によって検出された圧力変化量と、所定の絞りを流通することによる空気の圧力変化量とに基づいて、前記キャニスタから前記吸気管に導く混合気の流量を制御する流量制御手段とを有し、
さらに、前記燃料タンク内の空間容積に対応する空間容積情報を決定する空間容積情報決定手段と、前記空間容積情報に基づいて前記タンク内の圧力の安定化時間が定まる関係であって、空間容積情報が燃料タンク内の空間容積が大きいことを示す値であるほど前記安定化時間が長い時間に定まる時間決定関係を記憶した記憶装置と、前記第1圧力検出手段による混合気の圧力変化量の計測時に前記空間容積情報決定手段によって実際に決定された空間容積情報と、前記記憶装置に記憶されている時間決定関係とに基づいて、安定化時間を決定する安定化時間決定手段とを備え、
前記第1圧力検出手段は、前記第1の計測状態となってからの経過時間が、前記安定化時間決定手段によって決定された安定化時間を越えたことに基づいて、前記圧力変化量を検出することを特徴とする。
この請求項1記載の発明によれば、第1の計測状態としてから圧力変化量を検出するまでの時間が、燃料タンク内の空間容積に対応する空間容積情報の圧力変化量計測時の値に基づいて変化するようになっているので、常に、第1の計測状態としてから十分な時間が経過した後に圧力変化量を検出する場合に比較して、その圧力変化量を迅速に検出することができる。また、燃料タンク内の空間容積が大きくなるほどそのタンク内圧の安定に時間がかかることに対応して、空間容積情報が燃料タンク内の空間容積が大きいことを示す値であるほど、圧力変化量を検出するまでの時間が長くなるようになっているので、圧力変化量の検出精度およびその圧力変化量に基づいて制御する流量制御の精度を低下させることもない。
また、前記目的を達成するための請求項2記載の発明は、燃料タンク内の蒸発燃料を蒸発燃料通路を介してキャニスタに導入して、キャニスタ内の吸着材に一時的に吸着させ、内燃機関の運転時に、前記吸着材に吸着した蒸発燃料を、前記キャニスタからパージ管を介して前記内燃機関の吸気管に放出する内燃機関の蒸発燃料処理装置であって、
途中に絞りを有する計測通路と、その計測通路の絞りを通過するガス流を発生させるポンプと、その計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通する状態と、その計測通路が前記パージ管と連通しない状態とに切り替える切替手段と、その切替手段が切り替えられて、前記計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通させられた状態で、前記ポンプによってガス流を発生させることによって、前記キャニスタから放出される蒸発燃料を含む混合気が前記絞りを流通する第1の計測状態において、その絞りによる混合気の圧力変化量を検出する第1圧力検出手段と、その第1圧力検出手段によって検出された圧力変化量と、所定の絞りを流通することによる空気の圧力変化量とに基づいて、前記キャニスタから前記吸気管に導く混合気の流量を制御する流量制御手段とを有し、
さらに、前記燃料タンク内の燃料温度を決定する燃料温度決定手段と、燃料温度に基づいて前記燃料タンク内の圧力の安定化時間が定まる関係であって、前記燃料温度が低いほど前記安定化時間が長い時間に定まる時間決定関係を記憶した記憶装置と、前記第1圧力検出手段による混合気の圧力変化量の計測時に前記燃料温度決定手段によって実際に決定された燃料温度と、前記記憶装置に記憶されている時間決定関係とに基づいて、安定化時間を決定する安定化時間決定手段とを備え、
前記第1圧力検出手段は、前記第1の計測状態となってからの経過時間が、前記安定化時間決定手段によって決定された安定化時間を越えたことに基づいて、前記圧力変化量を検出することを特徴とする。
この請求項2記載の発明によれば、第1の計測状態としてから圧力変化量を検出するまでの時間が、その圧力変化量計測時の燃料温度に基づいて変化するようになっているので、常に、第1の計測状態としてから十分な時間が経過した後に圧力変化量を検出する場合に比較して、その圧力変化量を迅速に検出することができる。また、燃料温度が低くなるほどタンク内圧の安定に時間がかかることに対応して、燃料温度が低くなるほど、圧力変化量を検出するまでの時間が長くなるようになっているので、圧力変化量の検出精度およびその圧力変化量に基づいて制御する流量制御の精度を低下させることもない。
また、請求項3記載の発明は、請求項1に記載の内燃機関の蒸発燃料処理装置において、前記燃料タンク内の燃料温度を決定する燃料温度決定手段をさらに備え、前記記憶装置に記憶されている時間決定関係が、前記空間容積情報と前記燃料タンク内の燃料温度とに基づいて前記安定化時間が定まる関係であり、前記安定化時間決定手段は、前記第1圧力検出手段による混合気の圧力変化量の計測時に、前記空間容積決定手段および前記燃料温度決定手段によって実際に決定された空間容積情報および燃料温度と、前記記憶装置に記憶されている時間決定関係とに基づいて、前記安定化時間を決定するものであることを特徴とする。
この請求項3記載の発明は、請求項1記載の発明に請求項2記載の発明を加えたものであり、この請求項3記載の発明のように、混合気の圧力変化量の計測時に実際に決定される空間容積情報および燃料温度に基づいて安定化時間を決定するようにすれば、より精度よく混合気の圧力変化量を検出できる。
以下、本発明の好ましい実施形態について説明する。図1は、本発明の実施形態による蒸発燃料処理装置の構成を示す構成図である。本実施形態による蒸発燃料処理装置は、例えば自動車のエンジンに適用され、内燃機関であるエンジン1の燃料タンク11は、蒸気導入通路であるエバポライン12を介してキャニスタ13と常時連通されている。
キャニスタ13内には吸着材14が充填されており、燃料タンク11内で発生した蒸発燃料を吸着材14で一時的に吸着する。キャニスタ13は、パージ管であるパージライン15を介してエンジン1の吸気管2と接続されている。パージライン15には、パージ制御弁であるパージバルブ16が設けられ、その開き時にはキャニスタ13と吸気管2とが連通するようになっている。
キャニスタ13の内部には、仕切板14aおよび14bが設けられている。仕切板14aは、エバポライン12の接続位置とパージライン15の接続位置との間に設けられており、エバポライン12から導入された蒸発燃料が、吸着材14に吸着されることなくパージライン15から放出されることを防止している。
キャニスタ13には後述するように大気ライン17も接続されており、他方の仕切板14bは、その大気ライン17の接続位置とパージライン15の接続位置との間において、吸着材14の充填深さとほぼ同じ深さで設けられている。これにより、エバポライン12から導入された燃料蒸気が大気ライン17から放出されることを防止するようにしている。
パージバルブ16は電磁弁であり、エンジン1の各部を制御する電子制御ユニット(ECU)30によって開度が調整される。パージライン15を流れる蒸発燃料を含む混合気の流量は、パージバルブ16の開度によって制御され、その流量が制御された混合気が、スロットルバルブ3によって発生される吸気管2内の負圧により吸気管2内にパージされ、インジェクタ4からの噴射燃料とともに燃焼される(以下、適宜、パージされる蒸発燃料を含む混合気をパージガスという)。
キャニスタ13には、先端がフィルタを介して大気に開放する大気ライン17が接続されている。この大気ライン17には、キャニスタ13を大気ライン17とポンプ26の吸入側のいずれかに連通させる切替弁18が設けられている。なお、切替弁18は、ECU30による非駆動時には、キャニスタ13を大気ライン17に連通させる第1位置にあり、駆動時に、キャニスタ13をポンプ26の吸入側に連通させる第2位置に切り替えられる。
パージライン15から分岐する分岐ライン19は、3位置弁21の一方の入力ポートに接続されている。また、3位置弁21の他方の入力ポートには、フィルタを介して大気に開放されるポンプ26の吐出ライン27から分岐する空気供給ライン20が接続されている。3位置弁21の出力ポートには、計測通路である計測ライン22が接続されている。
3位置弁21は切替手段であり、上述したECU30によって、空気供給ライン20を計測ライン22に接続する第1位置、計測ライン22に対して空気供給ライン20および分岐ライン19のいずれとの連通も遮断する第2位置、および分岐ライン19を計測ライン22に接続する第3位置のいずれかに切り替えられる。なお、非駆動時、3位置弁21は第1位置となるように構成されている。
計測ライン22には、オリフィスによって構成された絞り23およびポンプ26が設けられている。ガス流発生手段であるポンプ26は電動ポンプであり、駆動時に絞り23側を吸入側として計測ライン22にガスを流動させるもので、その駆動のオンオフおよび回転数がECU30により制御される。ECU30は、ポンプ26を駆動する際、その回転数が予め設定した所定値で一定となるように制御する。
従って、3位置弁21を第3の位置とした状態でポンプ26を駆動すると、大気ライン17、キャニスタ13、分岐ライン19までのパージライン15の一部、および分岐ライン19を介して供給される蒸発燃料を含む混合気が計測ライン22を流動する「第1の計測状態」となる。また、切替弁18は第1位置のまま、3位置弁21を第1位置とした状態で、ECU30がポンプ26を駆動すると、計測ライン22を空気が流動する「第2の計測状態」となる。
また、計測ライン22には、絞り23の下流側、すなわち、絞り23とポンプ26との間に、圧力計測手段である圧力センサ24の一方の端が接続されている。この圧力センサ24の他方の端は大気に開放しており、圧力センサ24によって、大気圧と計測ライン22の絞り23よりも下流側の圧力との差圧ΔPが検出される。この圧力センサ24によって計測された差圧ΔPは、ECU30に出力される。また、ECU30には、燃料タンク11内に設けられている燃料残量レベルセンサ40および燃料温度決定手段である燃料温度センサ41の出力値も供給される。
ECU30は、図示しない内部に、CPU、ROM、RAM等を備えたコンピュータであり、ROMには、CPUが実行するプログラムが記憶されている。また、このROMには後述する時間決定関係も記憶されており、このROMを備えているECU30は時間決定関係を記憶する記憶装置でもある。
ECU30は、ROMに記憶されたプログラムを実行することによって、ECU30に入力される種々の信号を処理して、種々の制御を実行する。例えば、吸気管2に設けられて吸入空気量を調整するスロットルバルブ3の開度、インジェクタ4からの燃料噴射量、パージバルブ16の開度等を、種々のセンサによって検出された検出値に基づいて制御する。例えば、吸気管2に設けたエアフローセンサ(図示せず)により検出される吸入空気量および吸気圧センサ(図示せず)により検出される吸気圧、排気管5に設けた空燃比センサ6により検出される空燃比の他、イグニッション信号、エンジン回転数、エンジン冷却水温、アクセル開度等に基づいて、スロットル開度、燃料噴射量、パージバルブ16の開度等を制御する。
図2にECU30で実行される蒸発燃料のパージのフローチャートを示す。本フローチャートはエンジン1が運転を開始すると実行される。ステップS101では濃度検出条件が成立しているか否かを判定する。濃度検出条件は、エンジン水温、油温、エンジン回転数などの運転状態を表す状態量が所定の領域にあるときに成立し、後述する蒸発燃料のパージの実施を許容する否かのパージ実施条件が成立するよりも先に成立するように設定してある。
そのパージ実施条件は、例えばエンジン冷却水温が所定値Temp1以上となってエンジン暖機完了と判断されることである。濃度検出条件はエンジン暖機中に成立するが、例えば冷却水温が前記所定値Temp1よりも低めに設定した所定値Temp2以上であることを条件とする。また、エンジン運転中で蒸発燃料のパージが停止されている期間(主に減速中)も濃度検出条件成立とする。なお、本蒸発燃料処理装置をハイブリッド車に適用する場合は、エンジンを停止してモータにより走行しているときも濃度検出条件成立となる。
ステップS101が肯定判断されると、ステップS102に進み、後述する濃度検出ルーチンを実行する。否定判断されるとステップS106に進む。ステップS106ではイグニッションキーがオフしたか否かを判定し、否定判断されると、ステップS101に戻る。イグニッションキーがオフされていれば本フローを終了する。
図3に濃度検出ルーチンの内容を示し、図4に、濃度検出ルーチンの実行中における装置各部の状態の推移を示す。
濃度検出ルーチンの実行において、初期状態は、パージバルブ16が「閉」、3位置弁21が「第1位置」、切替弁18が「閉」、ポンプ26が「停止」である(図4の「A」)。
この状態から、ステップS201において、ポンプ26を駆動する。これによって、図4の「B」の状態となる。このときの気体の流通状態を図5に矢印で示す。図5に示す状態は、第2の計測状態であり、空気供給ライン20から取り込まれた空気が、3位置弁21を通って計測ライン22の絞り23を流通して、吐出ライン27から大気へと抜ける。
空気が絞り23を流通する際には、その絞り23によって圧力損失が生じるので、第2の計測状態に切り替えると、過渡的な圧力変化期間を経て、絞り23による圧力損失分だけ、差圧ΔP0が低下する。
ステップS202では、第2の計測状態に切り替えた後、すなわち、ステップS201の実行後、所定の経過時間T1が経過した後に、差圧ΔPを検出する(この差圧を以下、ΔP0とする)。この差圧ΔP0は、絞り23による空気の圧力低下量を示すものである。
ステップS203では、3位置弁21を第3位置とする。これによって、図4の「C」の状態となる。このときの気体の流通状態を図6に示す。図6に示す状態は、第1の計測状態であり、計測ライン22が分岐ライン19を介してパージライン15と連通している。また、パージライン15は、キャニスタ13およびそのキャニスタ13とエバポライン12とを介して燃料タンク11と連通している。この第1の計測状態では、空気が大気ライン17からキャニスタ13に導入され、それによって生成する蒸発燃料を含む混合気がパージライン15から分岐ライン19、3位置弁21を経由して、計測ライン22の絞り23を流通する。
ステップS204では、遅延時間CDを設定済みであるか否かを判断する。具体的には、Flag_Delayが1であるか否かを判断する。この判断が肯定判断である場合には、直接、ステップS206へ進む。一方、否定判断である場合には、ステップS205において遅延時間設定ルーチンを実行する。
図7に、その遅延時間設定ルーチンを示す。図7において、ステップS301では、燃料残量レベルセンサ40を用いて、燃料タンク11内の燃料残量(L)を検出する。燃料残量は燃料タンク11内の空間容積と一対一に対応する空間容積情報であり、燃料残量が少ないほど燃料タンク11内の空間容積が大きくなる。また、空間容積情報であるこの燃料残量を検出する燃料残量レベルセンサ40が、空間容積情報決定手段である。
ステップS302は安定化時間決定手段に相当し、ステップS301で検出した燃料残量と、ECU30内のROMに記憶されている時間決定関係とに基づいて遅延時間CDを決定する。上記時間決定関係は、たとえば図8に示す関係であり、燃料残量が多くなることに比例して遅延時間CDが短くなる関係である。
この時間決定関係は、第1の計測状態とされてからこの関係に基づいて定まる遅延時間CDが経過すると、燃料タンク11内の圧力が安定するように、予め実験に基づいて決定されている。すなわち、この遅延時間CDは、第1の計測状態となってから燃料タンク11内の圧力が安定するまでの安定化時間に相当する。なお、燃料残量が多くなるほど遅延時間CDが短くなるのは、燃料残量が多くなるほど燃料タンク11内の空間容積が小さくなり、容積が小さいほど、空間内の圧力は平衡に達するまでの時間が短くなるからである。
ステップS302で遅延時間CDを決定したら、ステップS303にて、そのステップS302で決定した遅延時間CDを、図3の濃度検出ルーチンに用いるものとして設定する。そして、ステップS304において、遅延時間算出済みフラグFlag_Delayを1として本ルーチンを終了する。
図3に戻って、ステップS205で遅延時間CDを設定した場合にも、続いて、ステップS206を実行する。ステップS206では、TimerDelay(以下、TDとする)に1を加える。なお、TDは、この濃度検出ルーチンの実行開始時に0にクリアされている。
続くステップS207では、TDが遅延時間CDに到達したか否かを判断する。この判断が否定判断である場合には、ステップS206に戻ってTDを増加させた後、再度、このステップS207の判断を実行する。
一方、ステップS207が肯定判断となった場合には、ステップS208において、差圧ΔP(この差圧を以下、ΔP1とする)を検出する。この差圧ΔP1は、絞り23による混合気の圧力低下量を示すものである。
上記ステップS208において差圧ΔP1を検出したら、ステップS209に進む。ステップS209、210は蒸発燃料濃度演算手段としての処理であり、ステップS209では、ステップS202、209で得られた2つの差圧ΔP0、ΔP1に基づいて差圧比Pを式(1)に従って算出する。
P=ΔP1/ΔP0・・・(1)
ステップS210では、差圧比Pに基づいて蒸発燃料濃度Cを式(2)に従って算出する。式(2)中、k1は定数であり、予め制御プログラムなどとともにECU30のROMに記憶される。
C=k1×(P−1)(=(ΔP1−ΔP0)/ΔP0)・・・(2)
蒸発燃料は空気よりも重いため、パージガスに蒸発燃料が含まれていると、密度が大きくなる。ポンプ26の回転数が同じで蒸発燃料通路21の流速(流量)が同じであれば、エネルギー保存の法則により、密度が大きいほど絞り23の差圧が大きくなる。蒸発燃料濃度が高いほど密度が大きくなるので、蒸発燃料濃度Cが大きくなるほど、差圧比Pが大きくなる。その結果、蒸発燃料濃度Cおよび差圧比Pが従う特性線は直線となる。式(2)はかかる特性線を表現したものであり、定数k1は予め実験などにより適合される。
次のステップS211では、得られた蒸発燃料濃度Cを一時、記憶する。そして、ステップS212で3位置弁21を第1位置に戻し、ステップS213でポンプ26を停止する。この状態は図4中の「A」と同じであり、濃度検出ルーチンの開始前の状態に戻ることになる。なお、ステップS203乃至208、および212が第1圧力検出手段に相当する。
そして、続くステップ214において、遅延時間算出済みフラグFlag_Delayを0として本ルーチンを終了する。このステップS214で遅延時間算出済みフラグを0としているので、濃度検出ルーチンを実行する都度、そのときの燃料残量に基づいて遅延時間CDが設定されることになる。
図2に戻って、濃度検出ルーチン(ステップS102)の実行後、ステップS103では、パージ実施条件が成立しているか否かを判定する。パージ実施条件は一般的な蒸発燃料処理装置のごとく、エンジン水温、油温、エンジン回転数などの運転状態に基づいて判断される。
ステップS103が肯定判断である場合、ステップS104でパージ実施ルーチンを実行する。パージ実施ルーチンでは、エンジン運転状態を検出し、検出されたエンジン運転状態に基づいて、吸気管2に導入するパージガス流量を算出する。従って、このステップS104が流量制御手段に相当する。
具体的には、このパージガス流量は、現在のスロットル開度などのエンジン運転状態のもとで要求される燃料噴射量、インジェクタ4で制御可能な燃料噴射量の下限値、吸気管2の圧力などに基づいて算出される。そして、このパージガス流量を実現するためのパージバルブ16の開度を、図3で記憶した蒸発燃料濃度Cに基づいて演算する。このようにして演算された開度に従って、パージ停止条件が成立するまで、パージバルブ16の開度を制御する。
また、このパージ実施ルーチンによるパージの実施期間は、3位置弁21は第1位置に切替えられる。これにより、キャニスタ13から蒸発燃料が離脱して、その蒸発燃料を含む混合気がパージライン15から吸気管2へパージされる。
上記パージ実施ルーチンが終了したら、ステップS105へ進む。また、ステップS103が否定判断である場合には、直接、ステップS105へ進む。ステップS105では、図3の濃度検出ルーチン実行から所定時間経過したか否かを判断する。否定判断である場合、ステップS103を繰り返す。ステップS105が肯定判断である場合には、ステップS101に戻り、あらためて蒸発燃料濃度Cを得るための処理を実行し、蒸発燃料濃度Cを最新値に更新する(ステップS101、S102)。ステップS105における前記所定時間は、蒸発燃料濃度Cの時間変化を考慮して要求される濃度値の精度に基づいて設定される。
以上、説明した本実施形態によれば、第1の計測状態としてから差圧ΔP1を検出するまでの遅延時間CDが、第1の計測状態における燃料残量に基づいて変化するようになっているので、常に、第1の計測状態としてから十分な時間が経過した後に差圧ΔP1を検出する場合に比較して、差圧ΔP1を迅速に検出することができる。また、燃料タンク11内の空間容積が大きくなるほどタンク内圧の安定に時間がかかることに対応して、燃料残量が少ないほど遅延時間CDが長くなるようになっているので、差圧ΔP1の検出精度およびその差圧ΔP1に基づいて制御するパージガス流量制御の精度を低下させることもない。
次に、本発明の第2実施形態を説明する。第2実施形態が前述の第1実施形態と異なるのは、図7の遅延時間設定ルーチンに代えて、図9に示す遅延時間設定ルーチンを用いる点、および、そのルーチンで用いる時間決定関係のみである。
図9において、ステップS401では、燃料温度センサ41を用いて、燃料タンク11内の燃料温度(℃)を検出する。続くステップS402は安定化時間決定手段に相当し、ステップS401で検出した燃料温度と、ECU30内のROMに記憶されている時間決定関係とに基づいて遅延時間CDを決定する。第2実施形態において上記ROMに記憶されている時間決定関係は、たとえば図10に示す関係であり、燃料温度が高くなることに比例して遅延時間CDが短くなる関係である。
この時間決定関係も、第1の実施形態の場合と同様に、第1の計測状態とされてからこの関係に基づいて定まる遅延時間CDが経過すると、燃料タンク11内の圧力が安定するように、予め実験に基づいて決定されており、第2実施形態においても、遅延時間CDは安定化時間に相当する。なお、燃料温度が低くなるほど遅延時間CDが長くなるのは、燃料温度が低くなるほど単位時間当たりの燃料蒸発量が少なくなり、燃料蒸発量が少ないほど、空間内の圧力は平衡に達するまでの時間が長くなるからである。
ステップS402で遅延時間CDを決定したら、ステップS403にて、そのステップS402で決定した遅延時間CDを、図3の濃度検出ルーチンに用いるものとして設定する。そして、ステップS404において、遅延時間算出済みフラグFlag_Delayを1として本ルーチンを終了する。
この第2実施形態によれば、第1の計測状態としてから差圧ΔP1を検出するまでの遅延時間CDが、第1の計測状態における燃料温度に基づいて変化するようになっているので、常に、第1の計測状態としてから十分な時間が経過した後に差圧ΔP1を検出する場合に比較して、差圧ΔP1を迅速に検出することができる。また、燃料温度が低くなるほどタンク内圧の安定に時間がかかることに対応して、燃料温度が低いほど遅延時間CDが長くなるようになっているので、差圧ΔP1の検出精度およびその差圧ΔP1に基づいて制御するパージガス流量制御の精度を低下させることもない。
以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、次の実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
たとえば、第1の実施形態では、燃料残量に基づいて遅延時間CDを設定する一方で、第2の実施形態では、燃料温度に基づいて遅延時間CDを設定していたが、両者に基づいて遅延時間CDを設定してもよい。この場合、遅延時間CDを決定する時間決定関係は、たとえば、図11に示すように、燃料残量が多いほど、また、燃料温度が高いほど、遅延時間CDが短くなるように設定される。なお、この関係として、三次元マップを用いてもよい。
また、前述の第2実施形態では、燃料温度を燃料温度センサ41によって検出していたが、燃料温度は必ずしも実測する必要はなく、他の位置において検出される温度に基づいて燃料温度を推定してもよい。たとえば、燃料車室内温度と燃料温度との関係を予め設定しておき、車室内温度センサによって実際に検出した車室内温度と上記関係とに基づいて、燃料温度を決定してもよい。
本発明の実施形態による蒸発燃料処理装置の構成を示す構成図である。 ECU30で実行される蒸発燃料のパージのフローチャートである。 図2の濃度検出ルーチンを示すフローチャートである。 濃度検出ルーチンの実行中における装置各部の状態の推移を示す図である。 第2の計測状態を示す図である。 第1の計測状態を示す図である。 第1の実施形態における遅延時間設定ルーチンを示すフローチャートである。 図7のステップS302で用いる時間決定関係を例示する図である。 第2の実施形態における遅延時間設定ルーチンを示すフローチャートである。 図9のステップS402で用いる時間決定関係を例示する図である。 燃料残量および燃料温度から遅延時間CDを決定する時間家低関係を例示する図である。
符号の説明
1:エンジン(内燃機関)、 2:吸気管、 11:燃料タンク、 22:計測ライン(計測通路)、 23:絞り、 24:圧力センサ(圧力計測手段)、 26:ポンプ、 30:ECU(記憶装置)、 40:燃料残量レベルセンサ(空間容積情報決定手段)、 41:燃料温度センサ(燃料温度決定手段)、 S104:パージ実施ルーチン(流量制御手段)、 S203乃至208、212:第1圧力検出手段、 S302:安定化時間決定手段、 S402:安定化時間決定手段

Claims (3)

  1. 燃料タンク内の蒸発燃料を蒸発燃料通路を介してキャニスタに導入して、キャニスタ内の吸着材に一時的に吸着させ、内燃機関の運転時に、前記吸着材に吸着した蒸発燃料を、前記キャニスタからパージ管を介して前記内燃機関の吸気管に放出する内燃機関の蒸発燃料処理装置であって、
    途中に絞りを有する計測通路と、
    その計測通路の絞りを通過するガス流を発生させるポンプと、
    その計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通する状態と、その計測通路が前記パージ管と連通しない状態とに切り替える切替手段と、
    その切替手段が切り替えられて、前記計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通させられた状態で、前記ポンプによってガス流を発生させることによって、前記キャニスタから放出される蒸発燃料を含む混合気が前記絞りを流通する第1の計測状態において、その絞りによる混合気の圧力変化量を検出する第1圧力検出手段と、
    その第1圧力検出手段によって検出された圧力変化量と、所定の絞りを流通することによる空気の圧力変化量とに基づいて、前記キャニスタから前記吸気管に導く混合気の流量を制御する流量制御手段とを有し、
    さらに、前記燃料タンク内の空間容積に対応する空間容積情報を決定する空間容積情報決定手段と、
    前記空間容積情報に基づいて前記タンク内の圧力の安定化時間が定まる関係であって、空間容積情報が燃料タンク内の空間容積が大きいことを示す値であるほど前記安定化時間が長い時間に定まる時間決定関係を記憶した記憶装置と、
    前記第1圧力検出手段による混合気の圧力変化量の計測時に前記空間容積情報決定手段によって実際に決定された空間容積情報と、前記記憶装置に記憶されている時間決定関係とに基づいて、安定化時間を決定する安定化時間決定手段とを備え、
    前記第1圧力検出手段は、前記第1の計測状態となってからの経過時間が、前記安定化時間決定手段によって決定された安定化時間を越えたことに基づいて、前記圧力変化量を検出することを特徴とする内燃機関の蒸発燃料処理装置。
  2. 燃料タンク内の蒸発燃料を蒸発燃料通路を介してキャニスタに導入して、キャニスタ内の吸着材に一時的に吸着させ、内燃機関の運転時に、前記吸着材に吸着した蒸発燃料を、前記キャニスタからパージ管を介して前記内燃機関の吸気管に放出する内燃機関の蒸発燃料処理装置であって、
    途中に絞りを有する計測通路と、
    その計測通路の絞りを通過するガス流を発生させるポンプと、
    その計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通する状態と、その計測通路が前記パージ管と連通しない状態とに切り替える切替手段と、
    その切替手段が切り替えられて、前記計測通路が前記パージ管、前記キャニスタおよび前記燃料タンクと連通させられた状態で、前記ポンプによってガス流を発生させることによって、前記キャニスタから放出される蒸発燃料を含む混合気が前記絞りを流通する第1の計測状態において、その絞りによる混合気の圧力変化量を検出する第1圧力検出手段と、
    その第1圧力検出手段によって検出された圧力変化量と、所定の絞りを流通することによる空気の圧力変化量とに基づいて、前記キャニスタから前記吸気管に導く混合気の流量を制御する流量制御手段とを有し、
    さらに、前記燃料タンク内の燃料温度を決定する燃料温度決定手段と、
    燃料温度に基づいて前記燃料タンク内の圧力の安定化時間が定まる関係であって、前記燃料温度が低いほど前記安定化時間が長い時間に定まる時間決定関係を記憶した記憶装置と、
    前記第1圧力検出手段による混合気の圧力変化量の計測時に前記燃料温度決定手段によって実際に決定された燃料温度と、前記記憶装置に記憶されている時間決定関係とに基づいて、安定化時間を決定する安定化時間決定手段とを備え、
    前記第1圧力検出手段は、前記第1の計測状態となってからの経過時間が、前記安定化時間決定手段によって決定された安定化時間を越えたことに基づいて、前記圧力変化量を検出することを特徴とする内燃機関の蒸発燃料処理装置。
  3. 前記燃料タンク内の燃料温度を決定する燃料温度決定手段をさらに備え、
    前記記憶装置に記憶されている時間決定関係が、前記空間容積情報と前記燃料タンク内の燃料温度とに基づいて前記安定化時間が定まる関係であり、
    前記安定化時間決定手段は、前記第1圧力検出手段による混合気の圧力変化量の計測時に、前記空間容積決定手段および前記燃料温度決定手段によって実際に決定された空間容積情報および燃料温度と、前記記憶装置に記憶されている時間決定関係とに基づいて、前記安定化時間を決定するものであることを特徴とする請求項1に記載の内燃機関の蒸発燃料処理装置。
JP2006122582A 2006-04-26 2006-04-26 内燃機関の蒸発燃料処理装置 Pending JP2007292000A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006122582A JP2007292000A (ja) 2006-04-26 2006-04-26 内燃機関の蒸発燃料処理装置
US11/729,923 US7464698B2 (en) 2006-04-26 2007-03-30 Air-fuel ratio control apparatus of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122582A JP2007292000A (ja) 2006-04-26 2006-04-26 内燃機関の蒸発燃料処理装置

Publications (1)

Publication Number Publication Date
JP2007292000A true JP2007292000A (ja) 2007-11-08

Family

ID=38762848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122582A Pending JP2007292000A (ja) 2006-04-26 2006-04-26 内燃機関の蒸発燃料処理装置

Country Status (1)

Country Link
JP (1) JP2007292000A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017185A (ja) * 2016-07-28 2018-02-01 マツダ株式会社 蒸発燃料処理装置
JP2019173648A (ja) * 2018-03-28 2019-10-10 愛三工業株式会社 蒸発燃料処理装置
JP2020133444A (ja) * 2019-02-15 2020-08-31 愛三工業株式会社 蒸発燃料処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017185A (ja) * 2016-07-28 2018-02-01 マツダ株式会社 蒸発燃料処理装置
JP2019173648A (ja) * 2018-03-28 2019-10-10 愛三工業株式会社 蒸発燃料処理装置
JP2020133444A (ja) * 2019-02-15 2020-08-31 愛三工業株式会社 蒸発燃料処理装置

Similar Documents

Publication Publication Date Title
JP2007231813A (ja) 燃料性状判定装置、漏れ検査装置、および燃料噴射量制御装置
US7409947B2 (en) Fuel vapor treatment apparatus
JP4322799B2 (ja) 内燃機関の蒸発燃料処理装置
US10598107B2 (en) Evaporated fuel processing device
JP4260079B2 (ja) 内燃機関の燃料性状計測装置および内燃機関
JP4361889B2 (ja) リーク検査装置及び燃料蒸気処理装置
JP4598193B2 (ja) 蒸発燃料処理装置
JP4570149B2 (ja) 気体密度比検出装置、濃度検出装置及び燃料蒸気処理装置
US20070251509A1 (en) Air-fuel ratio control apparatus of internal combustion engine
JP2007218122A (ja) 漏れ診断装置
JP2007198267A (ja) 蒸発燃料処理装置
JP4471370B2 (ja) 燃料蒸気処理装置
JP2009062967A (ja) ハイブリッド自動車用制御装置
US7331335B2 (en) Fuel vapor treatment system for internal combustion engine
JP2009002315A (ja) 蒸発燃料処理装置
JP2007231745A (ja) 内燃機関の蒸発燃料処理装置
JP2019152169A (ja) 蒸発燃料処理装置及びそれを備えたエンジンの燃料噴射制御装置
CN110857665A (zh) 发动机系统
JP2007231744A (ja) 内燃機関の蒸発燃料処理装置
JP4786515B2 (ja) 蒸発燃料処理装置
JP2007292000A (ja) 内燃機関の蒸発燃料処理装置
JP2009138561A (ja) 内燃機関の蒸発燃料処理装置
JP4687431B2 (ja) 内燃機関の排気浄化装置
JP2007218148A (ja) 内燃機関の蒸発燃料処理装置
JP2009204322A (ja) 燃料の蒸気圧計測装置