JP4458302B2 - Cpp型磁界検出素子及びその製造方法 - Google Patents

Cpp型磁界検出素子及びその製造方法 Download PDF

Info

Publication number
JP4458302B2
JP4458302B2 JP2008095986A JP2008095986A JP4458302B2 JP 4458302 B2 JP4458302 B2 JP 4458302B2 JP 2008095986 A JP2008095986 A JP 2008095986A JP 2008095986 A JP2008095986 A JP 2008095986A JP 4458302 B2 JP4458302 B2 JP 4458302B2
Authority
JP
Japan
Prior art keywords
layer
magnetic field
magnetic layer
detection element
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008095986A
Other languages
English (en)
Other versions
JP2009032383A (ja
Inventor
大助 宮内
貴彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JP2009032383A publication Critical patent/JP2009032383A/ja
Application granted granted Critical
Publication of JP4458302B2 publication Critical patent/JP4458302B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁界検出素子、スライダ、ウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、及び磁界検出素子の製造方法に関し、特に複数のフリー層を有する磁界検出素子の素子構造に関する。
薄膜磁気ヘッドの再生素子としてGMR(Giant Magneto resistance)素子が知られている。従来は、センス電流を素子の膜面と水平方向に流すCIP(Current In Plane)−GMR素子が主に用いられてきたが、最近では、更なる高密度記録化に対応するため、センス電流を素子の膜面と直交する方向に流す素子が開発されている。このタイプの素子として、TMR(Tunnel Magneto-resistance)効果を利用したTMR素子、及びGMR効果を利用したCPP(Current Perpendicular to the Plane)素子が知られている。特にCPP素子は、TMR素子と比べて低抵抗であること、CIP素子と比べて狭トラック幅でも高出力が得られることから、高いポテンシャルを有している。
CPP素子は、外部磁界に応じて磁化方向が変化する磁性層(フリー層)と、外部磁界に対して磁化方向が固定された磁性層(ピンド層)と、ピンド層とフリー層との間に挟まれた非磁性中間層と、を備えた積層体を有している。この積層体はスピンバルブ膜とも呼ばれる。スピンバルブ膜のトラック幅方向両側には、フリー層にバイアス磁界を印加するバイアス磁層が設けられている。フリー層はバイアス磁層からのバイアス磁界によって単磁区化される。このため、外部磁界の変化に対する抵抗変化の線形性が高められると同時に、バルクハウゼンノイズが効果的に抑制される。フリー層の磁化方向とピンド層の磁化方向のなす相対角度は外部磁界に応じて変化し、これによってスピンバルブ膜の膜面直交方向に流れるセンス電流の電気抵抗が変化する。この性質を利用して外部磁化が検出される。スピンバルブ膜の積層方向両側はシールド層によって磁気的にシールドされている。スピンバルブ膜の積層方向は、薄膜磁気ヘッドがハードディスク装置に組込まれたときに、記録媒体の円周方向と一致する。このため、シールド層は記録媒体の同一トラック上の隣接するビットからの磁界をシールドする役割を有している。
近年、一層の高線記録密度が望まれているが、線記録密度を向上させるためには上下シールド層間の間隔(シールド間ギャップ)の低減が不可欠である。そのためにはスピンバルブ膜の膜厚の減少が必要となる。しかし、従来のCPP素子には、膜構成に由来する大きな制約があった。すなわち、ピンド層は磁化方向が外部磁界の影響を受けずに強固に固定されている必要があるため、通常いわゆるシンセティックピンド層が用いられている。シンセティックピンド層は、アウターピンド層と、インナーピンド層と、アウターピンド層とインナーピンド層との間に挟まれた、RuまたはRhからなる非磁性中間層と、を有している。また、アウターピンド層の磁化方向を固定するため、アウターピンド層に接して反強磁性層が設けられている。反強磁性層は典型的にはIrMnからなる。シンセティックピンド層では、反強磁性層がアウターピンド層と交換結合することによって、アウターピンド層の磁化方向が固定される。インナーピンド層が非磁性中間層を介してアウターピンド層と反強磁性的に結合することによって、インナーピンド層の磁化方向が固定される。インナーピンド層とアウターピンド層の磁化方向は反平行となるので、ピンド層の磁化が全体として抑制される。シンセティックピンド層はこのような長所を有しているが、シンセティックピンド層を有するCPP素子を構成するためには多数の層を設ける必要があり、スピンバルブ膜の膜厚低減に対する大きな制約となっていた。
ところで、近年、このような従来のスピンバルブ膜の膜構成とは全く異なる新しい膜構成が提案されている非特許文献1には、CIP素子を対象として、外部磁界に応じて磁化方向が変化する2つのフリー層と、これらのフリー層の間に挟まれた非磁性中間層と、を有する積層体が開示されている。バイアス磁性層は記録媒体対向面から見て積層体の反対側に設けられ、バイアス磁界は記録媒体対向面の直交方向に印加される。バイアス磁性層からの磁界によって、2つのフリー層の磁化方向は一定の相対角度をなす。この状態で外部磁界を与えると、2つのフリー層の磁化方向が変化し、この結果2つのフリー層の磁化方向がなす相対角度が変化し、センス電流の電気抵抗が変化する。この性質を利用して外部磁化を検出することが可能となる。また、特許文献1にはCPP素子にこのような膜構成を適用した例が開示されている。このように2つのフリー層を用いた膜構成では、従来のシンセテッィクピンド層や反強磁性が不要となるため、膜構成が簡略され、シールド間ギャップの低減が容易になるポテンシャルがある。
米国特許第7,035,062号明細書 「3層構成のハードディスク装置用CIP−GMRヘッド構造」(Current-in-Plane GMR Trilayer Head Design for Hard-Disk Drives),IEEE TRANSACTIONS ON MAGNETICS,2007年2月,第43巻,第2号
しかし、このような2つのフリー層を用いる積層体には以下の課題があった。まず、積層体の膜厚が減少すると、これに応じてバイアス磁層の膜厚も減少する。次に、従来技術と異なり、バイアス磁層は積層体の一つの面に面して設けられているだけであるため、磁界自体が分散しやすく、フリー層に効率的に印加されにくい。これらの理由によって、フリー層を単磁区化するために必要なバイアス磁層の磁界強度を確保することが困難となる。この問題を解消するためには、バイアス磁層の膜厚を確保する必要がある。しかし、これに合わせて積層体の膜厚を設定するとシールド間ギャップの大幅な減少は期待できない。
本発明は、複数のフリー層を備えた積層体を有し、バイアス磁層が記録媒体対向面から見て積層体の裏側に設けられている膜構成のCPP型の磁界検出素子を対象とする。本発明の目的は、フリー層に十分なバイアス磁界を印加すると共に、シールド間ギャップの低減を図ることのできる、上記膜構成の磁界検出素子を提供することである。本発明の他の目的は、このような磁界検出素子の製造方法を提供することである。
本発明の一実施態様によれば、磁界検出素子は、外部磁界に応じて磁化方向が変化する上部及び下部磁性層と、該上部及び下部磁性層の間に挟まれた非磁性中間層と、を有する積層体と、前記積層体の積層方向に該積層体を挟むように設けられ、該積層体の積層方向にセンス電流を供給するとともに、該積層体を磁気的にシールドする上部及び下部シールド電極層と、前記積層体の記録媒体対向面の反対面に設けられ、前記上部及び下部磁性層に、該記録媒体対向面と直交する方向のバイアス磁界を印加するバイアス磁性層と、前記積層体のトラック幅方向の両側に設けられた絶縁膜と、を有している。前記バイアス磁性層は前記積層体より大きくかつ前記上部シールド電極層と前記下部シールド電極層との間隔よりも大きな膜厚を有し、前記上部及び下部シールド電極層の少なくとも一方は、前記積層体と前記バイアス磁性層とによって形成される段差部を埋める補助シールド層を有している。
この構造によれば、積層体に反強磁性層やシンセティックピンド層を設けることが不要となり、積層体の膜厚を低減することが容易となる。一方、バイアス磁性層の膜厚は、積層体の膜厚とは独立して、必要なバイアス磁界を印加するために必要な膜厚に設定することができる。この結果、バイアス磁性層の膜厚が積層体の膜厚より大きくなり、バイアス磁性層と積層体との間に段差が形成されるが、この段差には補助シールド層が形成されるため、記録媒体の同一トラック上の隣接ビットからの磁界を効果的にシールドすることが可能となる。このようにして、フリー層に十分なバイアス磁界を印加すると共に、シールド間ギャップの低減を図ることができ、高線記録密度化への対応が容易な磁界検出素子を提供することが可能となる。
本発明の他の実施態様によれば、磁界検出素子の製造方法は、外部磁界に応じて磁化方向が変化する下部磁性層と、非磁性中間層と、外部磁界に応じて磁化方向が変化する上部磁性層とを積層方向下方から積層方向上方に向かってこの順で含む積層体を、下部シールド電極層の上に形成する積層体形成ステップと、前記積層体を、記録媒体対向面となるべき面と直交して延びる第1の部分を残して除去し、除去した部分を絶縁膜で埋め戻す絶縁層形成ステップと、前記絶縁膜及び前記第1の部分の上に補助シールド層を形成するステップと、前記補助シールド層、前記積層体、及び少なくとも一部の下部シールド電極層を、前記記録媒体対向面となるべき面と平行に延びる第2の部分を残して除去し、除去した部分の一部を前記第1の部分より厚いバイアス磁層で埋め戻すバイアス磁層形成ステップと、前記補助シールド層及び前記バイアス磁層の上方に、前記補助シールド層と一体の上部シールド電極層を形成するステップと、を有している。
本発明によれば、フリー層に十分なバイアス磁界を印加すると共に、シールド間ギャップの低減を図ることのできる磁界検出素子を提供することができる。また、本発明によれば、このような磁界検出素子の製造方法を提供することができる。
以下、図面を参照して本発明の一実施形態について説明する。本実施形態の磁界検出素子は、特にハードディスク装置の薄膜磁気ヘッドの読み込み部として好適に用いられる。図1は、本実施形態の磁界検出素子の概念的斜視図である。図2Aは、図1の2A−2A方向、すなわち媒体対向面から見た磁界検出素子の側面図、図2Bは、図1の2B−2B線に沿った磁界検出素子の断面図、図2Cは、図2Aの2C−2C線に沿った磁界検出素子の断面図である。媒体対向面とは、磁界検出素子1の、記録媒体21との対向面である。
磁界検出素子1は、積層体2と、積層体2の積層方向に積層体2を挟むように設けられた上部シールド電極層3及び下部シールド電極層4と、積層体2の記録媒体対向面Sの反対面に設けられたバイアス磁性層13と、積層体2のトラック幅方向Tの両側に設けられた絶縁膜15と、を有している。
積層体2は、上部シールド電極層3と下部シールド電極層4との間に挟まれ、先端部が記録媒体対向面Sに露出して配置されている。積層体2は、上部シールド電極層3と下部シールド電極層4との間にかかる電圧によって、センス電流22が膜面直交方向Pに流れるようにされている。積層体2と対向する位置における記録媒体21の磁界は、記録媒体21の移動方向23への移動につれて変化する。この磁界の変化は磁気抵抗効果に基づく電気抵抗変化として検出される。磁界検出素子1は、この原理を利用して、記録媒体21の各磁区に書き込まれた磁気情報を読み出す。
表1には、積層体2の膜構成の一例を示す。表は、下部シールド電極層4側のバッファ層5から、上部シールド電極層3側のキャップ層9に向けて積層順に下から上に記載している。表中、組成の欄の数値は各元素の原子分率を示している。積層体2は、厚さ1μm程度の80Ni20Fe層からなる下部シールド電極層4の上に、バッファ層5、下部磁性層6、導電性の非磁性中間層7、上部磁性層8、キャップ層9がこの順に積層されて構成されている。
Figure 0004458302
バッファ層5は下部磁性層6の下地層として設けられている。下部磁性層6及び上部磁性層8は共に、NiFe層がCoFe層に挟まれた膜構成を有し、外部磁界に応じて磁化方向が変化する磁性層である。非磁性中間層7はCuからなる。非磁性中間層7のCu層の膜厚は1.3nmである。Cuの結合エネルギーはこの膜厚で極大となり、下部磁性層6と上部磁性層8とが反強磁性結合によって磁気的に強く結合される。下部磁性層6及び上部磁性層8にCoFe層を設けることによって、Cu層とNiFe層とが直接接した膜構成と比べて、Cu層界面のスピン分極率が大きくなり、磁気抵抗効果が増加する。下部磁性層6及び上部磁性層8のいずれか一方または双方に、表1の代わりにCo70Fe30層からなる単層構成を用いることもできる。キャップ層9は、積層された各層の劣化防止のために設けられている。キャップ層9の上には、厚さ1μm程度の80Ni20Fe層からなる上部シールド電極層3が形成されている。
上部シールド電極層3及び下部シールド電極層4は、積層体2の積層方向Pにセンス電流を供給する電極であるとともに、前述のように、記録媒体21の同一トラック上の隣接するビットからの磁界をシールドするシールド層でもある。
表2には、媒体対向面から見て積層体2の反対側の部分の膜構成の一例を示す。表は、絶縁層11から、キャップ層14に向けて積層順に下から上に記載している。表中、組成の欄の数値は各元素の原子分率を示している。積層体2の記録媒体対向面Sの反対面に面してバイアス磁性層13が設けられている。バイアス磁性層13は、記録媒体対向面Sと直交する方向のバイアス磁界を、積層体2、特に上部磁性層8及び下部磁性層6に及ぼす。バイアス磁性層13は、バイアス磁性層として良好な磁気特性(高い保磁力、角型比)を持たせるため、下地層12の上に形成されている。下地層12と積層体2との間にはAl2O3層からなる絶縁層11が形成されている。絶縁層11は図2Bに示すように、積層体2の側方にも形成され、センス電流22がバイアス磁性層13に流れることを防止する。バイアス磁性層13の上にはCr層、Al2O3層及びTi層からなるキャップ層14が設けられている。Cr層は、下地層12と同様、バイアス磁性層13に良好な磁気特性を持たせるために設けられている。Al2O3層はセンス電流22がバイアス磁性層13に流れることを防止するために設けられている。Ti層は上部シールド電極層3の密着性を改善するために設けられている。
Figure 0004458302
積層体2のトラック幅方向Tの両側にはAl2O3からなる絶縁膜15が設けられている。絶縁膜15もセンス電流22がバイアス磁性層13に流れることを防止する。
図3は、本実施形態の磁界検出素子の作動原理を示す概念図である。横軸は外部磁界強度、縦軸は信号出力を示す。図中上部磁性層8の磁化方向と下部磁性層6の磁化方向を各々FL1とFL2と表記している。バイアス磁層13からのバイアス磁界及び記録媒体21からの外部磁界がない場合、上部磁性層8の磁化方向と下部磁性層6の磁化方向は、上述した反強磁性結合によって、互いに反平行の向きとなっている(図中A部)。しかし、実際にはバイアス磁界が印加されているため、上部磁性層8の磁化方向と下部磁性層6の磁化方向は、反平行状態から平行状態に向かって回転し、初期磁化状態(バイアス磁界だけが印加されている状態)で、反平行状態と平行状態の中間の状態となる(図中B部)。この状態で記録媒体21からの外部磁界が印加されると、上部磁性層8の磁化方向と下部磁性層6の磁化方向との相対角度は、磁界の方向に応じて、増加(反平行状態に向かう)または減少(平行状態に向かう)する。反平行状態に近づくほど電極から供給される電子が散乱されやすくなり、センス電流の電気抵抗値が増加する。平行状態に近づくほど電極から供給される電子が散乱されにくくなり、センス電流の電気抵抗値が減少する。こうして、上部磁性層8の磁化方向と下部磁性層6の磁化方向の相対角度の変化を利用して外部磁界を検出することができる。
本実施形態では、バイアス磁性層13の膜厚、形状等を調整することによって、上部磁性層8の磁化方向と下部磁性層6の磁化方向は、初期磁化状態で概ね直交している。(図3のB部)。初期磁化状態で磁化方向が直交していると、外部磁界の変化に対する出力変化が大きくなり、大きな磁気抵抗変化率を得ることができると共に、良好な対称性を得ることができる。バイアス磁界が不足している場合、初期磁化状態が反平行状態(図3のA部)に近づくため、低出力でかつ非対称性が大きくなる。バイアス磁界が過剰な場合も、初期磁化状態が平行状態(図3のC部)に近づくため、やはり低出力でかつ非対称性が大きくなる。
表1,2より、バイアス磁性層13の膜厚は30nmであり、積層体2の膜厚は17.3nmである。すなわち、バイアス磁性層13は積層体2より大きな膜厚を有している。これは従来のCPP素子と大きく異なる点である。従来技術のCPP素子では、スピンバルブ膜のトラック幅方向両側に設けられたバイアス磁性層の膜厚は、スピンバルブ膜の膜厚に合わせて決定されていた。本実施形態の積層体2に相当する従来技術のスピンバルブ膜は、必要な層を必要な膜厚で確保していくと30〜40nmの膜厚となる。所定のバイアス磁界を確保するために必要となるバイアス磁性層の最低膜厚は30nm程度であるため、結果的に、バイアス磁性層の必要最低膜厚が確保されていた。しかし、本実施形態では、積層体2の構成が大幅に簡略化されたため、膜厚も大幅に低減している。このため、本実施形態ではバイアス磁性層13の膜厚を積層体2とは独立して設定し、必要なバイアス磁界を確保している。
この結果、図2Bに示すように、積層体2の上方及び下方には、積層体2とバイアス磁性層13とによって形成される上部段差部16a及び下部段差部16bが形成される。本実施形態では、この断差部16a,16bを埋める上部補助シールド層3b及び下部補助シールド層4bが設けられている。換言すると、上部シールド電極層3は一般部3aと、一般部3aから積層方向下方に突き出た上部補助シールド層3bと、を有し、下部シールド電極層4は一般部4aと、一般部4aから積層方向上方に突き出た下部補助シールド層4bと、を有している。上部補助シールド層3bは一般部3aと一体に設けられており、一般部3aと磁気的に結合している。下部補助シールド層4bも一般部4aと一体に設けられており、一般部4aと磁気的に結合している。一般部3aは積層体2の上方及びバイアス磁性層13の上方を通って、媒体対向面Sと直交する方向に長く延びている。上部補助シールド層3bの長さは、積層体2のハイトH(媒体対向面Sと直交する方向の長さ)とほぼ一致しており、バイアス磁性層13に当る位置で止まっている。下部補助シールド層4bも同様である。
上部補助シールド層3b及び下部補助シールド層4bは、各々上部シールド電極層3及び下部シールド電極層4の一部として構成されているため、センス電流を供給する電極としての機能と共に、記録媒体21の同一トラック上の隣接するビットからの磁界をシールドするシールド層としての機能を有している。すなわち、記録媒体側から磁界検出素子1を見ると、図2Aに示すように、積層体2は上部補助シールド層3b及び下部補助シールド層4bによって囲まれており、上部補助シールド層3b及び下部補助シールド層4bが磁界検出素子1の実際のシールド間ギャップGを画定している。
図2Bを参照すると、バイアス磁性層13の膜厚中心高さh2は、上部磁性層8の膜厚中心高さh8と下部磁性層6の膜厚中心高さh6の中点h1と一致している。すなわち、上部磁性層8及び下部磁性層6はバイアス磁性層13の膜厚中心に対して対称の位置に置かれるため、上部磁性層8及び下部磁性層6には、同程度の強度のバイアス磁界が印加され、磁界検出素子としての線形性が向上する。
上部補助シールド層3bは、絶縁膜15上を平坦に延びている。このため、上部補助シールド層3bに磁極が形成されて、不要な磁界が印加されることが防止される。また、平坦に形成されると、形状異方性効果によって上部補助シールド層3bの磁化方向がトラック幅方向を向き、透磁率を確保することが容易となるため、シールドとして機能しやすい。
なお、実施形態によっては、上部及び下部シールド電極層の一方だけが上部補助シールド層3bまたは下部補助シールド層4bを有する構造でもよい。すなわち、上部及び下部シールド電極層の一方は平坦な形状であっても構わない。
このように、本実施形態の磁界検出素子では、積層体2は機能上必要な層だけを必要な膜厚で積層することによって構成される。この結果、反強磁性層及びアウターピンド層が不要となり、従来のCPP素子のスピンバルブ膜に比べて大幅な膜厚低減が可能となる。一方、バイアス磁性層13は、積層体2とは独立して、機能上必要な膜厚を確保することができる。そして、積層体2の膜厚がバイアス磁性層13の膜厚より小さいことで生じる段差部には上部補助シールド層3b及び下部補助シールド層4bが形成されるため、積層体2の膜厚低減効果がそのままシールド間ギャップ低減につながる。このようにして、必要なバイアス磁界を確保しつつ、シールド間ギャップの低減を図ることが可能となる。また、従来のCPP素子では、シンセティックピンド層のうち、磁気抵抗変化に直接寄与するのはインナーピンド層だけであり、アウターピンド層や反強磁性層は磁気抵抗変化に寄与せず、むしろ磁気抵抗変化率の向上を阻害する要因となっていた。これに対して、本実施形態ではアウターピンド層や反強磁性層が不要となり、寄生抵抗が減少するため、磁気抵抗変化率のさらなる向上を図れる余地が大きい。
次に、図4のフローチャート及び図5〜13を参照して、以上説明した磁界検出素子の製造方法について説明する。図5〜13の(a)は、記録媒体となるべき面に沿ったウエハの断面図、図5〜13の(b)は、記録媒体となるべき面と直交する方向に切ったウエハの断面図、図5〜13の(c)はウエハの上面図である。図5〜13の(b)の断面の位置は、各々図5〜13の(a)に示している。
(ステップS1)まず、めっき法によって下部シールド電極層4を作成し、次に、図5に示すように、下部シールド電極層4の上に、スパッタリングによって積層体2を形成する(積層体形成ステップ)。前述のように、積層体2は、外部磁界に応じて磁化方向が変化する下部磁性層6と、導電性の非磁性中間層7と、外部磁界に応じて磁化方向が変化する上部磁性層8とを含んでいる。下部磁性層6と、非磁性中間層7と、上部磁性層8は、積層方向下方から積層方向上方に向かってこの順で積層体2に含まれている。積層体2にはRu層からなるキャップ層9が含まれているが、成膜時には、Ru層の上にさらにキャップ層9の一部として、Ta層18(膜厚2nm)が成膜される。Ta層18は後のステップで絶縁層15を平坦化する際に積層体2の保護膜として機能する。
(ステップS2)次に、積層体2を、記録媒体対向面となるべき面と直交して延びる軸を有する第1の部分を残して除去し、除去した部分を絶縁膜で埋め戻す(絶縁層形成ステップ)。具体的には、図6に示すように、Ta層18の上にレジスト19を成膜し、所定の形状に成形した後、レジスト19をマスクとして、記録媒体対向面となるべき面S’と直交して延びる細長い第1の部分20を残して積層体2を除去する。レジスト19はアンダーカットを含まない形状とすることが好ましい。図14は、アンダーカットを含むレジストの断面図を示している。アンダーカット19aを含んでいると、後工程で積層体2が急峻な形状にミリングされにくくなり、図中に破線で示すように、上辺に対する下辺の比が拡大した断面を有する第1の部分20’となりやすい。従来はリフトオフの容易さを重視してアンダーカット付きのレジストを形成することもあったが、本実施形態でこのようなアンダーカットを含まないレジスト形状を用いている。その理由は下部磁性層6と上部磁性層8とをできるだけ同一の形状とするためである。同一の形状とすれば磁気特性も同一となり、磁界検出素子としての性能上好ましい。
その後、図7に示すように、レジスト19及び下部シールド電極層4の上にAl2O3からなる絶縁膜15を積層する。さらに、図8に示すように、レジスト19及び絶縁膜15をリフトオフ法によって除去する。絶縁膜15は、絶縁膜15の上面と積層体2(第1の部分20)の上面とが揃うように平坦化することが好ましい。平坦化を行う理由は、第一に、後工程で形成される上部補助シールド層3bを平坦に形成するためである、第二に、リフトオフの際にレジスト19と第1の部分20の上面との間に生じるバリを除去するためである。上述したように、レジスト19にアンダーカット19aが設けられていないため、リフトオフの際に、アンダーカット19aを設ける場合と比べてバリが生じやすい。平坦化は、例えば化学的機械的研磨法(CMP法)を用いて行うことができる。絶縁膜15に用いられるAl2O3はCMP法との相性がよいため、絶縁膜15は平坦に研磨される。Ta層18は硬質な材料であり、研磨の際に積層体2を保護する。
(ステップS3)次に、図9に示すように、絶縁膜15及び第1の部分20の上に、スパッタ法で上部補助シールド層3bを形成する。上部補助シールド層3bの膜厚はバイアス磁性層13の膜厚によって定まる。なお、上部補助シールド層3bを形成する前にTa層18をスパッタ法によって除去しておく。
(ステップS4)次に、上部補助シールド層3b、積層体2、及び一部の下部シールド電極層4を、記録媒体対向面となるべき面と平行に延びる軸を有する第2の部分を残して除去し、除去した部分の一部をバイアス磁層13で埋め戻す(バイアス磁層形成ステップ)。まず図10に示すように、上部補助シールド層3bの上にレジスト31を成膜し、所定の形状に成形する。レジスト31はレジスト19の場合と同様、アンダーカットを含まない形状とすることが好ましい。その理由もレジスト19の場合と同様である。これによって、積層体2はトラック幅方向の両側と、媒体対向面Sの反対側の計3面が急峻な形状に形成される。次に、図11に示すように、レジスト31をマスクとして、記録媒体対向面となるべき面S’と平行に延びる軸を有する第2の部分22を残して上部補助シールド層3b、積層体2、及び下部シールド電極層4をミリングする。下部シールド電極層4のミリング深さはバイアス磁性層13の膜厚によって定まる。このミリングによって、一般部4aと下部補助シールド層4bとを有する下部シールド電極層4が形成される。必要に応じて下部シールド電極層4の底面までミリングすることも可能である。
その後、図12に示すように、絶縁層11、下地層12、バイアス磁層13及びキャップ層14を積層する(下地層12の図示は省略)。絶縁層11及び下地層12はイオンビームスパッタ法で形成する。絶縁層11は電気的な絶縁性を確保するために積層体2の側壁に確実に付着させる必要があるので、40度程度の比較的低角度で成膜する。イオンビームスパッタ法の代わりに、低温CVD(化学蒸着法)を用いてもよい。絶縁層11の膜厚は5nm程度でもよいが、絶縁性を確実に確保するため7nm程度が好ましい。
本実施形態では、バイアス磁性層13の膜厚中心高さが、上部磁性層の膜厚中心高さと下部磁性層の膜厚中心高さの中点と一致するように、バイアス磁層13を形成する。図12(b)に示すように、上部補助シールド層3bの側方におけるバイアス磁層13の高さは、上部補助シールド層3bと同じ程度に抑えておくことが好ましい。バイアス磁層13は後述するように一定の膜厚を確保するように形成する必要があるが、バイアス磁層13を上部補助シールド層3bの上方まで高く形成すると、上部補助シールド層3bとの間に段差が生じ、平坦化が難しいため、バイアス磁層13が非常に不安定な形状となってしまう。
キャップ層14までの各層を積層した後は、リフトオフ法を用いてレジスト31を除去する。レジスト31を除去した後は、極軽いCMPによってバリを取り除き、表面を平坦化しておく。
(ステップS5)次に、図13に示すように、上部補助シールド層3b及びキャップ層14の上方に、上部シールド電極層3の一般部3aを形成する。具体的には一般部3aをめっきするための膜厚50nm程度の電極膜(図示せず)をスパッタ法によって形成し、その上に一般部3aをめっき法で形成する。これによって、一般部3aと補助シールド層3aとを有する上部シールド電極層3が形成される。
その後、書込素子を形成し、ウエハをバーに切断し、研磨によって媒体対向面を形成する。さらに、バーをスライダに分離し、洗浄、検査等の工程を経て、スライダが完成する。
次に、実施例として、従来技術のCPP素子と本発明による磁界検出素子とを比較した結果について述べる。実施例の膜構成は上記実施形態で述べた表1,2と同一とし、素子サイズは、トラック幅、MR高さとも0.05μmとした。表3には、比較例のCPP素子の膜構成を示す。フリー層は1層であるが、その他の膜構成はできる限り同一とした。ピンド層には界面におけるスピン依存散乱の効果を高めるためにCu中間層を挿入した。膜厚はインナーピンド層で4.4nmであり、フリー層とほぼ同じ膜厚としている。反強磁性膜は膜厚7nmのIrMn層を用いた。シンセティックピンド層を用いているため、アウターピンド層と反強磁性膜の分だけトータルの膜厚が大きくなっている。スピンバルブ膜のトラック幅方向両側には、膜厚7nmのAl2O3膜及び膜厚3nmのCr下地層を介して、膜厚30nmのCoPt膜を、バイアス磁性層として成膜した。
Figure 0004458302
比較例のスピンバルブ膜のトータル膜厚は39.7nmであり、実施例の磁界検出素子の膜厚に対して、2倍以上厚くなっている。従って、シールド間ギャップも実施例の磁界検出素子に対して2倍以上の大きさとなる。一方、磁気抵抗変化率は、実施例、比較例とも約5%であった。比較例では、バルク散乱効果の大きな50Co50Feを用い、かつ、界面散乱効果を高めるためにCoFe層間にCu層を挿入しているが、一方で、反強磁性層、アウターピンド層の寄生抵抗が増加している。このため、双方の効果が相殺されて、結果として同程度の磁気抵抗変化率が得られたものと考えられる。
次に、上述の実施例及び比較例の電磁変換特性を比較した。測定時の印加電圧は100mVとした。素子抵抗(MRR)は実施例で17Ω、比較例で22Ωであったため、センス電流は実施例で5.88mA、比較例で4.55mAとなった。表4に、孤立波形での出力及びPW50値を示す。PW50は再生波形の半値幅で、比較例を1としたときの相対値で示している。PW50が小さいということはシールド間ギャップが狭いことを意味している。これより、実施例は比較例と同等の出力を確保しつつ、高線記録密度化が容易になっていることがわかる。
Figure 0004458302
次に、バイアス磁性層の膜厚と出力との関係を検討した。実施例で述べた膜構成でバイアス磁性層の膜厚を10nmから40nmまで変化させて、出力への影響を調べた。表5及び図15に結果を示す。前述したようにバイアス磁界が不足している場合は、初期磁界状態が半平行状態に近づき、低い出力しか得られない。一方、バイアス磁界が強すぎると、初期磁界状態が平衡状態に近づき、低い出力しか得られない。本実施形態ではバイアス磁性層の膜厚は30nm程度が最適で、シールド間ギャップ(積層体の膜厚)に対するバイアス磁性層の膜厚の比は1.5〜2の範囲が好適である。
Figure 0004458302
次に、バイアス磁性層と積層体、特にバイアス磁性層と上部及び下部磁性体の位置関係について検討した。図2Bにおいて、バイアス磁性層13の積層方向における膜厚中心高さh2を積層体2に対して相対的に移動させた。図16(a),(b)は典型的な比較例を示し、各々、上部磁性層8の上端面がバイアス磁層13の上端面に一致する場合、及び下部磁性層6の下端面がバイアス磁層13の下端面に一致する場合を示している。バイアス磁性層13の膜厚の半値をX、上部磁性層8の膜厚中心高さh8(図2B参照)と下部磁性層6の膜厚中心高さh6(図2B参照)の中点の位置h1と、バイアス磁性層13の膜厚中心高さh2との高低差(h1−h2)をYとする。Y/Xは上部磁性層8及び下部磁性層6がバイアス磁性層13の膜厚中心に近接する程度を示す指標となる。上部磁性層8と下部磁性層6の膜厚が等しい場合は、非磁性中間層7であるCu層の中心がバイアス磁層13の膜厚中心に一致するときに、Y/Xが0となる。Cu層の中心がバイアス磁層13の端面に一致する場合にはY/Xは1または−1となる。図16(a)の場合、Y/Xは、((30nm-4.5nm-0.65nm)-15nm)/15nm=0.66、図16(b)の場合-0.66となる。
次に、Y/Xを変化させて非対称性の標準偏差((出力再生波形の非対称性の偏差)を求めた。非対称性の標準偏差を評価項目としたのは、本発明においてはバイアス磁層13からのバイアス磁界を上部磁性層8及び下部磁性層6に均等に印加することが重要なためである。非対称性の偏差が大きいということはすなわち、磁界に対する応答の非直線性が各素子でばらついていることを意味する。図17には、23850A/m(300Oe)の外部磁界を印加して測定した出力波形の波形非対称性のばらつき(標準偏差)を示す。波形非対称性の定義は、|マイナス磁界での出力−プラス磁界での出力の差|/出力×100である。Cu層の中心をバイアス磁層13の下端付近に位置させた方(図16(b)の場合)が、上端付近に位置させた場合(図16(a)の場合)より標準偏差が増加している。従って、上部シールド電極層3の上部補助シールド層3bを厚くするよりは、下部シールド電極層4の下部補助シールド層4bを厚くする方が、すなわち下部シールド電極層4を深くミリングしたほうが相対的には良好な結果が得られる。しかし、いずれの場合もCu層の中心がバイアス磁層13の中心からあまり離れるとバイアス磁界が2つの磁性層6,8に均等に印加されず、対称性の観点からは望ましくない。理想的にはバイアス磁性層13の膜厚中心高さh2は、前述した実施形態のように、上部磁性層8の膜厚中心高さh8と下部磁性層6の膜厚中心高さh6の中点高さh1と一致、すなわちY/X=0であることが望ましい。しかし、−0.5≦Y/X≦0.5であれば比較的良好な結果が得られる。これは、図3のグラフにおいて、Y/X=±0.5が変曲点D,Eに対応しているためと考えられる。
以上、本発明の磁界検出素子について詳細に説明したが、本発明は上記の実施形態及び実施例に限定されるものではない。一例として、各磁性層の各々が非磁性中間層を介して2つの磁性層からなる膜構成も本発明の範囲内にある。表6には、このような実施形態の積層体の膜構成の一例を示す。上部及び下部磁性層の各々は、外部磁界に応じて磁化方向が変化する第1及び第2磁性層と、第1及び第2磁性層の間に挟まれた導電性の非磁性中間層と、を有している。積層体のトータル膜厚は21.5nmであり、シールド間ギャップの観点からは前述の実施形態と比べて若干不利になるが、従来技術に対しては十分に優位性を保つ。多層構造とすることで界面数が増加し、磁気抵抗変化率が増加する。この膜構成における磁気抵抗変化率は6%であった。この膜構成で試作したヘッドの出力は1.6mVであった。磁気ヘッドの要求仕様に応じて本実施形態の磁界検出素子を使うこともできる。
Figure 0004458302
次に、上述した磁界検出素子の製造に用いられるウエハについて説明する。図18を参照すると、ウエハ100の上には、少なくとも前述の磁界検出素子を構成する積層体が成膜されている。ウエハ100は、媒体対向面ABSを研磨加工する際の作業単位である、複数のバー101に分割される。バー101は、研磨加工後さらに切断されて、薄膜磁気ヘッドを含むスライダ210に分離される。ウエハ100には、ウエハ100をバー101に、バー101をスライダ210に切断するための切り代(図示せず)が設けられている。
図19を参照すると、スライダ210は、ほぼ六面体形状をなしており、そのうちの一面はハードディスクと対向する媒体対向面ABSとなっている。
図20を参照すると、ヘッドジンバルアセンブリ220は、スライダ210と、スライダ210を弾性的に支持するサスペンション221と、を備えている。サスペンション221は、ステンレス鋼によって形成された板ばね状のロードビーム222と、ロードビーム222の一端部に設けられたフレクシャ223と、ロードビーム222の他端部に設けられたベースプレート224と、を有している。フレクシャ223にはスライダ210が接合され、スライダ210に適度な自由度を与える。フレクシャ223の、スライダ210が取り付けられる部分には、スライダ210の姿勢を一定に保つためのジンバル部が設けられている。
スライダ210は、回転駆動される円盤状の記録媒体であるハードディスクに対向するように、ハードディスク装置内に配置されている。ハードディスクが図20におけるz方向に回転すると、ハードディスクとスライダ210との間を通過する空気流によって、スライダ210に、y方向下向きに揚力が生じる。スライダ210は、この揚力によってハードディスクの表面から浮上するようになっている。スライダ210の空気流出側の端部(図19における左下の端部)の近傍には、磁界検出素子1が形成されている。
ヘッドジンバルアセンブリ220をアーム230に取り付けたものはヘッドアームアセンブリ221と呼ばれる。アーム230は、スライダ210をハードディスク262のトラック横断方向xに移動させる。アーム230の一端はベースプレート224に取り付けられている。アーム230の他端部には、ボイスコイルモータの一部となるコイル231が取り付けられている。アーム230の中間部には軸受け部233が設けられている。アーム230は、軸受け部233に取り付けられた軸234によって回動自在に支持されている。アーム230及び、アーム230を駆動するボイスコイルモータは、アクチュエータを構成する。
次に、図21及び図22を参照して、上述したスライダが組込まれたヘッドスタックアセンブリとハードディスク装置について説明する。ヘッドスタックアセンブリとは、複数のアームを有するキャリッジの各アームにヘッドジンバルアセンブリ220を取り付けたものである。図21はヘッドスタックアセンブリの側面図、図22はハードディスク装置の平面図である。ヘッドスタックアセンブリ250は、複数のアーム252を有するキャリッジ251を有している。各アーム252には、ヘッドジンバルアセンブリ220が、互いに間隔を開けて垂直方向に並ぶように取り付けられている。キャリッジ251の、アーム252の反対側には、ボイスコイルモータの一部となるコイル253が取り付けられている。ボイスコイルモータは、コイル253を挟んで対向する位置に配置された永久磁石263を有している。
図22を参照すると、ヘッドスタックアセンブリ250は、ハードディスク装置に組込まれている。ハードディスク装置は、スピンドルモータ261に取り付けられた複数枚のハードディスク262を有している。ハードディスク262毎に、ハードディスク262を挟んで対向するように2つのスライダ210が配置されている。スライダ210を除くヘッドスタックアセンブリ250及びアクチュエータは、本発明における位置決め装置に対応し、スライダ210を支持すると共に、スライダ210をハードディスク262に対して位置決めする。スライダ210はアクチュエータによって、ハードディスク262のトラック横断方向に動かされ、ハードディスク262に対して位置決めされる。スライダ210に含まれる磁界検出素子1は、記録ヘッドによってハードディスク262に情報を記録し、再生ヘッドによってハードディスク262に記録されている情報を再生する。
本発明の一実施形態に係る磁界検出素子の概念的斜視図である。 図1の2A−2A方向から見た磁界検出素子の断面図である。 図1の2B−2B線に沿った磁界検出素子の断面図である。 図2Aの2C−2C線に沿った断面図である。 図1に示す磁界検出素子の作動原理を示す概念図である。 図1に示す磁界検出素子の製造方法を説明するフロー図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 図1に示す磁界検出素子の製造方法を説明するステップ図である。 アンダーカットを有するレジストの断面図である。 バイアス磁性層の膜厚/シールド間ギャップ比と出力の関係を示すグラフである。 バイアス磁性層の膜厚方向高さ位置を変更した比較例の断面図である。 バイアス磁性層の膜厚方向高さ位置と出力の関係を示すグラフである。 本発明の磁界検出素子の製造に係るウエハの平面図である。 本発明のスライダの斜視図である。 本発明のスライダが組込まれたヘッドジンバルアセンブリを含むヘッドアームアセンブリの斜視図である。 本発明のスライダが組込まれたヘッドアームアセンブリの側方図である。 本発明のスライダが組込まれたハードディスク装置の平面図である。
符号の説明
1 磁界検出素子
2 積層体
3 上部シールド電極層
3a 一般部
3b 上部補助シールド層
4 下部シールド電極層
4a 一般部
4b 下部補助シールド層
5 バッファ層
6 下部磁性層
7 非磁性中間層
8 上部磁性層
9 キャップ層
12 下地層
13 バイアス磁性層
15 絶縁膜
16a 上部段差部
16b 下部段差部
P 積層方向
T トラック幅方向

Claims (19)

  1. 外部磁界に応じて磁化方向が変化する上部及び下部磁性層と、該上部及び下部磁性層の間に挟まれた非磁性中間層と、を有する積層体と、
    前記積層体の積層方向に該積層体を挟むように設けられ、該積層体の積層方向にセンス電流を供給するとともに、該積層体を磁気的にシールドする上部及び下部シールド電極層と、
    前記積層体の記録媒体対向面の反対面に設けられ、前記上部及び下部磁性層に、該記録媒体対向面と直交する方向のバイアス磁界を印加するバイアス磁性層と、
    前記積層体のトラック幅方向の両側に設けられた絶縁膜と、
    を有し、
    前記バイアス磁性層は前記積層体より大きくかつ前記上部シールド電極層と前記下部シールド電極層との間隔よりも大きな膜厚を有し、
    前記上部及び下部シールド電極層の少なくとも一方は、前記積層体と前記バイアス磁性層とによって形成される段差部を埋める補助シールド層を有している、
    磁界検出素子。
  2. 前記バイアス磁性層の膜厚の半値をX、前記上部磁性層の膜厚中心高さと前記下部磁性層の膜厚中心高さの中点の膜厚方向高さh1と、該バイアス磁性層の膜厚中心高さh2との高低差(h1−h2)をYとしたときに、−0.5≦Y/X≦0.5である、請求項1に記載の磁界検出素子。
  3. 前記バイアス磁性層の膜厚中心高さは、前記上部磁性層の膜厚中心高さと前記下部磁性層の膜厚中心高さの中点と一致している、請求項1に記載の磁界検出素子。
  4. 前記補助シールド層は、前記絶縁膜上を平坦に延びている、請求項1から3のいずれか1項に記載の磁界検出素子。
  5. 前記上部磁性層の磁化方向と前記下部磁性層の磁化方向とは、外部磁界が印加されていない状態で概ね直交している、請求項1から4のいずれか1項に記載の磁界検出素子。
  6. 前記非磁性中間層は銅からなり、略1.3nmの膜厚を有している、請求項1から5のいずれか1項に記載の磁界検出素子。
  7. 前記積層体と前記バイアス磁性層との間に絶縁層が設けられている、請求項1から6のいずれか1項に記載の磁界検出素子。
  8. 前記上部及び下部磁性層の各々は、外部磁界に応じて磁化方向が変化する第1及び第2磁性層と、該第1及び第2磁性層の間に挟まれた非磁性中間層と、を有する、請求項1から7のいずれか1項に記載の磁界検出素子。
  9. 請求項1から8のいずれか1項に記載の磁界検出素子を備えたスライダ。
  10. 請求項1から8のいずれか1項に記載の磁界検出素子となるべき積層体が形成されたウエハ。
  11. 請求項9に記載のスライダと、前記スライダを弾性的に支持するサスペンションと、を有するヘッドジンバルアセンブリ。
  12. 請求項9に記載のスライダと、該スライダを支持するとともに、該スライダを記録媒体に対して位置決めする装置と、を有するハードディスク装置。
  13. 外部磁界に応じて磁化方向が変化する下部磁性層と、非磁性中間層と、外部磁界に応じて磁化方向が変化する上部磁性層とを積層方向下方から積層方向上方に向かってこの順で含む積層体を、下部シールド電極層の上に形成する積層体形成ステップと、
    前記積層体を、記録媒体対向面となるべき面と直交して延びる第1の部分を残して除去し、除去した部分を絶縁膜で埋め戻す絶縁層形成ステップと、
    前記絶縁膜及び前記第1の部分の上に補助シールド層を形成するステップと、
    前記補助シールド層、前記積層体、及び少なくとも一部の下部シールド電極層を、前記記録媒体対向面となるべき面と平行に延びる第2の部分を残して除去し、除去した部分の一部を前記第1の部分より厚いバイアス磁層で埋め戻すバイアス磁層形成ステップと、
    前記補助シールド層及び前記バイアス磁層の上方に、前記補助シールド層と一体の上部シールド電極層を形成するステップと、
    を有する、磁界検出素子の製造方法。
  14. 前記バイアス磁層形成ステップは、前記バイアス磁性層の膜厚の半値をX、前記上部磁性層の膜厚中心高さと前記下部磁性層の膜厚中心高さの中点の膜厚方向高さh1と、該バイアス磁性層の膜厚中心高さh2との高低差(h1−h2)をYとしたときに、−0.5≦Y/X≦0.5となるように前記バイアス磁層を形成することを含む、請求項13に記載の磁界検出素子の製造方法。
  15. 前記バイアス磁層形成ステップは、前記バイアス磁性層の膜厚中心高さが、前記上部磁性層の膜厚中心高さと前記下部磁性層の膜厚中心高さの中点と一致しているように、前記バイアス磁層を形成することを含む、請求項13に記載の磁界検出素子の製造方法。
  16. 前記絶縁層形成ステップは、
    前記積層体の上にアンダーカットを含まないレジストを設けることと、
    前記レジストをマスクとして、前記積層体を前記第1の部分を残して除去することと、
    前記積層体を前記第1の部分を残して除去した後に前記レジストを除去することと、
    を含む、請求項13から15のいずれか1項に記載の磁界検出素子の製造方法。
  17. 前記バイアス磁層形成ステップは、
    前記補助シールド層の上にアンダーカットを含まないレジストを設けることと、
    前記レジストをマスクとして、前記補助シールド層、前記積層体、及び前記少なくとも一部の下部シールド電極層を前記第2の部分を残して除去することと、
    前記補助シールド層、前記積層体、及び前記少なくとも一部の下部シールド電極層を前記第2の部分を残して除去した後に前記レジストを除去することと、
    を含む、請求項13から16のいずれか1項に記載の磁界検出素子の製造方法。
  18. 前記絶縁層形成ステップは、埋め戻した前記絶縁膜の上面と前記積層体の上面とが揃うように、該絶縁膜を平坦化することを含む、請求項13から17のいずれか1項に記載の磁界検出素子の製造方法。
  19. 前記積層体形成ステップは、前記上部磁性層の上方にTa層を設けることを含む、請求項18に記載の磁界検出素子の製造方法。
JP2008095986A 2007-07-30 2008-04-02 Cpp型磁界検出素子及びその製造方法 Expired - Fee Related JP4458302B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/830,122 US7916429B2 (en) 2007-07-30 2007-07-30 Magnetic field detecting element having thin stack with a plurality of free layers and thick bias magnetic layer

Publications (2)

Publication Number Publication Date
JP2009032383A JP2009032383A (ja) 2009-02-12
JP4458302B2 true JP4458302B2 (ja) 2010-04-28

Family

ID=40332103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095986A Expired - Fee Related JP4458302B2 (ja) 2007-07-30 2008-04-02 Cpp型磁界検出素子及びその製造方法

Country Status (3)

Country Link
US (1) US7916429B2 (ja)
JP (1) JP4458302B2 (ja)
CN (1) CN101359714B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808750B2 (en) * 2007-07-31 2010-10-05 Tdk Corporation Thin-film magnetic head comprising magneto-resistive effect device, and hard disk system
US8149546B2 (en) * 2007-10-26 2012-04-03 Tdk Corporation Magnetic field detecting element including tri-layer stack with stepped portion
US20090128965A1 (en) * 2007-11-15 2009-05-21 Tomohito Mizuno Cpp magneto-resistive element provided with a pair of magnetic layers and nicr buffer layer
US8147994B2 (en) * 2009-02-26 2012-04-03 Tdk Corporation Layered structure having FePt system magnetic layer and magnetoresistive effect element using the same
US8659855B2 (en) * 2010-03-19 2014-02-25 Seagate Technology Llc Trilayer reader with current constraint at the ABS
US8225489B2 (en) * 2010-03-26 2012-07-24 Tdk Corporation Method of manufacturing magnetoresistive element having a pair of free layers
US8289660B2 (en) * 2010-06-16 2012-10-16 Seagate Technology Llc Auxiliary magnetoresistive shield
US8755154B2 (en) * 2011-09-13 2014-06-17 Seagate Technology Llc Tuned angled uniaxial anisotropy in trilayer magnetic sensors
US9036308B2 (en) * 2011-09-21 2015-05-19 Seagate Technology Llc Varyinig morphology in magnetic sensor sub-layers
JP2013080536A (ja) * 2011-10-03 2013-05-02 Toshiba Corp 磁気ヘッド
US8837092B2 (en) * 2012-06-29 2014-09-16 Seagate Technology Llc Magnetic element with biasing structure distal the air bearing surface
US8780508B2 (en) 2012-06-29 2014-07-15 Seagate Technology Llc Magnetic element with biased side shield lamination
JP5675728B2 (ja) * 2012-08-13 2015-02-25 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置及び磁気抵抗効果素子の製造方法
US8737023B2 (en) * 2012-10-15 2014-05-27 Seagate Technology Llc Magnetic reader with tuned anisotropy
US20160055868A1 (en) * 2014-08-21 2016-02-25 HGST Netherlands B.V. Multiple-input-multiple-output sensor designs for magnetic applications
JP2014225320A (ja) * 2014-09-09 2014-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ、及び、磁気記録再生装置
JP2016192445A (ja) * 2015-03-30 2016-11-10 株式会社東芝 メモリ装置
JP6418268B2 (ja) * 2017-03-27 2018-11-07 Tdk株式会社 磁場検出装置
CN110726736B (zh) * 2019-10-18 2021-11-05 南京大学 一种无源低功耗的微波检测方法及其装置和制备方法
US11087785B1 (en) * 2020-06-29 2021-08-10 Western Digital Technologies, Inc. Effective rear hard bias for dual free layer read heads
US11532324B2 (en) * 2020-10-13 2022-12-20 Western Digital Technologies, Inc. Vertical junction to provide optimal transverse bias for dual free layer read heads

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634740B1 (en) * 1993-07-13 1999-09-22 International Business Machines Corporation Magnetoresistive read transducer
US5576914A (en) 1994-11-14 1996-11-19 Read-Rite Corporation Compact read/write head having biased GMR element
EP0768642A3 (en) 1995-10-13 1998-12-16 Read-Rite Corporation Magnetic head with biased GMR element and sense current compensation
JP3291208B2 (ja) * 1996-10-07 2002-06-10 アルプス電気株式会社 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
US6563679B1 (en) * 2000-08-08 2003-05-13 Tdk Corporation Current perpendicular-to-the-plane magnetoresistance read heads with transverse magnetic bias
JP2002092829A (ja) 2000-09-21 2002-03-29 Fujitsu Ltd 磁気抵抗センサ及び磁気抵抗ヘッド
US7035062B1 (en) * 2001-11-29 2006-04-25 Seagate Technology Llc Structure to achieve sensitivity and linear density in tunneling GMR heads using orthogonal magnetic alignments
JP2004221303A (ja) 2003-01-15 2004-08-05 Alps Electric Co Ltd 磁気検出素子及びその製造方法
JP4160945B2 (ja) 2004-01-30 2008-10-08 Tdk株式会社 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
JP2006179566A (ja) 2004-12-21 2006-07-06 Tdk Corp 磁気抵抗効果素子、該磁気抵抗効果素子を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ、該ヘッドジンバルアセンブリを備えた磁気ディスク装置、及び該磁気抵抗効果素子の製造方法
JP4185528B2 (ja) 2005-03-18 2008-11-26 Tdk株式会社 薄膜磁気ヘッド
US7436637B2 (en) * 2005-10-05 2008-10-14 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having an improved pinning structure
US7615996B1 (en) * 2009-01-21 2009-11-10 Tdk Corporation Examination method for CPP-type magnetoresistance effect element having two free layers

Also Published As

Publication number Publication date
US7916429B2 (en) 2011-03-29
JP2009032383A (ja) 2009-02-12
CN101359714A (zh) 2009-02-04
CN101359714B (zh) 2011-04-27
US20090034133A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4458302B2 (ja) Cpp型磁界検出素子及びその製造方法
JP4735872B2 (ja) 薄膜磁気ヘッド
JP4867973B2 (ja) Cpp型磁気抵抗効果素子
JP2009032382A (ja) Cpp型磁界検出素子及びその製造方法
US8891208B2 (en) CPP-type magnetoresistive element including a rear bias structure and lower shields with inclined magnetizations
JP4008456B2 (ja) 磁界検出センサ、薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、およびハードディスク装置
US20090213502A1 (en) Magneto-resistance effect element having stack with dual free layer and a plurality of bias magnetic layers
US7898775B2 (en) Magnetoresistive device having bias magnetic field applying layer that includes two magnetic layers antiferromagnetically coupled to each other through intermediate layer
JP3618300B2 (ja) スピン・バルブ・センサ及びディスク・ドライブ装置
JP2005251254A (ja) 薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、および薄膜磁気ヘッドの製造方法
JP4160945B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
JP2006086275A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
JP2005032405A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
US7782576B2 (en) Exchange-coupling film incorporating stacked antiferromagnetic layer and pinned layer, and magnetoresistive element including the exchange-coupling film
JP4308109B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
JP2007150254A (ja) 磁気抵抗効果素子、基体、ウエハ、ヘッドジンバルアセンブリ、ハードディスク装置、磁気メモリ素子、および磁気センサアセンブリ
US20080226947A1 (en) Magneto-resistance effect element having free layer including magnetostriction reduction layer and thin-film magnetic head
JP4471020B2 (ja) Cpp構造の磁気抵抗効果素子および磁気ディスク装置
JP3683577B1 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよび磁気ディスク装置
JP2006351684A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
JP2005223193A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、ヘッドアームアセンブリ、ヘッドスタックアセンブリ、およびハードディスク装置
JP4387923B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
US7787220B2 (en) Magnetoresistance element with improved magentoresistance change amount and with free layer having improved soft magnetic characteristics
JP2005302938A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、ヘッドアームアセンブリ、ヘッドスタックアセンブリ、およびハードディスク装置
JP2006351111A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees