JP4327801B2 - X線断層撮影装置 - Google Patents
X線断層撮影装置 Download PDFInfo
- Publication number
- JP4327801B2 JP4327801B2 JP2006007874A JP2006007874A JP4327801B2 JP 4327801 B2 JP4327801 B2 JP 4327801B2 JP 2006007874 A JP2006007874 A JP 2006007874A JP 2006007874 A JP2006007874 A JP 2006007874A JP 4327801 B2 JP4327801 B2 JP 4327801B2
- Authority
- JP
- Japan
- Prior art keywords
- ray
- image
- detector
- data
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003325 tomography Methods 0.000 title claims description 80
- 238000012545 processing Methods 0.000 claims description 165
- 230000033001 locomotion Effects 0.000 claims description 125
- 238000001514 detection method Methods 0.000 claims description 53
- 238000003384 imaging method Methods 0.000 claims description 49
- 230000008859 change Effects 0.000 claims description 9
- 230000006798 recombination Effects 0.000 description 121
- 238000005215 recombination Methods 0.000 description 121
- 238000000034 method Methods 0.000 description 111
- 230000007246 mechanism Effects 0.000 description 70
- 238000012937 correction Methods 0.000 description 55
- 230000008569 process Effects 0.000 description 49
- 238000004364 calculation method Methods 0.000 description 34
- 239000003550 marker Substances 0.000 description 32
- 238000007792 addition Methods 0.000 description 27
- 239000011295 pitch Substances 0.000 description 25
- 238000013480 data collection Methods 0.000 description 24
- 230000001360 synchronised effect Effects 0.000 description 21
- 238000012952 Resampling Methods 0.000 description 19
- 239000002872 contrast media Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 14
- 238000005070 sampling Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 230000017531 blood circulation Effects 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000002583 angiography Methods 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000000547 structure data Methods 0.000 description 2
- 238000011410 subtraction method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002060 circadian Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002789 length control Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
Description
被検体Pの身体断面を言う。
複数のスライス面の断層像データから成る3次元データを言う。
3次元データの1つの画素を言う。
スライス面の断層像を得るための処理で、具体的には、複数フレームの投影データの位置を合わせて加算する処理を言う。
最初に、本発明のX線断層撮影装置に適用可能な特徴(機能)をカテゴリ別にリストアップし、それらを網羅した実施形態を説明する。本発明に関わるX線断層撮影装置は、そのような特徴(機能)の中の任意の1つ、または、複数を組み合わせて実施(搭載)可能になっている。
X線断層撮影装置全体のシステムデザインに関する特徴としては、以下のように1.1.〜1.4.まで各アイテムを挙げることができ、適宜に取捨選択して実施できる。なお、以下において必要に応じて、X線管12は管球と、X線検出器14は検出器と短縮形で呼ぶこともある。
X線管12およびX線検出器14は、被検体P(すなわち天板10a)に対して種々の取付け角度・位置で配置することができる。本発明に係るX線断層撮影装置では、原則として、X線検出器14はX線管12を移動させながらX線照射したときの透過X線を受けることができれば足り、X線検出器自体は移動させても、させなくてもよい。この配置の各種の例を以下に示す。
この例は「検出器横置きシステム」と呼ぶことにするシステムである。この検出器横置きシステムは、図3に示すように、X線管12およびX線検出器14を被検体Pを挟んで互いに対向するように、Y軸方向の左右の横位置に(被検体Pが仰向けのときは被検体の左右に)それぞれ配置したものである。このため、X線管12およびX線検出器14は床に対しては横向きとなる。
別の例は「検出器下置システム」と呼ぶことにするシステムに関する。この検出器下置システムは、図4に示すように、X線管12およびX線検出器14を被検体Pを挟んで互いに対向させるとともに、X線管12が被検体PのX軸方向下側で且つX線検出器14が被検体PのX軸方向上側にそれぞれ配置するシステムである。
さらに別の例は「検出器上置システム」と呼ぶことにするシステムに関する。この検出器上置システムは、図5、6に示すように、X線管12およびX線検出器14を被検体Pを挟んで互いに対向させるとともに、X線管12が被検体のX軸方向上側で且つX線検出器14が被検体のX軸方向下側にそれぞれ配置するシステムである。この検出器上置システムには、以下のように2通りの実施例を提案できる。
この検出器上置システムは図5に示すように、被検体Pの下側に位置させたX線管12を被検体P下側の所定スペース内で移動可能な移動機構22を備える。これにより、X線管12をその所定スペース内で1次元的、2次元的、または3次元的に移動させることができる。
この検出器上置システムを採用する場合、X線検出器14は被検体Pの上方に位置することになる。そこで、別の実施例の検出器上置システムでは、X線検出器14を例えば図6に示すようにキャスタ付きの可搬装置24の先端に吊持するように取り付ける一方で、X線管12は被検体Pの下方に可搬装置24とは別体の支持機構により支持されている。つまり、X線管12とX線検出器14が互いに独立した支持機構により支持されている。X線検出器14を支持する機構は必ずしも可搬装置14に限定されず、他の別体の支持機構であってもよい。
システムデザインの別の特徴として、「検出器固定システム」と呼ぶことにするシステムが提供される。このシステムはX線検出器14を固定状態で保持するシステムである。
検出器固定システムの好適な1つの例として、図7に示す如く、X線検出器14をカセッテとして形成し、このカセッテを寝台10の本体に着脱自在に差し込むように構成する。カセッテを差し込むと、X線検出器14は例えば被検体Pの下方の所定位置に固定状態で装着される。
デザインの別の特徴は、「カバー付きシステム」と呼ぶことにするシステムにある。このシステムは、図8に示すように、例えばX線管12およびX線検出器14が移動する所定の空間領域を保護用のカバー26a,26bで各々囲ったものである。これにより、X線管やX線検出器が移動して他の物を巻き込むといった事態を防止できるし、また被検体Pに安心感を与えることもできる。
別の特徴は、寝台10の天板10aを例えばZ軸方向にスライドさせることである。このとき、X線管12を天板10aのスライドに非同期で移動させてもよいし、X線管12およびX線検出器14を天板10aのスライドに非同期で一緒に移動させてもよい。また、X線管12およびX線検出器14を固定状態にしておいて、天板10aのみ、つまり被検体Pのみを例えばZ軸方向にスライドさせながらスキャンしてもよい。これにより、被検体PがX線ビームに対して相対的に移動することになる。
システムデザインのさらに別の特徴を図9に基づき説明する。この特徴はX線管および/またはX線検出器の取外しまたは退避に関する。寝台10の天板10aの下方には、レールおよびモータ機構などのX線管12を移動可能な移動機構28が設置される。このため、X線管12は移動機構28により例えばZ軸方向に沿って直線的に移動される。X線管12は高圧発生装置30に接続される。X線管28は撮影目的に応じて取外し・装着可能になっている。天板10aに載せられた被検体Pの上方位置には、例えば前述した可搬装置24を採用してX線検出器14を退避可能に位置させることができる。このシステムは複数の撮影モード間の切換えに対処可能である。
典型的な撮影モード切換の一つは、単純撮影モードと断層撮影モードとの間の切換である。まず、単純撮影を行うとする。この場合、X線管12を移動機構28に装着する(図9(a),(a′)参照)。次いで、可搬装置24′に取り付けられたX線検出器14′を寝台サイドに運んできて、X線検出器14を被検体Pの上方の所定位置に設置する(図9(b),(b′)参照)。この単純撮影におけるX線検出器14′は、通常、空間分解能が高いものが選択される。この設置状態で単純撮影(収集パラメータは例えば、空間分解能0.05mm,収集サイズ17”,静止画像である)が実施される。このとき、コンソール側のパラメータ(ダイナミックレンジなど)も単純撮影用に合わせられる。
典型的な撮影モード切換の別の一つは、アンギオ撮影モードと断層撮影モードとの間の切換である。この場合、図9(b),(b′)の撮影ステップのところでアンギオ透視撮影が実施される。
X線断層撮影装置の「機構」のカテゴリに分類できる種々の特徴を図面を参照して説明する。
本発明では、例えば、X線管12とX線検出器14とを移動させながらスキャンを実行し、またはX線検出器14を固定しかつX線管12のみを移動させながらスキャンを実行する。X線管12とX線検出器14とを移動させる場合、両者を同期して移動させることが望ましい。つまり、X線透過データの後処理を簡単にするには、「どの位置」でX線照射した透過データを「どの位置」で検出したかを認識することが必要になる。この管球と検出器の同期移動には、以下のように2つの例が挙げられる。
この実施例は、X線管12およびX線検出器14の同期移動を電気的に行うものである。図10に示すように、X線管12およびX線検出器14は、例えばU字状に形成されたUアームと呼ばれる支持アーム30の両端の移動サブアーム30a,30bに各々取り付けられている。移動サブアーム30a,30bは移動機構32a,32bにより支持アーム30に対して移動可能になっている。移動機構32a,32bは例えばサーボ機構を備える。移動機構32a,32bには同期駆動回路34から同一の駆動信号P1が与えられる。このため、移動機構32a,32bが共に駆動信号P1に応答して移動し、X線管12およびX線検出器14が同期して移動する。移動機構32a,32bにはエンコーダなどの位置センサ34a,34bが各々取り付けられている。位置センサ36a,36bによりX線管12およびX線検出器14が移動した実際位置が各々検出され、同期駆動回路34に取り込まれる。このため、同期駆動回路34ではX線管12およびX線検出器14の位置をリアルタイムに認識することができる。
別の例を図11により説明する。この実施例は管球12と検出器14を機械的に同期させるものである。図11に示すX線管12およびX線検出器14は、図10における支持機構と同様に構成された支持アーム(Uアーム)30により移動可能に支持されている。支持アーム30の両端部の移動機構32a,32bには、同期駆動機構38からの軸、アームなどの駆動伝達手段38aが機械的に結合している。同期駆動機構38はモータ、歯車などの要素を備え、制御回路40からの指令信号に応答して駆動する。このため、X線管12およびX線検出器14は同期駆動機構38により機械的に駆動され、同期して移動する。
機構のカテゴリにおける別の特徴はスリップリングの使用にある。上述のように本発明では、少なくともX線管12を移動させながらスキャンするため、電力供給線や信号線が絡まらないようにスリップリングを使用することが望まれる。とくに、X線管12を2次元的にまたは3次元的に複雑な軌跡で移動させるときに好適である。
このスリップリングの1つの実施例として低圧スリップリング42が使用される。図11に示すように、X線管12に至る電力供給線の途中には低圧スリップリング42が介挿されている。この低圧スリップリング42を介して交流100Vの電力が管球側に供給される。管球側には、支持アーム30aに取り付けられたジェネレータ44を備える。このジェネレータ44が低圧から高圧を発生させ、X線管12に供給する。
スリップリングの別の実施例は高圧スリップリング46である。図10に示すように、X線管12に至る電力供給線の途中には高圧スリップリング46が介挿されている。この高圧スリップリング46を介して例えばDC120kVの高圧電源がX線管12に供給される。
また別の特徴として、上述したスリップリングを使用しない管球の移動機構も提供できる。かかる一例を図60、61に示す。
機構のカテゴリにおける別の特徴はUアーム30の使用にある。前記図10、11に示すように、Uアーム30はそのアーム支柱部の長さを制御できるようになっている(図中矢印A参照)。この長さ制御により、画像の拡大率を所定範囲で自在に制御できる。
機構のカテゴリに分類される、さらに別の特徴はCアームの使用にある。
Cアームの1つの実施例として図12に示す構成が提供される。つまり、従来周知のCアーム50の両端部にX線管12およびX線検出器14をそれぞれ取り付けている。Cアーム50は、そのアーム円周方向に沿ってスライド回転することができるとともに(矢印B1参照)、アーム支軸50aを中心に回転させることができる(矢印B2参照)。これにより、X線管12およびX線検出器14を移動させることができる。
Cアームの別の例として図13に示す構成が提供されている。この実施例の構成によると、Cアーム50の両端部に移動・回転機構52a,52bをそれぞれ取り付け、この移動・回転機構52a,52bから例えば子アーム54a,54bをそれぞれ取り付ける。この子アーム54a,54bにはX線管12およびX線検出器14がそれぞれ取り付けられる。移動・回転機構52a,52bは図示しない制御回路から移動・回転の指令信号を受け、それぞれ独立してまたは同期して駆動する。
この子アーム54a,54bを用いる実施例の変形として、子アーム54a,54bの長さを調節する機構を提供できる。例えば図13で説明した移動・回転機構52a,52bの少なくとも管球側は、少なくとも子アーム54aの長さを調節できるように構成する(図13、矢印D1,D2参照)。これにより、例えば子アーム54aを回転移動させる場合の回転半径を変えることができ、子アーム54aの長さを調節するだけで撮影範囲を容易に制御することができる(図13、矢印E1,E2参照)。
各種の支持機構の駆動機構の駆動源には、サーボモータが搭載されており、これにより電気的制御量が機械的移動量に好適に変換される。しかしながら、必ずしもサーボモータに限定されることなく、任意のものを使用できる。
「検出器と管球」のカテゴリでは、本発明のX線断層撮影装置に適用可能なX線検出器14およびX線管12を例示する。
X線検出器の一例として、X線を光に変換する蛍光板と、その光を読み出す高感度カメラなどの読出し手段とで構成された検出器を使用できる。
X線検出器の別の例として、I.I.(イメージ・インテシファイヤ)を使用できる。
X線検出器のさらに別の例として、平面検出器を使用できる。この平面検出器は、間接変換型および直接変換型のいずれであってもよい。
X線管の一例として、固定陽極X線管を使用できる。固定陽極X線管は、スリップリングを用いる場合、低圧スリップリングでよく、また焦点サイズを小さくできるので、分解能が向上する。
X線管の別の例として、回転陽極X線管を使用できる。回転陽極X線管は、スリップリングを用いる場合、高圧スリップリングとなる。
断層撮影を行うには、一般には、管球と検出器、または管球を移動させながらスキャンを実施する必要がある。このスキャンにおいて、管球と検出器、または管球を移動させる軌跡がスキャン軌道と呼ばれる。原則的には、管球のみを移動させることで撮影は可能であるが、撮影視野を稼ぐために検出器も合わせて移動させることが多い。
管球と検出器、または管球のスキャン軌道は、図15(a)〜(c)に示す如く直線であってもし、図16(a)〜(c)に示す如く同一面状で2次元曲線であってもよいし、さらに、図17に示す如く3次元曲線であってもよい。すなわち任意の軌道が可能である。
検出器を移動させる場合、座標系において平行(2次元または1次元)に移動させてもよいし、また、円弧など3次元状に移動させてもよい。回転による移動も可能である。すなわち、任意の軌道が可能である。
スキャン軌道に関わる例の一つに、検出器14を常に管球12に正対させる(X線の曝射中心方向に対して検出面が垂直になること)移動制御がある。図18に示す如く、例えば、X線管12が実線図示の状態F1から仮想線図示の状態F2に円弧状に移動したとする。これに呼応して、X線検出器14を実線図示の状態F1(この状態でX線検出器のX線入射面はX線管に正対している)から仮想線図示の状態F2に円弧状に移動させ、X線検出器14をX線管12に再び正対させる。
スキャン軌道の別の例として、閉曲線のスキャン軌道が挙げられる。例えば図16(b),(c)に示すスキャン軌道は、始点と終点とが一致する閉曲線になっている。このスキャン軌道を採用すると、スキャン終了位置はスキャン開始位置になるので、連続的に間断無くスキャンを複数回実行できる。
スキャン軌道のさらに別の例として、非閉曲線のスキャン軌道が挙げられる。例えば図16(a)に示すスキャン軌道は、始点と終点とが一致しておらず、開く曲線になっている。しかしながら、1回スキャンが終了する度に、軌道終点から軌道始点までスキャン位置を戻すことで間欠スキャンが可能になる。この間欠スキャンはダイナミック収集に好適である。
スキャン軌道のさらに別の例として、周天円運動が挙げられる。このスキャン軌道は例えて説明すると、太陽の周りを回る衛星の軌道である。このスキャン軌道を達成するには、例えば図19(a)に示す如く、X線管12を回転可能な2軸で支持させる。支持アーム60から回転支持機構62を介して子アーム64がYZ面で回転可能に支持され、この子アーム64から別の回転支持機構66を介して孫アーム68が同じくYZ面で回転可能に支持されている。
スキャン軌道のさらに別の例として、撮影視野を移動させながら複数回スキャンするためのスキャン軌道がある。このスキャン軌道は、例えば図20に示すように、管球および検出器がYZ面において同期して円状を描き、この円状軌道が完了すると、管球および検出器をZ軸方向に移動させて再びYZ面において同期して円状を描かせ、以下、これを複数回繰り返すものである。このスキャン軌道を得るには、例えば前述した図19において、孫アーム68のみを回転させながら、支持アーム60全体を間欠的に直線的に移動させればよい。
スキャン軌道のさらに別の例として、管球と検出器の周期をずらしながらスキャンするための軌道がある。このスキャン軌道を図21に例示する。この例の場合、管球をn回(n>1、例えば10回、各回の周期は例えば1sec)連続的に回転させてその焦点に円状のスキャン軌道を描かせている間に、検出器を図中の位置aから位置bまで直線的に所定時間毎(例えば1秒毎)または連続的に移動させる。
また別の例として、管球を前述した19(a)のように2軸64、68で動かし、かつ、検出器を1軸で動かすときのスキャン軌道がある。管球側および検出器側の双方の軸の動かし方により、例えば、管球の周天円運動によるスキャン軌道と、検出器の直線運動によるスキャン軌道とを組み合わせたスキャン軌道ができる。
スキャン軌道に関わるさらに別の例は、スキャン軌道および/または軌道半径の選択に関わる。従来のX線断層撮影装置ではスキャン軌道の形状や軌道半径は予め固定されており、決められたスキャン軌道、軌道半径しか使用できない。しかし、この実施形態では、前述したように装置自体で(天井から支持せずに)管球および検出器を多自由度で支持するUアームやCアームを用いることができる。そこで、このアームを駆動する制御装置に、予め複数のスキャン軌道や軌道半径を指令するデータを記憶させておき、オペレータがそのスキャン軌道や軌道半径を選択できるようにする。これにより、撮影視野や撮影部位に応じたスキャンを的確にかつ迅速に指令できるようになる。
さらに別の例は、複数のスキャン軌道を実現できる機構を任意に組み合わせることである。例えば、管球側に周天円運動、円運動、および直線運動のいずれかスキャン軌道を描く支持機構を採用し、検出器側に直線運動のスキャン軌道を描く支持機構を採用する組み合わせがある。
さらに別の例は、任意の数値を与え、その数値に沿ったスキャン軌道を描かせる手法に関する。スキャン軌道を得る上で、前述したように装置自体に固有の管球・検出器支持機構を備え、その支持機構が複数の支持軸を有しているので、その支持軸の運動を数値で制御し、例えば任意のサイン波状のスキャン軌道を得ることができる。
次いで、本発明に係るX線断層撮影装置の「データ収集」に関するカテゴリに分類される特徴を説明する。
特徴の一つの例は、検出器にI.I.を使用した場合に関する。I.I.において電子拡大によって分解能を可変にする。これにより、簡単に分解能を制御できる。
別の例は、データ収集の例えばタイミングをスキャン軌道の、とくに形状に合わせることである。例えば図22(a)に示すように、管球、検出器共に楕円状のスキャン軌道を採用していたとする。このような形状のスキャン軌道の場合、楕円の小さい曲率の円弧部分でその他の部分よりも軌道運動速度が下がることがある。このような場合、検出器の投影データ収集のタイミングが同図(a)のように時間的に均等であるとすると、小さい曲率の円弧部分での空間的な収集密度が等価的に他の部分よりも高くなる。この結果、同図(b)に示すように再結合画像に、かかる小さい曲率の円弧部分の形状に似たアーチファクトAFが表れることがある。
また別の例として、管球から曝射するX線をパルスX線に設定してもよい。この場合、検出器のデータ検出のタイミングもこれに準じる。
さらに別の例は、検出器が検出した透過X線の投影データ(フレームデータ)を使って検出器のダイナミックレンジを制御する、ことである。この実施例には、以下の2通りの態様がある。
例えば、投影データの画素値を判断して、この判断結果を管球にフィードバックさせる。例えば、画素値がダイナミックレンジのオーバフローを示している場合、管球出力を下げる調整を自動的に行わせ、オーバフローを防止する。
また別の例として、検出器のゲイン調整がある。X線検出器には前述したようにA/D変換器が搭載されているから、そのA/D変換器の積分器のゲイン(感度)を投影データの画素値の判断結果に応じて調整する。例えば、画素値がダイナミックレンジのオーバフローを示している場合、ゲインを下げる調整を自動的に行わせ、オーバフローを防止する。
別の特徴として、管球を連続X線のモードで稼働させることが挙げられる。
連続X線モードの場合、管球の焦点からは時間的に連続してX線が照射されている。このため、検出器は図23に示すように、フレームデータの収集期間毎に、透過X線のエネルギ(電荷)を時間と共に蓄積(積分)させ、そのフレーム期間の適宜な点位置のタイミングで蓄積エネルギを検出するようにする。この点位置に設定には、以下の2つの態様がある。
この例の場合、あるフレームデータの収集期間が図23に示す如く、t1〜t2(スキャン軌跡L上の位置はL1〜L2)であるとすると、この態様の場合、収集時間の重心、すなわち中心時刻の位置で決める。例えば、かかる1フレームに対する収集タイミング=(t1+t2)/2で決まる。
この例によれば、フレーム毎のスキャン軌跡の重心(距離)を予め計算しておいて、この点位置としての重心位置に到達した収集タイミングを検出器に指令する。図23の場合、例えば、かかる1フレームに対する収集タイミング=(L1+L2)/2で決まる。
さらに別の特徴として、被検体の同一部位を複数回スキャンしてDSA(デジタル・サブトラクション・アンギオグラフィ:Digital Subtraction Angiography)を行うことができる。これにより、血管に注入した造影剤の動き(変化)を検出したり、ある部位の手術の前後における変化を診る場合に好適となる。
この例としては、投影データ同士の差分がある。最初のスキャンにおいて各ビューで得た投影データをマスクデータとして保存する。次回以降のスキャンにおいて各ビュー毎に、マスクデータ(投影データ)と収集した投影データとの差分を演算する。そして、後述する画像の再結合においては、複数フレームの差分データを加算して断層像を得る。
別の例としては、再結合して得たあるスライス面の2次元の断層像データまたは複数のスライス面それぞれについて再結合して得た3次元のボリュームデータの状態で差分をとってもよい。この場合も、例えば最初のスキャンで得た断層像データまたはボリュームデータをマスク像として、それ以降のスキャンで得た断層像データまたはボリュームデータとの差分をピクセル毎に演算する。これにより、経時的な変化を診ることができる。
上記マスク像を収集するタイミングは、必ずしも第1回目のスキャンに限定されず、観察したい変化量の性質、状態に応じて、複数回のスキャンの内の中間のスキャン、最終スキャンなど任意に時期に設定できる。
さらに、この差分演算後の処理例として、非線形処理を行うことができる。
具体的な非線形処理として、しきい値処理がある。差分演算によって得たデータを所定のしきい値でさらに弁別し、しきい値以下の差分データを強制的に零に設定する。これにより、背景のコントラストを圧縮し、全体のデータ量を減らすことができる。
さらに別の特徴として、ウオーターベットやX線CTスキャナで実施されているウェッジフィルタのような補償機構を設けてもよい。これにより、ダイナミックレンジを拡大させることができる。
さらに別の特徴として、パルス造影によるストロボ撮影が挙げられる。
さらに別の特徴として、心電同期スキャンを実施してもよい。パルス造影の周期に代わるものとして、心拍周期を用いる。
次いで、本発明に係るX線断層撮影装置の「データ選択」に関するカテゴリに分類される特徴、例を説明する。
1つの特徴は、位置検出手段によって、焦点および検出器、または焦点の位置を検出する手法である。この場合、各ビューの透過データ検出時の位置情報を記憶し、この位置情報に合致する画素の投影データを各フレーム毎に選択する。
位置検出手段の例として、まず、移動機構16内に設けたエンコーダ、ポテンショメータなどの位置検出手段が挙げられる。この位置検出手段は、例えば図10、図11で示した位置センサ36a,36bで構成される。
位置検出手段の別の例は、装置の移動機構16の外部に設けた手段である。この例として、例えば、焦点の熱から焦点位置を検出する赤外線検出器がある。この赤外線検出器を焦点の移動空間範囲に向けて固定設置しておけばよい。
位置検出の別の特徴として、X線透過率が被検体とは異なるマーカを付する手法がある。これにより、各投影データにマーカも写り込む。複数フレームの投影データについて、このマーカの位置を算出することで、画像再結合のためのデータ選択に必要な投影データ内の位置情報を得ることができる。
マーカはその一例として、被検体に付してもよい。
また、マーカは寝台(天板)に付してもよい。
データ選択に係る別の特徴として、マーカを利用して定常的な位置ずれを補正することもできる。例えば図25に示すように、カバー体70内で移動するX線管12の前面に板体62を設け、この板体62にマーカとしてのピンホールM1〜M3を形成しておく。スキャン前に、このピンホールM1〜M3を使って位置補正用データを収集しておき、スキャン時の投影データをその位置補正データで補正するようにすればよい。これにより、機械的がたつきなどの定常的な位置ずれを補正することができる。
次いで、本発明に係るX線断層撮影装置の「画像再結合前のデータ処理」に関するカテゴリに分類される実施例(特徴)を説明する。このカテゴリのデータ処理は原理的には必ずしも実施しなくてもよい。しかしながら、後に再結合する断層像の品質を向上させるためにも、以下に例示する特徴(処理)の1つまたは複数を適宜に組み合わせて実施することが望ましい。
1つの特徴として、散乱線補正の実施が挙げられる。この散乱線補正は原理的には任意の手法や機構でよい。被検体や寝台で散乱したX線の除去、または補正により取り除くことが望ましい。
散乱線補正の具体例として、図26に示す如く、グリッドなどの遮断体76(以下、グリッド)をX線検出器14のX線入射側前面に配置する手法がある。これにより、散乱線が検出器に入射しないように物理的に遮断する。
好適なグリッド配置の例として、グリッドを固定配置する。検出器により検出される投影データにはグリッドの跡は写るが、投影データからのデータ選択の位置は各ビュー毎に変わる。したがって、グリッドの跡は再結合された断層像からは自動的に消える。
グリッド配置の別の例として、スキャン中にグリッド76全体を移動させてもよい(図26参照)。このとき、好適には、グリッド自体が自分の跡を消すように移動させると、なお良い。
配置したグリッド76を移動させるときの具体的な軌道としては、例えば、円軌道、8の字軌道、往復軌道などである。
グリッドの別の例として、図27に示すように、グリッド76を形成している各羽根が焦点S(X線管)を向くようにコーン状を成していてもよい。これにより、透過X線を効率良く入射させ、散乱X線を効率良く遮断できる。
グリッドのさらに別の例として、図28(a),(b)に示すように、グリッド76を形成している複数の羽根のそれぞれを可動式にした構造を挙げることができる。この複数の羽根がスキャン中に常に焦点Sの方向を向くように制御すればよい。
散乱線補正に係る別の例は、散乱線を演算により数学的に除去するものである。この数学的除去は、上述したグリッドに拠る物理的除去と併用してもよいし、単独で実施してもよい。
・"A technique of scatter-glare correction using a digitalfiltration" Michitaka Honda et al., Med. Phys. 20(1), Jan/Feb 1993 pp.59-70
が知られている。このため、投影データを収集した段階で、画像再結合前に、これらの適宜な数学的除去の演算(PSFなど)を例えば、制御・処理装置18内のコンピュータを使って実施すればよい。
さらに別の例は、散乱線量を算出し、この算出値で収集データを補正する構成に関する。この散乱線量はスキャンパラメータなどの情報を基づいて算出する。スキャンパラメータとしては、ビームエネルギ、被検体厚、視野サイズ、被検体と検出器との間の距離などが加味される。この算出例としては、例えば下記の文献のものが知られている。
7.2.非線形処理
また別の特徴として、収集した投影データの各画素データに非線形処理を施し、コントラスト改善を図ることが挙げられる。
具体的な非線形処理の一例は非線形なガンマ変換であり、例えばルックアップテーブルで処理できる。
また別の非線形処理の例として、しきい値処理やメジアンフィルタなどの適宜なフィルタ処理であってもよい。
さらに別の特徴として、収集した投影データの各画素データに対数演算を施すことが挙げられる。これにより画素データのレンジを圧縮できるとともに、線吸収係数を直接反映させた再結合用の画像データが得られる。
さらに別の特徴として、「cos項」でX線ビームの広がりや検出器の傾斜角の補正がある。
具体的な一例として、図29に示すように、被検体のスライス面の厚さ方向のパスを補正する。あるボクセルに対するペンシルビームX線の角度(焦点Sを通る鉛直線からの振り角)をθとするとき、投影データの各画素データに「cos3θ」を掛ける。
さらに別の特徴として、再結合する前に、各種のフィルタ処理を施すようにしてもよい。このフィルタ処理は、例えば制御・処理装置18によりソフト的に実施される。
このフィルタ処理の一例としては、フィルタの処理方向が等方的なフィルタ処理がある。
また別の例として、フィルタの処理方向が非等方的なフィルタ処理がある。
この特徴は、同一スライス面の複数フレームの投影データについて動き成分を除去することに関する。この除去演算は、例えば制御・処理装置18のコンピュータによって実施する。
[数1]
M(X1,X2)=B(X2,A(n))−B(X1,A(n))…… (1)
で表される。A(n)は焦点の動きを表す。A(n)が2次元の量のときは、当然に構造物の動きMも2次元の量であるが、パルスX線で1フレーム毎に動き検出するときは直線になる。
この動き成分の除去処理に関する一例として、フレーム間の差分を演算することで、動き成分を検出する。例えば図31に示すように、2つのフレームの投影データA,Bがあるとき、双方の対応する画素毎に「A−B」の差分を演算する。この差分データ(フレームデータ)が動き成分となる。
別の動き検出の例としては、上記差分演算にしきい値弁別を加えた方式が在る。つまり、図31に模式的に示すように「A−B」の差分を演算した後、所定のしきい値処理を行う(図32の差分データの変動の様子の例を参照)。このしきい値は例えばノイズ成分を除去できる値に設定しておけば、動き検出とノイズ成分の除去とを併せて実行できる。
さらに別の例として、上述した動き成分の検出を隣接しないフレーム間、例えば第1フレームと第11フレームとの間のように、1または数フレームを飛ばしたフレーム間で動き成分を検出してもよい。これにより、隣接フレーム間では検出できないような微細な動き成分も検出できる。
ところで、この動き成分(他のスライス面の成分)は焦点の移動方向とは相対的に反対の方向に動き、それ以外の方向には動かない。そこで、動き成分検出の別の例として、動き成分の検出方向を特定の方向に制限して、検出の容易化を図ってもよい。
具体的には、検出方向は焦点の移動方向に沿った±の2方向のみに限定した動き成分検出が好適である。例えば、フレーム毎に焦点の移動方向を追跡する処理を行い、動き成分検出はその方向に沿った±の2方向についてのみ行う。
この例は、動き成分検出の処理を強制的に停止する態様に関する。例えばDSAを行うときのように、造影剤を被検体に注入して、造影剤をフレーム毎に追跡するような場合、造影剤の動きそのものが観察対象である。そのようなときには上述した動き成分の検出処理を強制的に停止させる。例えば制御・処理装置18がオペレータからの情報に応答して、かかる停止を行えばよい。
動き成分検出のさらに別の例は、検出時のフレーム数のバリエーションに関する。上述した検出例はフレーム1枚ずつ検出する場合を想定していたが、本例では複数フレームを合体して同様に行うことができる。例えば、第1〜第3の3フレームの投影データを相互に加算し、第4〜第6のフレームの投影データを相互に加算し、この加算した両グループの投影データ間で上述したと同様の差分演算、しきい値付き差分演算、検出方向制限付き差分演算などを実行する。
しきい値付き差分演算を行うときには、しきい値を加算数に合わせて変えることができる。
動き成分を検出する別の方法は、2のフレームの投影データA,Bがあるとき、画素毎に、A+B−ω|A−B|(ω:重み付け係数)の式に基づく重み付け(しきい値も)を加味した差分によって求めることができる。
本カテゴリに分類される特徴のさらに別の1つは、検出器内部の歪みの補正に関する。検出器内部とは、I.I.などの検出器のX線入射面から内部のD/A変換器に至る経路全体を言う。この歪みが在ると、例えば直線を表すX線が入射しても、曲線を表す信号として出力される、などの現象が生じる。この結果、再結合される断層像に歪みが生じる。
この歪み補正の一例として、例えば図33に示すように、点状の複数のマーカMが2次元的に分布するようにX線検出器14の入射面に付すことができる。この点状のマーカの場合、実際の投影データに写り込んでも、そのデータ内容に殆ど影響を与えない。したがって、スキャンと同時に補正データを収集してダイナミックに補正演算を行うことができる。
また別の例として、例えば図34に示すように、格子状のマーカMをX線検出器14の入射面に付すことができる。この場合には、スキャンと同時の補正データ収集は難しいので、スキャン前に補正データを収集・演算しておいて記憶しておく。そして、スキャンのときには、記憶しておいた補正データを読み出し、この補正データにしたがって収集した投影データを補正演算する。
スキャン前に補正データを収集しておく場合、その収集のためのスキャン軌道を投影データ収集のためのスキャン軌道に一致させることが望ましい。
さらに別の特徴として、リプロダクションデータから他のスライス面の構造物のデータを計算し、除去することが挙げられる。
さらに、本発明に係るX線断層撮影装置の「画像再結合」のカテゴリに分類される特徴、実施例、バリエーションを説明する。この画像再結合は、複数のビューで収集した複数フレームの投影データを加算して任意スライス面の断層像を得る処理である。具体的には、ビュー毎の管球焦点、スライス面、検出器の幾何学的関係(ジオメトリ)にしたがって、複数フレームそれぞれの投影データからスライス面のボクセルそれぞれに該当するデータを選択し、加算する処理である。すなわち、画像再結合を行うには、所望のスライス面に対して、各フレームの投影データのどのデータを選択すべきかを示すデータ選択の情報が必要である。
本発明では前述したように、スキャンとしては、少なくとも管球の焦点を被検体および/または検出器に対して相対的に移動させながら複数ビューの投影を行えば足りる。つまり、スキャンに伴うコンポーネントの移動の態様としては、管球(焦点)のみの移動、管球と検出器の移動、それらの移動と天板(被検体)の移動との組み合わせ、天板(被検体)のみの移動がある。管球および検出器の移動の軌道は任意の3次元まで可能である。
管球焦点の座標:S(sx,sy,sz)
所望のスライス面のボクセルの座標:V(vx,vy,vz)
検出器面または投影データの位置を表す平面の法線ベクトル:
(e1,e2,e3)
検出器面または投影データの位置を表す平面に含まれるある点:
(pl1,pl2,pl3)
とすると、焦点とボクセルを結ぶ直線の方程式は、
[数3]
el・(x−pl1)+e2・(y−pl2)+e3・(z−pl3)
=0 ……(3)
が得られる。式(3)を満たす座標(x,y,z)は、ベクトル(e1,e2,e3)を法線とし、座標(pl1,pl2,pl3)を含む平面内に存在することになる。交点は式(2)と式(3)の連立方程式を解けばよい。すなわち、式(2)を式(3)に代入して、
[数5]
p(i,j)=あるビューで検出器が検出したi行j列の投影データ
i=F[P(x,y,z)−pc(xc,yc,zc)]
j=G[P(x,y,z)−pc(xc,yc,zc)]
F,G:変換関数
……(5)
に基づく算出を行う。
画像再結合のための管球(焦点)の移動軌道としては、床面(水平と考える)に平行なスライス面内の直線軌道である1次元軌道に限らず、回転を含む2次元軌道、または3次元軌道であってもよい。または予め定めた軌道が無い軌道であってもよい。
画像再結合のための検出器の移動軌道としては、床面に平行な1次元または2次元の軌道であっても、また3次元軌道(円弧など)あるいは回転軌道であってもよい。
この実施例は、収集された複数フレームの投影データから断層画像を得る画像再結合の処理例に関する。図1に示すX線断層撮影装置においては、制御・処理装置18が本発明の画像再結合用の画像処理手段を構成している。この制御・処理装置18により上述した一般化表現に沿って実施される、図67のソフトウエア処理に基づく画像再結合の処理例を以下に説明する。
制御・処理装置18は、例えば入力装置19からの入力情報に基づいて、被検体の一部を少なくとも含むスライス面としての平面を表示面として設定する(ステップS31)。この平面の被検体に対する傾きは変更可能であり、所望の傾きに設定できる。つまり、被検体の一部を少なくとも含む任意角度のスライス平面を設定できる。次いで、設定した平面に含まれる各座標を決定する(ステップS32)。次いで、焦点と検出器の相対的位置関係に基づき各ビューの投影データから足し込む投影データを選択する(ステップS33)。この投影データの選択は前述した原理(8.1.項)に沿って行われる。次いで、選択した投影データを、決定している座標に足し込む(ステップS34)。この投影データの選択および足し込みは各ビュー及び平面の各座標について繰り返される(ステップS35)。
制御・処理装置18は、例えば入力装置19からの入力情報に基づき、被検体Pの一部を少なくとも含むスライス面としての曲面を表示領域として設定する(ステップS31)。つまり、被検体の一部を少なくとも含む任意曲面のスライス面を設定できる。次いで、設定した曲面に含まれる各座標を決定する(ステップS32)。次いで、焦点と検出器の相対的位置関係に基づき各ビューの投影データから足し込む投影データを選択する(ステップS33)。この投影データの選択は前述した原理(8.1.項)に沿って行う。次いで、選択した投影データを、決定している座標に足し込む(ステップS34)。この投影データの選択および足し込みは各ビューおよび平面の各座標について繰り返される(ステップS35)。
制御・処理装置18は、例えば入力装置19からの入力情報に基づき、被検体の一部を少なくとも含む任意の3次元形状のROIを設定する(ステップS31)。次いで、設定したROI内に含まれる各座標を決定する(ステップS32)。次いで、焦点と検出器の相対的位置関係に基づき各ビューの投影データから足し込む投影データを選択する(ステップS33)。この投影データの選択は前述した原理(8.1.項)に沿って行う。次いで、選択した投影データを、決定している座標に足し込む(ステップS34)。この投影データの選択および足し込みは各ビューおよび平面の各座標について繰り返される(ステップS35)。
この実施例は、1回のスキャンで収集された複数フレームの投影データから複数枚の断層画像を得る画像再結合に関する。つまり、この再結合方法を使うと、スキャンを複数回繰り返す必要が無く、最初に1回だけスキャンを行っておいて、投影データを再結合処理する過程で複数枚のスライス面位置を指定して、それらの断層像を得ることができる。
(i):vx=指定値、vy,vz=可変
にしてあるスライス面の画像再結合を行う。次いで、
(ii):vx=vx+Δx(スライス面間の距離:図38参照)、vy,vz
=可変
にして別のスライス面の画像再結合を行う。以下、任意枚数のスライス面について、(ii)の処理を繰り返す。
画像再結合の別の実施例は、ある(各)ビューの投影データからデータを選択する方法に関する。
画像再結合のさらに別の実施例はリサンプリングを併用する手法に関する。
この画像再結合に関する実施例では、各コンポーネントの移動の態様の典型的な1つとして、検出器を床面(装置の座標系における水平面)に平行に移動させるとともに、管球焦点を3次元的に移動させるときの画像再結合を説明する。
(拡大縮小が必要な場合)
画像再結合を行うには、なんらかの形で各フレームの投影データの中からスライス面の対象ボリュームに加算するデータを選択(データ選択)する必要がある。このデータ選択の位置を最も簡単に算出できる移動の態様は、管球および検出器を共に床面(装置の座標系における水平面)に平行に移動させる場合である。
(拡大縮小が不要な場合)
この実施例は、管球および検出器を共に平行移動してスキャンするときの別のデータ選択の手法に関する。
このように、複数のスライス面全部でボクセルのピッチ(間隔)を等しく設定しておけば、拡大率の問題に関係なく、データ選択して再結合できる。
画像再結合の処理に関する別の特徴として、スライス画像の拡大・縮小して拡大率を合わせる処理を提供できる。スライス画像(ボクセルの画像)の拡大率は焦点側のスライス画像の方が検出器側のそれよりも大きい。つまり、スライス面の高さXに依存してスライス画像の拡大率が異なるので、これを合わせる必要がある。この処理は例えば下記式に基づき実施される。
S2(X,Y0,Z0)=S1(X,aY,bZ)
係数a=a(X), 係数b=b(X) ……(9)
投影データを加算(再結合)するときに、加算するデータを指定(選択)するが、そのときに指定位置に一致した位置の画素が無い場合、例えば近傍4点補間を実施することになる。これにより、実質的に画素サイズが大きくなる。この補間データに上述したようにさらに拡大率の調整を行うとなると、データの空間分解能が低下(ぼけ)してしまうので、これを回避するため、下記式により、拡大率の揃った複数のスライス画像を一度に得る処理が望ましい。
S3(X,Y,Z)
=Σ(P{n,aY,b(Z+B[X,A(n)])})/N ……(10)
さらに別の特徴として、ボリュームデータから任意角度でスライス画像を切り出す処理を提供できる。この処理は、例えば制御・処理装置18により、オペレータとの対話処理の中で実施される。スライス面の指定位置を変えて複数のスライス画像を作成することで、3次元のボリュームデータが得られる。このボリュームデータに対して任意角度を指定し、MPR(断面変換)の処理を施すことで、その任意角度でのスライス画像が得られる。これにより、例えば、コロナル像のボリュームデータからオブリーク像、アキシャル像、サジタル像を任意に作成することができる。
上述した種々の態様にあっては、投影データを収集した後で画像再結合を行うという前提であったが、本発明の画像再結合のタイミングは必ずしもこれに限定されない。つまり、画像再結合のタイミングに係る別の特徴として、投影データの収集と画像再結合(投影データの加算)とを同時に(並行して)実施できるようにしてもよい。この具体例を下記に示す。これは制御・処理装置18の制御および処理によって実現できる。
この同時の再結合を行うには、スキャン軌道と投影データの収集タイミングとを予め決めておく。つまり、スライス画像を生成するには、各フレームの投影データのどの位置の画素値をスライス面のどの位置のボクセルに足し込めばよいかのデータ選択の情報が予め分かっている。これにより、図45に模式的に示すように、あるビューの投影データを収集したら、その投影データを直ちにスライス面の各ボクセルデータに加算する。その加算の間に別のビューの投影データを収集する。以下、所定のビューにわたってこれを繰り返すことで、投影データの収集と同時に(並行して)画像再結合の処理を行うことができ、迅速にスライス面の断層像を得ることができる。
さらに別の特徴として、投影データの収集位置(すなわち、スキャン軌道)に依存して重み付け加算をする手法を提供できる。この加算処理も制御・処理装置18による画像再結合処理の中で選択的に実施される。
断層像を得る場合、その断層像の中には医学的に真に関心のある領域が含まれていることは勿論必要であるが、その一方で、関心領域の周辺の部位も極力広く画像化されていた方が都合がよい場合が多い。つまり、視野は広い方が便利である。
大視野撮影に係る別の態様を説明する。この大視野撮影は、撮影視野を移動させながら複数回スキャンし、それぞれのスキャンの再結合画像を位置を合わせてオーバーラップさせるものである。この撮影法は、複数回スキャンさせてデータ収集し、再結合画像を生成した後は、制御・処理装置18による後処理で達成できる。
さらに、画像再結合時の特徴として挙げられるのは、再結合処理として加算平均でもよい、ことである。単純な加算に代えて、この加算平均を使えば、加算回数の違いに伴う画素濃度のばらつきを抑えることができる。
さらに別の特徴として、1つの撮影の中で、画像再結合の対象となる投影データの範囲を選択または限定する手法を提供できる。この特徴は、本発明の画像再結合を行うには、スライス面の各ボクセルを通るX線パスの角度が異なる複数フレーム分の投影データがあれば足りることに由来している。この特徴はダイナミック撮影にも有効である。この特徴は、制御・処理装置18によってデータ収集後に、画像再結合の処理の過程で実施できる。
この範囲選択(限定)の画像再結合の例を図48に示す。例えば、仮にX線管および検出器のスキャン軌道が図48(a)に示す如く楕円状で、この同一スキャン軌道を複数回周回しながらスキャンを行って1回の撮影を行うものとする。1回の周回には例えば1秒掛かるものとする。
前述した図48(d)の例は、スキャン中の一部のビューで収集される複数フレームの投影データを使用していることになる。この様子は、図49にように模式的に表すことができる。
また別の態様として、例えば図50に示すように、管球および検出器が所定のスキャン軌道を移動して撮影するときに、その視野内に障害物(例えば、管球や検出器の支持機構のアーム端部、骨などの構造物)が入る場合がある。この場合、検出器軌道の所定範囲内で検出される投影データの一部には、障害物の投影が部分的に写り込むが、障害物が写らない部分も存在する(図中、非斜線部NHの部分)。そこで、この投影データの一部の部分NHのみを使って再結合すれば、障害物に影響されないで断層像を得ることができる。
別の例として、上述した再結合に用いる範囲選択(限定)の幅は、スライス位置に応じて変更できるようにしてもよい。
さらに別の例として、再結合に用いる投影データを収集するときの時間帯の時間軸上の位置を少しずつ、ずらしながら同一のスライス面を再結合し、またはボリューム領域(複数のスライス面)を再結合してもよい(図48(c)参照)。
8.9.3.1.時間分解可変
このずらし再結合のときに、画像間または画像の時間分解能を可変にしてもよい(図48(c),(d)参照)。
画像再結合の処理のさらに別の特徴として、反復収束法を提供できる。この反復収束法は、差分値によるリプロジェクション(再投影)、再結合処理、各ボクセルの差分(つまりアーチファクト)に至る一連の処理を繰り返すか、または、差分値によるリプロジェクション(再投影)、各ボクセルの差分、再結合処理に至る一連の処理を繰り返し、各差分値が所定値以下に収束したときの再結合画像が真の画像とする手法である。
この特徴は、例えば手術の前後のスライス面の断層像を比較する場合に好適なサブトラクション法である。上述してきたスライス面は絶対座標系において指定されるものであったが、この特徴に係る移動補正付きサブトラクション法ではスライス面を被検体を中心に考えるものである。そのためには、被検体の体軸方向の移動量および/またはねじれ量を、位置検知するから、または被検体に付したマーカ、あるいは、骨などの特徴位置を目印にして、動きの分だけ指定スライス面を移動させて、そのスライス面に投影データを再結合する。このように再結合した2枚の画像の画素毎の差分を演算すれば、例えば手術の前後などの2枚の画像間の変化を容易に画像化できる。
さらに、X線断層撮影装置の「画像処理、画像切出し、および後補正」のカテゴリに分類される特徴及び例を説明する。この項目の特徴および例は、制御・処理装置18により実行される。
この特徴は断層像を2次的に任意角度の断面で切り出すものである。前述したように、例えばコロナル面としてのスライス面を複数枚指定して、それらのスライス面それぞれに画像再結合すれば、3次元のボリュームデータが作成される。このボリュームデータに任意角の断面を指定して断面変換(MPR)処理を行うことで、オブリーク像などの任意断面の画像が得られる。断面角度の設定に仕方により、アキシャル像、サジタル像も得られる。
この特徴は、断面が平面ではなく、パノラマ状になった断面に関する。上記9.1.項で得たボリュームデータ内に任意断面を指定するとき、曲率、曲率中心、曲率中心での円弧角度などの情報を指定してパノラマ状の曲面を指定する。この曲面に断面変換処理を施すことで、パノラマ状の曲面の断層像が得られる(パノラマ展開)。これは、例えば歯科の歯茎などの診療において有益である。
この特徴は、例えば肺の血管など、対象物を追跡した自由な面に沿って画像を切り出すものである。この場合も、複数のスライス面に再結合して形成されたボリュームデータに、そのような自由な面を設定して断面変換することで、その面に沿った断層像を2次的に作成することができる。
さらに別の特徴は、再結合画像に薄く、ぼんやりと平均的に重畳している、いわゆるDCボケ成分を除去する手法に関する。
具体例としては上述したように、複数枚の参照用スライス面の再結合画像を利用してDCボケ成分の補正値を求めることが望ましい。これにより、DCボケ成分補正の信頼性が向上する。
複数枚の参照用スライス面の再結合画像を利用する場合、これらの画像データを非線形補間して補正値を求めてもよい。
このように被検体前後の2枚のスライス面を利用した場合、それらの再結合データを線形補間して、X軸方向の前記X線強度分布(目的スライス面のDCボケ成分の補正値を含む)、または、目的スライス面のDCボケ成分の補正値を容易に推定することができる。
上述のように線形補間で生成されたX軸方向の前記X線強度分布、または、目的スライス面のDCボケ成分の補正値に、目的スライス面の位置や撮影条件を考慮した係数を乗算して最終的な補正値を求めるようにしてもよい。
さらに、補正演算を簡略化できる一例として、参照用スライス面を1枚だけ利用する手法がある。この場合、参照用スライス面は被検体の前後の1枚、例えば図51(a)の場合には前側の1枚N1(N2,…)または後側の1枚M1(M2,…)である。
この場合の具体的な態様の1つは、求めた参照用スライス面1枚の再結合画像データそのものを補正値として採用することである。このとき、補正値を画素毎に形成してもよいし、画像全体で1つの値に統合してもよい。
この場合の具体的な態様の別のものは、求めた参照用スライス面1枚の再結合画像データに、目的スライス面の位置や撮影条件を考慮した係数を乗算して最終的な補正値を求めるようにしてもよい。このとき、補正値を画素毎に形成してもよいし、画像全体で1つの値に統合してもよい。
上述した特徴はDCボケ成分の除去であったが、ボケ成分全般を3次元画像フィルタで除去することが本項の特徴である。
本撮影の原理から、スライス面の各ボクセルの成分はX線パスの方向に沿ってはみだすとも考えられ、これによりX線パスの方向にぼけてしまう。例えば、図53に示すように、焦点および検出器が共に円形のスキャン軌道を描いている場合、スライス面のあるボクセルVの成分は、ロート状の斜めの方向(図53の斜め方向NN)に沿ってぼける。そこで、このボケを補正するフィルタを掛ける。そこで、エンハンスの3次元フィルタ(ボケ回復フィルタ)を掛ける。
このエンハンスの3次元フィルタとしては、例えば等方的なフィルタが使用できる。
また、このエンハンスの3次元フィルタは、特定の方向にのみフィルタリングを掛ける非等方的なフィルタ特性を有していてもよい。
その場合の特定方向として例えば図53の上下方向VTを全部のX線パスを代表する方向として選択し、この方向にフィルタリングを掛けてボケを除去することができる。
また、かかる特定方向の例として、例えば図53に示す斜めのX線パスNNの方向それぞれにフィルタリングを掛け、より確実にボケを除去するようにしてもよい。
さらに、本発明の画像処理にあっては、ボリューム・レンダリング、MIP(最大強度投影)、サーフェース・レンダリング、再投影(リプロジェクション)の処理など、多種多様な3次元画像処理・表示を行うことができる。
さらに、「マルチモダリティ」のカテゴリに分類される特徴、例を説明する。ここで言及する「マルチモダリティ」は、本発明に係るX線断層撮影装置をX線CTスキャナ、MRI装置など、ほかのモダリティとのシステム的な結合を意味している。このマルチモダリティは、個々のモダリティの特徴を生かしかつ補完し合いながら、診療現場の様々なニーズに応えることを目的としている。
本発明に係るX線断層撮影装置は、位置合わせを非常に簡単に行えることを特徴の1つとする。そこで、被検体にX線透過率の異なるマーカを付けておいてスキャンを行う。これにより、再結合された画像にはマーカが写り込むから、この画像中のマーカ位置を使って、ほかのモダリティの座標系との位置合わせをすればよい。具体的には、画像中のマーカ位置によって被検体の座標が一義的に決まり、ほかのモダリティで撮影した画像中のマーカと合わせるように、再結合画像を回転、移動させることで、例えば、複数種類のモダリティで収集した画像同士を位置合わせできる。
具体的な一例として、マーカの数を不明な変数の数に合わせる例が挙げられる。通常、3個のマーカが使用される。
また別の例として、被検体にマーカを付けるとき、再結合する画像の端にマーカが写り込み、中心部の重要な部分には写らないようにマーカの貼り付け位置を決め、より少ないビューで再結合する。
さらに、このような位置合わせを、手術計画、放射線治療計画、術中ナビゲータに利用する。
とくに、術中ナビゲータの座標入力装置のポインタ(ペンなど)との位置合わせも可能である。被検体の手術部分を含む領域を本発明のX線断層撮影装置で事前に撮影し、再結合画像データまたはそのボリュームデータを得ておく。手術に際し、一度、かかるポインタで被検体のマーカ部分を指示し、マーカ位置(絶対位置)を記憶させておく。この状態で、術中に、被検体内の知りたい空間位置をポインタで指示する。これにより、指示位置と絶対位置との距離、方向が演算され、この演算値に基づき、事前に撮影してある再結合画像またはボリュームデータの画像に指示位置が重ね合わせられて表示される。これにより、例えばメスを使って頭部を掘る手術をしているときに、術者が表示像を観察すれば現在の手術位置(座標入力装置のポインタで指した位置)を目視で知ることができる。これにより、さらに掘り進んでよいか否かなどの、手術をアシストする情報を簡単に得ることができる。
さらに、本発明に係るX線断層撮影装置の「システム全体動作」のカテゴリに分類される特徴や例を説明する。
最初に説明する特徴は、造影剤をパルス状に注入(パルス造影(またはパルス注入))してストロボ撮影し、血流などがゆっくり走行しているように見せる手法である。
この特徴を利用した一例として、各時刻(各位相)の造影剤位置から血流速度を計算できる。
パルス造影に好適な例としては、細いチューブに造影剤と生理的食塩水とを交互に詰めておいて(図54参照)、これを前述したパルス注入周期で送出する構成がある。
また別の特徴は心電同期スキャンに関する。スキャン軌道が円状であるとすると、このスキャン軌道に、ECGによって得られる心電波形信号を模式的に図56に示すように重畳して表すことができる。この心電波形信号の中から心拍周期の同じデータ(例えば拡張期のデータ)だけを選択して画像再結合する。つまり、上述したストロボ撮影におけるパルス注入周期を心拍周期に置き換え、心拍周期の同じデータだけで画像再結合する手法である。
さらに別の特徴は、定位脳手術などに好適な術中ナビゲータまたは術中モニタとしての使用である。術中ナビゲータや術中モニタにおいては、どのスライス面の画像を再結合して術者に見せるかが重要である。
システム全体動作に関わる別の特徴として、ボリュームROIを使用した病変状態の定量化の手法を提供できる。
さらに別の特徴として、フィルタ処理がある。前述した投影データを2次元フィルタで処理する手法と、前述した画像再結合で得たボクセルデータを1次元フィルタで処理する手法とを組み合わせたものである。
上記1次元フィルタのフィルタリング方向は、例えば、管球−検出器の方向に設定することが好適である。
さらに別の特徴として、投影データをしきい値で弁別してから画像再結合する手法が挙げられる。この特徴は、前述した5.6.4.項の非線形処理を発展させたものとして捕らえることもできる。投影データに所定のしきい値を設定して濃度の薄い画素を切り捨てる処理を行い、画像圧縮を図るものである。
最後に、この実施形態に係るX線断層撮影装置の「その他」の特徴、例を説明する。
このX線断層撮影装置には、X線診断装置で採用されている様々な技術(ガンマ補正、画像圧縮、自動輝度制御(ABC)の技術など)は基本的に採用し、機能向上を図ることができる。
また別の特徴は、スキャンに伴うX線の照射範囲を事前に確認する技術に関する。
いま上述のX線断層撮影装置について、撮影から画像処理に至る手順の一例を図62に示す。ここで、本装置の「システムデザイン」、「機構」、「検出器と管球」、「スキャン軌道」、「データ収集」、「データ選択」、「マルチモダリティ」、「システム全体動作」、および「その他」に関する特徴および例は予め選択されているとする。
続いて、本発明の別の実施形態を図63〜図66に基づき説明する。この実施形態は、管球および検出器の移動を簡素化し、画像再結合の処理を簡単に行えるようにしたX線断層撮影装置に関する。
[数11]
B(X,A(n))=−(L−X)/X・A(n) ……(11)
の式にしたがって計算できる。焦点移動量A(n)はフレーム毎に異なる値で、例えば、座標系のある点(例えば第1投影データ収集時の焦点位置(例えば初期位置)、あるいは座標の任意の位置)や、被検体Pの体表に付したマーカの画像位置を基準位置とし、この基準位置からのずれとして演算で求める。また、この焦点移動量を求めるには、赤外線焦点検出器やエンコーダなどの検出器を装置に付加することもきる。
[数12]
S1(X,Y,Z)
=Σ(P{n,Y,Z+B[X,A(n)]})/N ……(12)
として求められる。これにより、スライス位置Xの断層像が得られる。
10a 天板
12 X線管(焦点、管球)
14 X線検出器(検出器)
16,24,30,30a,30b,32a,32b,38,38a,38b,40,50,52a,52b,54a,54b,60,62,64,66,68支持機構
18 制御・処理装置
19 入力装置
20 表示装置
120 メモリ
122 CPU
124 高圧発生器
126 X線制御器
128 入力装置
130 表示装置
141 造影剤注入装置
142 心電データ測定装置
Claims (1)
- 被検体に向けて焦点からX線を曝射するX線管と、
前記X線管を支持する第1支持手段と、
前記焦点および前記天板の少なくとも一方の位置を移動させて前記焦点と被検体の相対的な位置関係を変える駆動手段と、
前記焦点と前記被検体の相対的位置が異なるX線像を順次撮影するX線検出手段と、
前記X線検出手段を支持する第2支持手段と、
前記X線像撮影時の前記焦点と前記X線検出手段の相対的な位置関係を求める位置関係検出手段と、
前記X線検出手段と位置関係検出手段の出力に基づいて前記被検体の断層像を求める画像処理手段と、
前記画像処理手段により処理された画像を表示する表示手段とを有し、
前記画像処理手段は、前記X線像間の減算結果に基づいて、前記X線像中の動き成分を除去し、除去する動き成分は、目的とする断層像に対応する位置以外の構造物の投影に基づく成分であり、この動き成分を除去したX線像に基づいて前記被検体の断層像を求めることを特徴とするX線断層撮影装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006007874A JP4327801B2 (ja) | 2006-01-16 | 2006-01-16 | X線断層撮影装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006007874A JP4327801B2 (ja) | 2006-01-16 | 2006-01-16 | X線断層撮影装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10964297A Division JP4054402B2 (ja) | 1959-04-28 | 1997-04-25 | X線断層撮影装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006136741A JP2006136741A (ja) | 2006-06-01 |
JP4327801B2 true JP4327801B2 (ja) | 2009-09-09 |
Family
ID=36617895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006007874A Expired - Fee Related JP4327801B2 (ja) | 2006-01-16 | 2006-01-16 | X線断層撮影装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4327801B2 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5217179B2 (ja) * | 2007-02-08 | 2013-06-19 | パナソニック株式会社 | X線断層撮影装置 |
JP4869199B2 (ja) * | 2007-09-28 | 2012-02-08 | 富士フイルム株式会社 | 放射線撮影装置 |
JP5384612B2 (ja) * | 2008-03-31 | 2014-01-08 | コーニンクレッカ フィリップス エヌ ヴェ | コーンビームボリュームctマンモグラフィー撮像に使用するための、管が連続して移動している間、焦点を動かさない回転式のステップ・アンド・シュート画像取得に基づく、高速トモシンセシススキャナ装置及びctベースの方法 |
JP5380916B2 (ja) * | 2008-06-13 | 2014-01-08 | 株式会社島津製作所 | 放射線断層撮影装置、および放射線断層撮影装置におけるノイズの除去方法 |
KR101836549B1 (ko) | 2010-10-05 | 2018-03-08 | 홀로직, 인크. | Ct 모드, 다중 단층영상합성 모드들, 및 유방조영술 모드를 갖는 직립형 x-레이 유방 촬영 |
US8737562B2 (en) | 2010-12-03 | 2014-05-27 | Shimadzu Corporation | Body section radiographic apparatus, and a noise removing method for the body section radiographic apparatus |
JP6042095B2 (ja) * | 2012-05-09 | 2016-12-14 | 東芝メディカルシステムズ株式会社 | X線撮影装置及び医用画像処理装置 |
JP6042096B2 (ja) | 2012-05-09 | 2016-12-14 | 東芝メディカルシステムズ株式会社 | X線撮影装置及び医用画像処理装置 |
JP6125154B2 (ja) | 2012-05-09 | 2017-05-10 | 東芝メディカルシステムズ株式会社 | X線撮影装置及び医用画像処理装置 |
JP6229275B2 (ja) * | 2013-02-28 | 2017-11-15 | 株式会社島津製作所 | 骨梁解析装置 |
JP6523265B2 (ja) * | 2013-10-09 | 2019-05-29 | ホロジック, インコーポレイテッドHologic, Inc. | 平坦化された胸部の厚さ方向を含む空間分解能を向上させるx線胸部トモシンセシス |
US9795347B2 (en) * | 2013-10-24 | 2017-10-24 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Scanning system for three-dimensional imaging |
JP6223781B2 (ja) * | 2013-11-06 | 2017-11-01 | 富士フイルム株式会社 | 放射線画像処理装置および方法並びにプログラム |
JP7423188B2 (ja) * | 2018-03-07 | 2024-01-29 | キヤノンメディカルシステムズ株式会社 | 医用画像処理装置及びx線診断装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0634789B2 (ja) * | 1986-04-04 | 1994-05-11 | 株式会社日立メデイコ | デイジタル断層撮影装置 |
JPH06142093A (ja) * | 1992-11-09 | 1994-05-24 | Toshiba Corp | X線断層撮影装置 |
JPH08307771A (ja) * | 1995-05-02 | 1996-11-22 | Toshiba Corp | 動き領域検出回路並びにこの動き領域検出回路を用いたノイズ低減フィルタ及びx線透視装置 |
-
2006
- 2006-01-16 JP JP2006007874A patent/JP4327801B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006136741A (ja) | 2006-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4054402B2 (ja) | X線断層撮影装置 | |
JP4327801B2 (ja) | X線断層撮影装置 | |
RU2550542C2 (ru) | Способ и устройство для формирования компьютерных томографических изображений с использованием геометрий со смещенным детектором | |
KR101819257B1 (ko) | X선 단층상 촬영 장치 | |
JP6007386B2 (ja) | 放射線撮像用のデータ処理装置 | |
US7103136B2 (en) | Fluoroscopic tomosynthesis system and method | |
JP4236666B2 (ja) | X線断層撮影装置 | |
JP5491914B2 (ja) | 画像表示装置およびx線診断装置 | |
JP4537129B2 (ja) | トモシンセシス用途における対象物を走査するためのシステム | |
JP4966120B2 (ja) | X線アンギオ撮影装置 | |
JP5388472B2 (ja) | 制御装置、x線撮影システム、制御方法、及び当該制御方法をコンピュータに実行させるためのプログラム。 | |
JP2005288164A (ja) | X線装置の画像再構成装置および対象範囲の局部的3d再構成方法 | |
WO1998040013A1 (fr) | Tomographe assiste par ordinateur, dote d'un collimateur qui restreint la portee d'irradiation d'un faisceau de rayons x en eventail | |
JP4157302B2 (ja) | X線ct装置 | |
WO2015022888A1 (ja) | 放射線断層像撮影装置 | |
JP3548339B2 (ja) | X線撮影装置 | |
JP2006296707A (ja) | X線画像診断装置及びその三次元血流画像構成・表示方法並びにプログラム | |
US8213565B2 (en) | Method for correcting truncated projection data | |
JP5097355B2 (ja) | 放射線断層撮影装置 | |
JP2004073578A (ja) | 医用画像診断装置及び撮影支援装置 | |
JPH119583A (ja) | 3次元x線ct装置 | |
KR100280198B1 (ko) | Ct촬영이가능한x선촬영장치및방법 | |
JP7345292B2 (ja) | X線トモシンセシス装置、画像処理装置、および、プログラム | |
JP2008125909A (ja) | X線ct装置 | |
JP6240951B2 (ja) | X線撮影装置及びx線画像選択方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090611 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |