JP4392861B2 - 触媒反応方法および装置 - Google Patents

触媒反応方法および装置 Download PDF

Info

Publication number
JP4392861B2
JP4392861B2 JP50504697A JP50504697A JP4392861B2 JP 4392861 B2 JP4392861 B2 JP 4392861B2 JP 50504697 A JP50504697 A JP 50504697A JP 50504697 A JP50504697 A JP 50504697A JP 4392861 B2 JP4392861 B2 JP 4392861B2
Authority
JP
Japan
Prior art keywords
net
surface area
catalytic
ceramic
catalytic reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50504697A
Other languages
English (en)
Other versions
JPH11508816A (ja
Inventor
シルヴェルサンド,アールストレム,フレデリク
Original Assignee
カタートル アクチボラゲット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カタートル アクチボラゲット filed Critical カタートル アクチボラゲット
Publication of JPH11508816A publication Critical patent/JPH11508816A/ja
Application granted granted Critical
Publication of JP4392861B2 publication Critical patent/JP4392861B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/506Method of making inorganic composition utilizing organic compound, except formic, acetic, or oxalic acid or salt thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/514Process applicable either to preparing or to regenerating or to rehabilitating catalyst or sorbent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明の技術分野
本発明は、焼却プラントにおいて生じる煙道ガスを精製する方法に関し、また、そのような浄化を実行するための触媒装置に関する。本発明は、一酸化炭素と軽および重炭化水素との両方に関する煙道ガスの効率的な精製または清浄化を可能にする。また、本発明に係る方法および装置は、他の化学反応にも用いることができる。
ある種のタイプの焼却プラントからの煙道ガスは、一酸化炭素(CO)、軽炭化水素(VOC)および重芳香族炭化水素(PAH)等の、我々の健康および環境に有害である汚染物質を危険量含有している。これらの汚染物質の中で、PAH排気は、癌を生じさせる可能性があるので最も危険なものと考えられている。一方、VOC炭化水素は、光化学スモッグを形成し、温室効果の原因となる可能性があるより多くの物質を含有する。最も大きな問題は、固体燃料を燃焼し、システム溶液および操業制御がしばしば不適切である小さなプラントで生じる。また、燃料が低品質または大量の水分を含んでいる場合には、放出物が多くなる。このような燃料の例は、処理プラントから出るスラッジ、食品産業廃棄物、紙およびパルプ産業から出る廃棄物、および化学産業から出る水と有機物質との混合物が挙げられる。燃料のエネルギー含有量が低く、完全燃焼するには燃焼温度が低すぎるため、有害化合物が形成される。
背景技術
本発明以前は、CO,VCOおよびPAHに関する煙道ガスの浄化は、好ましくは触媒を用いて行われていた。これらは、触媒反応活性化合物で被覆された、ペレット、モノリスまたはファイバを主体としている。これらの触媒溶液は許容できる程度の浄化をもたらすことができるが、これらは、しばしば適用を妨げるいくつかの重大な種々の欠点を有する。ペレットおよびファイバの両方のベッドは、大抵の用途において、圧力を著しく大きく低下させる。さらに、ペレットの場合、触媒効率が非常に低い、これは、触媒の大部分が、燃焼中の拡散効果により汚染物質および酸素にとって寄りつきにくいためである。モノリスは、数千の流路を有するハニカム状構造物である。このような構造物は、高価であり、堆積物(すすおよび灰)の清掃が困難であり、熱に起因する物質の伸張により、温度移行時にクラックが生じる場合がある。
セラミック層を有するネット構造物を提供することにより、貴金属の消費を低減できるのと同時に、その活性をかなりの程度向上することができる。したがって、試験は、通常の鋼線ネットを、高比表面積を有するセラミック粒子の懸濁液に沈めた状態で(スリップキャスティング)行われた。乾燥および焼成工程により、セラミック層を鋼線ネットに固着させることができるようになり、結果として、高比表面積のセラミック層が得られる。次いで、この層は、従来の含浸工程において、活性金属を付与される。このタイプの触媒デザインは、異なるタイプの炭化水素の排気を浄化するために用いられ、その結果は満足のいくものであった。現存する問題は、セラミック性の薄め塗膜(wash coat)の金属線への固着が不十分であり、薄め塗膜の所定部分が徐々に剥離することである。この崩壊の過程は、モノリスよりもネット構造物の方がより顕著であることは明らかである。なぜなら、ネット構造物は、固有の移動性という特徴があり、流れ方向に押すことによって振動させることができるからである。また、ダストを含有するガスの浄化においては、ネットは、ブラッシングまたはこれに類する機械的清掃をすることができること、そしてこれが定期的に行われるということは、本質的なことである。薄め塗膜は、金属線にゆるく付着している場合があるので、その層は、全体的に、または部分的にネット構造体から脱落し、この場合には、触媒はその活性を失う。
発明の概要
吹付け(spraying)(フレーム溶射、空気プラズマ溶射、高速溶射、爆発溶射(detonation spraying)、コロナブラッシング(corona brushing)、保護ガスプラズマ溶射(protective gas plasma spraying)、真空プラズマ溶射(vacuum plasma spraying)およびレーザを用いた表面被覆方法)による熱形成方法の研究を通して、CO、VOCおよびPAHに関する煙道ガスを浄化するために用いることができる、ネットベースの多孔性セラミック触媒を、全く思いがけなく製造できるようになった。本発明は、ネットベースセラミック触媒の新規な製造方法、およびこのような触媒を煙道ガスの浄化に利用する方法を含む。本発明は、200〜1000℃の温度範囲内でCO、VOCおよびPAHの効果的な清浄化を可能とする。本発明は、高温の安定したネット構造物からなり、それは好ましくは金属ベースであり、ある種の熱吹付け形成(thermal spray-forming)工程、好ましくはフレームまたは空気プラズマ溶射工程を通して、多孔性セラミック層で被覆される。
ネット構造は、ネットまたは、多数の開口を具備するディスクとすることができる。ネットまたはディスクは、平面または円筒形状であってもよく、または排気がネット構造を貫通して通過する、あるいはその傍らを通過する他の形状であってもよい。エキスパンドメタル(展伸金属)のディスクの形態も、さらに他の選択肢として言及することができる。セラミック層は、種々の材料で構成してもよいが、好ましくは、ジルコニアまたはアルミナである。向上したまたは輪郭のはっきりした気孔(pore)構造を達成するために、可燃性成分の添加物(例えば、ポリマおよび植物性物質)が、溶射による製造工程に用いられる原セラミック材料内に存在する。溶射形成工程において、燃焼が、二相の層の可燃性成分の部分で生じ、輪郭のはっきりした気孔構造が生成される。多孔性の溶射形成された層にセラミック材料を沈殿させることにより、セラミック層の比表面積(セラミック材料のm2/g)が著しく向上するが、それは、適切で十分な触媒活性を達成できるために必要である。沈殿されたセラミック相は、いくつかの異なる材料からなっていてもよいが、好ましくは、アルミナ、シリカ、二酸化チタン、ジルコニア、またはこれらの混合物からなる。また、表面積拡大層は、溶射により形成された層の上面への薄め塗膜として設けてもよい。溶射形成層の平坦でない表面構造は、これにより、スリップキャスティング工程により設けられる薄め塗膜のための効果的なベースを構成する。また、溶射形成装置から発生する粒子ジェットの中にセラミック粉末を入れることにより、比表面積をかなりの程度増大することができる。このための必要条件は、堆積されるセラミック粉末が高い比表面積を有することと、堆積が基材表面の直ぐ近傍で起きることである。これにより、堆積された粉末の著しい加熱が生じることがなく、したがって、比表面積の減少の原因となる溶融プロセスを排除することができる。セラミック層は、方法1)直接溶射+沈殿による二次的表面積拡張、または、方法2)セラミック粉末の同時堆積を伴う溶射、または、方法1)および方法2)の組み合わせであり、これに続いて、含浸工程による触媒活性物質のコーティングがある。含浸中、セラミック層の気孔構造は、例えば、貴金属、遷移金属またはこれらの組み合わせを含む活性成分を含有する溶液に浸される。含浸の工程において、ネット構造体は、乾燥され、次いで、加熱が、酸化または還元環境下で実施される。
本発明は、現存する触媒装置と比較して多くの利点を保証する。第1に、触媒活性部位への分子の効果的な搬送を許容する薄い円筒形セラミック層のマクロ多孔性のため、触媒効率が非常に良好になる。第2に、一列に搭載されたネット構造物が、乱流を増加させ、物質および熱移動係数が向上させて触媒効率が向上する。第3に、開口構造の触媒デザインにより、圧力降下を無視できるようになる。第4に、触媒の表面は、すすおよび灰等の堆積した粒子を機械的に清掃するためのアクセスを容易とする。第5に、モジュールベースの触媒反応体アセンブリは、独特な適用または改良の可能性を提供する。本発明は、異なる汚染物質には、浄化のために異なる活性物質が必要となるという認識に基づく。異なるコーティングのネットを一列に配置することによって、煙道ガスにおいては、同時に非常に多数の異なる汚染物質を浄化することができる。さらに、ネットを主体とする構造は、異なる形状の要求(形状および寸法)に対し、非常に容易に適合させることができる。第6に、不活性化が一つまたは複数のネットにだけ生じた場合には、個々に、異なる触媒反応体ネットを取り替えることができる。第7に、モジュールベースの触媒反応体アセンブリは、製造工程を単純化することを可能とし、触媒反応体の有効に再利用することができる。
本発明には、多くの用途がある。上述した説明に基づく触媒反応体活性ネット構造は、高速反応の触媒作用に適用できる。このような反応の例を以下に示す:
・一酸化炭素および炭化水素を含む排気および煙道ガスの浄化
・エネルギー生産のための気体燃料の触媒的燃焼
・溶媒蒸気(フューム)を含む通気の触媒的浄化
・悪臭成分を含むガスの触媒的浄化
・自動車用途での2機能(two-way)および3機能(three-way)の触媒作用
・アンモニアの酸化による硝酸の生成
・エチレンの酸化によるエチレンオキシドの生成
・メタン、アンモニア、および酸素の反応によるシアン化水素の生成
・アルコールの部分酸化によるアルデヒドの生成
・炭化水素の水蒸気改質
・水性ガス反応の触媒作用
・メタン化(Methanizing)
本発明は、一酸化炭素および炭化水素を含む種々のタイプの焼却装置からの排気および煙道ガスを浄化するのに用いることができる。これらの用途において、さほどきれいでないガスを、最低温度200℃で、交互に一列に配置される一つまたは若干数の触媒ネットを通すように導く。ネットは、任意の形状に設計されてもよいし、例えば、プレート、ディスク、または円筒状に成形されてもよい。好ましくは、貴金属が、または、一つまたはそれ以上の金属酸化物と組み合わされた貴金属が触媒活性物質として用いられ。酸化の間、排気または煙道ガスに存在する酸素が、普通に使用される。酸素含有量が低すぎる場合には、二次的な空気が、触媒反応体よりも前で浄化されないガス流中に供給される。
ある種の場合において、中性ガスまたは液体石油ガス等の可燃性成分を多量に含む気体混合物の燃焼に関心が注がれる。この目的は、熱エネルギーを生成することにある。この用途において、放熱により最大限の冷却が達成できるように触媒反応体を設計することが本質的である。これにより、触媒反応体の加熱は回避される。さもなければ、触媒反応体は破滅されてしまう。その開口構造と同様に、ネット構造の開口構造だけでなく可撓性も、触媒反応体が熱放射のための凹部(depressions)として機能する冷却表面により囲まれている限り、熱放射による有効な冷却を可能にする。この用途において、パラジウムは、この金属が高温安定性であることが立証されているため、活性物質として好適に用いられる。ネットの温度レベルは、操業中、600および1100℃の間であり、好ましくは700および900℃の間である。
いくつかの産業では、換気用空気中にかなりな量の溶媒を排出する。触媒ネットは換気用空気からこのような成分を除去するのに用いることができる。次いで、溶媒を含む気体は、200℃より高い温度で多数のネットを通るように導入される。ネット触媒反応体の独自の可撓性によって、種々の空間的制限および他の構造要求にたやすく適合することができる。貴金属は、活性物質として好適に用いられる。
発香性物質は、一定の産業、例えば、食品産業を取り巻く環境において、明白な問題の原因となる場合がある。発香性物質は、しばしば、以下の群に分類することができる:アミン類、メルカプタン類、またはテルペン類である。悪臭問題は、200℃を超える温度で、一つまたはいくつかの触媒ネットを通して、発香性物質が混ざった空気を処理することによって、かなりの程度低減することができる。この目的で、貴金属および/または金属酸化物が、活性物質として用いられる。ある例には、ネットは、本願明細書に開示された堆積(depositing)技術を適用してスプレー形成層中にゼオライトを組み込んだネットが用いられる。
本発明に係るネットはまた、自動車用途で、二機能(ツーウェイ)触媒作用(一酸化炭素および炭化水素に関する浄化)、および三機能(スリーウェイ)触媒作用(一酸化炭素、炭化水素、窒素酸化物に関する浄化)の両方において、用いることができる。最初に述べた場合において、排気の酸素含有量が非常に高い(二サイクルエンジンまたはディーゼルエンジン)ため、汚染物質は、ネット触媒反応体、好ましくは貴金属を含むものを横切る際に酸素作用で燃焼される。後に述べた場合において、燃焼は、全ての酸素が標準的に消費される(ラムダプローブ(lambda probe)を装備した四サイクルエンジン)ように燃焼が制御される。その結果、最低温度200℃で、窒素酸化物(酸化剤)、一酸化炭素および炭化水素(還元剤)の間の反応を達成することができる。貴金属、最も有益なプラチナおよびロジウムの混合物は、触媒活性物質として用いられる。可能な限り圧力降下が制限されるようにネットが設計され、それは、比較的広い流れ断面を有する一列に搭載された少数のネットを含む。ネット構造は、好ましくは、円柱状に設計され、排気がネット構造を通って、放射状に導かれるにようにしている。
貴金属で被覆された多数の触媒ネットを通してアンモニアおよび空気の混合物を処理することによって、一酸化窒素が得られるが、これはその後、さらに酸化され、水に溶解され、その結果、硝酸を生成する。触媒反応体は、互いにうまく一列に配置される多数の触媒ネットからなり、気体混合物は、700℃の最小温度で、ネット容器に通して処理される。本発明の出現以前、貴金属ネットは、均質な金属の網(しばしば、プラチナおよびロジウム製)として用いられた。このようなネットは、本発明によるネットより、かなり高価である。その上、本発明に係るネットは、気化による貴金属の損失が低減できるという貴金属の安定した作用を提供する。
シアン化水素の製造は、硝酸の製造と同様の方法で実行されるが、メタンが反応物流の中に含まれるということが異なる。
空気中にエチレンを含有する気体混合物が、250〜300℃において、銀を含有するネット触媒反応体と接触されると、エチレンオキシドが得られる。エチレンの製造を選択的に向上させるため、少量(数ppm)のエチレンジクロライドが気流に添加される。
アルデヒドの製造の実施例は、ホルマリンの製造から派生することができる。この方法において、メタノールおよび空気の混合物は、銀(高メタノール濃度)またはモリブデン酸第一鉄(低メタノール濃度)を含有するネット触媒反応体と接触する。今日、いくつかの産業プロセスにおいて、銀製の均質な金属ネットが用いられる。これらは、本発明によるネットよりはるかに高価である。モリブデン酸第一鉄プロセスにおける温度は、標準的に350および400℃の間になり、銀の場合よりやや高い。
適切な金属/金属酸化物を被覆したネット触媒反応体はまた、水蒸気改質および関連反応において用いることができ、それは、石油化学工業および合成ガス関連プロセスにおいて重要である。水蒸気改質の間、貴金属および/またはニッケルが、活性物質として好適に用いられ、蒸気および炭化水素を含有する気体混合物は400〜900℃の範囲の温度で、触媒ネット容器を通して処理される。生成ガスの成分は、反応温度に依存し、その結果、水素および一酸化炭素の割合が、温度と共に単調に上昇する。水性ガス反応は、鉄、クロム、銅、および亜鉛の酸化物を含有するネットで触媒作用を引き起こすことができ、一般的に、水蒸気改質工程が了した後の一酸化炭素および水素の割合を調整するために用いられる。
上述した実施例に述べるような用途の他、本発明に係るネットは、反応の進行が速く、広範囲な物質移動制限によって特徴付けられる、他の多数の重要な産業プロセスにも使用することができる。
本発明は、煙道ガス浄化、および化学合成などの触媒反応を実施するためにセラミック被覆ネット構造を使用することを含み、そしてそのような触媒活性ネットを吹付けによる改良熱形成方法により製造するための方法論を含む。改良は、セラミック層の気孔構造および比表面積が、触媒反応体活性に影響を及ぼすという認識に基づく。改良は、セラミック層の気孔容積および比表面積を向上するため択一的な2つの方法からなり、これらは、それぞれ別々にまたは組み合わせて使用することができる。第一の方法では、溶射プロセスの間の最初のセラミック材料中に気孔形成可燃性物質を添加することにより、輪郭のはっきりした気孔構造が形成される。気孔構造は、可燃性の成分の燃焼により生成され、その後、沈殿(precipitation)技術により表面積を拡大させることができる。第二の方法として、高比表面積を有するセラミック粉が、スプレー装置から発する粒子ジェット中に堆積される。それによって、セラミック層は、高比表面積の粒子を含有する。両方の方法において、活性物質の被覆は、含浸技術により行われる。
本発明の特性は以下の通り、多数の実施例および図面によって評価される。
【図面の簡単な説明】
図1は、触媒反応体の外観および熱形成された金属ワイヤの断面を示す図である。
図2は、製造工程の拡大ブロック図を示す図である。
図3は、用いた試作装置の概略断面図である。
図4は、流動床反応炉で清浄化する煙道ガス器具に用いられる装置の断面を示す図である。
図5は、気孔形成ポリマ物質の体積分率の関数としての総多孔率を示す図である。
図6は、堆積させたセラミックの重量部の関数としての比表面積を示す図である。
図7は、既知のタイプのモノリス触媒反応体における一酸化炭素およびメタンの転化率を示す図である。
図8は、ネットワイヤメッシュをインチ当たり8および20メッシュ間で変更させた場合の、一酸化炭素およびメタンの転化率を示す図である。
図9は、ネットの数を1および4の間で変化させた場合の一酸化炭素およびメタンの転化率を示す図である。
図10は、一酸化炭素の燃焼中の異なる温度での体積流量の関数としての速度定数を示す図である。
図11は、種々のタイプの触媒ネットを使用する間の温度の関数としての燃焼中の一酸化炭素の転化率を示す図である。
図12は、それぞれ、触媒ネットをそれぞれ1回および4回含浸した場合の温度の関数としての一酸化炭素の燃焼中の転化率を示す図である。
図13は、本発明の実施形態に係る装置を概略的に示す斜視図である。
図14は、本発明の他の実施形態に係る装置を概略的に示す斜視図である。
図15は、本発明のさらに他の実施形態に係る装置を概略的に示す斜視図である。
実施例1 気孔形成可燃性成分の溶射材料を使用することによる気孔体積の増大。
実施例2 セラミック粉を溶射装置から生じる粒子ジェットに堆積することによる比表面積の拡大。
実施例3 モノリス触媒反応体におけるCOおよびメタンの燃焼;参照例。
実施例4 COおよびメタンの燃焼中におけるネットワイヤメッシュの効果。
実施例5 COおよびメタンの燃焼時のネット数の効果。
実施例6 COおよびメタンの燃焼中の流動負荷効果。
実施例7 CO燃焼中の触媒反応体の表面を拡大するための種々の方法の比較。
実施例8 COの燃焼中の活性物質の被覆割合の効果。
実施例9 流動床における生物燃料の小規模の燃焼から煙道ガスの清浄化。
発明の説明
理論的な考察および実際の実験により、セラミック層がマクロ多孔性および高比表面積を有していなければならないことが立証された。この目的は、触媒反応体が上述した説明に沿って製造された場合に達成される。セラミック層の厚さは、0.1〜0.8mmの範囲の何れかの厚さになる必要があり、好ましくは、0.2〜0.5mmの範囲である。また、ネットのワイヤメッシュは、触媒反応体の有効性のために、重要な役割を果たす。増大したワイヤメッシュは、浄化の程度を増加させる結果になるが、また、煙道ガスが粒子と混合している場合には、圧力降下を増大させ、塊または凝結の危険を増大させる結果となる。この概観により示されるように、ワイヤメッシュがセンチメートル当たり1.6〜9.5メッシュ(インチ、4〜24メッシュの範囲、Taylerメッシュスケール)、好ましくは、センチメートル当たり3.1〜6.3メッシュ(インチ当たり8〜16メッシュ)の範囲でなければならない。精製または清浄化の程度は、また、交互に配置されたネットの数によって影響を受ける。試験的な試みにより示されたように、ネットの数は、一列に配置された1〜10ネットの間でなければならず、さらに、好ましくは3〜7の間である。流動負荷もまた、浄化の程度において重要な効果を有する。というのは、流速が増加すると気体および触媒反応体の間の接触する時間が低減する結果になるからである。高浄化度のためには、燃焼反応は、一般的に完全に物質移動により制限されており、流動効果はわずかに弱くなる。このいわゆる物質移動支配領域においては、流速が増加すると気体および触媒反応体間の接触時間が低減することは、事実であるが、同時に乱流が増加することにより物質移動係数が増大する。計算および実際の試験により立証されたように、流れの方向におけるネット構造の平方メートル当たり算出された流動負荷が、100〜1000m3/時間,m2(NTP)、好ましくは、100〜600m3/時間,m2(NTP)の間でなければならない。
図1に示す設計において、3つの触媒ネット15は、長方形のネットホルダ16内に配置される。図はまた、展伸ネットを示す。さらに、ネットの展伸ワイヤ17の断面図を示す。ワイヤは多孔性セラミック材料の層18を具備する。この層18は、本発明の一つの実施形態に従う溶射により形成されたものである。
図2は、触媒反応体製造の3つの工程を示す概略ブロック図を示す。第一の工程(a)において、ネット構造は、改良熱吹付け方法により、セラミック材料で被覆される。第二の工程(b)において、多孔性のセラミック材料は、溶射形成された層の気孔の中にセラミック材料を堆積することによって、表面積が増大される。堆積は、例えば、ゾル/ゲル技術または現場(in-situ)沈殿手順を用いることによって実行されてもよい。第三の工程(c)において、セラミック層の増大された表面は、従来の含浸手順により活性物質で覆われる。
触媒活性に関する試験は、特別に構成された反応炉10、図3参照、で実行された。反応炉は、多くの燃焼の変形または焼却装置における条件をシミュレーションすることができる。窒素、酸素、二酸化炭素を含有する適当な気体混合物は、気体入口11に導入される。水は入口12を通って供給され、液体状態で比例して供給され、反応炉内で蒸発される。その後、得られた気体および水蒸気の混合物は、加熱帯域13を通過させる。そこで、気体混合物の温度は、20〜700℃の範囲で変化させることができる。加熱帯域の後、種々の汚染物質ガスを、分配管14を介して気体蒸気へ供給することができる。その後、得られたガス混合物は、触媒ネット15と接触して処理され、次いで、煙道ガス管19を通って排出される。煙道ガス管19にはサンプリング管22が装備されている。温度は、第一の熱電対23を有する加熱帯域で、第二の熱電対24を有する触媒反応体ベッドで、さらにベッドの後の位置で、測定される。また、種々の固体燃料を熱分解し、熱分解気体を気流に供給することができる。このような場合において、固体材料は、特別な方法で加熱された熱分解レセプタクル20に配置される。このようにして形成された熱分解気体は、感応性の高分子の分解/燃焼を防止するように、分離管内の加熱帯域を通じて搬送される。熱分解は、異なるガス体:還元剤、中性、または酸化剤の雰囲気下で発生させてよい。一酸化炭素およびメタンの燃焼中の活性は、以下に続く実施例の標準的な燃焼試験で試験される。一酸化炭素は、このような状況においてはかなり容易に燃焼される不純物である一方、メタンは、おそらく、その本来の安定性により、触媒作用により燃焼するのに最も難しい不純物の一つを構成する。
比表面積に関する測定はBET方法(一点測定、マイクロメリティクス・フローソーブII:MicroMeritics FlowSorb II)によって実行した。総気孔体積は、浸透液の使用により測定した。
流動床における生物燃料の燃焼により生ずる煙道ガスの浄化に関する試験は、動力級、20〜40kWのパイロット装置、図4参照、で実行した。煙道ガスは、矢印方向Aの方向に、流動床25から反応炉を通って導入した。反応炉中に触媒ネットを有するネットホルダ16設けた。煙道ガスの組成は触媒反応体ユニットの前後で分析した。
実施例1
本実施例においては、スチールワイヤネットを、アルミナ粉(55g/分の粉末供給量)を用いたフレーム溶射(酸素アセチレン炎)によって、セラミック層で被覆する。気孔生成成分を添加した際の効果を研究するため、可燃性のアミド樹脂をアルミナ粉に0〜30容量%の容量比で供給した。35容量%を超える添加においては、基体表面と溶射形成層との間の付着性が不十分であった。図5では、気孔生成材料の量の関数としての総気孔体積の図面を示す。図に示す通り、総気孔体積(浸透液を用いて決定した)は、間隔をおいた検査において、気孔生成材料の量に対してほとんど直線的に増加する。この試験は、気孔生成添加材料を用いることにより、溶射形成層の気孔率を増大する可能性があることを示す。
実施例2
本実施例においては、アルミナ粉(55g/分の粉供給量)を用いてフレーム溶射(酸素アセチレン炎)を実行した。高比表面積(プロカタリス(ProCatalyse(商標))、スフェラライト509D(Spheralite(商標))、326m2/gの比表面積、50〜60ミクロンの粒径)を有するアルミナ粉を、基体表面の前の位置で粒子ジェット中に堆積した。これによって、高比表面積を有するセラミック粒子は、溶射形成層に結合し、その結果、増加した比表面積をセラミック層に付与した。図6では、堆積するセラミック材料の量を、0〜40重量%で変化させた図を示す。図から明かであるように、比表面積(面積式流量計、マイクロメレティクス(MicroMeretics(商標))で測定した)は、堆積したセラミック材料の重量に対して直線的に増大する。堆積した材料が40重量%において、セラミック層の比表面積は、16m2/gになり、この比表面積は関連する用途においては十分である。この試験は、溶射中、高比表面積のセラミック粉を粒子ジェットに堆積することによって、溶射形成層の比表面積を増大させることができることを示す。
実施例3
本発明の性能を評価するために、燃焼試験を触媒モノリスで行った。モノリスを、試験装置の触媒ネットが通常見出される位置に配置した。モノリスの直径は、最初、150mmであったが、その装置に適合させるために、100mmの直径を有するシリンダーに切断した。元のモノリスは、10〜20kWの出力領域を有する薪ストーブの煙道ガスを清浄化するよう設計した。空気中に2500ppmの一酸化炭素およびメタンを混合したガスを、40リットル/分の流量でモノリスを通して処理した。温度を120℃〜550℃まで上昇させた。図7から明かになるように、一酸化炭素の転化率は、120℃で低い10%から、ほぼ300℃で95%より高く増大する。また、この転化率グラフは、燃焼反応が約200℃より高い温度レベルで物質移動制限であることを明確に示す。一方、メタンは、一酸化炭素より、実質上より高い燃焼温度を必要とする。この転化率は、300℃で約2%から、500℃より高い温度レベルで90%を超えるまで増大する。一酸化炭素の燃焼の場合と同様に、燃焼反応は、高温(この場合、約400℃を超える温度)では物質移動により制限される。モノリスの断面積が、この試験において二分の一に低減されたが、実際上の理由のためのかなり多めの流量を試験装置に用いた。現実の用途において、この大きさのモノリスを通す気体流量は、75と150リットル/分の間であり、このことは触媒反応体における滞留時間が二分の一〜四分の一に低減することを意味する。触媒活性ネットを用いた以下の試験において、この事実を考察することが重要である。
実施例4
この一連の試験において、種々のワイヤメッシュの多数のネットを、セラミック材料(酸化イットリウムを用いて安定させたジルコニア)を用いてフレーム溶射することによって被覆した。試験は、それぞれ、センチメートル当たり1.6、3.1、6.3、および9.5メッシュ(インチ当たり、8、12、16、および20メッシュ)のネットを含んだ。表1はネットに関するいくつかの関連データを示す。
Figure 0004392861
上記の表から明かであるように、セラミック層の厚さが変化し、運動性(カイネチック)により規定された領域で得られる転化率に影響する。物質移動規定領域において、セラミック層の厚さ(触媒量)は、重要ではない。セラミック層の比表面積は、小さく、ほんの1.3m2/gであった。そのため、相対的に低い触媒活性が、この場合において期待される。このネットを、0.75モル/リットルのPD、および0.25モル/リットルのPtを含有する溶液を含浸させた。含浸させたネットを150℃で一時間、乾燥し、800℃で3時間(水素ガス中)還元した。燃焼試験中、二つのネットを触媒ホルダ中に一列に配置し、および2500ppmの一酸化炭素およびメタンを含有する空気を、温度を120℃〜600℃の範囲内で変化させて、40リットル/分の流量でホルダに導入した。図8によると、一酸化炭素の転化率の実質的な増大は、ネットの全てについて、150〜200℃の温度の間で生じる。センチメートル当たり3.1および4.7メッシュ(インチ当たり8および12メッシュ)の場合において、物質移動規定領域は、わずかに200℃より高い温度で達成され、センチメートル当たり6.3メッシュ(インチ当たり16メッシュ)を有するネットは、250℃において、物質移動によって規定された領域に近づく。最高密度のセンチメートル当たり7.9メッシュ(インチ当たり20メッシュ)のネットは、カイネチック領域において、250℃のままである。これは、その転化率が依存する高い温度から、自明である。触媒反応体は低い活性を有し、それはメタンに対する転化率曲線を参照すると非常に明白である。この転化率は、全てのネットにおいて、400〜600℃でゆっくりとしか増大しない。一酸化炭素燃焼の場合と同様に、増大するワイヤメッシュは、また、増大した転化率を与える。一連の試験は、増大するネットのワイヤメッシュ、物質移動規定領域における、増大する転化率を導くことを示す。この理由は、ネットワイヤメッシュが増大すると、気体および触媒反応体の間に、より多くの接触表面を提供するからであり、このことは、物質移動にとって有利である。
実施例5
本実施例は、ネットワイヤメッシュを変える代わりに、ネットの数を変えたこと以外は、実施例4と同様の方法で実行した。ネットの数の効果は、センチメートル当たり6.3メッシュ(インチ当たり16メッシュ)のワイヤメッシュを有する1〜4のネットを、試験装置に一列配置することによって検討した。燃焼試験を、実施例4と同様に実行した。試験結果を図9に示す。転化率が一列に配置されるネットの数に大きく依存することは、明かである。ネットの数が1から4に増加すると、物質移動領域において、60から90%を超えるまで一酸化炭素転化率が増加した。これに対応して、メタンの転化率は、ネットの数が1から4に増大すると、600℃において30%から60%近くまで増加する。試験は、一列に多数の触媒活性ネットを配置することによって、精製の程度をかなり増大することが可能であることを示す。
実施例6
本実施例においては、一酸化炭素およびメタンが燃焼している間、多数の異なる温度で、流動負荷を変化させた。試験は、センチメートル当たり6.3メッシュ(インチ当たり16メッシュ)のネットワイヤメッシュを有する実施例5による二つの触媒活性ネットを使用した。反応速度(モル/秒)を全体の転化率結果から算定した。この結果、流動負荷に対して、反応速度を記録した。図10を参照すると、反応速度は、一酸化炭素の燃焼中の体積流量に対して記録されている。反応が、完全にカイネチックに制御されるなら、反応速度は流動負荷に対して独立である。他方、物質移動によって完全に支配される領域において、反応速度と流動負荷との間に従属関係が達成される。これは図8に示され、一酸化炭素燃焼を二つの低温で運動性を制御されるが、質量輸送は最高温度で制御される。メタン燃焼の場合においては、400〜600℃の間における全ての温度で、同等の方法で、カイネチックに制御される。実施例は、触媒活性が増大した場合には、転化率(特にメタン燃焼において)はかなりの程度で増大し得ることを示す。以下の実施例において、種々の方法は、このような活性増大の手段を述べる。
実施例7
この実施例において、センチメートル当たり6.3メッシュ(インチ当たり16メッシュ)のワイヤメッシュを有する鋼線ネットを、厚さ0.2mmのアルミナ層で被覆した。フレーム溶射の手順のために、80:20体積%の混合比で、アルミナ粉末およびポリアミドの混合物を用いた。空気中で、800℃でポリアミドが燃焼することにより、溶射形成層において、輪郭がはっきりしたマクロ多孔が形成された。セラミック層の空洞部分の総計は、約30体積%になる。出発材料として上述したセラミック被覆ネットを用いて、触媒活性ネットを以下の手順に従って製造した。
1) パラジウム溶液を用いたネットの直接含浸
2) パラジウム溶液を用いたネットの含浸。含浸させる前に、ネットをスリップキャスティングプロセスにより、スフェラライト(spheralite(商標))531P3(ProCatalyse(商標)、比表面積115m2/g、粒径8〜12ミクロン、Al2O3に担持したLa2O3/Nd2O3を2重量%)の薄め塗膜(20ミクロンの厚さ)を設ける。
3) パラジウム溶液を用いたネットの含浸。含浸させる前に、ネットをアルミナゾル溶液(ナイアコール・コロイダル・ゾル(Nyacol Colloidal(商標)sol)、20重量%のAl2O3、粒径50nm)を用いてセラミック層を繰り返し処理することにより、表面積拡大材料を設けた。
4) パラジウム溶液を用いたネットの含浸。含浸させる前に、ネットを現場プロセス(気孔構造を、アルカリ性にしたアルミニウムイオン溶液で飽和させる。水酸化アルミニウムが沈殿し、か焼によりγ-アルミナに変換される。)の方法により、アルミナの沈殿により、表面積拡大層を設けた。
全てのネットを、1モル/リットルの、溶解したパラジウム溶液で飽和させた。含浸させると、酸化(空気中において800℃で、3時間)と同様に、還元(水素ガス中800℃で、3時間)が生じた。試験中、それぞれのタイプ(1〜4)の同一の二つのネットを一列に搭載して用いた。試験中の流動負荷は、この場合には、総計900m3/時間,m2に達した。これは、実施例4および5にあるより、2.5倍高い。図11に、活性測定値から得られた結果を表す。図11から明かであるように、表面積増大は、活性をかなりの程度増大することができる。本実施例は、表面積増大により、多孔性セラミックネット構造において活性を増大するのことができ、並びに、如何に比較的簡単なやり方でかつ異なる多くの方法でそのようにすることができることを示す。
実施例8
本実施例では、実施例7にかかる処理代案3を、活性物質の異なる含有量で被覆した。溶解形態の1モル/リットルのパラジウム溶液を用いて層の気孔構造に繰り返し含浸させることにより、被覆を実行した。図12には、含浸を1回および4回行った触媒ネットに対して転化率をプロットした図である。図から明かであるように、触媒活性物質の含有量が増大すると、カイネチックに制御された領域において、著しく活性が向上する結果になる。よりよい低温活性は、低温用途で所望される触媒反応体に付与される。物質移動支配領域においては、被覆の程度の重要性はほんのわずかにすぎず、それは高温用途において、触媒反応体の活性物質の含有量を制限することができることを意味する。実施例は、また、カイネチックに支配された領域においてより好ましい効果を導く、触媒反応体における活性物質含有量を増加させることによって、触媒反応体活性を増大することができることを示す。
実施例9
本実施例では、3つの触媒活性ネットを、上述した流動床反応炉のフリー・ボード空間(free board space)に、一列に配置した。この空間における温度が通常高いため、触媒性精製プロセスが、物質移動支配となる。これは、この実施例を最も簡単な触媒反応体設計で実行したことによるものであり、この設計は、実施例7に係る代案2である。従って、触媒活性ネットは、如何なる表面積増大をすることなく、直接含浸されたセラミック層を具備する。ネットの直径は、200mmであるが、これは、一般のプロセス条件の下で、流動負荷が、総計1000m3/時間、m2(NTP)に達することを意味する。ガス流出口を触媒被覆ネットの前後の両方に煙道ガスを排出できるように配置した。試験中、バイオマスは、床温度が約700℃(150%の過剰空気)の、触媒流動床において、燃焼をした。触媒活性ネットの温度は、試験中、ゆっくり上昇し、約20分後にその動作温度が、500〜700℃の領域に達した。触媒ネットの前の煙道ガスの一酸化炭素の平均含有量は、静止状態で測定して約1500ppmに達した。触媒ネットの後の位置では、当量値は、270ppmに達した。流動負荷が比較的高く、触媒反応体は比較的不活性で、一列のネット数は小さいが、一酸化炭素に関しては80%より高い精製率が達成できた。相補的に、計算は、一列の触媒活性ネットに基づいて、正確な寸法の触媒反応体を用いた場合には、精製率が95%より高くもなり得ることを示す。
図13〜図15は、概略的に、本発明による、いくつかの異なる実際の設計の装置を示す図である。図13において、触媒反応体は、一列に配列された、数個の長方形のネット15を具備する。所定の化学反応をうける流動ガスは、本設計において、ネット15を通して導かれる。他の設計においては、流動は、ネットに沿って導かれてもよい。ネット15は、完全な平坦でもよく、種々の態様でしわがよっていてもよい。ネットの数および形は、如何なる化学反応を得たいか、所望の収率、および触媒反応体のための得られる空間など、他の事項によって選択される。
図14では、数個のネット15が同軸のシリンダーとして設計されており、流動はシリンダーの包絡表面に沿って進む。
図15の設計において、触媒反応体は、円柱状のネット15を具備する。ネットを具備するシリンダーは、開口および閉鎖口を有する。流動は、その開口を通って流れ、さらにシリンダー包絡表面を通って、放射状に抜けていく。
さらに他の設計において、ここに示してはいないが、触媒反応体は、適合したネットを具備する。ネットの構造的組立は、さらに別の幾何学的な形態とすることを許容する。また、他の要因が形態の選択において影響を有してもよい。

Claims (24)

  1. 化学反応のための触媒反応体でキャリア基体がネットで形成されている触媒反応体を製造する方法であって、
    可燃性気孔形成物質を、熱吹付けプロセスに用いられる最初のセラミック材料に添加する工程、
    熱吹付けプロセスにより前記ネットを前記可燃性気孔形成物質が含まれたセラミック層で被覆する工程、
    前記可燃性気孔形成物質を焼却し、その結果、前記セラミック層内に、マクロ気孔の輪郭のはっきりした気孔構造を形成する工程、
    前記マクロ気孔に高比表面積材料を堆積することによって前記セラミック層の表面積を拡大する工程、および
    前記高比表面積材料が堆積されて表面積が拡大されたセラミック層に触媒活性物質を適用することを含むことを特徴とする方法。
  2. 請求項1の方法において、
    前記熱吹付けプロセスは、フレーム溶射、空気プラズマ溶射、高速溶射、爆発溶射、コロナブラッシング、保護ガスプラズマ溶射、真空プラズマ溶射、化学蒸着法(CVD)またはレーザを用いた表面被覆方法の一つまたはいくつかを具備することを特徴とする触媒反応体の製造方法。
  3. 請求項1または2の何れか1項の方法において、
    アルミナ、ジルコニア、二酸化チタン、シリカ、タングステンカーバイド、窒化珪素、またはこれらの混合物からなる群の任意の物質が前記最初のセラミック材料として用いられることを特徴とする触媒反応体の製造方法。
  4. 請求項1〜3何れか1項の方法において、
    前記セラミック層の表面積を拡大する工程において前記高比表面積材料を、前記熱吹付けプロセスの過程における基体表面の近くの粒子ジェット内に堆積し、前記高比表面積材料は多孔性セラミック粉末であって前記熱吹付けプロセスにより形成された構造に組み込まれることを特徴とする触媒反応体の製造方法。
  5. 請求項4の方法において、
    前記ジェット内に堆積される多孔性セラミック粉末は、アルミナ、シリカ、二酸化チタン、ジルコニア、アルミナ-チタン、炭化珪素、またはこれらの混合物を含むことを特徴とする触媒反応体の製造方法。
  6. 請求項1〜5何れか1項の方法において、
    前記セラミック層の表面積を拡大する工程において、化学ウェットプロセスにより前記高比表面積材料を、吹付け形成層の気孔構造内に沈殿させることを特徴とする触媒反応体の製造方法。
  7. 請求項6の方法において、
    前記化学ウェットプロセスは、ゾル溶液を用いる処理、およびこの代わりに、セラミック材料の沈殿の現場プロセスを具備し、その際、乾燥および焼成工程を行うことを特徴とする触媒反応体の製造方法。
  8. 請求項6の方法において
    前記化学ウェットプロセスによる高比表面積材料は、アルミナ、シリカ、二酸化チタン、ジルコニア、またはそれらの混合物からなることを特徴とする触媒反応体の製造方法。
  9. 請求項4〜8何れか1項の方法において、
    前記高比表面積材料が堆積されて表面積が拡大されたセラミック層を、含浸法により活性物質で被覆し、貴金属、金属酸化物またはそれらの混合物を活性物質として用いることを特徴とする触媒反応体の製造方法。
  10. キャリア基体およびネットとして設計されたキャリア基体上に触媒的に設けられた活性物質を具備する化学反応のための触媒反応体において、
    前記ネットは、可燃性気孔形成物質を、熱吹付けプロセスに用いられる最初のセラミック材料に添加する工程、
    熱吹付けプロセスにより前記可燃性気孔形成物質が含まれたセラミック層で被覆する工程、
    前記可燃性気孔形成物質を焼却し、その結果、前記セラミック層内に、マクロ気孔の輪郭のはっきりした気孔構造を形成する工程、
    前記マクロ気孔に高比表面積材料を堆積することによって前記セラミック層の表面積を拡大する工程、により作られ
    前記触媒活性物質は、前記高比表面積材料が堆積されて表面積が拡大されたセラミック層上に適用されて、貴金属、金属酸化物またはこれらの混合物が活性物質として用いられることを特徴とする触媒反応体。
  11. 請求項10の触媒反応体において、
    前記ネットは、金属ワイヤ(17)から製造され、タイラー(Tayler)スケールでセンチメートル当たり1.6〜24メッシュ(インチ当たり4〜60メッシュ)、好ましくは、センチメートル当たり3.1〜9.5メッシュ(インチ当たり8〜24メッシュ)に相当するワイヤメッシュおよびワイヤ直径を有することを特徴とする触媒反応体。
  12. 請求項10または11の何れか1項の触媒反応体において、
    前記ネットは、多重触媒活性ネットであって、一列に、3〜7の数で配置されることを特徴とする触媒反応体。
  13. 請求項10〜12の何れか1項の触媒反応体において、
    前記ネットは、平面的に延びていることを特徴とする触媒反応体。
  14. 請求項10〜12何れか1項の触媒反応体において、
    前記ネットは、同軸のシリンダーとして設計されていることを特徴とする触媒反応体。
  15. 請求項10〜14何れか1項の触媒反応体において、
    前記ネットは、しわがよっていることを特徴とする触媒反応体。
  16. 請求項10〜15の何れか1項の触媒反応体を使用する化学反応と結合した方法であって、
    一酸化炭素および炭化水素を含むガスを、清浄化されるために触媒反応体と接触するように導入し、その際、貴金属、または一つまたはいくつかの金属酸化物と組み合わせた貴金属を活性物質として用いることを特徴とする方法。
  17. 請求項16の方法において、
    前記触媒反応体において化学反応を受けるガスは、単一または複数のネットを貫通して通過するように導入されることを特徴とする方法。
  18. 請求項16の方法において、
    前記触媒反応体において化学反応を受けるガスは、単一または複数のネットの傍を通過することを特徴とする方法。
  19. 請求項10〜15の何れか1項の触媒反応体を使用する化学反応と結合した方法であって
    活性物質としてパラジウムを用いて気体燃料を前記触媒反応体に接触させてエネルギーを生じさせることを特徴とする方法。
  20. 請求項16〜19何れか1項の方法において、
    ガスを酸化剤と共に前記触媒反応体と接触させることを特徴とする方法。
  21. 請求項10〜15の何れか1項の触媒反応体を使用する化学反応と結合した方法であって
    溶剤残留物を含む換気用空気を前記触媒反応体と接触させて溶剤放出物を触媒作用により清浄化し、活性物質として貴金属の一つを用いることを特徴とする方法。
  22. 請求項10〜15の何れか1項の触媒反応体を使用する化学反応と結合した方法であって
    発香性物質を含む気体混合物を、前記触媒反応体と接触させることを特徴とする方法。
  23. 請求項10〜15の何れか1項の触媒反応体を使用する化学反応と結合した方法であって、
    アンモニウムおよび空気の混合物を前記触媒反応体と接触させて一酸化窒素を生成し、前記一酸化窒素を酸化して水に溶解して、硝酸を製造することを特徴とする方法。
  24. 請求項16〜23の何れか1項の方法において、
    流動負荷は、総計、50〜5000m 3 /時間,m 2 (NTP)に達することを特徴とする方法。
JP50504697A 1995-07-05 1996-05-24 触媒反応方法および装置 Expired - Fee Related JP4392861B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9502434-5 1995-07-05
SE9502434A SE504795C2 (sv) 1995-07-05 1995-07-05 Nätbaserad förbränningskatalysator och framställning av densamma
PCT/SE1996/000675 WO1997002092A1 (en) 1995-07-05 1996-05-24 Method and apparatus in catalytic reactions

Publications (2)

Publication Number Publication Date
JPH11508816A JPH11508816A (ja) 1999-08-03
JP4392861B2 true JP4392861B2 (ja) 2010-01-06

Family

ID=20398854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50504697A Expired - Fee Related JP4392861B2 (ja) 1995-07-05 1996-05-24 触媒反応方法および装置

Country Status (14)

Country Link
US (1) US5980843A (ja)
EP (1) EP0871543B1 (ja)
JP (1) JP4392861B2 (ja)
KR (1) KR100425058B1 (ja)
CN (1) CN1079289C (ja)
AT (1) ATE183668T1 (ja)
AU (1) AU6322096A (ja)
CZ (1) CZ291741B6 (ja)
DE (1) DE69603982T2 (ja)
ES (1) ES2138822T3 (ja)
PL (1) PL184700B1 (ja)
SE (1) SE504795C2 (ja)
TW (1) TW328053B (ja)
WO (1) WO1997002092A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0830888T3 (da) * 1996-09-19 2002-11-25 Siemens Ag Anvendelse af en katalysator samt rensefremgangsmåde til en således anvendt katalysator
ATE340644T1 (de) * 1998-11-18 2006-10-15 Haldor Topsoe As Verfahren zur herstellung eines gegenstandes mit katalytischer oberflächenschicht
US6140266A (en) * 1999-02-18 2000-10-31 International Fuel Cells, Co., Llc Compact and light weight catalyst bed for use in a fuel cell power plant and method for forming the same
US6248235B1 (en) 1999-03-30 2001-06-19 Robin Scott Fluid purification system
US6468942B1 (en) * 2000-11-16 2002-10-22 John J. Sansalone Absorptive-filtration media for the capture of waterborne or airborne constituents
US7341661B2 (en) * 2000-11-16 2008-03-11 Unit Process Technologies, L.L.C. Clarification and sorptive-filtration system for the capture of constituents and particulate matter in liquids and gases
US7005404B2 (en) * 2000-12-20 2006-02-28 Honda Motor Co., Ltd. Substrates with small particle size metal oxide and noble metal catalyst coatings and thermal spraying methods for producing the same
US6855272B2 (en) * 2001-07-18 2005-02-15 Kellogg Brown & Root, Inc. Low pressure drop reforming exchanger
DE60211543T2 (de) * 2001-08-30 2007-05-10 Aktina Ltd. Verfahren zur herstellung poröser keramik-metall verbundwerkstoffe und dadurch erhaltene verbundwerkstoffe
KR20030048173A (ko) * 2001-12-11 2003-06-19 현대자동차주식회사 촉매 담체의 구조
DE10213937A1 (de) * 2002-03-28 2003-10-23 Daimler Chrysler Ag Vorrichtung zur selektiven katalytischen Oxidation von CO
AU2003234476A1 (en) * 2002-05-08 2003-11-11 Dana Corporation Plasma-assisted nitrogen surface-treatment
US7125528B2 (en) * 2002-05-24 2006-10-24 Bp Corporation North America Inc. Membrane systems containing an oxygen transport membrane and catalyst
US7008560B2 (en) * 2003-02-10 2006-03-07 Conocophillips Company Silicon carbide-supported catalysts for partial oxidation of natural gas to synthesis gas
DE102005019000A1 (de) 2005-04-22 2006-10-26 Degussa Ag Katalytisch beschichteter Träger, Verfahren zu dessen Herstellung und damit ausgestatteter Reaktor sowie dessen Verwendung
WO2007000068A1 (en) * 2005-06-29 2007-01-04 Eth Zurich Manufacturing process for catalytic active material
EP1941008B1 (en) * 2005-10-17 2018-05-02 Intelligent Energy, Inc. Steam reforming unit
JP2008168278A (ja) * 2006-12-15 2008-07-24 Nissan Motor Co Ltd 排ガス浄化用触媒及びその製造方法
WO2009085641A1 (en) * 2007-12-19 2009-07-09 Acs Industries, Inc. Catalytic apparatus with up-stream wire mesh in-line mixer
DE102009030876B4 (de) * 2009-06-29 2011-07-14 Innovent e.V., 07745 Verfahren zum Beschichten eines Substrats
US10450192B2 (en) 2015-07-22 2019-10-22 Gencell Ltd. Process for the thermal decomposition of ammonia and reactor for carrying out said process
US10960389B2 (en) 2016-05-24 2021-03-30 Cataler Corporation Exhaust gas purification catalyst
CN107101274A (zh) * 2017-05-31 2017-08-29 广东国华人防科技有限公司 一种空气净化器及空气净化方法
CN107321274B (zh) * 2017-07-24 2023-09-05 山东顺图信息技术有限公司 一种锂离子电池电解液溶剂生产装置
CN108468584A (zh) * 2018-05-04 2018-08-31 博格思众智能装备(昆山)有限公司 雾化混合管及柴油车尾气净化装置
CN110252401B (zh) * 2019-07-10 2021-11-12 扬州大学 陶瓷先驱体负载贵金属纳米颗粒的催化剂及其制备方法和应用
KR20240013783A (ko) 2021-05-28 2024-01-30 토프쉐 에이/에스 촉매 활성을 가진 전기 가열기
SE544947C2 (en) * 2021-06-14 2023-02-07 Catator Ab A catalytically active product, a method of producing such a product and a reactor comprising said product
SE544945C2 (en) * 2021-06-14 2023-02-07 Catator Ab A catalytically active product and a method of producing such a catalytically active product
SE544946C2 (en) 2021-06-14 2023-02-07 Catator Ab A catalytic reactor and a method for providing a catalytic reaction
JP2023034799A (ja) * 2021-08-31 2023-03-13 株式会社エフ・シー・シー 排ガス浄化装置及びその製造方法
JP2023034798A (ja) * 2021-08-31 2023-03-13 株式会社エフ・シー・シー 排ガス浄化装置及びその製造方法
US20230295796A1 (en) * 2022-01-21 2023-09-21 X-Energy, Llc Deposition of ceramic layers using liquid organometallic precursors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB346247A (en) * 1929-08-03 1931-04-09 Fritz Jost A process for the catalytic conversion of ammonia into nitric oxide
US3264226A (en) * 1962-06-07 1966-08-02 Phillips Petroleum Co Plasma arc sprayed catalysts
JPS513987A (en) * 1974-06-28 1976-01-13 Kanebo Ltd Sanno jozokusochi
JPH024677B2 (ja) * 1977-11-01 1990-01-30 Atomic Energy Authority Uk
JPS5573348A (en) * 1978-11-28 1980-06-03 Babcock Hitachi Kk Plate type catalyst
JPS55132638A (en) * 1979-04-04 1980-10-15 Babcock Hitachi Kk Laminar catalyst
JPS56108536A (en) * 1980-10-06 1981-08-28 Nippon Mining Co Ltd Catalyst for exhaust gas
JPS5817841A (ja) * 1981-07-24 1983-02-02 Mitsubishi Heavy Ind Ltd 排ガス処理用触媒短繊維担体
US4465789A (en) * 1983-04-04 1984-08-14 American Cyanamid Company Hydrotreating catalyst support having dual pore structure
JPS62158160A (ja) * 1985-12-27 1987-07-14 堺化学工業株式会社 成形触媒及び接触反応方法
DE3813312A1 (de) * 1988-04-20 1989-11-02 Siemens Ag Plattenfoermiger katalysator zur verminderung der stickoxide in rauchgasen und verfahren zu seiner herstellung
DE68900928D1 (de) * 1988-10-12 1992-04-09 Johnson Matthey Plc Metallgewebe.
US5061464A (en) * 1988-11-14 1991-10-29 Johnson Matthey, Inc. Oxidation process and catalyst for use therefor
JPH05103987A (ja) * 1991-10-16 1993-04-27 Tanaka Kikinzoku Kogyo Kk 触媒用Fe基合金基体及び触媒用支持体

Also Published As

Publication number Publication date
EP0871543A1 (en) 1998-10-21
ATE183668T1 (de) 1999-09-15
SE9502434D0 (sv) 1995-07-05
EP0871543B1 (en) 1999-08-25
AU6322096A (en) 1997-02-05
CZ291741B6 (cs) 2003-05-14
CN1189785A (zh) 1998-08-05
CN1079289C (zh) 2002-02-20
PL324431A1 (en) 1998-05-25
SE504795C2 (sv) 1997-04-28
TW328053B (en) 1998-03-11
DE69603982D1 (de) 1999-09-30
US5980843A (en) 1999-11-09
WO1997002092A1 (en) 1997-01-23
SE9502434L (sv) 1997-01-06
KR100425058B1 (ko) 2004-06-24
CZ421097A3 (cs) 1998-11-11
ES2138822T3 (es) 2000-01-16
DE69603982T2 (de) 2000-04-20
PL184700B1 (pl) 2002-12-31
KR19990028795A (ko) 1999-04-15
JPH11508816A (ja) 1999-08-03

Similar Documents

Publication Publication Date Title
JP4392861B2 (ja) 触媒反応方法および装置
AU613403B2 (en) Process for the catalytic conversion of offgases containing hydrocarbons and carbon monoxide
KR19990022319A (ko) 휘발성 화학물질 방출을 감소시키기 위한 촉매적 배기 가스처리 시스템
KR20020047154A (ko) 일산화탄소의 선택적 산화용 촉매 및 그의 제조 방법
CA1196324A (en) Catalytic combustor
US5541147A (en) Immobilized free molecule aerosol catalytic reactor
GB1581628A (en) Catalytic purification of automobile exhaust gases
Ahlström-Silversand et al. Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel Catalyst preparation and activity studies
US6284202B1 (en) Device for microwave removal of NOx from exhaust gas
KR100581470B1 (ko) 촉매에 의해 작용화된 금속 섬유판을 제조하는 방법
KR860002188B1 (ko) 연소 배기가스 처리촉매
Banús et al. Structured catalysts for soot combustion for diesel engines
RU2320408C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
JPH0985087A (ja) 耐被毒前処理剤およびそれを用いた工場排ガスの処理方法
RU2421269C1 (ru) Очиститель отходящих газов
Ahlstroem-Silversand Catalytic combustion in environmental protection and energy production
WO2022265559A1 (en) A catalytically active product and a method of producing such a catalytically active product
JP2023542051A (ja) 性質が改善された触媒反応器
RU2086298C1 (ru) Катализатор для беспламенного сжигания природного газа
JPH0893455A (ja) 赤外線を利用する排気ガス浄化装置及び浄化方法
JP2004298695A (ja) 脱硝触媒、及びこれを用いた燃焼装置
JP2003265929A (ja) PAHs分解触媒
JP2003040604A (ja) 水素製造方法および装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061018

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061204

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees