JP4314258B2 - 整流回路およびこれを用いた無線通信装置 - Google Patents

整流回路およびこれを用いた無線通信装置 Download PDF

Info

Publication number
JP4314258B2
JP4314258B2 JP2006265026A JP2006265026A JP4314258B2 JP 4314258 B2 JP4314258 B2 JP 4314258B2 JP 2006265026 A JP2006265026 A JP 2006265026A JP 2006265026 A JP2006265026 A JP 2006265026A JP 4314258 B2 JP4314258 B2 JP 4314258B2
Authority
JP
Japan
Prior art keywords
voltage
rectifier circuit
signal
circuit
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006265026A
Other languages
English (en)
Other versions
JP2008085818A (ja
Inventor
俊之 梅田
章二 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006265026A priority Critical patent/JP4314258B2/ja
Priority to US11/687,082 priority patent/US7843709B2/en
Priority to CNA2007101466672A priority patent/CN101154894A/zh
Publication of JP2008085818A publication Critical patent/JP2008085818A/ja
Application granted granted Critical
Publication of JP4314258B2 publication Critical patent/JP4314258B2/ja
Priority to US12/910,940 priority patent/US7978486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Description

本発明は、高周波の弱電波から直流電圧の生成を可能にした整流回路およびそれを用いた無線通信装置に関する。
人やモノの識別・管理技術として、RFID(Radio Frequency Identification)への注目が高まっている。それを極小の無線ICチップで具現化したRFIDタグに至っては、今や非接触認証技術の代名詞になりつつある。RFIDタグは、リーダ/ライタと呼ばれる基地局から発信された高周波の電波をアンテナで受け、そこで誘起された交流電流から直流電圧を生成する。この直流電圧は、RFIDタグの電源電圧としてだけでなく通信信号としても利用され、具体的には整流回路によって生成される。
RFIDタグに搭載される整流回路は、一般的には、ゲート端子とドレイン端子とが直結されたいわゆるダイオード接続のMOSトランジスタによって構成され、そのMOSトランジスタのしきい電圧を超えた実効値の交流信号を直流信号に整流する。換言すれば、この整流回路は、MOSトランジスタのしきい電圧未満の交流信号から直流信号を生成することはできない。また、しきい電圧以上の実効値の交流信号が入力された場合であっても、整流対象は交流信号からしきい電圧分を差し引いた交流成分となるため、入力された交流信号の実効値がしきい電圧前後である場合には、整流効率は低くなる。
そこで、MOSトランジスタのドレイン端子とゲート端子とをキャパシタを介して接続し、そのキャパシタにMOSトランジスタのしきい電圧程度の電圧を保持させた高感度型の整流回路が提案されている(特許文献1参照)。この高感度整流回路によれば、しきい電圧よりも低い実効値の交流信号をも整流することができる。
特開2006−34085号公報
上記したドレイン−ゲート間のキャパシタの両端の電圧は、電圧供給用トランジスタの電荷のリークによって次第に低下することがある。換言すれば、時間が経つにつれて整流効率が低下することがある。この現象は、スイッチング回路によって他の複数のキャパシタからドレイン−ゲート間のキャパシタへと電圧を転送する構成の高感度整流回路であっても各キャパシタにおいて起こり得るが、キャパシタに定期的に電圧を印加するリフレッシュ動作によって解決される。このリフレッシュ動作は、バイアス電圧発生回路とパルス発生回路とによって実現されるものの、それら回路を常に動作させておくためにバッテリなどの常時稼動の外部電源が必要となる。
バッテリなどの外部電源は、製造コストやデバイスサイズの増大を招くばかりでなく、回路の連続動作時間を考慮した容量設計が必要となる。
本発明は、上記に鑑みてなされたものであって、高周波の弱電波から回路内すべての電源電圧を賄うことにより、更なる極小化と更なる高感度化を実現した整流回路およびそれを用いた無線通信装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の一態様である整流回路は、交流信号が入力される入力端子と、前記交流信号から第1直流電圧を生成する第1整流回路と、前記第1直流電圧からバイアス電圧を生成するバイアス電圧発生回路と、前記バイアス電圧が印加され、前記交流信号から第2直流電圧を生成する第2整流回路と、を備える。
また、本発明の他の態様である無線通信装置は、上記した整流回路と、前記入力端子に接続されたアンテナと、前記第2直流電圧が電源電圧として供給されるとともに該第2直流電圧から通信信号を復調する信号処理回路と、を備える。
本発明にかかる整流回路によれば、バッテリ等の外部電源を設けることなく、整流部を構成するMOSトランジスタのしきい電圧以下の実効値を有する微弱な交流電流をも整流して安定した大きな直流電圧を生成することができる。また、バッテリ等の外部電源を不要としたことで、回路の極小化と製造コストの低減が図られ、外部電源の容量設計も不要となる。
また、本発明にかかる無線通信装置によれば、従来に比して、基地局との間の通信距離を拡大させることができる。
以下に、本発明にかかる整流回路およびこれを用いた無線通信装置の実施の形態を図面に基づいて詳細に説明する。
(実施の形態1)
実施の形態1にかかる整流回路は、一般型の第1の整流回路、高感度型の第2の整流回路、パルス発生回路、バイアス電圧発生回路を備える。第1の整流回路は微弱電波から第1の直流電圧を生成する。パルス発生回路およびバイアス電圧発生回路は、その第1の直流電圧によって駆動され、それぞれパルス信号とバイアス電圧を出力する。第2の整流回路は、パルス信号とバイアス電圧によって駆動され、上記微弱電波から第2の直流電圧を生成する。換言すれば、第2の整流回路の動作に必要なパルス発生回路およびバイアス電圧発生回路は第1の整流回路によって駆動され、第2の整流回路は、バッテリなどの外部電源を使用することなく高感度状態を維持することができる。
図1は、実施の形態1にかかる整流回路を示すブロック図である。図1において、整流回路100は、第1整流回路110、パルス発生回路120、バイアス電圧発生回路130、第2整流回路140を備える。
第1整流回路110は、ゲート端子とドレイン端子とが直結された4つのNMOSトランジスタM1〜M4を備え、それらNMOSトランジスタは縦続接続されている。隣接した2つのNMOSトランジスタM1,M2の接続ラインには、結合キャパシタC1の一端が接続される。また、NMOSトランジスタM1,M2の縦続構成の両端、具体的には、NMOSトランジスタM1のソース端子とNMOSトランジスタM2のドレイン端子との間には、平滑キャパシタC11が接続される。残りの2つのNMOSトランジスタM3,M4の接続ラインにも同様に、結合キャパシタC2の一端が接続される。また、NMOSトランジスタM3,M4の縦続構成の両端、具体的には、NMOSトランジスタM3のソース端子とNMOSトランジスタM4のドレイン端子との間には、平滑キャパシタC12が接続される。また、NMOSトランジスタM4のドレイン端子は接地される。結合キャパシタC1,C2の各々の他端には、例えばRFIDタグのアンテナ10が接続され、高周波の交流信号が入力される。
図1を見てもわかるように、第1整流回路110は、周知の整流回路と同じ構成であり、結合キャパシタC1,C2から入力された交流信号を整流し、NMOSトランジスタM1のソース端子から直流電圧Vfを出力する。但し、第1整流回路110を構成するNMOSトランジスタM1〜M4は、後述する第2整流回路140の整流部を構成するNMOSトランジスタと比較して、アンテナ10などの入力負荷と高いインピーダンス整合がとれるように設計されている。例えば、NMOSトランジスタM1〜M4は、しきい電圧が低く且つゲート幅が小さくなるよう設計され、高い入力インピーダンスを有する。特に、NMOSトランジスタM1〜M4の各素子面積は、第2整流回路140の整流部のNMOSトランジスタよりも小さい(例えば、1/3以下)。換言すれば、これらNMOSトランジスタは、標準的な仕様の整流回路と比べて、より小さい実効値(例えば、0.2V程度)の交流信号から、パルス発生回路120およびバイアス電圧発生回路130の駆動に最低限必要な大きさの直流電圧Vf(例えば、0.5V)を生成することができる。
パルス発生回路120は、第1整流回路110で生成された直流電圧Vfを電源電圧として駆動される発振器121およびパルス幅調整回路122を備える。発振器121は、所定周波数の信号を出力し、パルス幅調整回路122は、その信号からクロック信号CKを生成する。クロック信号CKは、論理レベル“H”の時間幅が論理レベル“L”の時間幅よりも短いパルス信号、すなわちデューティ比が50%未満のパルス信号の繰り返しからなる。
バイアス電圧発生回路130は、第1整流回路110で生成された直流電圧Vfとパルス発生回路120から出力されたクロック信号CKとからバイアス電圧Vbを生成する。このバイアス電圧発生回路130は、例えば、図1に示すように、電流源I1とスイッチ131とNMOSトランジスタM20の直列接続により構成される。具体的には、電流源I1の入力端子は第1整流回路110の出力端子(すなわち、直流電圧Vfが出力される端子)に接続される。スイッチ131の一端は電流源I1の出力端子に接続され、他端はNMOSトランジスタM20のドレイン端子に接続される。また、NMOSトランジスタM20のソース端子は接地される。スイッチ131は、パルス発生回路120から出力されたクロック信号CKに応じてオン/オフする。なお、このバイアス電圧Vbは、後述する第2整流回路140の整流部を構成するNMOSトランジスタのしきい電圧未満であって、好ましくはしきい電圧近傍の大きさである。
なお、パルス発生回路120およびバイアス電圧発生回路130は、CMOS回路や受動素子によって構成することができ、入力される信号の発振周波数もkHz前後で充分であることから、消費電流は非常に少なく、第1整流回路110で生成された微弱な直流電圧Vfでも動作可能である。
第2整流回路140は、整流部とバイアス回路141を備える。整流部は、縦続接続された4つのNMOSトランジスタM11〜M14と、2つの結合キャパシタC31,C32と、2つの平滑キャパシタC41,C42とから構成される。隣接した2つのNMOSトランジスタM11,M12の接続ラインには、結合キャパシタC31の一端が接続される。また、NMOSトランジスタM11,M12の縦続構成の両端、具体的には、NMOSトランジスタM11のソース端子とNMOSトランジスタM12のドレイン端子との間には、平滑キャパシタC41が接続される。残りの2つのNMOSトランジスタM13,M14の接続ラインにも同様に、結合キャパシタC32の一端が接続される。また、NMOSトランジスタM13,M14の縦続構成の両端、具体的には、NMOSトランジスタM13のソース端子とNMOSトランジスタM14のドレイン端子との間には、平滑キャパシタC42が接続される。また、NMOSトランジスタM14のドレイン端子は接地され、NMOSトランジスタM11のソース端子からは直流電圧VDDが出力される。結合キャパシタC31の他端は第1整流回路110の結合キャパシタC1の他端に接続され、結合キャパシタC32の他端は第1整流回路110の結合キャパシタC2の他端に接続される。すなわち、第2整流回路140の整流部には、第1整流回路110と同じ交流信号が入力される。
NMOSトランジスタM11〜M14の各ゲート端子および各ドレイン端子は、バイアス回路141に接続され、このバイアス回路141を介して、各ゲート−ドレイン間に上記したバイアス電圧Vbが印加される。なお、NMOSトランジスタM11〜M14のデザイン(ゲート幅、ゲート長、しきい電圧など)は、NMOSトランジスタM20と同じとしてもよい。
図2は、バイアス回路141の一例を示す図である。バイアス回路141は、2つのインバータINV1,INV2と、整流部の各NMOSトランジスタに割り当てられた4つのスイッチングブロックとを備える。NMOSトランジスタM11のゲート−ドレイン間に接続される第1のスイッチングブロックは、トランスファゲートとして機能する4つのNMOSトランジスタM21,M22,M31,M32と、2つのキャパシタC51,C61とから構成される。同様に、NMOSトランジスタM12のゲート−ドレイン間に接続される第2のスイッチングブロックは、4つのNMOSトランジスタM23,M24,M33,M34と、2つのキャパシタC52,C62とから構成され、NMOSトランジスタM13のゲート−ドレイン間に接続される第3のスイッチングブロックは、4つのNMOSトランジスタM25,M26,M35,M36と、2つのキャパシタC53,C63とから構成され、NMOSトランジスタM14のゲート−ドレイン間に接続される第4のスイッチングブロックは、4つのNMOSトランジスタM27,M28,M37,M38と、2つのキャパシタC54,C64とから構成される。各スイッチングブロックは、同様な接続構成を有し、且つ同様に動作するため、ここでは、第1のスイッチングブロックを他のスイッチングブロックの代表として詳述する。
NMOSトランジスタM21のドレイン端子はNMOSトランジスタM31のソース端子に接続される。NMOSトランジスタM21のソース端子は、バイアス電圧発生回路130によって生成されたバイアス電圧Vbの供給ラインに接続され、NMOSトランジスタM31のドレイン端子は、整流部のNMOSトランジスタM11のゲート端子に接続される。NMOSトランジスタM22のドレイン端子はNMOSトランジスタM32のソース端子に接続される。NMOSトランジスタM22のソース端子は接地され、NMOSトランジスタM32のドレイン端子は、NMOSトランジスタM11のドレイン端子に接続される。NMOSトランジスタM21,M22の各ゲート端子は、インバータINV1の出力端子に接続され、NMOSトランジスタM31,M32の各ゲート端子は、インバータINV2の出力端子に接続される。NMOSトランジスタM21,M22の両ドレイン端子間にはキャパシタC51が接続され、NMOSトランジスタM31,M32の両ドレイン端子間にはキャパシタC61が接続される。なお、第2整流回路140によって生成される直流電圧VDDは、RFIDタグの信号処理回路等の他の主回路の主電源として利用できるだけの大きな電流を伴う必要があるので、整流部を構成するNMOSトランジスタM11〜M14のゲート幅は比較的広く設計される。
この構成により、NMOSトランジスタM21,M22のトランスファゲートペアとNMOSトランジスタM31,M32のトランスファゲートペアとは、クロック信号CKに応じて相補的にオン/オフされ、キャパシタC51の充電とキャパシタC61の充電とを交互に繰り返す。具体的な定常動作は以下の通りである。
クロック信号CKが論理レベル“L”を示す期間、インバータINV1は論理レベル“H”の信号を出力し、インバータINV2は、論理レベル“L”の信号を出力する。これにより、NMOSトランジスタM21,M22はオンとなり、キャパシタC51はその両端の電圧がバイアス電圧Vb程度になるまで充電される。一方、NMOSトランジスタM31,M32はオフとなるので、キャパシタC61は充電されない。続いて、クロック信号CKが論理レベル“H”を示す期間では、インバータINV1は論理レベル“L”の信号を出力し、インバータINV2は、論理レベル“H”の信号を出力する。これにより、NMOSトランジスタM21,M22はオフとなり、NMOSトランジスタM31,M32はオンとなる。この状態において、キャパシタC61はキャパシタC51の放電によってその両端の電圧がバイアス電圧Vb程度になるまで充電される。すなわち、NMOSトランジスタM11のゲート−ドレイン間に、しきい電圧近傍の電圧が印加された状態が維持される。他のNMOSトランジスタM12〜M14もNMOSトランジスタM11と同じ状態となる。換言すれば、第2整流回路140は、常に高感度整流が可能な状態に維持され、微弱な交流信号から、直流電圧Vfよりも大きな直流電圧VDDを取り出すことができる。
なお、NMOSトランジスタM11〜M14は、GHz帯の高周波信号が入力されるため、寄生容量をできる限り小さくする必要があるが、バイアス電圧発生回路130は、バイアス電圧Vbを安定して発生するために比較的大きな容量を備えている。そこで、バイアス回路141を設けることにより、バイアス電圧発生回路130から出力されるバイアス電圧Vbが直接、NMOSトランジスタM11〜M14のゲート−ドレイン間に印加されないようにしている。
図3は、整流回路100の上記主要信号のタイミングチャートである。図3において、入力電波は、アンテナ10を介して第1整流回路110および第1整流回路140に入力される交流信号であり、Vfは第1整流回路110から出力される直流電圧Vfであり、CKはパルス発生回路120から出力されるクロック信号CKであり、Vbはバイアス電圧発生回路130から出力されるバイアス電圧Vbであり、VDDは第2整流回路140から出力される直流電圧VDDである。
以下、図3を参照して、整流回路100全体の動作について説明する。まず、タイミングt1において、整流回路100にアンテナ10を介して初めて電波が入力されるものとする。初期状態であるため、バイアス回路141内のキャパシタC61〜C64は充電されておらず、NMOSトランジスタM11〜M14のゲート−ドレイン間電位差はゼロとなっている。すなわち、第2整流回路140は高感度状態ではない。入力電波が十分に大きなエネルギーを有し、アンテナ10に誘起された交流信号の実効値がNMOSトランジスタM11〜M14のしきい電圧より十分大きい場合には、キャパシタC61〜C64の充電状態に関係なく、第2整流回路140はその交流信号から直流電圧VDDを生成することができる。しかしながら、入力電波が微弱であり、アンテナ10に誘起された交流信号の実効値がNMOSトランジスタM11〜M14のしきい電圧より小さい場合には、高感度状態ではない第2整流回路140の入力インピーダンスは高い状態となり、その交流信号は第2整流回路140で反射される。一方、第1整流回路110はアンテナ10と高いインピーダンス整合がとれているため、微弱な交流信号であっても直流電圧を生成することができる。図3のタイミングチャートは、高感度整流回路100の初期状態において、このような微弱な電波が入力された場合の動作を示す。
第1整流回路110に微弱な交流信号が入力されると、平滑キャパシタC11,C12が充電され、直流電圧Vfはタイミングt2においてパルス発生回路120およびバイアス電圧発生回路130に必要な電圧値に達する。この直流電圧Vfによってパルス発生回路120が駆動し、クロック信号CKが出力される。
クロック信号CKの1発目のパルスはタイミングt3において立ち上がる。このタイミングと同時に、バイアス電圧発生回路130のスイッチ131がオンとなり、直流電圧VfによってNMOSトランジスタM20の充電が開始される。NMOSトランジスタM20の両端の電圧が目標とする電圧値に達する前に、クロック信号CKの1発目のパルスが立ち下がるので、この1つのパルスだけでは、バイアス電圧Vbを目標とする電圧値まで上げることはできない。よって、このバイアス電圧Vbとクロック信号CKの1発目のパルスがバイアス回路141に入力されるものの、第2整流回路140は高感度状態に達しない。
クロック信号CKの数個のパルスがバイアス電圧発生回路130に入力された後、タイミングt4において目標とする電圧値のバイアス電圧Vbがバイアス回路141に入力される。これにより、整流部の各NMOSトランジスタのゲート−ドレイン間に接続されたキャパシタC61〜C64はしきい電圧近傍となるまで充電され、第2整流回路140は高感度状態に移行する。タイミングt4以降では、この高感度状態において、第2整流回路240の整流部の平滑キャパシタC41,C42がさらに充電され、タイミングt5において、所望の値の電源電圧VDDが出力される。すなわち、第2整流回路140が、微弱な電波から直接、直流電圧VDDを生成することができる状態となる。
なお、タイミングt1〜t5の間において、第2整流回路140は結合キャパシタC31,C32に入力された微弱な交流信号に対してわずかながらの整流を行い、平滑キャパシタC41,C42には少しずつ電荷が蓄積されていく。よって、この電荷の蓄積もまた直流電圧VDDとして出力される。
整流回路100をRFIDタグにした場合、第2整流回路140によって生成された直流電圧VDDは、信号処理回路等の主回路に供給され、例えば、タイミングt6において、アンテナ10に流れる電流を変調することによりリーダ/ライタ宛に通信信号を要求する信号を送信する。整流回路100は、その通信信号を電波として受信し、その電波によって誘起された交流信号を第2整流回路140で整流することにより、通信情報を含んだ直流電圧VDDを出力する。通信情報を含んだ直流電圧VDDは、信号処理回路に入力され、適宜処理される。
以上に説明したように、実施の形態1にかかる整流回路100によれば、バッテリ等の外部電源を設けることなく、整流部を構成するMOSトランジスタのしきい電圧以下の実効値を有する微弱な交流電流をも整流して安定した大きな直流電圧を生成することができる。また、バッテリ等の外部電源を不要としたことで、回路の極小化と製造コストの低減が図られ、外部電源の容量設計も不要となる。
(実施の形態2)
実施の形態2にかかる整流回路は、バイアス電圧発生回路から出力されるバイアス電圧Vbが所定の条件を満たした際に初めて第2整流回路を動作させることにより、実施の形態1にかかる整流回路に対してさらに低消費電力化を図ったものである。
図4は、実施の形態2にかかる整流回路を示すブロック図である。図4に示す整流回路200において、実施の形態1にかかる整流回路100の構成回路と同じ回路については図1と同じ符号を付し、その説明を省略する。整流回路200は、判定回路250が設けられた点と、第2整流回路140に換えて第2整流回路240が設けられた点とが、実施の形態1にかかる整流回路100と異なる。
判定回路250は、第1整流回路110から出力された直流電圧Vfによって駆動され、バイアス電圧発生回路130から出力されたバイアス電圧Vbが所定の条件を満たした場合に、オンを示す制御信号Sdを出力する。ここで、上記所定の条件とは、例えば、バイアス電圧VbがキャパシタC61の両端間電圧と一致(例えば、両電圧の差が所定の値より小さくなることで、あるいはバイアス電圧Vbが所定の値Vthを超えることで、一致とみなす)することである。
第2整流回路240は、第2整流回路240と接地端子との間にスイッチ241を設けた点が、実施の形態1の第2整流回路140と異なる。第2整流回路240内の他の構成要素は、第2整流回路140と同じである。スイッチ241は、判定回路250から出力された制御信号Sdによって開閉され、具体的には、制御信号Sdがオンを示す場合にのみ、第2整流回路240と接地端子との間を導通させる。なお、このスイッチ241は、オンを示す制御信号Sdが入力されたときのみ前記第2整流回路240を駆動させるためのものであるため、その目的が達成されれば、他の配置でもよい。例えば、アンテナ10と結合キャパシタC31,C32との間に設けることができる。
図5に判定回路250の一例を示す。判定回路250は、トランジスタMd1,Md21,Md22,Md31,Md32,キャパシタCd51,Cd61で構成されたダミーバイアス回路251と、トランジスタMd41,Md42,Md43,Md44,Md51,Md52,Md53,Md54,スイッチ252,定電流源Id1で構成された比較回路253と、レベルシフト回路L1で構成されている。
トランジスタMd1はトランジスタM11と、トランジスタMd21はトランジスタM21と、トランジスタMd31はトランジスタM31と、トランジスタMd22はトランジスタM22と、トランジスタMd32はトランジスタM32と、それぞれ同一形状のトランジスタである。また、キャパシタCd61はキャパシタC61と、Cd51はC51と、それぞれ同一形状のキャパシタである。
トランジスタMd21のソース端子にはバイアス電圧Vbが供給される。トランジスタMd21及びMd22のゲート端子にはインバータINV1を介してクロック信号CKが供給される。トランジスタMd31及びMd32のゲート端子にはインバータINV1及びINV2を通してクロック信号CKが供給される。
比較回路253のトランジスタMd41のゲート端子には、トランジスタMd1のゲート端子の電圧をレベルシフト回路L1でレベルシフトした電圧が印加される。トランジスタMd42のゲート端子には、Vb端子の電圧をレベルシフト回路L1でレベルシフトした電圧が印加される。トランジスタMd41とMd42は差動増幅回路を形成しており、トランジスタMd41及びMd42のソース端子はスイッチ252を介して定電流源Id1に接続される。
トランジスタMd43とMd51、トランジスタMd44とMd52はそれぞれ互いにカレントミラーの構成であり、トランジスタMd41及びMd42のドレイン端子からの電流出力をそれぞれトランジスタMd51及びMd52のドレイン端子からの電流出力に変換する。トランジスタMd53とMd54もまた互いにカレントミラーの構成であり、トランジスタMd52のドレイン出力電流をトランジスタMd53のドレイン出力電流へ変換する。トランジスタMd51のドレイン端子とトランジスタMd53のドレイン端子は共通となっており、この端子の電圧を示す制御信号Sdを得ることができる。
スイッチ252がオン状態になると、まず、キャパシタCd61に電荷が蓄えられていない初期状態ではトランジスタMd41のゲート電圧はトランジスタMd42のゲート電圧より低く、カレントミラーのトランジスタMd51はほとんど電流が流れず、トランジスタMd52に多くの電流が流れる。この結果、トランジスタMd53はオン状態となり制御信号Sdは出力されない。
キャパシタCd61に電荷が蓄えられ、キャパシタCd61の両端間の電圧が、供給するバイアス電圧Vbとほぼ等しくなると、トランジスタMd41及びMd42のゲート端子はほぼ同一の電圧値となり、カレントミラーのトランジスタMd51及びMd52にはほぼ等しい電流が流れる。この結果、トランジスタMd51はオン状態となり、制御信号Sdが出力される。
なお、レベルシフト回路L1等に適度なオフセットを与えておき、キャパシタCd61の電圧とバイアス電圧Vbとが等しくなったときにトランジスタMd41のゲート電圧がトランジスタMd42よりも高くなるように設定することによって、自在に制御信号Sdの出力レベルを調整することができる。
スイッチ252をオフの状態にすると、比較回路253には電流が流れないため機能しない。またカレントミラーのトランジスタMd51及びMd52もオフ状態となるため電流は発生しない。従ってクロック信号CKが0であるときは比較回路253での電流消費が無く、低消費電力の構成となる。制御信号Sdがクロック信号CKによって変化することを避けるために例えばRSFF(Reset Set Flip Flop)といったデータ保持回路を設け、クロック信号CKでリセットする構成としてもよい。
図6は、整流回路200の主要信号のタイミングチャートを示す。図6において、入力電波,Vf,CK,Vb,VDDは、図2の説明において示したとおりであり、Sdは判定回路250から出力される制御信号Sdである。
以下、図6を参照して、整流回路200全体の動作について説明する。まず、タイミングt1において、整流回路200に初めてアンテナ10を介して電波が入力されるものとする。この初期状態については、実施の形態1に説明したとおりである。
第1整流回路110に微弱な交流信号が入力されると、平滑キャパシタC11,C12が充電され、直流電圧Vfはタイミングt2においてパルス発生回路120およびバイアス電圧発生回路130に必要な電圧値に達する。この直流電圧Vfによってパルス発生回路120が駆動し、クロック信号CKが出力される。また、直流電圧Vfによって、判定回路250もまた駆動され、バイアス電圧Vbの監視が開始される。
クロック信号CKの1発目のパルスはタイミングt3において立ち上がる。このタイミングと同時に、バイアス電圧発生回路130のスイッチ131がオンとなり、直流電圧Vfが入力される電流源I1が、NMOSトランジスタM20のドレイン端子への電流供給を開始する。クロック信号CKの数個のパルスがバイアス電圧発生回路130に入力された後、タイミングt4において、判定回路250により、バイアス電圧VbがキャパシタC61の両端間電圧と一致したと判定され、オンを示す制御信号Sdが出力される。これに伴い、第2整流回路240のスイッチ241が閉状態となり、第2整流回路240は接地端子に接続される。すなわち、第2整流回路240が駆動される。ここで、バイアス電圧Vbは所望のしきい電圧近傍まで達しているため、第2整流回路240は高感度状態にある。よって、タイミングt4以降において、第2整流回路240の整流部の平滑キャパシタC41,C42は急速に充電され、タイミングt5において、所望の値の電源電圧VDDが出力される。すなわち、第2整流回路140によって微弱な電波から直接、直流電圧VDDを生成することができる状態となる。
タイミングt6を含み、所望の直流電圧VDDを得た後の動作は実施の形態1に説明したとおりである。
以上に説明したように、実施の形態2にかかる整流回路200によれば、実施の形態1にかかる整流回路100の効果を享受できることに加え、バイアス電圧Vbが所望の値に達するまでの間、整流回路200に入力された交流電流が第2整流回路240へと分配されなくなるため、その分、第1整流回路100が効率的に整流することができ、第2整流回路240が高感度状態へ移行するまでの時間を短縮化できる。
なお、上述した実施の形態1および2では、MOSトランジスタとしてN型のものを例示したが、それに換えてP型を用いても良い。さらに、MOSトランジスタのソース端子とドレイン端子はチャネルを挟んだ2つの電極を識別するための呼称にすぎず、両者が入れ替わっても良い。
また、第1整流回路110および第2整流回路140,240の各整流部は、4つのMOSトランジスタの縦続接続により構成するとしたが、2つであってもよいし、4つより多くてもよくMOSトランジスタの個数に制限はない。
(実施の形態3)
実施の形態3は、実施の形態1または2にかかる整流回路を用いて構成された無線通信装置にかかる。ここでは、無線通信装置としてRFIDタグを例に挙げる。図7は、実施の形態1にかかる整流回路100を搭載したRFIDタグのブロック図である。図7において、図1と共通する回路および要素には同一の符号を付し、それらの説明を省略する。
図7に示すRFIDタグは、整流回路100の構成(第1整流回路110,パルス発生回路120,バイアス電圧発生回路130,第2整流回路140)に加え、それに外部負荷として接続されるアンテナ10、信号処理回路150、メモリ160、送信回路170を備える。信号処理回路150、メモリ160、送信回路170には、電源電圧として、第2整流回路140によって生成された直流電圧VDDが供給される。また、この直流電圧VDDは、リーダ/ライタとの間で交換される通信情報を含むため、信号処理回路150において通信信号としても処理される。送信回路170は、アンテナ10の両端に接続される。
アンテナ10は、リーダ/ライタ(図示せず)によって与えられる磁束変化に応じて、そのアンテナ線に交流電流を誘起する。この交流電流は、第1整流回路110と第2整流回路140に分配される。分配後の信号の処理については、実施の形態1で説明したとおりであり、アンテナ10に誘起された0.7V未満の実効値を有する微弱な交流電流をも整流して、信号処理回路150、メモリ160、送信装置170の電源電圧となる直流電圧VDDを生成することができる。また、その微弱な交流信号に含まれる通信情報も信号処理回路150によって復調することができる。
信号処理回路150は、復調した通信信号に基づき、メモリ160に格納されたデータ(代表的なものとしてはタグ識別情報)の取り出しやメモリ160へのデータの書き込みを行なう。メモリ160から取り出されたデータは、信号処理回路150と送信回路170によってリーダ/ライタに送信される。送信回路170は、具体的には、アンテナ10に流れる電流を変調させることにより反磁界を発生させる。この反磁界は、リーダ/ライタのアンテナを流れる電流を微小に変化させ、この微小な変化が、リーダ/ライタによって検出されてデータ信号として認識される。
図8は、本実施の形態にかかるRFIDタグとリーダ/ライタの模式図である。RFIDタグ400は、図7に示したRFIDタグに相当し、フィルム状基板の上に設けられたアンテナ410(図7のアンテナ10に相当する)とその上に直接接続されたRFIDチップからなる。このRFIDチップに、上記した整流回路100、信号処理回路150、メモリ160、送信回路170などの各種回路が集積される。リーダ/ライタ300は、無線通信回路、信号処理回路、アンテナ310を備え、アンテナ310を介して無線信号を送信する。また、RFIDタグ400のアンテナ410に生じた反磁界を検出することで無線信号を受信する。
リーダ/ライタ300からRFIDタグ400に到達する無線信号の電力は、両者間の距離の2乗に反比例する。このため、従来のRFIDタグでは、リーダ/ライタとの間の距離が数m程度でも通信ができなくなるという問題があった。しかしながら、実施の形態1または2にかかる整流回路によってこの通信距離を延ばすことが可能となる。
図9は、リーダ/ライタとRFIDタグの間の通信距離と整流回路で発生する電圧との関係を示した実験結果である。グラフ中、破線Q0は従来のRFIDタグの実験結果であり、実線Q1は実施の形態1にかかる整流回路100を実装したRFIDタグの実験結果であり、鎖線Q2は実施の形態2にかかる整流回路200を実装したRFIDタグの実験結果である。
図9を見てわかるように、通信距離が近い場合、本発明にかかる整流回路も従来の整流回路も同等な電圧を発生するが、通信距離が長くなるとそれらの発生電圧に差が生じてくる。発生電圧がある値以下になるとRFIDタグの信号処理回路は動作できなくなる。この値を回路動作電圧として図9に点線で示す。従来のRFIDタグ内で発生する電圧がこの回路動作電圧と交差する通信距離を1とすると、整流回路100を実装したRFIDタグが回路動作電圧を発生することのできる通信距離はその3倍となる。また、整流回路200を実装したRFIDタグが回路動作電圧を発生することのできる通信距離は従来の3.5倍となる。これらの結果から、実施の形態1および2にかかる整流回路がRFIDタグとリーダ/ライタとの間の通信距離を飛躍的に上昇させることがわかる。また、実施の形態2にかかる整流回路200が、実施の形態1にかかる整流回路100よりも通信距離を延ばすことが確認される。これは、実施の形態2にかかる整流回路200の方が、アンテナ10に誘起された交流電流を高効率で第1整流回路110に供給させることが可能となったためであり、換言すれば、整流回路200は整流回路100と比較して、より微小な交流電流をも整流することができる。
以上に説明したように、実施の形態3にかかるRFIDタグによれば、実施の形態1または2にかかる整流回路を実装しているので、上述したそれら整流回路の効果を享受することができ、結果的に、リーダ/ライタとの間での長距離通信が可能となる。
以上、本発明を詳述したが、本発明は、上述したような特定の実施形態に限定されるものではなく、さらなる効果や変形例は、当業者によって容易に導き出すことができる。すなわち、本発明にかかる実施の形態は、添付の特許請求の範囲およびその均等物にかかる発明の要旨を逸脱しない範囲で様々な変更が可能である。
以上のように、本発明にかかる整流回路は、微小信号の整流に有用であり、特に、RFIDタグに搭載される整流回路として適している。
実施の形態1にかかる整流回路を示すブロック図である。 バイアス回路の一例を示す図である。 実施の形態1にかかる整流回路の主要信号のタイミングチャートである。 実施の形態2にかかる整流回路を示すブロック図である。 実施の形態2にかかる判定回路を示すブロック図である。 実施の形態2にかかる整流回路の主要信号のタイミングチャートである。 実施の形態3にかかる無線通信装置(RFIDタグ)のブロック図である。 RFIDタグとリーダ/ライタの模式図である。 リーダ/ライタとRFIDタグの間の通信距離と整流回路で発生する電圧との関係を示した実験結果を示す図である。
符号の説明
10,310,410 アンテナ
100,200 整流回路
110 第1整流回路
120 パルス発生回路
121 発振器
122 パルス幅調整回路
130 バイアス電圧発生回路
131,241 スイッチ
140,240 第2整流回路
141 バイアス回路
150 信号処理回路
160 メモリ
170 送信回路
250 判定回路
300 リーダ/ライタ
400 RFIDタグ

Claims (7)

  1. 交流信号が入力される入力端子と、
    前記交流信号から第1直流電圧を生成する第1整流回路と、
    前記第1直流電圧からバイアス電圧を生成するバイアス電圧発生回路と、
    前記バイアス電圧が印加され、前記交流信号から第2直流電圧を生成する第2整流回路と、を備え
    前記第2整流回路は、ゲート端子に前記バイアス電圧が印加されドレイン端子に前記交流信号が入力されるMOSトランジスタを有することを特徴とする整流回路。
  2. 前記第1直流電圧により駆動し、所定のパルス信号を生成するパルス発生回路をさらに備え、
    前記第2整流回路は、前記MOSトランジスタのゲート端子とドレイン端子との間に接続されるキャパシタを有し、該キャパシタに前記パルス信号に応じて前記バイアス電圧を間欠的に印加することを特徴とする請求項1に記載の整流回路。
  3. 前記第1直流電圧により駆動し、所定のパルス信号を生成するパルス発生回路をさらに備え、
    前記バイアス電圧発生回路は、ゲート端子とドレイン端子とを短絡したMOSトランジスタと、前記第1直流電圧から直流電流を生成する電流源と、を有し、前記ドレイン端子に前記パルス信号に応じて間欠的に前記直流電流を供給し、該MOSトランジスタのソース端子と前記ドレイン端子との間の電圧を前記バイアス電圧として出力することを特徴とする請求項1に記載の整流回路。
  4. 前記第1直流電圧により駆動し、所定のパルス信号を生成するパルス発生回路をさらに備え、
    前記第2整流回路は、ゲート端子に前記バイアス電圧が印加されドレイン端子に前記交流信号が入力される第1のMOSトランジスタを有し、
    前記バイアス電圧発生回路は、前記第1のMOSトランジスタと同じデザインであり、ゲート端子とドレイン端子とを短絡した第2のMOSトランジスタを有することを特徴とする請求項1に記載の整流回路。
  5. 前記バイアス電圧が前記キャパシタの両端間電圧と一致した場合にオン信号を出力する判定回路をさらに備え、
    前記第2整流回路は、前記オン信号が入力されたときのみ該第2整流回路を駆動させるスイッチを有することを特徴とする請求項2に記載の整流回路。
  6. 前記第1整流回路は、前記第2整流回路の前記MOSトランジスタよりもしきい電圧が低く且つ前記交流信号を整流するMOSトランジスタを有することを特徴とする請求項2に記載の整流回路。
  7. 請求項1に記載の整流回路と、
    前記入力端子に接続されたアンテナと、
    前記第2直流電圧が電源電圧として供給されるとともに該第2直流電圧から通信信号を復調する信号処理回路と、
    を備えることを特徴とする無線通信装置。
JP2006265026A 2006-09-28 2006-09-28 整流回路およびこれを用いた無線通信装置 Expired - Fee Related JP4314258B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006265026A JP4314258B2 (ja) 2006-09-28 2006-09-28 整流回路およびこれを用いた無線通信装置
US11/687,082 US7843709B2 (en) 2006-09-28 2007-03-16 Rectifier circuit and radio communication device using the same
CNA2007101466672A CN101154894A (zh) 2006-09-28 2007-08-24 整流电路及使用此整流电路的无线通信装置
US12/910,940 US7978486B2 (en) 2006-09-28 2010-10-25 Rectifier circuit and radio communication device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265026A JP4314258B2 (ja) 2006-09-28 2006-09-28 整流回路およびこれを用いた無線通信装置

Publications (2)

Publication Number Publication Date
JP2008085818A JP2008085818A (ja) 2008-04-10
JP4314258B2 true JP4314258B2 (ja) 2009-08-12

Family

ID=39256394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265026A Expired - Fee Related JP4314258B2 (ja) 2006-09-28 2006-09-28 整流回路およびこれを用いた無線通信装置

Country Status (3)

Country Link
US (2) US7843709B2 (ja)
JP (1) JP4314258B2 (ja)
CN (1) CN101154894A (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424266B2 (en) * 2004-11-09 2008-09-09 Kabushiki Kaisha Toshiba Rectifier circuit and RFID tag
US8044774B1 (en) 2006-10-24 2011-10-25 Impinj, Inc. RFID tag chips and tags able to be partially killed and methods
US8044801B1 (en) 2007-03-07 2011-10-25 Impinj, Inc. RFID tag with double-switch rectifier
US8115597B1 (en) 2007-03-07 2012-02-14 Impinj, Inc. RFID tags with synchronous power rectifier
JP4544263B2 (ja) * 2007-05-07 2010-09-15 ソニー株式会社 通信システム、並びにメモリカード
WO2009070195A1 (en) * 2007-11-27 2009-06-04 Extremely Ingenious Engineering, Llc Methods and systems for wireless energy and data transmission
JP5364270B2 (ja) * 2008-01-22 2013-12-11 株式会社東芝 充電装置
TWI358190B (en) * 2008-04-25 2012-02-11 Univ Nat Taiwan Full wave rectifying device
CN101599714B (zh) * 2008-06-07 2012-01-25 王文安 高效通用逆变器
US7768406B1 (en) * 2008-06-24 2010-08-03 Impinj, Inc. RFID tag circuit rectifier with controlled backflow reduction
US9142881B1 (en) * 2008-08-29 2015-09-22 Impinj, Inc. RFID tag circuits with floating differential inputs
DE102008049648A1 (de) * 2008-09-30 2010-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Gleichrichtung einer Eingangswechselspannung
JP5401067B2 (ja) * 2008-09-30 2014-01-29 株式会社吉川アールエフセミコン 自動同調回路及びそれを用いたデータキャリア装置
US20100103707A1 (en) * 2008-10-27 2010-04-29 Atmel Corporation Contactless Interface
US9087281B2 (en) 2009-06-12 2015-07-21 Impinj, Inc. Dual-frequency RFID tag with isolated inputs
WO2011108616A1 (ja) * 2010-03-03 2011-09-09 日本電気株式会社 無線通信装置
JP5301030B2 (ja) * 2010-03-31 2013-09-25 株式会社東芝 受信装置、リモコンシステム
KR101701433B1 (ko) * 2010-06-25 2017-02-03 삼성전자주식회사 무선주파수인식 태그 및 그것의 신호 수신 방법
US8928466B2 (en) * 2010-08-04 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102456152B (zh) * 2010-11-01 2013-12-18 上海华虹Nec电子有限公司 Rfid系统的电子标签的电源产生电路
US9449265B1 (en) 2011-08-02 2016-09-20 Impinj International Ltd. RFID tags with port-dependent functionality
CN103095153A (zh) * 2011-10-28 2013-05-08 成都高新区尼玛电子产品外观设计工作室 Rfid天线信号整流电路
US9105958B2 (en) 2012-06-11 2015-08-11 Live Longer, LLC Pseudo-antenna and system and method for manufacture of the same
US9692237B2 (en) * 2012-06-28 2017-06-27 Murata Manufacturing Co., Ltd. Electronic medium with IC and system of the same
EP2720341B1 (en) * 2012-10-12 2021-04-07 Samsung Electronics Co., Ltd Wireless Electric Power Receiver for Wirelessly Regulating Electric Power Using Switch
KR102079152B1 (ko) * 2012-10-12 2020-02-19 삼성전자주식회사 스위치를 이용하여 무선 전력을 조정하는 무선 전력 수신기
KR102084427B1 (ko) * 2012-10-12 2020-03-04 삼성전자주식회사 스위치를 이용하여 무선 전력을 조정하는 무선 전력 수신기
US9438062B2 (en) * 2012-10-12 2016-09-06 Samsung Electronics Co., Ltd Wireless electric power receiver for wirelessly regulating electric power using switch
CN103812364B (zh) * 2014-01-27 2016-01-20 清华大学 一种用于射频卡接口的整流电路
JP6289974B2 (ja) * 2014-03-31 2018-03-07 ルネサスエレクトロニクス株式会社 半導体装置
US20160094132A1 (en) * 2014-04-08 2016-03-31 Marco Antonio Davila Optimum Offline Converter Control Using Intelligent Power Processing
CN104269946B (zh) * 2014-10-30 2016-04-06 桂林电子科技大学 一种无线射频能量采集器
JP6804364B2 (ja) 2017-03-29 2020-12-23 富士通セミコンダクターメモリソリューション株式会社 整流回路および電子装置
US10713549B1 (en) * 2017-05-23 2020-07-14 Impinj, Inc. RFID tag rectifiers with bias current reuse
CN107124148A (zh) * 2017-06-08 2017-09-01 尚睿微电子(上海)有限公司 一种控制电路、偏置电路及控制方法
CN108710814B (zh) * 2018-05-15 2021-06-08 华南理工大学 一种无芯片rfid标签的结构模式信号的自动搜索方法
US11188803B1 (en) 2019-03-07 2021-11-30 Impinj, Inc. Rectifier backflow reduction via biasing
CN111953082B (zh) 2019-05-14 2023-12-22 伏达半导体(合肥)股份有限公司 高效的无线充电系统和方法
CN110995253A (zh) * 2019-11-05 2020-04-10 芯创智(北京)微电子有限公司 一种延时单元电路及环形压控振荡器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111014A (en) * 1988-06-14 1992-05-05 Kabushiki Kaisha Toshiba Electromagnetic cooker including load control
GB2352931A (en) 1999-07-29 2001-02-07 Marconi Electronic Syst Ltd Piezoelectric tag
US6841981B2 (en) * 2002-04-09 2005-01-11 Mstar Semiconductor, Inc. Radio frequency data communication device in CMOS process
JP2005535213A (ja) 2002-07-30 2005-11-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2電源電圧付き中継器
JP4519713B2 (ja) * 2004-06-17 2010-08-04 株式会社東芝 整流回路とこれを用いた無線通信装置
DE102004029439A1 (de) * 2004-06-18 2006-02-02 Infineon Technologies Ag Gleichrichter-Schaltkreis, Schaltkreis-Anordnung und Verfahren zum Herstellen eines Gleichrichter-Schaltkreises
US8228194B2 (en) * 2004-10-28 2012-07-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Recharging apparatus
JP4189403B2 (ja) 2004-11-09 2008-12-03 株式会社東芝 整流回路とそれを用いたrfidタグ
US7424266B2 (en) * 2004-11-09 2008-09-09 Kabushiki Kaisha Toshiba Rectifier circuit and RFID tag
US7561866B2 (en) * 2005-02-22 2009-07-14 Impinj, Inc. RFID tags with power rectifiers that have bias
US7595732B2 (en) * 2006-03-31 2009-09-29 Broadcom Corporation Power generating circuit
US7542315B2 (en) * 2006-11-30 2009-06-02 Celis Semiconductor Corporation Active rectifier

Also Published As

Publication number Publication date
US20110038191A1 (en) 2011-02-17
US20080080214A1 (en) 2008-04-03
JP2008085818A (ja) 2008-04-10
CN101154894A (zh) 2008-04-02
US7978486B2 (en) 2011-07-12
US7843709B2 (en) 2010-11-30

Similar Documents

Publication Publication Date Title
JP4314258B2 (ja) 整流回路およびこれを用いた無線通信装置
US7424265B2 (en) Rectifier circuit and radio communication device
US7424266B2 (en) Rectifier circuit and RFID tag
JP4786316B2 (ja) 半導体集積回路装置及びそれを用いたicカード
US7876150B2 (en) ASK demodulator, communication module, communication device, and ASK demodulation method
JP5780894B2 (ja) 非接触給電システム
JP4750530B2 (ja) 半導体集積回路装置及びそれを用いた非接触電子装置
JP5282502B2 (ja) 整流制御装置、全波整流回路、受電装置、電子機器および無接点電力伝送システム
JP5552751B2 (ja) 受電装置、電子機器および無接点電力伝送システム
US7078937B2 (en) Logic circuitry powered by partially rectified ac waveform
US9325362B2 (en) Rectification circuit and wireless communication apparatus using the same
KR101822491B1 (ko) 전압 조정 회로 및 이의 동작 방법
JP5479185B2 (ja) 半導体装置および非接触データキャリア
JP2009077475A (ja) 整流回路
WO2006038314A1 (ja) 信号抽出回路および非接触icカード
JP2007043568A (ja) 電子機器
AU2007214327B2 (en) Low power sinusoidal LC oscillator with amplitude stabilization
JP2009271695A (ja) 電源回路
JP2005318710A (ja) 整流回路及び整流回路を備えた無線通信媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4314258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees