JP4466734B2 - バッテリ液の温度推定方法 - Google Patents

バッテリ液の温度推定方法 Download PDF

Info

Publication number
JP4466734B2
JP4466734B2 JP2007323305A JP2007323305A JP4466734B2 JP 4466734 B2 JP4466734 B2 JP 4466734B2 JP 2007323305 A JP2007323305 A JP 2007323305A JP 2007323305 A JP2007323305 A JP 2007323305A JP 4466734 B2 JP4466734 B2 JP 4466734B2
Authority
JP
Japan
Prior art keywords
temperature
battery
estimated
estimation
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007323305A
Other languages
English (en)
Other versions
JP2009146754A (ja
Inventor
江介 野村
武 塚本
精一郎 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007323305A priority Critical patent/JP4466734B2/ja
Priority to KR1020080113471A priority patent/KR101030277B1/ko
Publication of JP2009146754A publication Critical patent/JP2009146754A/ja
Application granted granted Critical
Publication of JP4466734B2 publication Critical patent/JP4466734B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Description

本発明は、車両に搭載されるバッテリの近傍に配置した温度センサにより検知された温度に基づいて、バッテリ液の温度を推定する方法に関する。
車両に搭載される例えば鉛蓄電池のようなバッテリ(二次電池)について、車両が走行している間にオルタネータにより発電された電力で充電を行うには、バッテリの温度を検出し、その検出温度に応じて充電電圧が最適となるように調整するのが望ましい。例えば特許文献1では、エンジン温度や周囲温度を検出し、付加的にエンジン停止中の日照持続時間や強度をコンピュータにより算出して、バッテリ温度を推定する方法が開示されている。しかしながら、この方法では、検出パラメータが多く、推定方式が複雑になるという問題がある。
特表2001−526827号公報
バッテリの温度は、実質的にバッテリの内部を満たしているバッテリ液(電解液)の温度であるから、バッテリ液の温度を検出すれば良い。しかしながら、バッテリ液は、希硫酸等の強酸性の液体であるため、液中に温度センサを直接投入して温度を検出することが困難であり、代替的にバッテリ近傍の温度を検出し、その検出温度に基づいてバッテリ液−バッテリの温度を間接的に推定することが行われている。
例えば、一般的な温度推定式を用いると、
T(n)={t(n)+(X−1)T(n−1)}/X
となる。ここで、n:エンジン始動号のサンプリング回数,T(n):n番目の推定温度,t(n):n番目の温度センサ出力,X:推定定数,である。推定定数Xは、実際に推定を行った結果に基づき、誤差が最小となるように決定される。
図12は、上記推定式を用いてバッテリ温度を推定した結果の一例を示すものであるが、最大温度誤差は11.5℃となり、良好な推定であるとは言えない。
本発明は上記事情に鑑みてなされたものであり、その目的は、より高精度で推定を行うことができるバッテリ液の温度推定方法を提供することにある。
請求項1記載のバッテリ液の温度推定方法によれば、前回の推定結果T(n−1)と、今回の推定に使用する検出温度t(n)とを比較し、検出温度t(n)が上昇した場合と下降した場合とで、推定定数Xを異なる値に設定して推定を行う。即ち、バッテリ液の温度は上昇し易く下降し難いという性質があるので、推定式に使用する推定定数Xを温度が上昇する場合と下降する場合とで夫々最適な値に設定して計算すれば、推定をより正確に行うことができる。
そして、推定式に、
T(n)={t(n)+(X−1)T(n−1)}/X
を用い、推定定数Xは、温度センサにより直接測定した結果と、上記推定式による推定結果との誤差が最小となる値を、検出温度の上昇時と下降時とでそれぞれ選択したものとする。即ち、前回の推定結果T(n−1)と、今回の推定に使用する検出温度t(n)とを、推定定数Xを用いて平均化するようにして今回の推定結果T(n)を得る推定式において、推定定数Xを温度上昇時と下降時とで夫々最適な値に設定することで、推定を正確に行うことができる。
請求項記載のバッテリ液の温度推定方法によれば、車両のエンジン停止中においても温度センサにより温度t(n)を周期的に検出する。そして、エンジンが停止する直前に推定された温度Teを初期値として、エンジン停止中の推定温度T’を、推定定数Xstを用いた推定式で推定して、エンジン始動した時点での推定温度の初期値T(0)を決定する。
即ち、推定式を用いてエンジン始動中のバッテリ液温度を推定するには最初に初期値T(0)を設定する必要があり、その初期値T(0)は、エンジンが停止している間のバッテリ液温度を推定して得ることになる。エンジン停止後のバッテリ液温度は、停止直後は一時的に上昇するがその後は長い時間をかけて低下し、始動中の場合に比較して上昇,下降を頻繁に繰り返すことはない。従って、エンジン停止中の推定温度T’を共通の推定定数Xstを用いた推定式により推定しても、エンジンが始動した時点で使用する初期値を概ね適切に得ることができる。
請求項記載のバッテリ液の温度推定方法によれば、温度センサを、バッテリの内部においてバッテリ液に接しない状態で配置する。具体的には、例えば請求項のように、バッテリの内部に形成したセンサ保持部に温度センサを配置する。このようにすれば、センサ保持部により温度センサとバッテリ液とを隔てた状態で、実際のバッテリ液の温度に近い温度を検出することができ、推定精度を更に向上させることが可能となる。
また、請求項記載のバッテリ液の温度推定方法によれば、温度センサを、耐食性を有する材料で形成される保護部材の内部に挿入して、その保護部材をバッテリ液に浸す位置に配置する。したがって、検出温度をより実際のバッテリ液の温度に近付けることができる。
請求項記載のバッテリ液の温度推定方法によれば、耐食性を有する金属部材の一端側をバッテリ内部のバッテリ液に浸し、他端側はバッテリの外部に導出させる。そして、金属部材の他端側に温度センサを取り付ける。この場合、金属部材の温度は、バッテリ液の温度に近い状態になるため、やはり実際のバッテリ液の温度に近い値を検出することができる。
(第1実施例)
以下、本発明の第1実施例について図1乃至図6を参照して説明する。図1は、車両のエンジン(E/G)が始動した場合に行うバッテリ液の温度推定方法を示すフローチャートである。推定式は、一般的に使用されている
T(n)={t(n)+(X−1)T(n−1)}/X …(0)
を用いる。即ち、
n:車両のエンジン始動後に行なう温度tのサンプリング回数
t(n):温度センサにより検出されるバッテリ近傍の温度
T(n):n番目の推定温度,X:推定定数
である。尚、図1に示す処理は、例えば、車両のエンジンECU(Electronic Control Unit)などによって実行される。
そして、本実施例では、推定定数Xを、バッテリ液の温度が上昇している場合はXin,バッテリ液の温度が下降している場合はXdeとして、それぞれ異なる値を設定して推定を行う点が特徴である。
また、図6は、バッテリに対する温度センサの取り付け位置を示す。バッテリ1は例えば鉛蓄電池であり、ケース2の内部には希硫酸などのバッテリ液3が満たされている。ケース2の上部にはカバー4が配置されており、そのカバー4には端子5,6が配置されている。端子5,6は、バッテリ1の内部においてバッテリ液3に浸されている正,負の電極(図示せず)に接続されている。そして、端子6側には電流センサ7と共に温度センサ8が配置されている。これらのセンサ7,8は、例えば樹脂製のホルダ20の内部に配置されており、そのホルダ20が端子6に取り付けられている。この場合、温度センサ8は、バッテリ1近傍の温度としてエンジンルームの雰囲気温度を測定しているとみなすことができる。
図5は、期間(1)でアイドリングを5分行い、期間(2)で70km/hの定速走行を5分行なうことを交互に繰り返した場合に、温度センサ8により検出されるエンジンルームの雰囲気温度変化とバッテリ液3の温度を別の温度センサにより直接測定した結果とを示す。この図5から、バッテリ液3の温度は平均的には上昇しており、上昇し易く下降し難い傾向を示していることが判る。この特性に応じて、上述のように推定定数Xを、温度上昇時はXin,温度下降時はXdeとして異なる値を設定する。
図1において、先ず、エンジンが始動した時点での初期値T(0)を算出(この詳細については後述する)すると(ステップS1)、最初の温度t(1)を温度センサ8により測定する(ステップS2)。次に、温度t(1)と初期値T(0)とを比較し(ステップS3)、t(1)>T(0)であれば(YES)温度上昇時の推定定数Xinを使用して推定温度T(1)を計算する(ステップS4)。即ち(1)式
T(1)={t(1)+(Xin−1)T(0)}/Xin …(1)
により計算を行なう。
一方、ステップS3において、t(1)≦T(0)であれば(NO)温度下降時の推定定数Xdeを使用して推定温度T(1)を計算する(ステップS5)。即ち(2)式
T(1)={t(1)+(Xde−1)T(0)}/Xde …(2)
により計算を行なう。
ステップS4,S5の何れかにより最初の推定温度T(1)を得ると、以降のステップ
S6〜S9は、所定のサンプリング間隔(例えば数秒〜十数秒程度)が経過する毎にステップS2〜S5と同様の処理を行う。即ち、次の温度t(n)を温度センサ8により測定すると(ステップS6)、温度t(n)と前回の推定結果T(n−1)とを比較し(ステップS7)、t(n)>T(n−1)であれば(YES)温度上昇時の推定定数Xinを使用して推定温度T(1)を計算する(ステップS8)。即ち(3)式
T(n)={t(n)+(Xin−1)T(n−1)}/Xin …(3)
により計算を行なう。
一方、ステップS7において、t(n)≦T(n−1)であれば(NO)温度下降時の推定定数Xdeを使用して推定温度T(n)を計算する(ステップS9)。即ち(4)式
T(n)={t(n)+(Xde−1)T(n−1)}/Xde …(4)
により計算を行なう。そして、エンジンが停止するまでの間は(ステップS10:NO)ステップS6に戻って上記の処理を繰り返し実行する。
次に、ステップS1における初期値T(0)の決定について図2を参照して説明する。図2は、エンジンが停止した時点からのバッテリ液3の温度変化(破線)を示す。バッテリ液3の温度は、エンジン停止直後から一時的に上昇し、その後は長い時間に亘って低下して行く。エンジン停止期間中のバッテリ液3の推定温度をT’とすると、エンジンが停止する直前に推定した温度Teを用いて推定を行う。また、エンジン停止期間中でも、エンジンECUは、所定のサンプリング間隔(この場合、1時間〜数時間)毎にクロック供給が停止されるスリープ状態から起動(ウェイクアップ)して、温度センサ8により温度t(n)を測定する。
この場合の推定定数Xは、温度の上昇下降にかかわらず共通の推定定数Xstを使用する。即ち、エンジン停止時のバッテリ液3の温度は、エンジン始動中の温度に比較すれば緩慢に変化するので、共通の推定定数Xstを使用しても誤差はそれ程大きくならない。従って、初期値T’(0)は、
T’(0)=Te
として、推定式T’(n)は(5)式となる。
T’(n)={t(n)+(Xst−1)T’(n−1)}/Xst …(5)
図3は、エンジン停止期間中におけるバッテリ液の温度を、実際に温度センサにより直接測定した結果と、図6に示す温度センサ8の配置により(5)式を用いて推定温度T’(n)を計算した結果とを示すもので、推定定数Xst=5,サンプリング間隔は1時間としている。この場合の最大温度誤差は5度であった。
そして、図4は、図1のフローチャートによりエンジン始動中に推定した温度T(n)と、バッテリ液3の温度を別の温度センサにより直接測定した結果とを示す。推定定数Xin=660,Xde=215であり、最大温度誤差は5度であった。これは、図12に示す従来方式の推定(Xin=Xde=330)に比較して誤差が大幅に小さくなっている。
尚、推定定数Xin,Xde,Xstは、特定のバッテリ1について推定を行う際に値を適当に変化させ、推定結果の誤差が最小となったものを温度上昇時と温度下降時とについてそれぞれ選択したもので、この選択方式自体は(温度上昇時と温度下降時とで異なる値を設定する点を除いて)従来と同様である。また、推定定数Xin,Xde,Xstは、バッテリのサイズや各車両のエンジンルームのレイアウトなどに応じて変わるため、車種毎に設定する必要がある。
以上のように本実施例によれば、前回の推定結果T(n−1)と、今回の推定に使用する温度センサ8による検出温度t(n)とを比較し、検出温度t(n)が上昇した場合と下降した場合とで、推定定数Xを異なる値Xin,Xdeに設定し、推定式:(0)式により推定を行うようにした。即ち、バッテリ液の温度が上昇し易く下降し難いという性質に応じて、推定定数Xを夫々最適な値に設定することで、推定をより正確に行うことができる。
また、車両のエンジン停止中においても温度センサ8により温度t(n)を周期的に検出し、エンジンが停止する直前に推定された温度Teを初期値として、エンジン停止中の推定温度T’を、推定定数Xstを用いた推定式:(5)式で推定して、エンジン始動した時点での推定温度の初期値T(0)を決定するようにした。即ち、エンジン停止後のバッテリ液温度は、停止直後は一時的に上昇するがその後は長い時間をかけて低下し、始動中の場合に比較して上昇,下降を頻繁に繰り返すことはないので、推定温度T’を共通の推定定数Xstを用いた(5)式により推定しても、エンジンが始動した時点で使用する初期値を概ね適切に得ることができる。
(第2実施例)
図7及び図8は本願発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。第2実施例は、エンジン停止中におけるバッテリ液温度の推定方法が第1実施例と異なっており、エンジン停止中はエンジンECUが周期的にウェイクアップすることはなく、エンジンが停止した時点からの経過時間αに応じて温度を推定する。
図7に示すように、バッテリ液3の温度は、エンジンが停止した直後から所定時間の間は、僅かに上昇する傾向を示した後、下降に転じる。そこで、バッテリ液温度が上昇した後エンジン停止時の温度まで戻ると推定される時間をZとする。この時間Zは、予め測定を行い決定しておく。また、エンジン停止の直前に(3)式または(4)式により推定された温度をTeとすると、経過時間αが
0≦α<Zであれば、 T’=Te …(6)
とする。すなわち、上記期間の温度変化は、エンジンが停止する直前の車両の運転状態や、車両が停車した周囲の環境に応じて異なるため正確な推定は困難であるから、エンジン停止の直前の推定温度Teで一定であると近似する。
上記の時間Zが経過した後は、バッテリ液温度は略線形に低下するが、ある程度時間が経過すると、その傾きは小さくなる。従って、バッテリ液温度が低下する傾きがある程度小さくなると推定される時間をZ’とする。この時間Z’も、予め測定を行い決定しておく。そして、経過時間αが
Z≦α<Z’であれば、T’=−Y・(α−Z)+Te …(7)
とする。但し、Yは一次関数の傾きであり、これも実際にバッテリ液温の測定を予め行った結果より適切な値を決定する。即ち、この場合、一次関数近似で推定を行う。
上記の時間Z’が経過した後は、バッテリ液の温度変化はごく僅かとなるので、温度センサ8の検出出力をSとすると、
Z’≦αであれば、 T’=S …(8)
とする。この期間はバッテリ液温度がほとんど変化せず、エンジンルームの雰囲気温度にほぼ等しいと推定されるので、温度センサ8の検出出力Sをそのまま推定温度T’とする。すなわち、エンジンが始動した時点で温度センサの検出出力Sを得れば良い。
従って、第2実施例の場合は、エンジンが停止した時点からの経過時間αをタイマにより測定しておき、イグニッションスイッチがONされてエンジンECUがウェイクアップした時点での経過時間αを読み出して、その値に応じて(6)〜(8)式の何れかにより推定初期値T(0)を決定すれば良い。
図8は、エンジン停止期間中におけるバッテリのバッテリ液の温度を、実際に温度センサにより直接測定した結果と、(6)〜(8)式を用いて推定温度T’を得た結果とを示すもので、Y=3.5,Z=1(h),Z’=9(h)とした場合である。この場合の最大温度誤差は4度であった。
尚、第1実施例の図3のケースと比較すると、第2実施例の方が最大温度誤差は小さくなっているが、両者は測定環境が異なっており(バッテリ液温度の値も異なる)、あくまでもそれぞれが一例でしかなく第2実施例の方法が優れているとは言えない。第2実施例の場合、時間Z,Z’を予め定める必要があるが、上述したようにこれらは車両の運転状態や駐停車位置の環境に応じて変動するため、実際のケースとずれを生じることも考えられる。それに対して、第1実施例の場合は、車両の運転状態や駐停車位置の環境が変化した場合でも、その変化に応じて柔軟に推定を行うことができるというメリットがある。
また、傾きYや時間Z,Z’は、推定定数Xと同様バッテリのサイズや各車両のエンジンルームのレイアウトなどに応じて変わるため、車種毎に設定する必要がある。
以上のように第2実施例によれば、エンジンが停止している期間中に、温度センサ8による温度検出を周期的に行なわずとも、エンジンが始動した時点で使用する初期値T(0)を適切に得ることができる。
(第3〜5実施例)
図9乃至図11は本願発明の第3〜第5実施例を示すものである。第3〜第5実施例は、バッテリ1に対する温度センサ8の取り付け位置のバリエーションを示すものである。
図9に示す第3実施例の場合、温度センサ8をバッテリ1の内部において、バッテリ液3に浸さない位置に配置する。この場合、温度センサ8を配置するためのポケット状の保持部(センサ保持部)9を設けておくようにする。
図10に示す第4実施例の場合、温度センサ8を有底筒状のボックス(保護部材)10の内部に収めて、そのボックス10をバッテリ液3に浸す位置に配置する。ボックス10は、バッテリ液3により腐食されない性質(耐食性)を備えている材質で構成する。
図11に示す第5実施例の場合、バッテリ1の内部に、カバー4の上方より金属部材11を挿入してバッテリ液3に浸すようにする。この場合も勿論、金属部材11は耐食性を備えている材質を選択する。そして、金属部材11の上端側に温度センサ8を取り付けて金属部材11の温度を測定する。
以上のように構成される第3,第4実施例によれば、温度センサ8をバッテリ1の内部において、バッテリ液3に接しない状態で配置する。具体的には、バッテリ1の内部に形成した保持部9に温度センサ8を配置したり、温度センサ8をボックス10の内部に挿入し、そのボックス10をバッテリ液3に浸す位置に配置する。したがって、温度センサ8とバッテリ液3とを隔てた状態で、より実際のバッテリ液の温度に近い温度tを検出することができ、推定精度を更に向上させることが可能となる。
また、第5実施例によれば、一端側がバッテリ液3に浸される金属部材11の温度をその他端側に取り付けた温度センサ8により測定する。この場合、金属部材11の温度は、バッテリ液3の温度に近くなるので、検出温度tを、実際の温度に近付けることができる。
本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、以下のような変形または拡張が可能である。
温度のサンプリング間隔は、適宜変更して実施すれば良い。
ッテリは、鉛蓄電池に限ることなく、バッテリ液の性質によりその液温を直接測定することが困難なものであれば適用が可能である。
本発明の第1実施例であり、車両のエンジンが始動した場合に行うバッテリ液の温度推定方法を示すフローチャート エンジンが停止した時点からのバッテリ液の温度変化を示す図 エンジン停止期間中のバッテリ液の温度を直接測定した結果と、推定温度T’(n)を計算した結果とを示す図 エンジン始動中に推定した温度T(n)と、バッテリ液の温度を直接測定した結果とを示す図 アイドリングと定速走行とを交互に繰り返した場合に、エンジンルームの雰囲気温度とバッテリ液の温度を測定した一例を示す図 バッテリに対する温度センサの取り付け位置を示す図 本発明の第2実施例を示す図2相当図 図3相当図 本発明の第3実施例を示す図6相当図 本発明の第4実施例を示す図6相当図 本発明の第5実施例を示す図6相当図 従来技術を示す図4相当図
符号の説明
図面中、1はバッテリ、3はバッテリ液、8は温度センサ、9は保持部(センサ保持部)、10はボックス(保護部材)、11は金属部材を示す。

Claims (6)

  1. 車両に搭載されるバッテリ近傍の温度t(n)を温度センサにより検出し、
    n:車両のエンジン始動後に行なう温度tのサンプリング回数,T(n):n番目の推定温度,X:推定定数とすると、検出温度t(n)と、前回の推定結果T(n−1)と、推定定数Xとを用いた推定式により、前記バッテリの内部を満たしているバッテリ液の温度を推定する方法において、
    前回の推定結果T(n−1)と、今回の推定に使用する検出温度t(n)とを比較し、
    前記検出温度t(n)が上昇した場合と、下降した場合とで、推定定数Xを異なる値に設定して推定を行い、
    前記推定式は、
    T(n)={t(n)+(X−1)T(n−1)}/X
    であり、
    前記推定定数Xは、温度センサにより直接測定した結果と、上記推定式による推定結果との誤差が最小となる値を、検出温度の上昇時と下降時とでそれぞれ選択したものであることを特徴とするバッテリ液の温度推定方法。
  2. 車両のエンジンが停止する直前に推定された温度をTeとすると、
    前記エンジン停止中においても前記温度センサにより温度t(n)を周期的に検出し、
    前記温度Teを初期値として、エンジン停止中の推定温度T’を、推定定数Xstを用いた前記推定式により、エンジンが始動した時点での推定温度の初期値T(0)を決定することを特徴とする請求項1記載のバッテリ液の温度推定方法。
  3. 前記温度センサを、前記バッテリの内部において、前記バッテリ液に接しない状態で配置することを特徴とする請求項1または2記載のバッテリ液の温度推定方法。
  4. 前記バッテリの内部にセンサ保持部を形成し、
    前記センサ保持部に温度センサを配置することを特徴とする請求項3記載のバッテリ液の温度推定方法。
  5. 前記温度センサを、耐食性を有する材料で形成される保護部材の内部に挿入し、
    前記保護部材を、バッテリ液に浸す位置に配置することを特徴とする請求項4記載のバッテリ液の温度推定方法。
  6. 耐食性を有する金属部材の一端側を前記バッテリ内部のバッテリ液に浸し、他端側を前記バッテリの外部に導出させて、
    前記金属部材の他端側に前記温度センサを取り付けることを特徴とする請求項1または2記載のバッテリ液の温度推定方法。
JP2007323305A 2007-12-14 2007-12-14 バッテリ液の温度推定方法 Expired - Fee Related JP4466734B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007323305A JP4466734B2 (ja) 2007-12-14 2007-12-14 バッテリ液の温度推定方法
KR1020080113471A KR101030277B1 (ko) 2007-12-14 2008-11-14 배터리액의 온도추정방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323305A JP4466734B2 (ja) 2007-12-14 2007-12-14 バッテリ液の温度推定方法

Publications (2)

Publication Number Publication Date
JP2009146754A JP2009146754A (ja) 2009-07-02
JP4466734B2 true JP4466734B2 (ja) 2010-05-26

Family

ID=40917120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323305A Expired - Fee Related JP4466734B2 (ja) 2007-12-14 2007-12-14 バッテリ液の温度推定方法

Country Status (2)

Country Link
JP (1) JP4466734B2 (ja)
KR (1) KR101030277B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156808A (ja) * 2017-03-17 2018-10-04 ダイハツ工業株式会社 バッテリ液温計測装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708070B2 (ja) * 2011-03-11 2015-04-30 日産自動車株式会社 バッテリ温度制御装置
JP5379820B2 (ja) * 2011-03-16 2013-12-25 古河電気工業株式会社 二次電池温度推定装置および二次電池温度推定方法
JP5782892B2 (ja) * 2011-07-20 2015-09-24 スズキ株式会社 バッテリ液温推定装置
JP6695626B2 (ja) * 2016-02-26 2020-05-20 ダイハツ工業株式会社 制御装置
JP2019169396A (ja) * 2018-03-23 2019-10-03 ダイハツ工業株式会社 バッテリの温度推定装置
JP2023114099A (ja) * 2022-02-04 2023-08-17 株式会社デンソー 電池管理システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307170A (ja) * 1994-05-11 1995-11-21 Kansei Corp バッテリ温度測定回路
DE19806135A1 (de) 1998-02-14 1999-08-19 Bosch Gmbh Robert Verfahren zur Ermittlung der Temperatur einer Fahrzeugbatterie
JP2002221559A (ja) 2001-01-26 2002-08-09 Hitachi Ltd 車両用バッテリ診断装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156808A (ja) * 2017-03-17 2018-10-04 ダイハツ工業株式会社 バッテリ液温計測装置

Also Published As

Publication number Publication date
JP2009146754A (ja) 2009-07-02
KR101030277B1 (ko) 2011-04-20
KR20090064296A (ko) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4466734B2 (ja) バッテリ液の温度推定方法
JP4823974B2 (ja) 蓄電池の残存容量検知方法及び残存容量検知装置
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
EP3166174B1 (en) Battery degradation level estimation device and battery degradation level estimation method
JP3868692B2 (ja) バッテリーの劣化度判定装置及びバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体
US7990111B2 (en) Method and apparatus for detecting internal electric state of in-vehicle secondary battery
JP5865546B2 (ja) 蓄電デバイス電力量推定装置および蓄電デバイス電力量推定方法
JP5684172B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
JP5158872B2 (ja) バッテリ状態検知方法、状態検知装置及びバッテリ電源システム
JP4383596B2 (ja) 電池の内部温度検出装置
JP5129029B2 (ja) 開放電圧値推定方法及び開放電圧値推定装置
EP3756937B1 (en) Apparatus and method for estimating soc
JP5379820B2 (ja) 二次電池温度推定装置および二次電池温度推定方法
JP6350886B2 (ja) リチウムイオン電池の劣化判定方法
JP2018170263A (ja) 二次電池内部温度推定装置および二次電池内部温度推定方法
WO2019131740A1 (ja) 充電可能電池温度推定装置および充電可能電池温度推定方法
JP5195440B2 (ja) 車両用電力制御装置及び組電池の内部抵抗推定方法
CN113711067A (zh) 用于对电池的荷电状态进行初始化的方法
JP2002250757A (ja) 車両用バッテリの開回路電圧推定方法及びその装置
CN111610458A (zh) 车辆蓄电池老化预警的方法和装置
JP4760276B2 (ja) エンジン始動用蓄電池の劣化判別方法および装置とこの劣化判別装置を備えたエンジン始動用蓄電池
US20220009377A1 (en) Management apparatus, management method, and vehicle
JP2008258089A (ja) バッテリ用液面検知装置及びこれを備えたバッテリ
JP2006133024A (ja) 開回路電圧検出装置
JP2006142899A (ja) バッテリ温度検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4466734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees