JP4399843B2 - 電子工業用基板表面からのフォトレジストの除去方法及び除去装置 - Google Patents

電子工業用基板表面からのフォトレジストの除去方法及び除去装置 Download PDF

Info

Publication number
JP4399843B2
JP4399843B2 JP2000190223A JP2000190223A JP4399843B2 JP 4399843 B2 JP4399843 B2 JP 4399843B2 JP 2000190223 A JP2000190223 A JP 2000190223A JP 2000190223 A JP2000190223 A JP 2000190223A JP 4399843 B2 JP4399843 B2 JP 4399843B2
Authority
JP
Japan
Prior art keywords
ozone
cleaning liquid
photoresist
substrate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000190223A
Other languages
English (en)
Other versions
JP2001345304A (ja
Inventor
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
UMS Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
UMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd, UMS Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2000190223A priority Critical patent/JP4399843B2/ja
Publication of JP2001345304A publication Critical patent/JP2001345304A/ja
Application granted granted Critical
Publication of JP4399843B2 publication Critical patent/JP4399843B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電子デバイス用基板上に付着する有機物等の除去が必要な場合の清浄化方法に関するものである。具体的には本発明は、特に半導体用ウェーハまたは液晶用基板などの加工に際して使用するフォトレジストの除去方法及び除去装置に関するものである。さらに本発明はこれら基板上の有機汚染、金属汚染並びに微粒子の除去にも関するものである。
【0002】
【従来の技術】
酸化膜やポリシリコン膜上の微細加工に使用したフォトレジストの除去に関しては、通常硫酸(3容または4容):過酸化水素(1容)の混合液(ピラニアと呼ばれている)で110〜140℃に加熱して10〜20分浸漬する方法が使われている。レジストマスクで高濃度のイオン注入を行うような場合にはレジストが変質してピラニア処理では除去できなくなるので、プラズマ励起酸素によるアッシングが広く使われている。しかし全部のフォトレジストをアッシングすると、ウェーハ表面にレジスト由来の微量金属が残り、かつ高エネルギーのプラズマの為にウェーハ表面にデバイスにとって有害な損傷が生じる。そこでレジスト膜を残してアッシングし、その後はピラニア処理でレジストを除去することが行われている。
【0003】
ピラニア処理は大量の硫酸を工場から排出して、環境上の問題が大きいので、最近オゾン水によるレジスト除去法が登場した。オゾンは低温ほど水への溶解度が増し、約5℃の超純水ではオゾンの溶解量は70〜100ppmに達する。このような低温高濃度のオゾン水でレジストを除去すると、LSI製造で広く使われているI線用ノボラック系のポジ型フォトレジスト膜の場合、800nmの厚さを10乃至15分程度で剥離出来る(剥離速度70〜80mm/分)といわれている。しかしキャリアに入ったウェ−ハを実際に処理すると、全数を完全に剥離するには30分程度を要し実用的ではない。
【0004】
ピラニア処理が好ましくない配線金属膜のエッチング後のフォトレジスト剥離にはN−メチルピロリドン(NMP)による約70℃で15〜20分程度の浸漬処理が行われている。この場合はイソプロピルアルコールのリンスのような有機溶剤のリンスでまずレジストを溶解したNMPの大部分を除いてから純水リンスを行う必要がある。
【0005】
【発明が解決しようとする課題】
ピラニア処理にしろ、NMP処理にしろ、経済性の点から洗浄槽に入れた液でウェ−ハの入ったキャリアを多数処理している。前者では過酸化水素が分解して、水になり、漸次希釈され、過酸化水素を追加してゆかねばならないが、これにも限界がある。従って槽内の薬液の寿命は意外に短く、結局大量の硫酸が排出し環境対策に費用が掛かるのが実情である。後者では液に溶解したレジストが蓄積してゆき、ウェ−ハへの逆汚染量が増加するので、リンス液の負担が大きくなる。従って比較的早い時点で槽内の液の交換が必要となる。両者ともに経済性がよいとはいえない。
【0006】
半導体プロセスでは、微粒子の汚染が最も嫌われており、従って、洗浄液は精密な微粒子除去フィルターを通して洗浄部位に供給されねばならない。一方、高純度薬液用の信頼出来る0.1μm以下のポアサイズの耐薬品性フィルターは弗素樹脂製であるが、処理液が高濃度オゾン含有液であると、徐々にではあるが侵される。したがって、このようなフィルターでも短期間に交換しなければならなくなる。これは管理の点で、また経済的にも好ましくない。
【0007】
本発明は、洗浄系の中で、洗浄を終えた液を実質的に濃度変化の少ない純化法で純化し、かつフィルターに化学的損傷を与えずに液の超微粒子を除いて洗浄部位に供給出来る、洗浄液循環方式の電子工業用基板表面からのフォトレジストの除去方法と除去装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
この目的を達成するために、本発明は、電子工業用基板表面の加工に使用したフォトレジストを、洗浄液で洗浄して除去するにあたり、(a)浄液として、酢酸およびプロピオン酸から選ばれる少なくとも一種の酸を成分として70重量%以上含む液を、洗浄される基板表面に供給し、同時に、オゾンを150mg/リットル以上400mg/リットル以下の濃度で含むオゾン処理ガスを、基板の表面に供給しフォトレジストを除去する段階と、(b)(a)段階を経た洗浄液をオゾン分解容器に移し、前記容器内で洗浄液に、オゾンを150mg/リットル以上を含むオゾン含有ガスを通気して洗浄液中のフォトレジストを分解する段階と、(c)(b)段階を経た洗浄液にオゾンを含まないガスを通気して洗浄液中のオゾンを除去して洗浄液を再生する段階とを有することを特徴とする
【0009】
本発明はまた、洗浄液中に含まれる酢酸及びプロピオン酸以外の成分として、水、無機酸、または無機酸と水の中の何れか1を含むことができる。
【0010】
本発明はまた、上記の方法における(c)段階で再生された洗浄液を(a)段階における洗浄液として再使用に供する方法を提供するものである。この再使用は循環させて行ってもよいし、循環させなくてもよい。また、再生洗浄液の再使用はこの形態に制限されない。
【0011】
さらに本発明においては、洗浄液の基板表面への供給と、オゾン処理ガスの基板表面への供給とが、別々のノズルを経由して行われてもよい。また、洗浄液の流れとオゾン処理ガスの流れとを合流させ、洗浄液とオゾン処理ガスとを1つのノズルから基板表面に供給することもできる。
【0012】
尚、a)段階において、洗浄液が、ノズルに直結する容器内で前記の酸を含む液にオゾンを通気してオゾンを溶解したものであり、洗浄液をノズルから基板表面に供給する方法をも提供する。
【0013】
本発明の電子工業用基板表面からのフォトレジストの除去装置は、電子工業用基板表面の加工に使用したフォトレジストを、洗浄液で洗浄して除去する装置であって、(A)洗浄液として、酢酸およびプロピオン酸から選ばれる少なくとも一種の酸を成分として70重量%以上含む洗浄液を、洗浄される基板の表面に供給し、同時に、オゾンを150mg/リットル以上400mg/リットル以下の濃度で含むオゾン処理ガスを基板の表面に供給してフォトレジストを除去する手段と、(B)(A)手段から回収した洗浄液をオゾン分解容器に移し、前記容器内で洗浄液に、オゾンを150mg/リットル以上を含むオゾン含有ガスを通気して洗浄液中のフォトレジストを分解し、次いでオゾンを含まないガスを通気してオゾンを除去し、(A)手段から回収した洗浄液を再生するオゾン分解手段と、が設けられたことを特徴とする。
【0014】
また、本発明は、(A)に記載のフォトレジストを除去する手段が、基板を支持しスピン回転させる手段と基板の表面に向け洗浄液と、オゾン処理ガスとを同一のノズルまたは別々のノズルから供給する供給手段と、基板の表面に向け新しい洗浄液を供給するリンス手段と、を備えることが好ましい。
【0015】
また、本発明は、(B)に記載したオゾン分解手段が、2以上のオゾン分解容器を含んで構成され、
オゾン分解容器が、(A)手段から回収した洗浄液を供給する排液管と、オゾン発散器と連結しオゾン含有ガス及びオゾンを含まないガスを供給するオゾン供給管と、再生された洗浄液を洗浄液ノズルから基板に供給する再生洗浄液送液管と、を備えることが好ましい。
【0016】
【発明の実施の形態】
本明細書で電子工業用基板とは、シリコンウェーハなどの半導体基板、液晶用ガラス基板、DVD用ニッケル基板等をいう。本発明で洗浄液として使用される酢酸及び/又はプロピオン酸を主成分として含む液は、含有される1種又は2種の酸の合計濃度が70重量%以上であり、好ましくは90重量%以上である。純酢酸も純プロピオン酸も0.3%程度の水を通常含むが、これらも上記の条件に合うものである。
【0017】
また、洗浄液の酢酸及びプロピオン酸以外の成分は水の他に無機酸あるいは無機酸を含む水であってよい。基板表面を構成する物質の種類により、さらに洗浄対象の付着物として金属元素も含まれる場合はその種類に応じて、水または無機酸を選ぶことが出来る。好ましい無機酸は硫酸と硝酸で、処理体の材質によっては2重量%以下のフッ酸を添加が著効を示す場合もある。
【0018】
本発明に使用する酢酸またはプロピオン酸に関しては、価格の面や高純度の市販品が入手しやすいこと、毒性の点で問題が殆ど無いことから、酢酸が好ましい。融点が16℃であるが、水や無機酸を加えると融点はさがるので作業性は良好となる。水や無機酸を30%以下で含有させると、有機物を除去する能力は低下するが金属塩などの溶解度が増し、洗浄対象によっては全体として良好な洗浄効果が得られる場合もある。プロピオン酸は融点が−20℃であり、低温になるほどオゾンの溶解度が大きくなるので、酸に侵されやすい処理体に対し、酸の働きは弱めオゾンは高濃度に出来る低温処理が可能となる。処理体がアルミニウム膜やタングステン膜等の場合は、その腐蝕の危険を出来るだけ下げる為、プロピオン酸やプロピオン酸を含む酢酸の純度を出来るだけ高くすると共に、低温化することが望ましい。しかし、有機物に対する化学的活性が低下するので、処理温度は0℃以下に下げるのは好ましくない。本発明で用いられる洗浄液は、温度0〜40℃でよく、10〜30℃がより好ましい。
【0019】
本発明の洗浄で、最も効果的に除去出来る電子工業用基板表面付着物はフォトリソグラフィ工程で最後に不要となるフォトレジストである。現在使われているポジレジストの大部分はノボラック樹脂系であり、ネガレジストの大部分は環化ポリイソプレン系である。本発明はこれらのすべてに有効である。特にノボラック型I線用ポジレジスト(例えば、JCR(株)製IXシリーズ、東京応化工業(株)製THMR−iPシリーズ等)は98重量%以上の濃度の酢酸によく溶ける。このようなレジストは、140℃60秒程度のベーキングのものでは、純酢酸で1μm/分の早い剥離速度で除去出来る。このような場合に最も相応しい洗浄方式は枚葉スピン洗浄で、回転は500〜1500rpm程度が望ましい。酢酸は表面張力が小さいのでリンスによる脱微粒子作用も強く、溶解処理後5秒程度のスピンリンスを続けて、数千rpmのスピン乾燥を後続させれば実質的に表面吸着酢酸層も除くことが出来る。
【0020】
石英ガラス基板表面の脱脂や金属塩並びに微粒子の除去は、半導体Si表面より一般に洗浄が容易なので、同様の枚葉スピン酢酸洗浄でも、板面上を酢酸供給管先端のノズルで走査するような洗浄でも目的の清浄度が得られることがある。洗浄対象の金属塩の種類によっては、水で薄めて酢酸イオンを多くした方がよい場合もあるが、表面張力の小さいことによる折角の特色を失うので、酢酸濃度は70重量%以上は必要である。このような洗浄の目的には、フッ酸を1〜0.1重量%添加すると、石英ガラス表面がごく僅かエッチングされ洗浄効果は著しく高まる。
【0021】
上記の酢酸の洗浄効果をさらに強化するには、酢酸供給管の他に150mg/リットル以上400mg/リットル以下の濃度のオゾンを含むオゾン処理ガスの供給管を設け、管先端のノズルによりこのオゾンを含むガスの放出を酢酸ノズルによる酢酸の放出と同時に基板面に向けて行なう。ネガ型の環化ポリイソプレン系レジストではイソブレンゴムがオゾンにより極めて早く分解するので、この処理方式が適する。200mg/リットルのオゾンを含むガスの放出を酢酸の放出と同時に行なうと剥離速度は10μm/分にも達する。6インチウェ−ハでは液の放出は1〜2ミリリットル/秒、ガスの放出は5〜10cm/秒程度でよい。酢酸濃度70重量%(残分:水)でも、オゾンガスの濃度を300mg/リットルに高めると、剥離速度は5μm/分程度が得られる。オゾンガスを洗浄液と同時に基板面に放出して洗浄効果が高まることはレジスト除去だけには限らない。オゾンは表面汚染金属のイオン化を助け、また微粒子を基板面に固着させていた有機膜を除去してその離脱を容易にする。即ち、表面の一般的な清浄化に寄与する。
【0022】
酢酸のノズルとオゾンノズルを合体して、1つのノズルとすることも出来る。2つの方式があり、1つは水流ポンプと類似の構造で、洗浄液の放流にオゾンガスを添加して洗浄する。他に1つは霧吹き構造で、オゾンガスの放出で霧化した洗浄液で洗浄する。後者は酢酸が引火する危険があるので、水で希釈した酢酸を使う。1つのノズルで行う場合は洗浄力は強いが、引火の恐れが全くないとはいえないので、ノズルはアルミニウムやチタニウムのような金属で作成して、アースをとる必要がある。従って被洗浄体としては金属膜が好ましい。
【0023】
上記の酢酸等の洗浄液とオゾンを含むガスの流体混合の代りに、ウェーハへの供給ノズルに直結する容器を設けて、この容器内で酢酸等を一旦溜めてオゾンを通気して飽和させてこの洗浄液を該ノズルで供給すると、液中のオゾン濃度が最大になるのでさらに強力な有機物除去効果を得ることが出来る。
【0024】
本発明で効果的に除去出来るシリコンウェーハ表面の付着物はフォトレジストのみに限らない。いわゆる表面汚染物はすべて除去対象となる。一般にクリーンルーム内の汚染は環境雰囲気やプロセス装置そのものに起因する有機汚染、即ちHMDS(ヘキサメチルジシラザン)やDOP(ジオクチルフタレート)等であるが、その他ドライエッチングに起因するエッチング溝側壁の変質膜のような装置内汚染がある。微粒子汚染や金属汚染はこのような有機汚染との混合汚染である。従って本発明の方法で有機汚染を除去すると同時にこれらの汚染も清浄化出来る。しかしCuのような金属の除去には強力な酸化とイオン化による洗浄液への移動が必要である。本発明では、カルボン酸を利用してオゾンを出来るだけ高濃度化し、かつ洗浄液に強酸即ち濃硫酸や濃硝酸を加えてイオン化を容易にすることにより、強力な金属汚染除去を可能にしている。
【0025】
本発明は洗浄後の液をオゾン分解容器に溜め、オゾンガスを通気バブリングさせ、洗浄液が持込む有機物を分解するところに特徴がある。酢酸及びプロピオン酸はオゾンに対して最も安定な有機物の仲間である。オゾンは不飽和結合をもつ化合物や芳香族単環・多環化合物等に対して強い酸化力を示し、その他多くの有機物に作用して分解する。ノボラック樹脂系レジストの場合、樹脂のベースであるフェノールはムコン酸類を経て、また感光剤のナフトキノンアジドはフタール酸等を経て、共に複雑な反応で結局は炭酸ガスと水に分解する。
【0026】
この分解の為には分解容器中の液のオゾンを飽和させ、その濃度が出来るだけ高いことが望ましい。液中のオゾンの飽和濃度(mg/リットル略ppm)と通気されるオゾンを含むガス中のオゾン濃度(mg/リットル)の比即ち分配係数Dについて、発明者は20℃の酢酸のD値を実験で求めた。種々の濃度の酢酸に対して、オゾン濃度200mg/リットルのガスでオゾンを飽和させ、液を分析した。アレクサンドローらはプロピオン酸のD値について報告している(Zh.Obshch.Khim.46,3(1976))ので、両者を表1に示す。
【0027】
【表1】
Figure 0004399843
*Yu.A.Alecsandrouet.al;Zh.Obshch.Khim.46,3(1976)
【0028】
ノボラック樹脂系レジストIX555をオゾン飽和濃度350ppmの酢酸中で5分間オゾンガスのバブリングを継続して分解し、その液を蒸発して残渣の量を秤り、分解段階で生じる推定物質の中、酢酸より沸点が低い物質はグリオキザールと水と炭酸ガスだけであることから、分解残の物質量は元のレジストの約1/2になっていると推定した。オゾン通気時間を長くすればさらに分解が進む筈である。実際には300ppm以上の液のオゾン濃度が必要と考えられる。濃度の希い薬液を使う場合は、ヘンリーの法則と表1で供給すべきオゾンガスの濃度が決められる。
【0029】
有機物分解の進んだ分解容器中の液が満タンになったら、オゾンを含まないガスを通気バブリングさせると、約5分でオゾン濃度は実質的に影響を与えない濃度まで十分に低下する。この液を再び洗浄液ノズルへ供給すれば、洗浄液の濃度の低下はほとんどなく、かつかなり純化された酢酸またはプロピオン酸洗浄液が循環使用されることになる。リンスだけは新しい洗浄液が必要なので、その量の分だけ分解容器中の液を洗浄系以外に排出する。
【0030】
結局処理ウェーハ1枚当たりのリンス液量だけが消費されることになる。しかも排出した液も化学的な純度は高いので、蒸留等による精製で高い回収率が得られる。従って本発明は薬液の使用量の少い点に特徴がある。
【0031】
洗浄液は微粒子を精密フィルターで除去して使用しなければならない。薬液用の精密フィルターはフィルターからの化学的な汚染を避ける面からもフッ素樹脂製のものが必要となっている。しかしオゾンが高濃度で含まれていると、フッ素樹脂は除々に侵され逆に汚染源となる外、液リークのような厄介な問題を生じる。従って従来、早期に交換しなければならなくなった。本発明では洗浄にオゾンを使用して使用後の液を再使用する場合も、該液はオゾンをほとんど含んでいないので、フッ素樹脂製の微粒子フィルターや送液ポンプが劣化する問題は解消される。
【0032】
【実施例】
以下の実施例で使用した酢酸は99.7重量%の純酢酸である。また、使用したオゾンガスは小型の放電方式のオゾン発生装置に1容量%の窒素を含む酸素を0.5〜2リットル/分流して得たオゾン濃度が200mg〜300mg/リットル程度のものである。各実施例の除去処理の対象となったフォトレジスト膜は100nmの酸化膜をつけた6インチp型シリコンウェーハ上に塗布したものである。800nmと1.5μmの厚みのノボラック樹脂系ポジ型のIX500とIX555(商品名、JSR(株)製)、並びに1.2μmの厚みの環化ポリイソプレン系ネガ型のIC28T−3(商品名、富士フィルムオーリン(株)製)を用いた。レジスト膜を形成する為の処理は通常のLSI工程で行われている塗布装置により標準的な手順で行われた。ポジレジストでは、HMDS(ヘキサメチルジシラザン)を塗布し、真空引きを含めて100℃で1分処理し、室温に冷却後上記の厚さで塗布した。ベーキングは140℃、1分である。ネガ型ではHMDS処理をしないこと以外はポジ型の場合に準じた。
【0033】
高度化した超LSIではレジスト剥離後の有機物残存量が極めて少ないこと(有機炭素濃度で2×1013原子/cm以下)が望まれているので、本実施例でのレジスト剥離後のシリコン酸化膜上の残存有機物量は、特開平10−253346号に示されている高感度な荷電粒子放射化分析法により表面有機炭素の絶対量を求めた。
【0034】
参考例]この参考例で除去の対象としたのはレジスト膜厚が800nmのIX500である。実験は図1に示す装置を使用した。
枚葉スピン処理の出来る機構が、ウェーハ1のウェーハ支持具2とそのスピン回転軸3とスピン駆動部4とからなり、ウェーハ支持具2上のウェーハ1がスピン回転するように作られていて、チャンバー底5のあるチャンバー6に収納されている。酢酸は新洗浄液容器7の中に準備されて、Pの記号の送液ポンプにより微粒子フィルター(Fで表示)、洗浄液供給管8を経て洗浄液供給管8の先端にある洗浄液ノズル9より1〜1.5ミリリットル/分の流量でウェーハ1上に供給される。
【0035】
ノボラック樹脂系レジストのベーキングが140℃以下の場合は、純酢酸は1μm/分程度の剥離速度で該樹脂を溶解するので、レジスト中の感光剤が十分に溶解しなくても実質的にレジストが除去される。従って必要なスピン処理時間は1分乃至1分30秒である。
【0036】
レジストを溶解してチャンバーの底に到達した処理済の液はオゾン分解容器10の中へ排液管11とバルブ12を介して落下し、オゾン分解容器10内の液がある量に達したらオゾン供給管13とバルブ14を介してオゾン発生器(図示略)から供給されるオゾンを石英ガラスフィスターをバブラーとしたオゾン発散器15により液にバブリングさせる。この時酢酸に溶解していたレジストはオゾニドを経由して急速に分解し、レジスト溶解液は茶色であったのがたちまち無色透明となる。
【0037】
レジストははげしく分解するが、オゾンに対して化学的に安定な酢酸の濃度はほとんど低下しない。オゾン発生器でのオゾンの発生を中止するとオゾン供給管13、バルブ14を介してチッ素を含む酸素ガスが供給されるようになり、このバブリングでレジスト中のオゾンはパージされ、酢酸中のオゾンは実質的に消失する。こうして酢酸は再生される。この段階で三方コック16、17と再生洗浄液送液管18を介して再生酢酸を洗浄液ノズル9に送れば再生酢酸によるレジスト剥離が行われる。この操作はオゾン分解容器を図のように10と10‘との2連とし交互に使用することにすれば、再生酢酸によるレジスト除去は連続実施出来る。図1には、オゾン分解容器10’における、オゾン分解容器10に伴なう要素11、12、13、14、15、18、21、22、23に対応する要素をそれぞれ11‘、12’、13‘、14’、15‘、18’、21‘、22’、23‘として示す。
【0038】
尚、リンスは新洗浄液容器7中の新しい酢酸で行う。この容器の酢酸は新洗浄液供給管19とバルブ20を介して補給する。オゾン分解容器10中の酢酸が満タンになるとバルブ21とオゾン分解処理済み液排出管22により洗浄系外の廃液槽に送るが、酢酸としての純度が高いので、容易に高収率で蒸留回収出来る。
【0039】
この処理系の特色は送液ポンプ(P)とフィルター(F)は酢酸しか通過しないので、その材質の選定が容易なところにある。オゾンガスはオゾン排気管23、23‘経由で触媒等を使ったオゾン分解器(図示略)へ運ばれる。尚、室温処理でも酢酸は比較的高い蒸気圧を有するので、チャンバー6は開閉出来るチャンバー用蓋24により、処理中は密閉状態の必要がある。
【0040】
この装置で上記IX500レジスト膜に対し、スピン回転1000rpmで流速1.5ミリリットル/秒の純酢酸をノズルから供給し、1分15秒後4000rpmでスピン乾燥した。その後標準的なSC−1洗浄(NHOH:H:HO=1容:1容:5容)に供した後、荷電粒子放射化分析で残存有機炭素量を求めたところ4×1012原子/cmの清浄度に達していた。
【0041】
[実施例参考例と同一の装置で、ウェーハ上に酢酸と同時にオゾンガスを供給するようにした。即ち、オゾン発生装置からのオゾンガスをオゾン供給管25とバルブ26でオゾン供給管25の先端にあるオゾン供給ノズル27に送り、オゾン供給ノズル27を洗浄液ノズル9と並行させた。
【0042】
膜厚1.2μmのイソプレン系ネガレジストIC28T−3膜を有する被処理ウェーハを1000rpmで回転させ、純酢酸を洗浄液ノズル9から流速1.5ミリリットル/秒でウェーハに供給し、同時にオゾン供給ノズル27から200mg/リットルのオゾンガスを流速1リットル/分でウェーハ上の酢酸供給部分に吹付けた。10秒でレジスト膜は除去された。薬液とオゾンの供給開始から30秒後、薬液とオゾンの供給を停止し、ウェーハを4000rpmで回転させて乾燥させた。オゾンを含んだ使用後の酢酸は排液管11を介してオゾン分解容器10に移送した。オゾン発散器15にオゾンを供給し、レジスト溶解液にバブリングさせた。このオゾン分解容器10が処理済液で満されされると処理済液の移送をオゾン分解容器10からオゾン分解容器10’に切替えた。それと同時に、オゾン分解容器10へのオゾンの供給を停止し、酸素のバブリングを開始し、続けると、オゾン分解容器10中のオゾンは消失した。この段階以降、3方バルブ16、17を使って新洗浄液容器7中の純酢酸代りに、上記のようにして得られたオゾン分解容器10内にある再生酢酸を洗浄液ノズル9に供給する。但し、この場合は最後の約5秒に供給する酢酸を新洗浄液容器7の酢酸として、リンスを確実にする。一方、オゾン分解中のオゾン分解容器10’が満されたら、上記操作を繰返す。
【0043】
洗浄処理後に参考例と同様のオゾンによる酢酸中のレジスト分解を行うので、送液ポンプ(P)や液用フィルター(F)にはオゾン濃度の高い液が流れず、これらの材質に特別の考慮が必要でない。
【0044】
オゾンのパージを終えた再生酢酸で上記のようにしてレジスト剥離処理を施したウェーハを別の洗浄機で超純水リンスと乾燥だけを行い、荷電粒子放射化分析で残存有機炭素量を求めたところ1.0×1013原子/cmの清浄度に達していた。HMDS層までほとんど除去出来ていた。
【0045】
[実施例]石英ガラスで図2に示すような水流ポンプに似た形状のノズルを作成し、図1に示す2つのノズル、洗浄液ノズル9、オゾン供給ノズル27を置き換えた。符号28は洗浄液供給管で、符号29が洗浄液ノズルである。洗浄液は洗浄液ノズル29の先端から隘路を通ってオゾン・洗浄液放出管32に流れ込む。オゾンガスはオゾン供給管30で運ばれ符号31のオゾン溜めにあるオゾンを含むガスを巻き込んでオゾン・洗浄液放出管32に流れ込んだ洗浄液とともに放出され、被洗浄基板面に到達する。
【0046】
オゾン・洗浄液放出管32を基板に向け、膜厚1.5μmのIX555レジスト膜の被処理ウェーハを1000rpmで回転させ、純酢酸を供給管から流速2ミリリットル/秒で導入し、オゾン濃度200mg/リットルのオゾンガスを流速0.3リットル/分でオゾン供給管30に導入し、ウェーハ上に吹付けた。約15秒でレジスト膜は除去された。リンス以降は実施例と同様に実施し、同様に荷電粒子放射化分析で残存有機炭素量を求めたところ、ほぼ実施例と有意差のない清浄度が得られた。
【0047】
ウェーハ5枚の処理を終えた後、洗浄処理を停止してオゾン分解容器10のオゾンバブリングを5分続け、液の一部を正確に分取し、白金の蒸発皿で蒸発乾固し、残滓を秤量して、除去したレジストの重量の約1/2が残っていることを確認した。
【0048】
[実施例]石英ガラスで図3に示すような霧吹きタイプのノズルを作成し、実施例の石英ガラス管ノズルを置き換えた。符号33はオゾンガス供給管で、符号34がそのオゾンノズルである。ノズルの先端から隘路を通って基板面に向けたオゾン・洗浄液放出管37にオゾンガスを吹き込む。洗浄液供給管35から洗浄液溜め36に運ばれた酢酸はオゾンノズルの先で霧化して、オゾンガスとともに放出管を通ってウェーハ面に到達する。
【0049】
膜厚1.5μmのIX555レジスト膜の被処理ウェーハを1000rpmで回転させ、80重量%の濃度に水で希めた酢酸を供給管から流速1.5ミリリットル/秒で導入し、オゾン濃度280mg/リットルのオゾンガスを流速1リットル/分でオゾン供給管33に導入し、ウェーハ上に吹付けた。約20秒でレジスト膜は除去された。リンス以降は、リンス液に同様の80重量%濃度の酢酸を使った他は、実施例通りに実施し、同様に荷電粒子放射化分析で残存有機炭素量を求めたところ、2.1×1013原子/cmの結果となった。用いる酢酸の濃度を下げることにより引火の恐れを低減できた。結果としては良好な清浄度が得られた。
【0050】
〔実施例〕実施例において図1のように有機物分解容器を2個使うとすると、オゾン分解容器10中の酢酸中のオゾンをパージする間は、新洗浄液容器7中の純酢酸を洗浄液ノズルに供給しなければならない。再生液量に対するこの純酢酸の使用量の比を下げるには分解容器を大きくしなければならない。例えばウェーハ1枚当りの処理時間を1分30秒、1回の液使用量を100ミリリットルとすると20リットルの容器では5時間で満タンとなり、そのオゾン除去時間30分は新洗浄液容器7の新液の純酢酸を2リットルを使用することになる。
【0051】
しかし、分解容器を3個用い、順に1個の容器で排液収容・オゾンによるレジスト分解を行い、別の1個の容器でオゾンパージの為の酸素等のバブリングを行い、残る1個の容器でオゾン除去で得られた再生酢酸を洗浄に供給することを行うようにすると、オゾンパージの際新洗浄液容器7の新液を使う必要がなくなり、分解容器も小型化することが出来る。上記の処理ならば約3リットルの容量ですむ。装置内の酢酸保有量が少ないことは安全面で好ましい。図4は、このように3個の容器を使用する場合の装置の例示であるが、オゾン分解容器10を1個だけを示し、他の2個の容器は図示を省略した図である。3個の容器は排液管11を軸とした同心円状に配置する。新洗浄液容器7中の新液を使用して当初の稼動を開始し、生じた洗浄処理後の排液はチャンバー6の底から排液管11により落下する。この排液がオゾン分解を行っているオゾン分解容器10に入るよう、ロート部38からの排液をオゾン分解容器10のロート39に流し込む送液管40を回転機構41で順に回転してセットする。
【0052】
ウェーハ1ロット(例えば25枚)処理した時の排液量を容器の所定量とする。まず送液管40をセットした第1オゾン分解容器10がこの所定量に達した時、第2容器(図示せず)に送液管40の先端を移動し、第1オゾン分解容器10ではオゾンをパージする高純度空気の通気をオゾン供給管13と3方バルブ42により行う。3方バルブ42を設けたのは、再生洗浄液送液管18に入り込んだ洗浄排液がオゾン分解を受けにくい為、この液を一旦追い出す為の空気導入用である。第2容器が所定量に達したら、送液管40の先端を第3容器(図示せず)に移動し、第2容器はオゾンパージを行い、第1容器の脱オゾンされた再生酢酸を、三方バルブ42、16,17を開けて0.05μmポアサイズのフッ素樹脂フィルター(F)を経由させた後、洗浄液ノズル9へ送液する。第3容器が所定量に達したら送液管40を第1容器に移し、以降は再生液のみでレジスト剥離が行われ、新洗浄液容器7の新液はリンスのみに使用される。このリンス液相当分を所定の時期に排液管43で回収タンク(図示せず)に回収する。尚、符号44は3方枝の管として、3箇の再生液送液管に対応させる。
【0053】
実施例と同じレジスト膜付ウェーハについて同じ洗浄条件でこの3容器を備えた実験装置により、300枚剥離を行った。レジスト剥離処理は40秒行い(80ミリリットル使用)、新液酢酸によるリンスは流速2ミリリットル/秒で10秒(20ミリリットル使用)行い、4000rpmでスピン乾燥した。送液管40の回転は11回なされた。最後の回転の後では再生酢酸はレジストの分解物が0.1%オーダーで含まれている計算になるが、この洗浄後のウェーハの残存有機炭素量は2×1013原子/cm以下であった。従って再生酢酸は十分にレジスト剥離能力をもつ。使用した酢酸量はこの時点で約10リットルであり、1枚当り30ミリリットルと僅かな量で洗浄出来る。この洗浄系では水を使用しないので酢酸は希釈されることがない。従ってこれらはすべて蒸留等により高収率での精製回収が可能で、ほとんど全量が再使用出来る。
【0054】
〔実施例〕オゾン濃度の出来るだけ高いカルボン酸で電子工業用基板を洗浄したい場合、例えば高濃度のイオン注入を行ったレジストでもパターンによっては酸素アッシングを行わずに剥離することが出来る。オゾンが高濃度になると洗浄液に接する材料は石英ガラス以外は信頼出来ない。そこで本発明の概念を利用し、オゾンもカルボン酸も精密濾過を終えた後、洗浄液放出ノズルに直結した石英ガラス製溶解器具でオゾン溶解を行う方法を実施した。
【0055】
カルボン酸は低温になるほどオゾンの溶解度が大きくなる、しかし酢酸は凝固点が16.7℃なので、凝固点−21.5℃のプロピオン酸を10重量%混合した。この場合0℃でも凝固しない。5℃でオゾン250mg/リットルの酸素によりオゾンを飽和させたところオゾン濃度800ppmが得られることが分かった。このような液による洗浄処理を実施例の装置で可能にする為、図5に示すように洗浄液系とリンス液系を分けた。洗浄液系では冷却器45を通したプロピオン酸入り酢酸を精密濾過し、石英ガラス製洗浄液ノズル9に直結した石英ガラス製のオゾン飽和洗浄液調製器46に送る。オゾンガスはバルブ26によりオゾン供給管25で供給される。洗浄後のリンス液は送液ポンプ(P)でリンス液供給管47により、精密濾過フィルタ(F)を経てオゾン供給ノズル27に送られる。
【0056】
石英ガラス製のオゾン飽和洗浄液調製器46の構造を図6に示す。洗浄液供給管48とオゾン供給管25と先端が洗浄液供給ノズルに連なる配管49が貫通した開放・閉鎖自在な密閉容器50と、が溶解器の本体である。この上部にはオゾンガス排気51が設けられ、この先端にのみフッ素樹脂製バルブ52が取り付けられ、洗浄の際以外は開放されている(このバルブは液に接しないので腐蝕の恐れが小さい)。冷却されたプロピオン酸入酢酸は、洗浄液供給管48で容器内に導入され、バルブを経て導入されるオゾンガスは、精密濾過された後、オゾン発散器53により液内でバブリングし、数分でオゾンが飽和する。飽和後フッ素樹脂製バルブ52を閉じるとオゾン飽和液は洗浄液供給ノズルに連なる配管49の先洗浄液ノズル9からウェーハ面に放出され、枚葉スピン処理が行われる。
【0057】
微細加工された1.2μmの厚さのノボラック樹脂系レジストIX500(商品名)に対し、11イオンを1015/cm、30keVで注入して作成した評価専用ウェーハに対し、上述のようにして得たオゾン濃度700ppm、5〜8℃のプロピオン酸10重量%の酢酸で、流量2ミリリットル/秒の1000rpmのスピン洗浄を1分間行った。同じ組成の室温リンス液で10秒同様のスピンリンスを行い、スピン乾燥後走査型電子顕微鏡で表面を観察した。レジストは十分に除去されていた。
【0058】
〔実施例〕リアクティブイオンエッチングによる微細加工ではレジスト膜面が変質し、薬液による剥離が難しくなるので、酸素プラズマによるアッシングでレジスト剥離を行うが、この場合レジスト中の不純物である金属成分が灰分となって剥離後の加工表面に残り、またレジストによる変質膜が深いエッチング溝の側壁に生じてこれは酸素プラズマでは除けない。ポジレジストIX555を使用してこのように微細加工したウェーハ試料表面に残存した金属元素をまず分析した。気相分解してフレームレス原子吸光法で定量した結果、Naが2×1011原子/cm、Cuが8×1010原子/cm、Znが1.2×1011原子/cm検出された。
【0059】
同様に作成したウェーハ試料に対して、純酢酸の代りに酢酸70重量%と比重1.42の硝酸(HNO:70重量%)30重量%の混合液を用いた他は、図1の装置で、参考例と同様に操作した。但し、スピン洗浄時間は30秒とした。同じ組成の液でリンス5秒の後、別のリンサードライヤーに該ウェーハを移して超純水リンスし、スピン乾燥した。該洗浄ウェーハについて前記のように金属元素を定量したところ、上記元素のいずれもが5×10原子/cm以下と、清浄化が達成されていた。また洗浄部分を走査型電子顕微鏡で検査したところ、エッチング溝側壁の変質膜は十分に除かれていた。
【0060】
〔実施例〕半導体工場のクリーンルームの雰囲気からは、ポジレジスト用密着剤として多量に使われるHMDSがウェーハを汚染する機会が多い。この有機物は洗浄半導体プロセスで最も除去の難しいものの一つで、高温のピラニア処理が必要とされ、特にCuが汚染したウェーハをさらにHMDSが汚染した場合は、この処理でないと満足な清浄化が出来なかった。そこで、放射性の64Cuで標識したCuをフッ酸から5×1012原子/cm故意汚染させたウェーハに対し、前述の手順でHMDSを塗布した試料を作成した。この試料ウェーハに対し、実施例の洗浄装置で冷却器45を除いて、純酢酸にオゾン濃度250mg/リットルのガスでオゾンを飽和した液のノズル放出で室温1分のスピン洗浄を行った。しかし、処理後のウェーハの放射能測定で64Cuの残存は6×1011原子/cmあった。純酢酸(99.7%)98容に対し、濃硫酸(96%)2容を加えた混酸では64Cuの残存量は3×1010原子/cmで、さらにこれに対してフッ酸(50%)を1/200容添加すると64Cuの残存量は4×10原子/cmと良好な洗浄効果が得られた。酢酸95容・濃硫酸5容の洗浄液では64Cuの残存量は3×10原子/cm2で最良の結果となった。しかし、この混酸で硫酸の濃度をさらに増すと64Cuの洗浄効果は低下し、酢酸60重量%・濃硫酸40重量%では64 Cuはほとんど除去出来なかった。洗浄後のウェーハの荷電粒子放射化分析では酢酸98容・硫酸2容が残存有機炭素量が最も少く1×1013原子/cm以下となり、純酢酸もほとんど同様であった。
【0061】
【発明の効果】
本発明によれば、洗浄液がオゾンに対して安定な有機物の酢酸並びにプロピオン酸であるから、洗浄中に被洗浄体の電子工業用基板表面の有機物を溶解して除去した場合、その溶解物をオゾンを含むガスで分解すると、有機物の一部は炭酸ガスと水にまで分解するので、結局純化が行われ、循環再使用出来る。リンスには小量の新しい薬品を供給しなければならないので、その分だけ使用済の酢酸等を洗浄系外に排出すればよいことになる。しかもこの排出液も化学的純度は十分に高いので、容易に蒸留等で再使用出来、基本的に薬液は工場からの排水に入らない。従って経済性に優れ、また半導体産業起因の環境汚染を大幅に低減出来る。また本発明は原理的に水を使用しないので、大量に超純水の必要な半導体洗浄システムに代れば、水資源を大幅に節約出来る。
【0062】
本発明においては、別々の配管で供給される薬液とオゾンガスとを同時に放出する方式を可能にするので、高い濃度のオゾンが洗浄領域に作用して、1μm程度の厚さのノボラック型ポジレジストも環化ポリイソプレン型ネガレジストも極めて短時間即ち十数秒で除去出来る。従って枚葉スピン処理が適用出来、レジスト剥離の生産性が著しく向上する。また、酢酸及びプロピオン酸に対して、水、硫酸、硝酸等を加えることにより、金属汚染物も同時に除去出来る。
【0063】
洗浄後の液はオゾンによる純化を受けた後、オゾンを除去して循環再使用するので、一般的使われるフッ素樹脂製送液ポンプやプラスチック系の高性能微粒子用フィルターを新しい洗浄液の場合と同様に利用出来る。従って一般にオゾン利用洗浄で腐食の恐れがある配管系の材質の問題が解決出来る。
【0064】
【図面の簡単な説明】
【図1】本発明を枚葉スピン洗浄で行なう装置の縦断面図。
【図2】本発明を1つのノズルで行なうときの水流ポンプ方式ノズルの縦断面図。
【図3】本発明を1つのノズルで行なうときの噴霧器方式ノズルの縦断面図。
【図4】3個のオゾン分解容器を備えた本発明の装置を示す概略図。
【図5】洗浄液系とリンス系とが分れた本発明の装置を示す概略図。
【図6】オゾン飽和洗浄液調製器を示す概念図。
【0065】
【符号の説明】
1.ウェ−ハ
2.ウェ−ハ支持具
3.スピン回転軸
4.スピン駆動部
5.チャンバー底
6.チャンバー
7.新洗浄液容器
8.洗浄液供給管
9.洗浄液ノズル
10.オゾン分解溶液
11.排液管
12.バルブ
13.オゾン供給管
14.バルブ
15.オゾン発散器
16.三方コック
17.三方コック
18.再生洗浄液送液管
19.新洗浄液供給管
20.バルブ
21.バルブ
22.オゾン分解処理済み液排出管
23.オゾン排気管
24.チャンバー用蓋
25.オゾン供給管
26.バルブ
27.オゾン供給ノズル
28.洗浄液供給管
29.洗浄液ノズル
30.オゾン供給管
31.オゾン溜め
32.オゾン・洗浄液放出管
33.オゾン供給管
34.オゾンノズル
35.洗浄液供給管
36.洗浄液溜め
37.オゾン・洗浄液放出管
38.ロート部
39.ロート部材
40.送液管
41.回転機構
42.三方コック
43.排液管
45.冷却器
46.オゾン飽和洗浄液調製器
47.リンス液供給管
48.洗浄液供給管
49.洗浄液供給ノズルに連なる配管
50.開放・閉鎖自在な密閉容器
51.オゾンガス排気管
52.フッ素樹脂製バルブ
53.オゾン発散器

Claims (9)

  1. 電子工業用基板表面の加工に使用したフォトレジストを、洗浄液で洗浄して除去するにあたり、
    (a)前記洗浄液として、酢酸およびプロピオン酸から選ばれる少なくとも一種の酸を成分として70重量%以上含む液を、洗浄される基板の表面に供給し、同時に、オゾンを150mg/リットル以上400mg/リットル以下の濃度で含むオゾン処理ガスを、前記基板の表面に供給して前記フォトレジストを除去する段階と、
    (b)前記(a)段階を経た洗浄液をオゾン分解容器に移し、前記容器内で前記洗浄液に、オゾンを150mg/リットル以上を含むオゾン含有ガスを通気して前記洗浄液中のフォトレジストを分解する段階と
    (c)前記(b)段階を経た洗浄液にオゾンを含まないガスを通気して前記洗浄液中のオゾンを除去して前記洗浄液を再生する段階とを有することを特徴とする電子工業用基板表面からのフォトレジストの除去方法。
  2. 前記洗浄液中に含まれる酢酸及びプロピオン酸以外の成分として、水、無機酸、または無機酸と水の中の何れか1を含むことを特徴とする請求項1に記載の電子工業用基板表面からのフォトレジストの洗浄方法。
  3. 前記(c)段階で再生された洗浄液を前記(a)段階における洗浄液として再使用に供することを特徴とする請求項1に記載の電子工業用基板表面からのフォトレジストの除去方法。
  4. 前記洗浄液の前記基板表面への供給と、前記オゾン処理ガスの前記基板表面への供給とが、別々のノズルを経由して行われることを特徴とする請求項1に記載の電子工業用基板表面からのフォトレジストの除去方法。
  5. 前記洗浄液の流れと前記オゾン処理ガスの流れとを合流させ、前記洗浄液と前記オゾン処理ガスとを1つのノズルから前記基板表面に供給することを特徴とする請求項1に記載の電子工業用基板表面からのフォトレジストの除去方法。
  6. 前記(a)段階において、前記洗浄液が、ノズルに直結する容器内で前記の酸を含む液にオゾンを通気してオゾンを溶解したものであり、前記洗浄液を前記ノズルから前記基板表面に供給することを特徴とする請求項1に記載の電子工業用基板表面からのフォトレジストの除去方法。
  7. 電子工業用基板表面の加工に使用したフォトレジストを、洗浄液で洗浄して除去する装置であって、
    (A)前記洗浄液として、酢酸およびプロピオン酸から選ばれる少なくとも一種の酸を成分として70重量%以上含む液を、洗浄される基板の表面に供給し、同時に、オゾンを150mg/リットル以上400mg/リットル以下の濃度で含むオゾン処理ガスを前記基板の表面に供給して前記フォトレジストを除去する手段と、
    (B)前記(A)手段から回収した洗浄液をオゾン分解容器に移し、前記容器内で前記洗浄液に、オゾンを150mg/リットル以上を含むオゾン含有ガスを通気して前記洗浄液中のフォトレジストを分解し、次いでオゾンを含まないガスを通気してオゾンを除去し、前記(A)手段から回収した洗浄液を再生するオゾン分解手段と、が設けられたことを特徴とする電子工業用基板表面からのフォトレジストの除去装置。
  8. 前記(A)に記載のフォトレジストを除去する手段が、前記基板を支持しスピン回転させる手段と、前記基板の表面に向け前記洗浄液と、前記オゾン処理ガスとを同一のノズルまたは別々のノズルから供給する供給手段と、前記基板の表面に向け新しい洗浄液を供給するリンス手段と、を備えることを特徴とする請求項7に記載の電子工業用基板表面からのフォトレジストの除去装置。
  9. 前記(B)に記載したオゾン分解手段が、2以上の前記オゾン分解容器を含んで構成され、
    前記オゾン分解容器が、前記(A)手段から回収した洗浄液を供給する排液管と、オゾン発散器と連結し前記オゾン含有ガス及び前記オゾンを含まないガスを供給するオゾン供給管と、再生された洗浄液を洗浄液ノズルから前記基板に供給する再生洗浄液送液管と、を備えることを特徴とする請求項8に記載の電子工業用基板表面からのフォトレジストの除去装置。
JP2000190223A 2000-03-28 2000-06-23 電子工業用基板表面からのフォトレジストの除去方法及び除去装置 Expired - Lifetime JP4399843B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190223A JP4399843B2 (ja) 2000-03-28 2000-06-23 電子工業用基板表面からのフォトレジストの除去方法及び除去装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-89741 2000-03-28
JP2000089741 2000-03-28
JP2000190223A JP4399843B2 (ja) 2000-03-28 2000-06-23 電子工業用基板表面からのフォトレジストの除去方法及び除去装置

Publications (2)

Publication Number Publication Date
JP2001345304A JP2001345304A (ja) 2001-12-14
JP4399843B2 true JP4399843B2 (ja) 2010-01-20

Family

ID=26588626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190223A Expired - Lifetime JP4399843B2 (ja) 2000-03-28 2000-06-23 電子工業用基板表面からのフォトレジストの除去方法及び除去装置

Country Status (1)

Country Link
JP (1) JP4399843B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951898B1 (ko) * 2002-12-09 2010-04-09 삼성전자주식회사 포토레지스트 제거용 스트리핑 조성물 및 이를 사용한액정 표시 장치의 박막 트랜지스터 기판의 제조방법
JP4837316B2 (ja) * 2005-06-30 2011-12-14 オプトレックス株式会社 表示パネルの端子洗浄装置
JP5250426B2 (ja) * 2006-12-27 2013-07-31 平田機工株式会社 再生装置及び再生方法
JP6594030B2 (ja) * 2015-05-13 2019-10-23 株式会社日立製作所 有機物分解装置及び有機物分解方法
JP6607828B2 (ja) * 2016-06-17 2019-11-20 株式会社日立製作所 有機物分解装置及び有機物分解方法
CN107185881A (zh) * 2017-06-16 2017-09-22 成都赋阳技术开发有限公司 一种医疗清洗设备

Also Published As

Publication number Publication date
JP2001345304A (ja) 2001-12-14

Similar Documents

Publication Publication Date Title
JP3914842B2 (ja) 有機被膜の除去方法および除去装置
TW466558B (en) Method of removing contamination adhered to surfaces and apparatus used therefor
US6551409B1 (en) Method for removing organic contaminants from a semiconductor surface
WO2000030164A1 (fr) Procede d'elimination d'un film de photoresine
JP2002543976A (ja) 超希薄洗浄液を使用して、ミクロ電子基材を洗浄する方法
JPH05152203A (ja) 基板処理方法および処理装置
JP4399843B2 (ja) 電子工業用基板表面からのフォトレジストの除去方法及び除去装置
US20060040506A1 (en) Semiconductor fabrication methods and apparatus
JPH04179225A (ja) 洗浄方法
JP2003203856A (ja) 有機被膜の除去方法
JP3538114B2 (ja) 表面付着汚染物質の除去方法及び除去装置
JP4844912B2 (ja) フォトレジストの除去方法及び除去装置
JP2003305418A (ja) 基体表面の有機被膜の除去装置
JP2003103228A (ja) 電子工業用基板表面附着物の除去装置及び除去方法
JP2891578B2 (ja) 基板処理方法
WO2000007220A2 (en) Wet processing methods for the manufacture of electronic components using ozonated process fluids
JP2004104090A (ja) 表面付着汚染物質の除去方法及び除去装置
JP2007103429A (ja) 洗浄装置および洗浄方法
JPH11293288A (ja) 電子材料用洗浄水及び電子材料用洗浄液
JP5143230B2 (ja) 電子デバイス基板表面からの有機含有材料のストリッピングと除去
JP2008294169A (ja) 高濃度オゾン水製造方法とその装置及び基板表面処理方法とその装置
JP2015146435A (ja) デバイス用Ge基板の洗浄方法、洗浄水供給装置及び洗浄装置
JP2014225570A (ja) デバイス用Ge基板の洗浄方法、洗浄水供給装置及び洗浄装置
JPH11217591A (ja) 電子材料用洗浄水
JP2001054767A (ja) 洗浄方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091016

R150 Certificate of patent or registration of utility model

Ref document number: 4399843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term