JP4300862B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP4300862B2
JP4300862B2 JP2003122435A JP2003122435A JP4300862B2 JP 4300862 B2 JP4300862 B2 JP 4300862B2 JP 2003122435 A JP2003122435 A JP 2003122435A JP 2003122435 A JP2003122435 A JP 2003122435A JP 4300862 B2 JP4300862 B2 JP 4300862B2
Authority
JP
Japan
Prior art keywords
catalyst
outflow
exhaust gas
exhaust
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003122435A
Other languages
English (en)
Other versions
JP2004211676A (ja
Inventor
耕平 吉田
伸一 竹島
俊明 田中
哲也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003122435A priority Critical patent/JP4300862B2/ja
Publication of JP2004211676A publication Critical patent/JP2004211676A/ja
Application granted granted Critical
Publication of JP4300862B2 publication Critical patent/JP4300862B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • F01N2570/145Dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
内燃機関の排気ガス中にはNOxが含まれており、このNOxを除去するために従来から様々な排気浄化触媒が開発されてきた。このような排気浄化触媒の多くは、内燃機関の排気後流に取付けられ、排気浄化触媒に流入した排気ガス中に含まれるNOxを還元することによって、NOxを除去している(例えば、特許文献1)。
【0003】
【特許文献1】
特開平6−212961号公報
【0004】
【発明が解決しようとする課題】
ところが、上述したような排気浄化触媒でNOxを還元した場合、N2やO2だけでなくN2Oが発生してしまうことがある。このN2Oは、NOxと同様に大気中へ放出されることを抑制する必要がある。
【0005】
したがって、本発明の目的はN2Oの流出量が少ない排気浄化装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、第1の発明では、内燃機関の排気通路上に配置された排気浄化触媒と、該排気浄化触媒からのN2O流出量を推定するためのN2O流出量推定手段と、上記N2O流出量を減少させるためのN2O流出抑制手段とを具備し、上記N2O流出量推定手段によって推定されるN2O流出量が所定量以上である場合には、上記N2O流出抑制手段によって排気浄化触媒からのN2O流出量を減少させるようにし、上記排気浄化触媒は、流入する排気ガスの空燃比がリーンのときには排気ガス中のNO x を保持すると共に、流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときには保持しているNO x を離脱させるNO x 触媒であり、該NO x 触媒に流入する排気ガスの空燃比をほぼ理論空燃比またはリッチにしてNO x 触媒が保持しているNO x を離脱させるNO x 離脱処理を実行するNO x 離脱手段をさらに具備し、上記N 2 O流出量推定手段は、排気浄化触媒の温度と、排気浄化触媒に流入する排気ガス中の酸素濃度と、排気浄化触媒の劣化度合と、NO x 触媒に保持されているNO x 量およびNO x 触媒に保持されている硫黄成分量のうちの少なくともいずれか一つに基づいてNO x 触媒からのN 2 O流出量を推定する
第1の発明によれば、排気浄化触媒から排気下流に流出する排気ガス中のN 2 Oの量であるN 2 O流出量が常に所定量以下に抑えられる。特に、上記所定量をほぼ零に設定すれば、本発明の排気浄化装置からは大気中にほとんどN 2 Oが放出されない。
また、第1の発明によれば、NO x 触媒が流入する排気ガスの空燃比がリーンのときには排気ガス中のNO x を保持するため、このときはNO x 触媒からのN 2 O流出量はほぼ零である。逆に、NO x 触媒は流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときに保持しているNO x を離脱させるため、NO x 離脱処理を実行した時以外はほとんどリーンである内燃機関等では、NO x 離脱処理を実行したときにのみNO x 触媒の温度等の条件によってNO x 触媒からN 2 Oが流出せしめられる。
なお、排気浄化触媒の温度が高いときにはN 2 O流出量が少なく且つ触媒温度が低いときにはN 2 O流出量が多くなるものとして、また、排気浄化触媒に流入する排気ガス中の酸素濃度が高いときにはN 2 O流出量が多く且つ酸素濃度が低いときにはN 2 O流出量が少なくなるものとして、さらに、排気浄化触媒の劣化度合が高いときにはN 2 O流出量が多く且つ劣化度合が低いときにはN 2 O流出量が少なくなるものとして、N 2 O流出量が推定される。したがって、触媒温度が高くなった場合、酸素濃度が濃くなった場合、触媒劣化度合が高くなった場合には、N 2 O流出量が所定量を越えてしまうことがあり、このとき流出抑制手段によって排気浄化触媒からのN 2 O流出量を減少させる。
また、NO x 触媒に保持されているNO x 量が少ないときにはN 2 O流出量が少なく且つNO x 量が多いときにはN 2 O流出量が多くなるものとして、また、NO x 触媒に保持されている硫黄成分量が少ないときにはN 2 O流出量が少なく且つ硫黄成分量が多いときにはN 2 O流出量が多くなるものとして、N 2 O流出量が推定される。したがって、NO x 触媒に保持されているNO x 量が多い場合、およびNO x 触媒に保持されている硫黄成分量が多い場合には、N 2 O流出量が所定量を越えてしまうことがあり、このとき流出抑制手段によって排気浄化触媒からのN 2 O流出量を減少させる。
また、排気浄化触媒の劣化度合とは、排気浄化触媒に担持されている白金等の触媒の活性が低下している度合(特に、酸化能力の低下度合)、あるいは排気浄化触媒に保持されている酸素、NO x 、硫黄成分を離脱させる処理や排気浄化触媒に付着している微粒子を酸化・除去する処理を実行しても回復しない触媒の浄化性能の低下度合を意味する。
【0007】
第2の発明では、第1の発明において、上記N 2 O流出量推定手段は、NO x 離脱処理を実行する前にNO x 離脱処理を実行した場合のNO x 触媒からのN 2 O流出量を推定し、上記N 2 O流出抑制手段は、推定されたN 2 O流出量が上記所定量以上であるときには、N 2 O流出量が該所定量よりも少ないと推定されるまでNO x 離脱処理を禁止する。
第2の発明によれば、NO x 離脱手段によってNO x 離脱処理を実行する前にNO x 離脱処理を実行した場合のN 2 O流出量が推定され、推定されたN 2 O流出量に基づいてNO x 離脱処理を実行するか否かが決定されるので、NO x 離脱処理を実行してもN 2 O流出量が所定量を超えることがない。また、第2の発明によれば、推定されたN 2 O流出量が所定量以上であるときには、例えNO x 離脱処理を実行すればNO x 触媒からNO x を離脱させることができる場合であってもN 2 O流出量が所定量よりも少なくなるまでNO x 離脱処理が実行されないため、本発明におけるNO x 離脱処理の実行タイミングは、N 2 Oの流出を無視してNO x 触媒のNO x 保持量等に応じてNO x 離脱処理を実行する場合のNO x 離脱処理の実行タイミングとは異なる。
【0008】
上記課題を解決するために、第3の発明では、内燃機関の排気通路上に配置された排気浄化触媒と、該排気浄化触媒からのN2O流出量を推定するためのN2O流出量推定手段と、上記N2O流出量を減少させるためのN2O流出抑制手段とを具備し、上記N2O流出量推定手段によって推定されるN2O流出量が所定量以上である場合には、上記N2O流出抑制手段によって排気浄化触媒からのN2O流出量を減少させるようにし、上記排気浄化触媒は、流入する排気ガスの空燃比がリーンのときには排気ガス中のNO x を保持すると共に、流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときには保持しているNO x を離脱させるNO x 触媒であり、該NO x 触媒に流入する排気ガスの空燃比をほぼ理論空燃比またはリッチにしてNO x 触媒が保持しているNO x を離脱させるNO x 離脱処理を実行するNO x 離脱手段をさらに具備し、上記N 2 O流出量推定手段は、NO x 離脱処理を実行する前にNO x 離脱処理を実行した場合のNO x 触媒からのN 2 O流出量を推定し、上記N 2 O流出抑制手段は、推定されたN 2 O流出量が上記所定量以上であるときには、N 2 O流出量が該所定量よりも少ないと推定されるまでNO x 離脱処理を禁止する
【0009】
第4の発明では、第1〜第3のいずれか一つの発明において、上記N 2 O流出抑制手段は、排気浄化触媒の温度をN 2 O流出量が上記所定量よりも少なくなるような温度以上に上昇させる
【0010】
第5の発明では、第2又は第3の発明において、上記N 2 O流出抑制手段は、さらに、推定されたN 2 O流出量が上記所定量よりも少なくなるような温度にまでNO x 触媒を昇温してから上記NO x 離脱手段によってNO x 離脱処理を実行する
【0011】
第6の発明では、第5の発明において、上記NO x 触媒の昇温は該NO x 触媒に流入する排気ガス中に還元剤を含有させる還元剤混入手段によって行われ、上記還元剤混入手段はNO x 離脱処理を実行するまでNO x 触媒に流入する排気ガスの空燃比がほぼ理論空燃比またはリーンとなるように還元剤を含有させる
第6の発明によれば、NO x 離脱処理を実行するまで、すなわち推定されたN 2 O流出量が上記所定量よりも少なくなるような温度にまでNO x 触媒が昇温されるまで、NO x 触媒に流入する排気ガスの空燃比はリッチにされず、よってNO x 触媒に保持されているNO x が離脱せしめられることはない。一方で、NO x 触媒に流入する排気ガスに還元剤が混入されるので、この還元剤がNO x 触媒上流の排気通路上またはNO x 触媒等で反応して発熱し、NO x 触媒が昇温される。このように、第6の発明によれば、NO x 触媒からNO x 、N 2 Oを離脱させることなく、NO x 触媒を昇温することができる。
なお、上記第6の発明では、NO x 触媒に流入する排気ガスの空燃比がほぼ理論空燃比またはリーンとなるように還元剤を含有させるとしているが、排気ガスの空燃比がリーンとなるように還元剤を含有させるのが好ましい。これは、NO x 触媒に流入する排気ガスの空燃比がほぼ理論空燃比であっても場合によっては多少NO x やN 2 Oが離脱されることがあることによる。
また、還元剤混入手段は、少なくとも後述する還元剤添加装置と機関排気空燃比低下手段とのいずれか一方または両方を具備する。さらに、還元剤としては、例えば燃料、炭化水素、一酸化炭素、水素等が挙げられるが、排気ガス中の酸素濃度を低下させることができ且つNO x 触媒から離脱したNO x を還元することができれば如何なる還元剤であってもよい。以下、本明細書中の「還元剤」とはこのような還元剤を意味するものとする。
【0012】
第7の発明では、第1〜第6のいずれか一つの発明において、上記NO x 離脱手段はNO x 触媒に流入する排気ガス中に還元剤を含有させる還元剤混入手段であり、上記N 2 O流出抑制手段は、排気ガスに含有させる還元剤としてNO x 触媒からのN 2 O流出量が上記所定量よりも少なくなるような還元剤を還元剤混入手段に選択させる
NO x 触媒からのN 2 O流出量はNO x 離脱処理において用いられる還元剤の種類に応じて異なり、また、還元剤の種類に応じて利用し易さが異なる(例えば、COはHCに比べて生成しにくい)。第7の発明によれば、各還元剤を用いたときのN 2 O流出量と還元剤の利用し易さ等を考慮して、最適な還元剤が選択される。
【0013】
第8の発明では、第1〜第5のいずれか一つの発明において、上記NO x 触媒の排気上流側において機関排気通路を通過する排気ガスに還元剤を添加する還元剤添加装置と、内燃機関本体から排出される機関排気ガスの空燃比を所定範囲内に低下させる機関排気空燃比低下手段とをさらに具備し、上記N 2 O流出抑制手段は、上記機関排気空燃比低下手段によって空燃比が低下せしめられた機関排気ガスに上記還元剤添加装置から還元剤を添加することによってNO x 離脱処理を実行するようにした
一般に、ディーゼル内燃機関等、通常運転時の機関排気ガスの空燃比(以下、「機関排気空燃比」と称す)がほとんどリーンである内燃機関では、機関排気空燃比をほぼ理論空燃比やリッチにしようとすると、当該内燃機関の運転の安定性(ドライバビリティ)がひどく悪化してしまう。一方、機関排気空燃比を低下させることによってNO x 触媒に流入する排気ガスの空燃比を低下させると、還元剤添加装置から還元剤を添加する場合に比べて、流入する排気ガスの酸素濃度を低下させることができ、より反応性の良い還元剤とすること、および場合によってはNO x 触媒を通る排気ガスの体積流量を低下させることができ、N 2 Oの発生を抑制することができる。そこで、第8の発明では、NO x 離脱処理を実行するのに、機関排気空燃比を低下させて、さらに還元剤添加装置から還元剤を添加しており、これによりドライバビリティを悪化させずにN 2 Oの発生を抑制することができる。
なお、「機関排気ガス」とは、内燃機関の燃焼室から排出される排気ガスを意味する。また、機関排気空燃比低下手段による機関排気空燃比の低下は、例えば実施形態中に示した低温燃焼制御、ポスト噴射制御、吸気絞り制御等によって行われる。
【0014】
第9の発明では、第8の発明において、機関排気通路から機関吸気通路へ排気ガスを戻す排気再循環通路をさらに具備し、該排気再循環通路には該排気再循環通路を通過する排気ガスを冷却する再循環ガス冷却装置が設けられると共に、該再循環ガス冷却装置をバイパスさせる冷却装置バイパス通路が設けられ、上記機関排気空燃比低下手段は再循環ガス冷却装置を通さずに冷却装置バイパス通路を通して排気ガスを機関吸気通路へ戻しつつ機関排気ガスの空燃比を低下させる
第9の発明に依れば、機関排気通路へ戻される排気ガス(以下、「再循環ガス」と称す)は再循環ガス冷却装置を通らないので、その温度が高い。このため、吸気ガスに高温の再循環ガスが混入されているので、内燃機関の燃焼室に流入する吸気ガスの温度は高く、燃焼後に内燃機関の燃焼室から排出される排気ガスの温度も高い。したがって、機関排気空燃比低下手段によって機関排気空燃比が低下せしめられるときには、同時に機関排気ガスの温度が高くなっており、よってNO x 触媒には高温の排気ガスが流入し、NO x 触媒が早期に昇温される。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の排気浄化装置について説明する。図1は本発明の排気浄化装置を備えた筒内噴射型の圧縮自着火式のディーゼル内燃機関を示している。なお、本発明において用いられる排気浄化装置は火花点火式内燃機関にも搭載可能である。
【0019】
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートをそれぞれ示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。
【0020】
吸気ダクト13内にはスロットル弁駆動用ステップモータ16により駆動されるスロットル弁17が配置され、さらに吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するための冷却装置18が配置される。図1に示した内燃機関では冷却装置18内に機関冷却水が導かれ、この機関冷却水により吸入空気が冷却される。一方、排気ポート10は排気マニホルド19および排気管20を介して排気ターボチャージャ14の排気タービン21に連結され、排気タービン21の出口は排気管22を介して排気浄化触媒23を収容するケーシング24に連結される。排気浄化触媒23には排気浄化触媒23の温度を検出するための温度センサ25が取付けられる。
【0021】
排気マニホルド19とサージタンク12とは排気ガス再循環(以下、「EGR」と称す)通路26を介して互いに連結され、EGR通路26内には電気制御式EGR制御弁27が配置される。またEGR通路26周りにはEGR通路26内を流れるEGRガスを冷却するためのEGRガス冷却装置28が配置される。図1に示した内燃機関ではEGRガス冷却装置28内に機関冷却水が導かれ、この機関冷却水によりEGRガスが冷却される。
【0022】
一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバ、いわゆるコモンレール29に連結される。このコモンレール29内へは電気制御式の吐出量可変な燃料ポンプ30から燃料が供給され、コモンレール29内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コモンレール29にはコモンレール29内の燃料圧を検出するための燃料圧センサ31が取付けられ、燃料圧センサ31の出力信号に基づいてコモンレール29内の燃料圧が目標燃料圧となるように燃料ポンプ30の吐出量が制御される。
【0023】
電子制御ユニット(ECU)40はデジタルコンピュータからなり、双方向性バス41により互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。温度センサ25および燃料圧センサ31の出力信号は対応するAD変換器47を介して入力ポート45に入力される。
【0024】
アクセルペダル49にはアクセルペダル49の踏込量に比例した出力電圧を発生する負荷センサ50が接続され、負荷センサ50の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。さらに入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ51が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁駆動用ステップモータ16、EGR制御弁27、および燃料ポンプ30に接続される。
【0025】
ところで、上述したような排気浄化触媒は、NOxをN2およびO2に還元する。さらに、排気浄化触媒の温度等、種々のファクタの値によっては、NOxをN2Oに還元する。したがって、上述したような排気浄化触媒を通過して大気中に放出される排気ガス中にはN2およびO2に加えて、N2Oが含まれることがある。このN2OはNOxと同様に大気中へ放出されることを抑制する必要がある。すなわち、排気浄化触媒から排気下流に流出するN2Oの量であるN2O流出量を低く抑えることが必要である。ところが、従来では、排気浄化触媒からN2Oが流出する条件が正確に把握されておらず、よって排気浄化触媒からのN2O流出量を低く抑えることができなかった。したがって、従来の排気浄化装置からは、N2Oを多く含んだ排気ガスが大気中に放出されてしまうことがあった。
【0026】
これに対して本発明の第一実施形態の排気浄化装置は、排気浄化触媒23の排気下流に流出すると予測される排気ガス中のN2Oの量、または現在排気浄化触媒23の排気下流に流出している排気ガス中のN2Oの量(以下、単に「N2O流出量」と称す)を推定するためのN2O流出量推定手段と、排気浄化触媒23の排気下流に流出する排気ガス中のN2Oの量(以下、同様に「N2O流出量」と称す)を減少させるためのN2O流出抑制手段とを具備する。そして、このN2O流出量推定手段によって推定されるN2O流出量が所定流出量以上である場合には、N2O流出抑制手段によって排気浄化触媒23からのN2O流出量を減少させるようにしている。特に、上述したような場合、N2O流出抑制手段を作動させることによって排気浄化触媒23からのN2O流出量をほぼ零にするのが好ましい。
【0027】
したがって、本発明の第一実施形態によれば、排気浄化触媒23からのN2O流出量が多くなることまたは多いことがN2O流出量推定手段によって推定されると、排気浄化触媒23からのN2O流出量が少なく抑えられるかあるいはほぼ零にされる。したがって、本発明の排気浄化装置を通過してから大気中に放出される排気ガス中のN2Oの量は少なく抑えられる。
【0028】
なお、N2O流出量に関する上記所定流出量は、内燃機関および排気浄化触媒23の状態を排気浄化触媒23からのN2O流出量が少なくなるような状態にした場合における排気浄化触媒23からのN2O流出量に等しいか、またはこのようなN2O流出量よりも僅かに多い量である。あるいは、上記所定流出量はほぼ零としてもよい。本実施形態の排気浄化装置によれば、排気浄化触媒23からのN2O流出量は常に所定流出量以下に維持されるため、このように所定流出量を設定することにより排気浄化触媒23の排気下流にN2Oがほとんど流出しないようにすることができる。
【0029】
次に、第一実施形態の排気浄化装置における排気浄化触媒23からのN2O流出量を少なく抑えるためのN2O流出抑制制御について説明する。まず、排気浄化触媒23の排気下流に流出する排気ガス中に含まれるN2O流出量Qn2oをN2O流出量推定手段によって推定する。この場合、N2O流出量推定手段によって推定されるN2O流出量Qn2oは推定した時点で排気浄化触媒23から流出しているN2Oの量であってもよいし、単位時間後に排気浄化触媒23から流出すると推定されるN2Oの量であってもよい。そして、N2O流出量推定手段によって推定されたN2O流出量Qn2oが所定流出量Qn2oa以上であると、排気浄化触媒23の排気下流に流出するN2Oの量を少なく抑えるためのN2O流出抑制処理がN2O流出抑制手段によって実行される。
【0030】
次に、本発明の第一実施形態の排気浄化装置についてより詳細に説明する。本発明の第一実施形態では、排気浄化触媒上流側の排気通路、燃焼室5および吸気通路に供給された空気と燃料との比率を排気ガスの空燃比と称する(あるいは排気空燃比と称す)と、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOxを保持し、流入する排気ガスの空燃比がほぼ理論空燃比(ストイキ)またはリッチのとき、より詳細には流入する排気ガス中の酸素濃度が低いときには保持しているNOxを離脱させるNOx触媒23が排気浄化触媒として用いられる。また、NOx触媒23からNOxが離脱せしめられたときに排気ガス中に燃料等の還元剤が存在する場合にはNOx触媒23から離脱せしめられたNOxが還元せしめられる。
【0031】
このようなNOx触媒23では、流入する排気ガス中のNOxを無限に保持することができるわけではなく、したがってNOx触媒23にNOxが一定保持量以上保持された場合には、NOx触媒23に流入する排気空燃比(以下、「流入排気空燃比」と称す)をほぼ理論空燃比またはリッチにしてNOx触媒23が保持しているNOxを離脱させるNOx離脱処理を実行するNOx離脱手段によって強制的にNOx触媒23からNOxを離脱させる。特に、本実施形態のように、ディーゼル式内燃機関では機関本体から排出される排気空燃比(以下、「機関排気空燃比」と称す)がリーンであることが多く、よってNOx離脱処理を行った場合にのみNOx触媒23への流入排気空燃比がほぼ理論空燃比またはリッチになることが多い。したがって、NOx離脱処理を実行していないときにはNOx触媒に流入する排気ガス中のNOxはほとんどNOx触媒に保持されるため、NOx触媒からN2Oが流出することはほとんどない。一方、NOx離脱処理を実行しているときにはNOx触媒からNOxが離脱せしめられ且つそのNOxが還元される。したがって、本実施形態の排気浄化装置では、N2Oが発生してNOx触媒23の排気下流に流出するのは基本的にNOx離脱処理を行う場合のみである。
【0032】
そこで、本発明の第一実施形態の排気浄化装置では、NOx離脱処理を実行すべきときであっても、NOx離脱処理を行うとNOx触媒23からのN2O流出量が所定流出量を超えてしまうとN2O流出量推定手段によって推定された場合には、NOx離脱処理を実行してもNOx触媒23からN2Oがほとんど流出しないようになるまでNOx離脱処理の実行を禁止する。あるいは、上記場合には、NOx離脱処理を行う前にN2O流出抑制手段を作動させて、NOx離脱処理を実行してもNOx触媒23からN2Oがほとんど流出しないようにしてからNOx離脱処理を実行する。こうすることによって、NOx離脱処理を行っている期間中にNOx触媒23からN2Oが流出してしまうことが防止され、よって全ての期間に亘ってNOx触媒23からN2Oが流出することが防止される。
【0033】
ところで、上述したようなNOx触媒では、NOx触媒からのN2O流出量が例えばNOx触媒の温度に依存して変化する。より詳細には、図2に示したようにNOx触媒の温度が上昇するとNOx触媒からのN2O流出量が減少し、NOx触媒の温度が低下するとNOx触媒からのN2O流出量が増加する。
【0034】
そこで、本実施形態の排気浄化装置では、N2O流出量推定手段として温度センサ25を用い、NOx触媒23の温度Tcatを検出する。一方、図2に示したようにNOx離脱処理を実行したときにN2O流出量が所定流出量となるようなNOx触媒23の温度を所定温度Taとして求める。この場合、温度センサ25によって検出されたNOx触媒23の温度が所定温度Taよりも高い場合には、N2O流出量が所定流出量Qn2oaよりも少ないことを示しており、一方、検出されたNOx触媒23の温度が所定温度Ta以下である場合には、N2O流出量が所定流出量Qn2oa以上であることを示している。したがって、NOx離脱処理を実行する前において温度センサ25によって検出されたNOx触媒23の温度Tcatが所定温度Ta以下である場合、NOx触媒23の温度が所定温度Taよりも高くなるまでNOx離脱処理を実行しない。あるいは上記場合には、N2O流出抑制手段がN2O流出抑制処理を実行してNOx触媒23の温度を少なくとも所定温度Taにまで上昇させてから、好ましくは所定温度Taよりも高い温度Tbにまで上昇させてからNOx離脱処理を実行する。
【0035】
したがって、本実施形態のN2O流出抑制制御では、NOx触媒23からNOxを離脱させるべき場合、例えばNOx触媒23に保持されているNOxの量であるNOx保持量が上記一定保持量以上になった場合に、まず温度センサ25によってNOx触媒23の温度Tcatが検出される。検出されたNOx触媒23の温度Tcatが上記所定温度Ta以上の場合には、NOx離脱処理が行われる。一方、検出されたNOx触媒23の温度Tcatが所定温度Taよりも低い場合には、NOx触媒23を昇温するための昇温制御が実行せしめられてNOx触媒23の温度Tcatが少なくとも所定温度Ta以上にまで上昇せしめられ、その後、NOx触媒23に対するNOx離脱処理が行われる。
【0036】
なお、上記所定温度Taは予め定められた値であってもよいし、後述するような他のファクタ(例えば、還元剤の種類、NOx保持量、硫黄成分保持量、酸素濃度、NOx触媒の劣化度合等)に応じて変化する値であってもよい。
また、一般に、NOx離脱処理はNOx触媒の温度が比較的低温であっても行われる。ところが、通常、上記所定温度TaはNOx離脱処理を実行可能な温度(すなわちNOx触媒への流入排気空燃比をほぼ理論空燃比またはリッチすればNOx触媒に保持されているNOxが離脱される温度)のうち最も低い温度よりも高く設定されるので、NOx触媒の温度がNOx離脱処理を実行可能な温度のうち最も低い温度にまで低下しているときにNOx離脱処理を実行すると、NOx触媒からN2Oが多く流出してしまう。したがって、本発明では、NOx触媒の温度がNOx離脱処理を実行可能な温度範囲内にあっても、その温度がNOx触媒の温度Taよりも低い場合にはNOx離脱処理が実行されない。
【0037】
また、NOx触媒23の昇温処理の方法としては、例えば、内燃機関の燃焼室に燃料を噴射するタイミングを遅らせたり、内燃機関の燃焼室5に機関駆動用の燃料を噴射した後に少量の燃料を噴射したり、NOx触媒23上流に電気ヒータやグロープラグ(図示せず)を設け、これら電気ヒータまたはグロープラグを作動させたり、NOx触媒23上流において排気ガスに燃料や還元剤を添加するための還元剤添加装置(図11の参照番号32参照)を設け、この還元剤添加装置から排気ガスに燃料や還元剤を添加したりする(以下、「還元剤添加制御」と称す)ことによって、NOx触媒23を昇温させる方法が挙げられる。また、燃焼室5内に燃料を点火するための点火栓が設けられている場合には、この点火栓による燃料の点火タイミングを遅らせることによっても、排気ガスの温度を上昇させることができる。
【0038】
また、NOx離脱処理を行う方法としては、スロットル弁17の開度を小さく変更すると共に内燃機関の燃焼室5に流入する吸気ガスの空燃比をリッチにする(以下、「吸気絞り制御」と称す)ことだけでなく、内燃機関の燃焼室5に機関駆動用の燃料を噴射した後に少量の燃料を噴射し、その燃料を燃焼させずにそのまま燃焼室5から排出させたり(以下、「ポスト噴射制御」と称す)、上述した還元剤添加装置から排気ガスに燃料や還元剤を添加したりして、NOx触媒23に流入する排気ガス中に燃料や還元剤を供給して、排気空燃比をほぼ理論空燃比またはリッチにすることが挙げられる。
【0039】
次に、図3を参照して本発明の第一実施形態の排気浄化装置におけるN2O流出抑制制御の制御ルーチンについて説明する。まず、ステップ121において、NOx離脱処理を実行すべきときであるか否かが判定される。NOx離脱処理を実行すべきときではないと判定された場合には制御ルーチンが終了せしめられる。一方、ステップ121において、NOx離脱処理を実行すべきときであると判定された場合には、ステップ122へと進む。ステップ122では温度センサ25からNOx触媒23の温度Tcatが検出される。次いで、ステップ123においてNOx触媒23の温度Tcatが所定温度Ta以下であるか否かが判定される。NOx触媒23の温度Tcatが所定温度Taよりも高いと判定された場合には制御ルーチンが終了せしめられる。一方、ステップ123において、NOx触媒23の温度Tcatが所定温度Ta以下であると判定された場合にはステップ124へと進む。ステップ124では、NOx触媒23の昇温制御が実行せしめられ、制御ルーチンが終了せしめられる。
【0040】
次に、本発明の第一実施形態の変更例について説明する。第一実施形態の変更例では、NOx触媒23の昇温処理およびNOx離脱処理を、機関本体1とNOx触媒23との間の排気通路に設けた燃料添加装置によって行う。
【0041】
上述したようにNOx離脱処理を実行すべきとき、すなわちNOx触媒23に保持されているNOx保持量が一定保持量以上になったときには、NOx触媒23の温度Tcatが所定温度Ta以上の場合には直ぐにNOx離脱処理が実行され、NOx触媒23への流入排気空燃比がほぼ理論空燃比またはリッチとなるように燃料添加装置から排気ガスに燃料が添加される。一方、NOx触媒23の温度Tcatが所定温度Taよりも低い場合には、まずNOx触媒23の昇温処理が実行されてから、NOx離脱処理が実行される。ここで、昇温処理を実行するときにも燃料添加装置から排気ガスに燃料が添加されるが、このときNOx触媒23への流入排気空燃比がリーンのままとなるように添加される。
【0042】
この様子を図4に示した。図4はNOx触媒23への流入排気空燃比(上)と、NOx触媒23の温度(下)とのタイムチャートである。まず、時間aにおいて、例えばNOx触媒23に保持されているNOx保持量が一定保持量以上になったことが検出されて、NOx離脱処理を実行すべきときであることが判定される。このときNOx触媒23の温度Tcatは上記所定温度Taよりも低い。このため、NOx離脱処理を実行する前に昇温処理が実行される。昇温処理の実行中には、NOx触媒23への流入排気空燃比がほぼ理論空燃比またはリッチとならない程度に低下せしめられ、これに伴ってNOx触媒23の温度が上昇する。そして、NOx触媒23の温度Tcatが上記所定温度Ta以上となったときに、NOx離脱処理が実行され、NOx触媒23への流入排気空燃比がリッチとなるように低下せしめられる。その後、NOx触媒に保持されているNOxがほぼ完全に離脱されるとNOx離脱処理が停止され、すなわち燃料添加装置からの燃料の添加が停止せしめられ、これと同時にNOx触媒23の温度も下がって元に戻る。
【0043】
なお、上記第一実施形態の変更例では、NOx触媒23の昇温処理およびNOx離脱処理を燃料添加装置からの燃料添加によって行うとしているが、上記ポスト噴射制御や吸気絞り制御等により機関排気空燃比を変更する等、NOx触媒23に流入する排気ガス中への燃料や還元剤の供給量を変更できる方法であれば他の方法によって上記昇温処理およびNOx離脱処理を行ってもよい。
【0044】
次に、本発明の第二実施形態の排気浄化装置について説明する。本発明の第二実施形態における構成は、基本的に第一実施形態における構成と同様である。また、第二実施形態では、NOx触媒23への流入排気空燃比をほぼ理論空燃比またはリッチにしてNOx触媒23が保持しているNOxを離脱させるNOx離脱手段はNOx触媒23に流入する排気ガス中に還元剤を含有させる還元剤混入手段であり、この還元剤混入手段により様々な還元剤を排気ガス中に混入させてNOx触媒23への流入排気空燃比をほぼ理論空燃比またはリッチにすることができる。
【0045】
ところで、上述したようなNOx触媒23からのN2O流出量は、NOx離脱処理を行うときにNOx触媒23に流入する排気ガス中の還元剤の種類によって異なる。このことを図5に示す。図5は図2と同様に横軸がNOx触媒23の温度、縦軸がNOx触媒23からのN2O流出量を示す。
【0046】
図5から分かるように、還元剤として炭化水素を用いた場合、すなわち還元剤として燃料を用いた場合は、還元剤として一酸化炭素(CO)および水素(H2)を用いた場合と比べてN2O流出量が基本的に多く、また、還元剤として一酸化炭素を用いた場合は、還元剤として水素を用いた場合と比べてN2O流出量が基本的に多い。また、図2を用いて説明したようにどの還元剤を用いてもNOx触媒23の温度の低下に伴ってN2O流出量が増大し、NOx触媒23の温度が低下すればするほど、各還元剤を用いた場合のN2O流出量の差が大きくなる。
【0047】
そこで、本発明の第二実施形態の排気浄化装置では、N2O流出抑制手段は、排気ガスに含有させる還元剤としてNOx触媒23からのN2O流出量Qn2oが上記所定流出量Qn2oaよりも少なくなるような還元剤を還元剤混入手段に選択させる。例えば、NOx離脱処理を行うのに還元剤混入手段によって排気ガス中に炭化水素が混入される場合、NOx触媒23の温度が図5の第一の温度T1以下になると、NOx触媒23からのN2O流出量Qn2oが所定流出量Qn2oaを超えてしまう。これに対して、NOx離脱処理を行うのに還元剤混入手段によって排気ガス中に一酸化炭素を混入させる場合、NOx触媒23の温度が図5の第一の温度T1以下になっても、NOx触媒23からのN2O流出量Qn2oは所定流出量Qn2oaよりも少なく、さらに、NOx触媒23の温度が図5の第二の温度T2以下になるまでNOx触媒23から流出するN2O流出量は所定流出量よりも少ないままである。
【0048】
したがって、第二実施形態の排気浄化装置では、NOx離脱処理を行うときに、温度センサ25によって検出されたNOx触媒23の温度が第一の温度T1よりも高いときには、還元剤混入手段は還元剤として炭化水素および一酸化炭素のいずれかを排気ガスに混入させ、NOx触媒23の温度が第一の温度T1よりも低く第二の温度T2よりも高いときには、還元剤混入手段は還元剤として一酸化炭素を排気ガスに混入させる。さらに、NOx離脱処理を行うときに、NOx触媒23の温度が第二の温度T2以下である場合、NOx触媒23の温度が第二の温度T2以下であってもN2O流出量が所定流出量Qn2oa以下に維持される水素を還元剤として用いてもよい。NOx離脱処理を行うときに用いる還元剤をこのようにして選択することによって、NOx触媒23から排気下流へ流出するN2O流出量が所定値Qn2oa以下に抑えられる。
【0049】
なお、還元剤混入手段がNOx触媒23に流入する排気ガス中に還元剤を混入させる方法としては、NOx触媒23に流入する排気ガス中に各還元剤を添加するための還元剤添加装置(図示せず)を設けることが挙げられる。さらに、内燃機関に流入する吸気ガスの空燃比を単純にリッチにしたり、内燃機関の燃焼室に機関駆動用の燃料を噴射した後に少量の燃料を噴射したりすることによって排気ガス中に炭化水素を混入させることができる。また、内燃機関の燃焼室にEGRガスを充填して燃焼室内のガスを低温で燃焼させると排気ガス中の一酸化炭素の量が増大するので、このことによって排気ガス中に一酸化炭素を混入させることができる。
【0050】
ここで、還元剤混入手段がNOx触媒23に流入する排気ガス中に炭化水素を混入させることは、排気空燃比をリッチにすればよいので、還元剤添加装置を用いなくても容易に実行することができる。また、還元剤混入手段がNOx触媒23に流入する排気ガス中に一酸化炭素を混入させることは、還元剤添加装置を用いなくても低温燃焼によって実行することができる。これに対して、還元剤混入手段がNOx触媒23に流入する排気ガス中に水素を混入させることは、還元剤添加装置を用いないと実行するのが難しい。そこで、以下では、還元剤混入手段が、還元剤添加装置を用いない場合、すなわち炭化水素および一酸化炭素のみを排気ガス中に混入させることができる場合について説明する。
【0051】
次に、図6を参照して第二実施形態の排気浄化装置におけるN2O流出抑制制御の制御ルーチンについて説明する。ステップ141においてNOx触媒23に対するNOx離脱処理を実行すべきときであるか否かが判定される。NOx離脱処理を実行すべきときではないと判定された場合には制御ルーチンが終了せしめられる。NOx離脱処理を実行すべきときであると判定された場合にはステップ142へと進む。ステップ142では、温度センサ25によってNOx触媒23の温度Tcatが検出される。次いで、ステップ143では、NOx触媒23の温度Tcatが第一の温度T1より高いか否かが判定される。温度Tcatが第一の温度T1よりも高いと判定された場合にはステップ144へと進む。ステップ144では、還元剤として炭化水素を用いてNOx離脱処理が行われ、制御ルーチンが終了せしめられる。一方、ステップ143において、温度Tcatが第一の温度T1以下であると判定された場合にはステップ145へと進む。ステップ145では、温度Tcatが第二の温度T2よりも高いか否かが判定され、温度Tcatが第二の温度T2よりも高いと判定された場合にはステップ146へと進む。ステップ146では、還元剤として一酸化炭素を用いてNOx離脱処理が行われ、制御ルーチンが終了せしめられる。一方、ステップ145において、温度Tcatが第二の温度T2以下であると判定された場合には、制御ルーチンが終了せしめられる。
【0052】
なお、上述した第二実施形態では、炭化水素、一酸化炭素、水素の三つの還元剤について説明したが、排気ガス中の酸素濃度を低下させることができ且つNOx触媒から離脱したNOxを還元することができれば一般に還元剤として用いられる如何なる物質を還元剤混入手段によって混入される還元剤として用いてもよい。
【0053】
次に本発明の第三実施形態の排気浄化装置について説明する。本発明の第三実施形態における構成は、基本的に第一実施形態および第二実施形態における構成と同様である。ところで、NOx触媒23に対するNOx離脱処理を実行したときのNOx触媒23からのN2O流出量は、NOx触媒23に流入する排気ガス中の酸素濃度によって変化し、より詳細には図7に示したようにNOx触媒23に流入する排気ガス中の酸素濃度が高くなるとN2O流出量が多くなり、逆に、NOx触媒23に流入する排気ガス中の酸素濃度が低くなるとN2O流出量が少なくなる。
【0054】
ここで、酸素濃度とN2O流出量とが上述したような関係になる理由について簡単に説明する。なお、ここではNOx触媒23への流入排気空燃比がリッチである場合について説明する。
NOx触媒23への流入排気空燃比がリッチであっても、排気ガス中にはNOx(例えば一酸化窒素(NO))が含まれる。このNOは以下の反応式(1)により窒素(N)と酸素(O)とに解離する。
NO→N+O (1)
このようにして解離したOは、NOx触媒23に保持され、同じく排気ガス中に含まれる還元剤(例えばCO)と反応する(反応式(2))。一方、上述したように解離したNは、互いに反応して窒素分子(N2)を形成する(反応式(3))。
O+CO→CO2 (2)
N+N→N2 (3)
ところが、上記反応式(1)の反応が遅く、NOの解離が進まない場合には下記の反応式(4)によりNとNOとがN2Oを形成する。
N+NO→N2O (4)
したがって、N2Oの生成を抑制するためには上記(1)の反応を促進させて、上記(4)の反応を起こさせないようにする必要がある。ここで、上記(1)の反応を促進させるためには、化学的な平衡の関係から排気ガス中の酸素濃度が低いことが要求される。このように、排気ガスの酸素濃度が低いと上記反応式(1)の反応が促進されて、結果的にN2Oが生成されにくくなり、逆に、排気ガスの酸素濃度が高いと上記(1)の反応が進まず、結果的にN2Oが生成されやすくなってしまう。
【0055】
そこで、本発明の第三実施形態の排気浄化装置では、上記N2O流出量推定手段は、NOx触媒23に流入する排気ガス中の酸素濃度に基づいてNOx触媒23の排気下流に流出するN2O量を推定する。より詳細には、N2O流出量推定手段として酸素濃度推定手段が設けられ、この酸素濃度推定手段によって、NOx離脱処理を実行する前に、NOx離脱処理を実行した場合にNOx触媒23に流入すると予想される排気ガス中の酸素濃度Coを推定する。一方、図7に示したようにN2O流出量が所定流出量となるような酸素濃度を所定酸素濃度Coaとして算出する。
【0056】
この場合、酸素濃度検出手段によって推定された酸素濃度が所定酸素濃度Coaよりも低い場合には、N2O流出量が所定流出量Qn2oaよりも少ないことを示しており、一方、検出された酸素濃度が所定酸素濃度Coa以上である場合には、N2O流出量が所定流出量Qn2oa以上であることを示している。したがって、酸素濃度推定手段によって推定された酸素濃度が所定酸素濃度Coa以上であった場合には、N2O流出抑制手段によりN2O流出抑制処理を実行する。
【0057】
本実施形態の排気浄化装置では、N2O流出抑制手段はN2O流出量が所定流出量よりも多くなった場合、すなわちNOx離脱処理を実行したときにNOx触媒23に流入する排気ガス中の酸素濃度が所定酸素濃度以上になっている場合には、NOx触媒23に流入する排気ガス中の酸素濃度を低下させるための酸素濃度低下手段によって上記排気ガス中の酸素濃度を低下させるか、あるいはほぼ零に抑える。このように、NOx触媒23に流入する排気ガスの酸素濃度を常に所定酸素濃度以下に抑制することによって、N2O流出量を所定流出量以下に抑えることができる。
【0058】
なお、所定酸素濃度は予め定められた値であってもよいし、あるいは、所定酸素濃度と所定流出量Qn2oaおよび他のファクタ(NOx触媒23の温度、還元剤の種類、NOx保持量、硫黄成分保持量、NOx触媒の劣化度合等)との関係を予めマップとしてECU40のROM42に保存し、これら所定流出量Qn2oaおよび他のファクタから所定酸素濃度を算出してもよい。
【0059】
また、NOx触媒23に流入する排気ガスの酸素濃度を低下させるための酸素濃度低下手段としては、内燃機関の燃焼室5にEGRガスを充填して燃焼室内のガスを低温で燃焼させることが挙げられる。排気空燃比がほぼ理論空燃比またはリッチとなるように燃料を燃焼室5に供給して上述したように燃焼室5内のガスを低温で燃焼させることによって、燃焼室5内のほとんどの酸素が燃焼に使われ、排気ガス中の酸素が少なく抑えられる。
【0060】
次に、本発明の第四実施形態の排気浄化装置について説明する。本発明の第四実施形態における構成は、基本的に第一〜第三実施形態における構成と同様である。ところで、上述したようなNOx触媒23から流出するN2O流出量はNOx触媒23に保持されているNOxの量であるNOx保持量に応じて変化し、より詳細には図8に示したようにNOx触媒23のNOx保持量が多くなるとN2O流出量が多くなり、NOx触媒23のNOx保持量が少なくなるとN2O流出量が少なくなる。
【0061】
そこで、本発明の第四実施形態の排気浄化装置では、上記N2O流出量推定手段が、NOx触媒23のNOx保持量に基づいてNOx触媒23からのN2O流出量Qnoxを推定する。より詳細には、N2O流出量推定手段としてNOx保持量推定手段が設けられ、このNOx保持量推定手段によってNOx触媒23のNOx保持量を推定し、図8に示したようにN2O流出量が上記所定流出量Qn2oaよりも僅かに少ない下位流出量Qn2obとなるようなNOx触媒23のNOx保持量を所定NOx保持量Qnoxaとして検出する。
【0062】
この場合、NOx保持量推定手段によって推定されたNOx保持量が所定NOx保持量Qnoxaよりも少ない場合には、N2O流出量が下位流出量Qn2obよりも少ないことを示しており、一方、推定されたNOx保持量が所定NOx保持量Qnoxa以上である場合には、N2O流出量が下位流出量Qn2ob以上であることを示している。したがって、NOx保持量推定手段によって推定されたNOx保持量Qnoxが所定NOx保持量Qnoxa以上になった場合には、N2O流出抑制手段によりN2O流出抑制処理を実行する。
【0063】
本実施形態の排気浄化装置では、N2O流出抑制手段は、N2O流出量が下位流出量以上になった場合、すなわちNOx触媒23のNOx保持量が所定NOx保持量以上になった場合にNOx離脱処理を行って、NOx触媒23に保持されているNOxを離脱させる。このように、N2O流出量が下位流出量Qn2ob以上である場合にNOx離脱処理を実行することにより、N2O流出量が上記所定流出量Qn2oaになる前にNOx離脱処理が実行され、よってN2O流出量を常に上記所定流出量以下に維持することができる。
【0064】
なお、所定NOx保持量は予め設定された値であってもよいし、所定NOx保持量と所定流出量および他のファクタ(NOx触媒23の温度、還元剤の種類、硫黄成分保持量、酸素濃度、NOx触媒の劣化度合等)との関係を予めマップとしてECU40のROM42に保存し、これら所定流出量および他のファクタから所定NOx保持量を算出してもよい。
【0065】
また、NOx触媒を備えた従来の排気浄化装置では、NOx触媒のNOx保持量が限界NOx保持量(一定保持量)以上になると流入する排気ガス中のNOxを保持しにくくなってしまうため、NOx触媒のNOx保持量が限界NOx保持量以上になるとNOx離脱処理を行ってNOx触媒に保持されているNOxを離脱させていた。これに対して、本発明の排気浄化装置では、上述した所定NOx保持量が限界NOx保持量よりも少ないため、NOx触媒23のNOx保持量が限界NOx保持量に到達する前にNOx触媒23が保持しているNOxを離脱させている。すなわち、本実施形態の排気浄化装置では、N2O流出量を監視していない従来の排気浄化触媒とはNOx離脱処理の実行タイミングが異なり、NOx触媒23のNOx保持量の観点から見てNOx触媒23のNOx浄化能力が低下する前に、NOx保持剤が保持しているNOxが離脱せしめられる。
【0066】
また、NOx触媒23のNOx保持量を推定する方法としては、例えば、NOx触媒23に流入する排気ガス中のNOx量を検出するためのNOxセンサ(図示せず)を設け、このNOxセンサによって検出されたNOx量を時間で積分することが挙げられる。
【0067】
次に本発明の第五実施形態の排気浄化装置について説明する。本発明の第五実施形態における構成は、基本的に第一〜第四実施形態における構成と同様である。ところで、上述したようなNOx触媒23は、NOx触媒23に流入する排気ガス中のNOxだけでなく硫黄成分をも保持し、より詳細にはNOx触媒23への流入排気空燃比がリーンである場合には流入する排気ガス中に含まれる硫黄成分を保持し、NOx触媒23への流入排気空燃比がほぼ理論空燃比またはリッチであってNOx触媒23の温度が硫黄成分離脱温度以上である場合には保持している硫黄成分を離脱させる。このようなNOx触媒23では、NOx触媒23から流出するN2O流出量はNOx触媒23に保持されている硫黄成分の量である硫黄成分保持量に応じて変化し、より詳細には図9に示したようにNOx触媒23の硫黄成分保持量が多くなるとN2O流出量が多くなり、NOx触媒23の硫黄成分保持量が少なくなるとN2O流出量が少なくなる。
【0068】
そこで、本発明の第五実施形態の排気浄化装置では、上記N2O流出量推定手段が、NOx触媒23の硫黄成分保持量に基づいてNOx触媒23からのN2O流出量を推定する。より詳細には、N2O流出量推定手段として硫黄成分保持量推定手段が設けられ、この硫黄成分保持量推定手段によってNOx触媒23の硫黄成分保持量Qsを推定し、一方、図9に示したように、N2O流出量が所定流出量Qn2oaよりも僅かに少ない下位流出量Qn2ocとなるようなNOx触媒23の硫黄成分保持量を所定硫黄成分保持量Qsaとして算出する。
【0069】
この場合、硫黄成分保持量推定手段によって推定された硫黄成分保持量Qsが所定硫黄成分保持量Qsaよりも少ない場合には、N2O流出量が下位流出量Qn2ocよりも少ないことを示しており、一方、推定された硫黄成分保持量が所定硫黄成分保持量以上の場合には、N2O流出量が下位流出量Qn2ocよりも多いことを示している。したがって、硫黄成分保持量推定手段によって推定された硫黄成分保持量Qsが所定硫黄成分保持量Qsa以上になった場合には、N2O流出抑制手段によりN2O流出抑制処理を実行する。
【0070】
本実施形態の排気浄化装置では、N2O流出抑制手段はN2O流出量が下位流出量よりも多くなった場合、すなわちNOx触媒23の硫黄成分保持量が所定硫黄成分保持量以上になった場合にNOx触媒23の硫黄成分離脱処理を行って、NOx触媒23に保持されている硫黄成分を離脱させる。このように、N2O流出量が下位流出量Qn2oc以上である場合に硫黄成分離脱処理を実行することにより、N2O流出量が上記所定流出量Qn2oaになる前に硫黄成分離脱処理が実行され、よってN2O流出量を上記所定流出量以下に抑えることができる。
【0071】
なお、所定硫黄成分保持量は予め定められた値であってもよいし、所定硫黄成分保持量と所定流出量および他のファクタ(NOx触媒23の温度、還元剤の種類、NOx触媒23のNOx保持量、NOx触媒の劣化度合等)との関係を予めマップとしてECU40のROM42に保存し、これら所定流出量および他のファクタから所定硫黄成分保持量を算出してもよい。
【0072】
また、NOx触媒を備えた従来の排気浄化装置では、NOx触媒の硫黄成分保持量が限界硫黄成分保持量以上になると流入する排気ガス中のNOxを保持することが可能なNOx量が少なくなってしまうため、NOx触媒の硫黄成分保持量が限界硫黄成分保持量以上になると硫黄成分離脱処理を行ってNOx触媒に保持されている硫黄成分を離脱させていた。これに対して、本発明の排気浄化装置では、上述した所定硫黄成分保持量が限界硫黄成分保持量よりも少ないため、NOx触媒23の硫黄成分保持量が限界硫黄成分保持量に到達する前にNOx触媒23が保持している硫黄成分を離脱させている。すなわち、本実施形態の排気浄化装置では、N2O流出量を監視していない従来の排気浄化触媒とは硫黄成分離脱処理の実行タイミングが異なり、NOx触媒23の硫黄成分保持量の観点から見てNOx触媒23のNOx浄化能力が低下する前に、NOx保持剤が保持している硫黄成分が離脱せしめられる。
【0073】
また、NOx触媒23に保持されている硫黄成分を離脱させるための硫黄成分離脱処理は、NOx触媒23への流入排気空燃比をほぼ理論空燃比またはリッチにすると共に、上述したような昇温処理によってNOx触媒23の温度を硫黄成分離脱温度以上にまで上昇させることによって行われる。
【0074】
次に、本発明の第六実施形態の排気浄化装置について説明する。本発明の第六実施形態における構成は、基本的に第一〜第五実施形態における構成と同様である。ところで、上述したようなNOx触媒23は、経時的に、またはその温度が極端に高温になること等により劣化する。ここで、NOx触媒23の劣化とは、NOx触媒23に担持されている白金等の触媒の活性が低下することであって、NOx触媒23に保持されているNOx、硫黄成分および微粒子(パティキュレート)等によらないもの、すなわちNOx離脱処理、硫黄成分離脱処理および排気浄化触媒としてパティキュレートフィルタが用いられている場合において行われる微粒子を酸化・除去するフィルタ再生処理を行っても回復しない排気浄化触媒の浄化能力の低下意味し、特に、熱による白金等の触媒の酸化能力低下を意味する。
【0075】
NOx触媒23では、NOx触媒23がまだほとんど使用されておらず、その劣化度合が低いときには、NOx離脱処理が行われてもN2O流出量は少なく、その後、NOx触媒23の使用時間が延びるにつれて、その劣化度合が高くなり、NOx離脱処理が行われるとN2O流出量が多くなる。これは、NOx触媒23の劣化度合が高いと、上述した反応式(2)の反応(O+CO→CO2)が進まなくなり、結果的に酸素濃度が高い場合と同様に、反応式(4)の反応(N+NO→N2O)が進んでしまうことによる。
【0076】
そこで、本発明の第六実施形態の排気浄化装置では、上記N2O流出量推定手段が、NOx触媒23の劣化度合に基づいてNOx触媒23からのN2O流出量を推定する。より詳細には、N2O流出量推定手段として排気浄化触媒の劣化度合を推定する劣化度合推定手段を設ける。劣化度合推定手段は、例えば本実施形態では、NOx触媒が新品状態で車両に搭載されてからの総運転距離、総運転時間またはNOx触媒の温度が所定温度以上の高温になった総時間等に基づいて排気浄化触媒の劣化度合を推定し、特に、これら距離および時間が短い場合にはNOx触媒の劣化度合が低いとされ、これら距離および時間が長くなるにつれてNOx触媒の劣化度合が高くなるとしてNOx触媒の劣化度合を推定する。
【0077】
例えば、劣化度合を総運転時間から推定している場合、総運転時間tdとN2O流出量Qn2oとの関係を予め求めてマップとしてECU40のROM42に保存しておき、N2O流出量が上記所定流出量Qn2oaとなるような総運転時間を所定運転時間tdaとして算出する。
【0078】
この場合、総運転時間が所定運転時間tdaよりも短い場合には、N2O流出量が上記所定流出量Qn2oaよりも少ないことを示しており、一方、総運転時間が所定運転時間tda以上である場合にはN2O流出量が所定流出量Qn2oa以上であることを示している。したがって、NOx離脱処理を実行する際に、総運転時間が所定運転時間tda以上である場合には、N2O流出抑制手段によりN2O流出抑制処理を実行する。ここで、NOx触媒の劣化は回復できないものであるので、N2O流出抑制処理としてNOx触媒の劣化を回復させることはできない。したがって、本実施形態ではN2O流出抑制処理として上述した第一〜第五実施形態におけるN2O流出抑制処理が行われ、例えば、NOx離脱処理を実行する際にNOx触媒の温度がNOx触媒の劣化を考慮して設定された所定温度以上になってからNOx離脱処理が行われたり、NOx離脱処理を実行する際にNOx触媒に流入する排気ガスの酸素濃度がNOx触媒の劣化を考慮して設定された所定酸素濃度以上としてNOx離脱処理が行われたりする。なお、所定運転時間tdaは、他のファクタ(NOx触媒23の温度、流入排気ガスの酸素濃度、NOx保持量、硫黄成分保持量等)に基づいて算出され、例えば、NOx触媒23の温度が高い場合には所定運転時間tdaも長く設定される。
【0079】
また、本発明の内燃機関の排気浄化装置では、NOx触媒の劣化度合を推定することができる。このような例を、第六実施形態の変更例として以下に説明する。第六実施形態の変更例の構成は第六実施形態の構成と同様であるが、変更例ではNOx触媒の排気上流側において、NOx触媒23からのN2O流出量を検出するためのN2O流出量検出装置(N2Oセンサ(図示せず))が設けられている。
【0080】
ところで、NOx触媒23の劣化を考慮せずにNOx触媒23から流出する排気ガス中のN2O流出量を推定した場合、すなわち上述したNOx触媒23の温度、NOx触媒23に流入する排気ガスの酸素濃度、NOx触媒23のNOx保持量および硫黄成分保持量等からN2O流出量を推定した場合、推定されたN2O流出量は、NOx触媒23の劣化度合が低いときにはN2Oセンサによって検出されたN2O流出量にほぼ等しいが、NOx触媒23の劣化度合が高いときにはN2Oセンサによって検出されたN2O流出量よりも多くなる。そして、推定されたN2O流出量と検出されたN2O流出量との差(以下、単に「N2O流出量の差」と称す)が大きくなるほど、NOx触媒23の劣化度合が大きい。したがって、上記N2O流出量の差からNOx触媒23の劣化度合を推定することができる。
【0081】
NOx触媒23の劣化度合が変わると、上述したようにNOx触媒23から流出するN2O流出量が変わる。すなわち、NOx触媒23の温度を例にすると、NOx触媒23の劣化度合が高い程、NOx離脱処理を実行したときにN2O流出量が所定流出量以下となる温度が高くなる。
【0082】
そこで、第六実施形態の変更例では、例えば第一実施形態において設定される所定温度TaをNOx触媒23の劣化度合に応じて変更する。上述したように、上記所定温度Taは、例えばNOx触媒23に流入する酸素濃度、還元剤の種類、NOx触媒23のNOx保持量および硫黄成分保持量等に応じて決定される。さらに、本変更例では、このようにして決定された所定温度TaをNOx触媒23の劣化度合に応じて変更する。
【0083】
より詳細には、上記N2O流出量の差と補正温度ΔTaとの関係を予め求め、マップとしてECU40のROM42に保存する。ここで、N2O流出量の差と補正温度ΔTaとの関係は、N2O流出量の差が小さいときには補正温度ΔTaも小さく、N2O流出量の差が大きくなると補正温度ΔTaも大きくなるような関係である。使用時には、N2O流出量の差に基づいて上記マップから補正温度ΔTaを算出し、この補正温度ΔTaをNOx触媒23の劣化度合以外のファクタに基づいて決定された所定温度Taに加算する。そして、実際の触媒温度Tcatが温度(Ta+ΔTa)より高い場合にはNOx離脱処理を実行し、実際の触媒温度Tcatが温度(Ta+ΔTa)以下である場合には触媒温度Tcatを温度(Ta+ΔTa)に昇温してからNOx離脱処理を実行する。
【0084】
なお、上記第六実施形態の変更例では、劣化度合(すなわちN2O流出量の差)に応じて補正温度を変更しているが、例えば、N2O流出量の差が所定差以上となったときに補正温度を10℃程度上げる等、劣化度合を用いて他の方法で補正温度を変更してもよい。
【0085】
また、上記第六実施形態の変更例では、NOx触媒の劣化度合に基づいてNOx離脱処理時のNOx触媒の温度を変更するようにしているが、NOx触媒の劣化度合に基づいて硫黄成分離脱処理時のNOx触媒の温度を変更する等、上述したようにして検出されたNOx触媒の劣化度合を他の用途に用いてもよい。
【0086】
ところで、上述したように、NOx触媒のNOx保持量や硫黄成分保持量が多くなっているときには、NOx触媒の劣化度合が高くなっているときと同様にN2O流出量が増大する。このため、NOx触媒23のNOx保持量および硫黄成分保持量を考慮せずにN2O流出量を推定している場合、NOx触媒のNOx保持量や硫黄成分保持量が多くなっているときには、NOx触媒の劣化度合が低いにも関わらず、N2O流出量が多くなってしまい、上記N2O流出量の差が大きくなり、結果的にNOx触媒の劣化度合が高くなっていると推定されてしまう。
【0087】
この場合、NOx離脱処理または硫黄成分離脱処理を実行した後にN2OセンサによってN2O流出量を検出すれば、NOx触媒のNOx保持量や硫黄成分保持量が多いことによってNOx触媒の劣化度合が高くなっていると推定されてしまうことが防止される。したがって、本変更例では、NOx触媒23のNOx保持量および硫黄成分保持量を考慮せずに上述したNOx触媒23の温度、NOx触媒23に流入する排気ガスの酸素濃度等に基づいてN2O流出量を推定している場合、NOx離脱処理または硫黄成分離脱処理を実行した後にN2OセンサによってN2O流出量を検出してもよい。
【0088】
ところで、上記第一〜第六実施形態から分かるように、N2O流出量は、上述した六つのファクタ、すなわちNOx触媒23の温度と、NOx離脱処理を実行する際の還元剤の種類と、NOx触媒23のNOx保持量と、NOx触媒23の硫黄成分保持量と、NOx離脱処理を実行する際にNOx触媒23に流入する排気ガスの酸素濃度と、NOx触媒23の劣化度合とに応じて変化する。すなわち、N2O流出量はこれらファクタの関数である。そこで、本発明では、上記第一〜第六実施形態のうち少なくとも二つの実施形態を組合せてもよい。このようにして上記実施形態を組合せた場合を第七実施形態として以下に説明する。特に、上記第一〜第六実施形態では各実施形態毎にそれぞれN2O流出量推定手段とN2O流出抑制手段とを有するが、本実施形態では第一〜第六実施形態のN2O流出量推定手段のうち少なくとも一つのN2O流出量推定手段と、第一〜第五実施形態のN2O流出抑制手段のうち少なくとも一つの最適なN2O流出抑制手段とを組合せることができる。この場合、例えば、N2O流出量推定手段として上記ファクタのうちの二つのファクタからN2O流出量を算出する。例えば、N2O流出量が所定流出量Qn2oaとなる場合のファクタの値を予め実験的に求め、マップとしてECU40のROM42に保存する。そして、内燃機関の運転中に上記ファクタの値とマップからN2O流出量が所定流出量Qn2oa以上になっていると推定される場合には、N2O流出抑制手段によりN2O抑制処理を実行する。
【0089】
また、本実施形態のN2O流出抑制手段は、第一〜第五実施形態のN2O抑制処理のうち少なくとも一つの最適なN2O抑制処理を選択して実行する。ところで各N2O抑制処理は、実行の可否や燃費向上や内燃機関の運転の安定性(ドライバビリティ)の観点から、その時の内燃機関の運転状態に適している場合と、適していない場合とがある。そこで、本変更例のN2O流出抑制手段は、内燃機関の運転状態に応じて燃費、内燃機関の運転の安定性等が最も有利になるように、上記N2O抑制処理のうち最適なN2O抑制処理を選択して実行する。
【0090】
次に、第七実施形態の例として、第一実施形態と第二実施形態との組み合わせた場合の組合せ例について図5を参照して以下に説明する。
【0091】
上記第二実施形態で示したようにNOx触媒23に流入する排気ガス中に還元剤を混入させるために還元剤添加装置を設けた場合、安定して一種類またはそれ以上の還元剤をNOx触媒23に流入させることができる。ところが、内燃機関の燃焼室に多量のEGRガスを充填して燃焼室内のガスを低温で燃焼させる(以下、「低温燃焼制御」と称す)ことによって排気ガス中の一酸化炭素の量を増大させることによって一酸化炭素を還元剤とする場合、一酸化炭素の量を増大させることは常に実行することができるわけではなく、内燃機関の運転状態に応じて実行の可否が変化する。したがって、この場合、還元剤として常に一酸化炭素を常に利用することはできない。
【0092】
そこで、本組合せ例では、使用可能な還元剤を使用してNOx離脱処理を実行したときにN2O流出量が所定流出量Qn2oa以下に維持されるような温度に昇温してから、上記還元剤を使用してNOx離脱処理を実行する。例えば、還元剤として一酸化炭素および炭化水素のいずれを用いることも可能である場合、NOx処理を実行する直前のNOx触媒23の温度が第二の温度T2よりも高いときには還元剤として一酸化炭素を用いてNOx離脱処理をすぐに実行し、NOx離脱処理を実行する直前のNOx触媒23の温度が第二の温度T2以下であるときには、NOx触媒23の昇温処理を実行してNOx触媒23の温度を少なくとも第二の温度T2よりも高い温度に上昇させてから還元剤として一酸化炭素を用いてNOx離脱処理を実行する。一方、還元剤として炭化水素のみしか使用することができない場合、NOx離脱処理を実行する直前のNOx触媒23の温度が第一の温度T1よりも高い場合にはすぐにNOx離脱処理を実行するが、NOx離脱処理を実行する直前のNOx触媒23の温度が第一の温度T1以下であるときには、NOx触媒23の昇温処理を実行してNOx触媒23の温度を少なくとも第一の温度T1よりも高い温度に上昇させてからNOx離脱処理を実行する。こうすることにより、NOx触媒23の昇温処理を実行することによるエネルギ消費を最小限に抑えつつ、N2O流出量を常に所定流出量以下に抑えることができる。
【0093】
次に、図10を参照して上記組合せ例におけるN2O抑制制御の制御ルーチンについて説明する。まず、ステップ161において温度センサ25によってNOx触媒23の温度Tcatが検出される。次いで、ステップ162において、還元剤として一酸化炭素を利用することが可能であるか否かが判定される。ステップ162において一酸化炭素を利用することが可能であると判定された場合にはステップ163へと進む。ステップ163では、NOx触媒23の温度Tcatが第二の温度T2以下であるか否かが判定され、第二の温度T2よりも高いと判定された場合にはステップ165へと進む。ステップ163においてNOx触媒23の温度Tcatが第二の温度T2以下であると判定された場合には、ステップ164へと進む。ステップ164では、NOx触媒23の温度Tcatが少なくとも第二の温度T2に到達するまでNOx触媒23の昇温処理が実行され、ステップ165へと進む。ステップ165では、還元剤として一酸化炭素を用いてNOx離脱処理が実行され、制御ルーチンが終了せしめられる。
【0094】
一方、ステップ162において、還元剤として一酸化炭素を利用することが不可能であると判定された場合には、ステップ166へと進む。ステップ166では、NOx触媒23の温度Tcatが第一の温度T1以下であるか否かが判定され、NOx触媒23の温度Tcatが第一の温度T1よりも高いと判定された場合にはステップ165へと進む。ステップ166において、NOx触媒23の温度Tcatが第一の温度T1以下であると判定された場合には、ステップ167へと進む。ステップ167では、NOx触媒23の温度Tcatが第一の温度T1に到達するまでNOx触媒23の昇温処理が実行され、ステップ168へと進む。ステップ168では、還元剤として炭化水素を用いてNOx離脱処理が実行され、制御ルーチンが完了せしめられる。
【0095】
次に、本発明の第八実施形態の排気浄化装置について説明する。第八実施形態の排気浄化装置の構成は、上記実施形態の構成と基本的に同様であるが、NOx触媒23からのN2O流出量を検出するためのN2O流出量検出装置(N2Oセンサ)がN2O流出量推定手段として設けられる。そして、第八実施形態の排気浄化装置では、N2Oセンサによって検出された実際のN2O流出量と上記所定流出量Qn2oaを比較し、それに応じてN2O離脱処理を実行する。より詳細には、NOx触媒23に対してNOx離脱処理を実行すべきときに、N2Oセンサによって検出されたN2O流出量、すなわちNOx触媒23からのN2O流出量が所定流出量Qn2oaよりも少ない場合にはすぐにNOx離脱処理を実行し、検出されたN2O流出量が所定流出量Qn2oaよりも多い場合にはN2O流出抑制手段によりN2O抑制処理を実行してからNOx離脱処理を実行する。
【0096】
次に、本発明の第九実施形態の排気浄化装置について説明する。第九実施形態の排気浄化装置の構成は、図11に示したように、基本的に上記実施形態の排気浄化装置と同様であるが、還元剤添加装置32を具備している。また、第九実施形態の排気浄化装置は、通常運転時の排気空燃比がほとんどリーンであるような内燃機関において特に用いられ、以下ではこのような内燃機関において用いた場合について説明する。
【0097】
ところで、上述したように、NOx離脱処理を実行する際には、NOx触媒23に流入する排気ガスの酸素濃度が高いほど、NOx触媒23から離脱したNOxがN2Oに転化しやすい。ここで、NOx離脱処理として、機関排気空燃比をリッチにして、NOx触媒23への流入排気空燃比をリッチにする場合と、還元剤添加装置から還元剤を添加することによって流入排気空燃比をリッチにする場合とを比較してみる。機関排気空燃比をリッチにする場合、ほとんどの酸素が燃焼室5内で燃料等と反応するので、その排気ガスの酸素濃度は低い。一方、還元剤添加装置32から還元剤を添加して流入排気空燃比をリッチにする場合には、排気ガスに還元剤が添加されてからその排気ガスがNOx触媒23に到達するまでには一部の酸素と還元剤とのみが反応するので、NOx触媒23に流入するときのその排気ガスの酸素濃度は、上記機関排気空燃比をリッチにする場合に比べて高い。したがって、酸素濃度をより低くしつつNOx触媒23への流入排気空燃比をリッチにするという観点では、機関排気空燃比をリッチにする方が好ましい。
【0098】
一方、機関排気空燃比をリッチにするのは、上述した低温燃焼制御、ポスト噴射制御、吸気絞り制御(以下、総称して「機関排気空燃比低下手段」と称す)によって行われるが、これら制御は燃焼室5内での燃焼に直接影響を及ぼすので、機関出力等に変動が生じてしまい、運転の安定性(ドライバビリティ)が悪化してしまう。これに対して、還元剤添加装置から還元剤を添加する場合には、機関本体1から完全に排出された後の排気ガスに還元剤を添加するので、還元剤の添加は燃焼室5内での燃焼にはほとんど影響を及ぼさず、よって機関出力等に変動が生じてしまうこともない。したがって、運転の安定性(ドライバビリティ)の観点では、燃料添加装置から燃料を添加して排気ガスの空燃比をリッチにするほうが好ましい。
【0099】
そこで、第九実施形態の排気浄化装置では、NOx離脱処理を実行する際には、機関排気空燃比低下手段によって機関排気空燃比を低下させることと、還元剤添加装置から還元剤を添加することとを同時に行って流入排気空燃比をリッチにする。より詳細には、機関排気空燃比低下手段によって機関排気空燃比はリーンの範囲内で低下せしめられ、すなわち機関出力等に大きな変動が起こらない程度に低下せしめられる。したがって、内燃機関から排出される排気ガスはその空燃比がリーンでありながらも比較的酸素濃度が低くなっている。そして、このように機関排気空燃比が低下せしめられた排気ガスに流入排気ガスがリッチになるように還元剤添加装置から還元剤が添加される。こうして、本実施形態の排気浄化装置では、NOx離脱処理の実行時に、機関出力等に大きな変動を起こさないようにしつつ且つ酸素濃度を比較的低く抑えつつ空燃比がリッチとされた排気ガスがNOx触媒に流入せしめられる。このため、本実施形態の排気浄化装置によれば、NOx離脱処理の実行時において、還元剤添加装置からの還元剤の添加のみによって流入排気空燃比をリッチする場合に比べて、N2O流出量を抑制することができる。
【0100】
なお、上記第九実施形態の排気浄化装置によれば、NOx触媒23に流入する排気ガスの酸素濃度を低下させて、N2O流出量を抑制すること以外にも下記の様な効果を得られる。
【0101】
まず、上述したように酸素濃度が低減されるので、NOx離脱処理中に反応式(5)の反応がNOx触媒23の触媒(白金等)で行われることが少なくなる。よって、NOx触媒23の触媒は、ほとんど反応式(6)の反応を進めるためにのみ用いられるので、NOx離脱処理中にNOx触媒23に保持されているNOxが良好に還元・浄化される。
nm+O2→CO2+H2O (5)
nm+NO→CO2+H2O+N2 (6)
【0102】
また、還元剤添加装置から添加する還元剤として燃料を添加した場合、すなわち炭素数の多いHC(以下、「重質HC」と称す)を添加した場合、この重質HCの多くは、そのままNOx触媒23に流入する。一方、機関排気空燃比低下手段によって機関排気空燃比を低下させた場合には、内燃機関の燃焼室5においける反応により、燃料は炭素数の少ないHC(以下、「軽質HC」と称す)やCOとなっており、その後少量の重質HCを還元剤添加装置から添加しても、NOx触媒23に流入する排気ガス中の還元剤のほとんどは軽質HCやCOである。したがって、本実施形態によれば第二実施形態で説明したN2O流出量をより抑制することができる還元剤を多く含む排気ガスをNOx触媒23に流入させることができる。
【0103】
また、還元剤の種類によってNOx触媒23に保持されているNOxが還元される度合(以下、「NOx還元率」と称す)が異なり、図12に示したようにCOのNOx還元率が最も高く、重質HCのNOx還元率が最も低い。したがって、本実施形態の排気浄化装置によれば、NOx還元率の高い還元剤を多く含む排気ガスをNOx触媒23に流入させることができる。なお、図12では、重質HCとしてC1012のNOx還元率を、軽質HCとしてC36のNOx還元率を示している。
【0104】
さらに、上記吸気絞り制御や低温燃焼制御によって機関排気空燃比を低下させた場合、還元剤添加装置32によって還元剤を添加して流入排気空燃比を低下させた場合に比べて、NOx触媒23に流入する排気ガスの体積流量が少なくなる。すなわち、吸気絞り制御を行う場合、スロットルバルブ17が絞られることにより燃焼室5に流入する吸気ガスが減少し、その結果、排気ガスの体積流量も減少する。また、低温燃焼制御を行う場合、EGRガスとして吸気ガスに混入させる排気ガスが増加されるため、内燃機関から排出された排気ガスが多量にEGR通路へ流入し、結果として、NOx触媒に流入する排気ガスの体積流量が減少する。
【0105】
一方、図13に示したように、排気ガスの体積流量が多い場合には、排気ガス中に含まれる還元剤が酸素やNOxと反応せずにNOx触媒を通過してしまうことが多くなるので、NOx還元率は低く、逆に、排気ガスの体積流量が少ない場合には、排気ガス中に含まれる還元剤がNOxと反応せずにNOx触媒を通過してしまうことが少なくなり、還元剤と酸素およびNOxとが反応し易くなるので、NOx還元率は高い。したがって、吸気絞り制御や低温燃焼制御によって機関排気空燃比を低下させると、還元剤添加装置32によって還元剤を添加して流入排気空燃比を低下させる場合に比べて、NOx触媒23に流入する排気ガスの体積流量が少なくなることにより、NOx還元率が高くなる。よって、本実施形態のように、吸気絞り制御や低温燃焼制御によって機関排気空燃比を低下させつつ還元剤添加装置32によって還元剤を添加することで、還元剤添加装置32から還元剤を添加することのみによって流入排気空燃比を低下させる場合に比べて、NOx触媒23に流入する排気ガスの体積流量が少なくなるという観点からもNOx還元率を高めることができる。
【0106】
第九実施形態の排気浄化装置について、より具体的に説明する。なお、以下の説明では、第九実施形態を第一実施形態の変更例に組み合わせた場合について説明するが、第九実施形態の排気浄化装置は機関排気空燃比低下手段によって空燃比が低下せしめられた機関排気ガスに上記還元剤添加装置から還元剤を添加することによってNOx離脱処理を実行すれば如何なる手順でNOx離脱処理を実行してもよい。
【0107】
図14に示したように、本実施形態の内燃機関では、定常時にNOx触媒23への流入排気空燃比がリーンとなっている。そして、NOx触媒23のNOx保持量が一定保持量以上となった場合に、NOx触媒23の温度が上記所定温度よりも低いときには、NOx触媒23の昇温処理として、機関排気空燃比低下手段であるポスト噴射制御によって機関排気空燃比が低下せしめられる。このとき、機関排気空燃比は理論空燃比に近いリーンとされる。その後、NOx触媒23の温度が上記所定温度以上になると、上記ポスト噴射制御によって機関排気空燃比を低下させた状態にしつつ(図中のα)、還元剤添加装置32から還元剤を添加し、流入排気空燃比をリッチにする(図中のβ)。その後、NOx触媒23のNOx保持量がほぼ零になると、ポスト噴射制御および還元剤添加装置32からの還元剤の添加が中止される。
【0108】
次に、本発明の第九実施形態の排気浄化装置の変更例について説明する。第九実施形態の変更例の構成は基本的に第九実施形態の排気浄化装置の構成と同様であるが、図11に示したようにEGRガス冷却装置28をバイパスするためのバイパス通路33が設けられる。また、EGR通路26からバイパス通路33への分岐地点には流量調整弁34が設けられ、この流量調整弁34はEGRガス冷却装置28およびバイパス通路33へ流入するEGRガスの流量を調整する。また、本変更例では、NOx離脱処理を実行するときに、低温燃焼制御によって機関排気空燃比を低下させると共に、還元剤添加装置32から還元剤を添加することによって、流入排気空燃比がほぼ理論空燃比またはリッチとされる。
【0109】
さらに、本変更例では、NOx離脱処理中に低温燃焼制御を行っている場合には、流量調整弁34はほとんどのEGRガスがEGRガス冷却装置を通らずにバイパス通路33を通るように切り替えられる。したがって、吸気ガス中には、冷却されていない高温のEGRガスが混入せしめられる。このため、燃焼室5に流入するEGRガスを含んだ吸気ガスは比較的高温となっており、結果的に機関本体1から排出される排気ガスも高温となっている。
【0110】
このように、本変更例では、NOx離脱処理の実行において、機関本体1から排出される排気ガスが高温であるため、NOx触媒23の温度も高くなる。そして、上述したようにNOx触媒23の温度が高くなると、NOx触媒23からのN2O流出量が抑制される。したがって、本変更例では、NOx離脱処理の実行時に、EGRガス冷却装置をバイパスさせたEGRガスを吸気ガス中に混入させることで、NOx触媒23を昇温することができる。
【0111】
なお、上記変更例ではNOx離脱処理時にEGRガス冷却装置をバイパスさせたEGRガスを吸気ガス中に混入しているが、昇温処理等、機関排気空燃比を低下させる処理を実行するときであって排気ガスの温度を高めるべきときであればいつでも上記EGRガスを冷却せずに吸気ガス中に混入してもよい。特に、昇温処理中には、このような制御を行うことにより早期にNOx触媒23を昇温することができる。
【0112】
なお、NOx触媒23からのN2O流出量は上記ファクタ(NOx触媒23の温度、還元剤の種類、NOx保持量、硫黄成分保持量、酸素濃度、NOx触媒23の劣化度合)以外にも、NOx触媒23に流入する排気ガスの流量に応じて変化し、流入する排気ガスの流量が多くなればN2O流出量も多くなり、流入する排気ガスの流量が少なくなればN2O流出量も少なくなる。したがって、上記各実施形態では、NOx触媒23からのN2O流出量の所定流出量Qn2oaはNOx触媒23に流入する排気ガスの流量に応じて補正され、NOx触媒23に流入する排気ガスの流量が多くなれば所定流出量Qn2oaも多くされ、NOx触媒23に流入する排気ガスの流量が少なくなれば所定流出量Qn2oaも少なくされる。あるいは、NOx触媒23からのN2O流出量ではなく、N2O選択率(NOxを還元する際にNOxがN2Oに転化される割合、特に第一〜第七実施形態ではNOx触媒23から離脱せしめられたNOxのうちN2Oに転化される割合)を基準にN2O抑制処理を実行してもよい。この場合、N2O選択率が所定選択率よりも高い場合に、N2O抑制処理が実行される。
【0113】
また、上記実施形態において、NOx触媒23に対するNOx離脱処理を実行する前にN2O流出量を推定するとしたが、もちろん、NOx触媒23に対するNOx離脱処理が行われている間、その時にNOx触媒23から排気下流に流出しているN2O流出量Qn2oを推定し、推定されたN2O流出量Qn2oが所定流出量Qn2oaを超える場合にはN2O流出抑制手段によってN2O流出量を少なくするように制御してもよい。例えば、酸素濃度検出手段としてO2センサを用い、NOx触媒23に対するNOx離脱処理が行われている間にNOx触媒23に流入する排気ガスの酸素濃度をO2センサによって検出し、検出された酸素濃度が所定酸素濃度Coaよりも高い場合にはN2O流出抑制処理を実行するようにしてもよい。
【0114】
また、上記実施形態において、排気浄化触媒としてNOx触媒を用いているが、三元触媒や、流入排気空燃比がリーンのときにもNOxを還元することができるリーンNOx触媒であってもよい。この場合、N2O流出量推定手段は触媒の温度、触媒に流入する排気ガスの酸素濃度に基づいてN2O流出量を推定し、およびN2O流出抑制手段はこれら二つのファクタを変更してN2Oの流出を抑制する。もちろん、NOx触媒と同様にNOxの保持能力があれば、パティキュレートフィルタ等、如何なる排気浄化触媒であってもよい。
【0115】
また、上記実施形態では、N2O流出量推定手段によって推定されたNOx離脱処理を実行したときのN2O流出量が所定流出量以上であった場合には、N2O流出抑制手段によってN2O抑制処理を実行してから、NOx離脱処理を実行するようにしているが、N2O抑制処理を実行せずに、NOx離脱処理を実行してもN2O流出量が所定流出量よりも少なくなるまで待ってから、NOx離脱処理を実行してもよい。例えば、NOx離脱処理を実行すべきときにNOx触媒23の温度が図1の所定温度Taよりも低い場合には、NOx触媒23の温度がN2O抑制処理以外の処理によって所定温度Ta以上になるのを待ってから、NOx離脱処理を実行する。
【0116】
最後に、本発明のNOx触媒23による排気ガスの浄化メカニズム、特に排気ガス中のNOxの保持・離脱および還元浄化作用について図15を参照して説明する。NOx触媒23は、例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つであるNOx保持剤と、白金(Pt)のような貴金属とから成る。
【0117】
ここで、このNOxの保持・離脱および還元浄化作用のメカニズムについて白金(Pt)およびバリウム(Ba)を担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。なお、図15(A)および(B)はNOx触媒23の隔壁の表面上および隔壁の細孔表面上に形成された担体層の表面の拡大図を模式的に表している。図15(A)および(B)において60は白金の粒子を示しており、61はバリウム等のNOx保持剤を含む担体層を示している。
【0118】
流入排気空燃比がかなりリーンになると排気ガス中の酸素濃度が大幅に増大し、図15(A)に示されるようにこれら酸素がO2 -またはO2-の形で白金60の表面に付着する。一方、流入する排気ガス中のNOは白金60の表面上でO2 -またはO2-と反応し、NO2となる(2NO+O2→2NO2)。次いで生成されたNO2の一部は白金60上で更に酸化されつつNOx保持剤61内に吸収されて酸化バリウム(BaO)と結合しながら、図15(A)に示されるように硝酸イオン(NO3 -)の形でNOx保持剤61内に拡散する。このようにしてNOxがNOx保持剤61に保持される。
【0119】
流入する排気ガス中の酸素濃度が高い限り白金60の表面でNO2が生成され、NOx保持剤61のNOx保持能力が飽和しない限りNO2がNOx保持剤61に保持されて硝酸イオン(NO3 -)が生成される。これに対して排気ガス中の酸素濃度が低下してNO2の生成量が低下すると反応が逆方向(NO3 -→NO2)に進み、斯くしてNOx保持剤61内の硝酸イオン(NO3 -)がNO2の形でNOx保持剤から放出される。すなわち、流入する排気ガス中の酸素濃度が低下するとNOx保持剤61からNOxが離脱せしめられることになる。流入する排気ガスのリーンの度合いが低くなれば排気ガス中の酸素濃度が低下し、したがって流入する排気ガスのリーンの度合いを低くすればNOx保持剤61からNOxが離脱せしめられることになる。
【0120】
一方、この時流入排気空燃比を小さくすると、HC、COは白金60上のO2 -またはO2-と反応して酸化せしめられる。また、流入排気空燃比を小さくすると排気ガス中の酸素濃度が極度に低下するためにNOx保持剤61からNO2が離脱され、このNO2は図15(B)に示されるように未燃HC、COと反応して還元浄化せしめられる。このようにして白金60の表面上にNO2が存在しなくなるとNOx保持剤61から次から次へとNO2が離脱される。したがって流入排気空燃比を小さくし、且つ還元剤が存在する状態にすると短時間のうちにNOx保持剤61からNOxが離脱されて還元浄化されることになる。
【0121】
なお、本明細書において、NOx触媒からNOxまたは硫黄成分を離脱させるときに、流入排気空燃比をほぼ理論空燃比またはリッチにすると説明したが、実際には流入する排気ガスの酸素濃度が所定の酸素濃度よりも低くなることによってNOx触媒からNOxや硫黄成分が離脱し易くなる。したがって、上述した実施形態における「排気ガスの空燃比(排気空燃比)をほぼ理論空燃比またはリッチにする」という説明は「流入する排気ガスの酸素濃度を所定の酸素濃度以下にする」ことを意味する。
【0122】
また、本明細書において「保持」という用語は、NOxを硝酸塩等の形で蓄積する場合の「吸収」およびNOxをNO2等の形で吸着する「吸着」の両方の意味を含むものとして用いる。また、NOx触媒からの「離脱」という用語についても、「吸収」に対応する「放出」の他、「吸着」に対応する「脱離」の意味も含むものとして用いる。
【0123】
【発明の効果】
本発明によれば、NOx触媒から排気下流に流出する排気ガス中のN2Oの量であるN2O流出量が常に所定量以下に抑えられるので、N2Oの流出量が少ない排気浄化装置が提供される。
【図面の簡単な説明】
【図1】本発明の排気浄化装置を備えた内燃機関の全体の図である。
【図2】NOx触媒の温度とN2O流出量との関係を示す図である。
【図3】第一実施形態におけるN2O流出抑制制御の制御ルーチンのフローチャートである。
【図4】第一実施形態の変更例におけるNOx触媒への流入排気空燃比とNOx触媒の温度とのタイムチャートである。
【図5】各種還元剤を用いてNOx離脱処理を実行した場合のNOx触媒の温度とN2O流出量との関係を示す図である。
【図6】第二実施形態におけるN2O流出抑制制御の制御ルーチンのフローチャートである。
【図7】NOx触媒の酸素濃度とN2O流出量との関係を示す図である。
【図8】NOx触媒のNOx保持量とN2O流出量との関係を示す図である。
【図9】NOx触媒の硫黄成分保持量とN2O流出量との関係を示す図である。
【図10】第七実施形態におけるN2O流出抑制制御の制御ルーチンのフローチャートである。
【図11】第九実施形態について示した図1と同様な図である。
【図12】還元剤の種類とNOx還元率との関係を示す図である。
【図13】NOx触媒に流入する排気ガスの体積流量とNOx還元率との関係を示す図である。
【図14】第九実施形態における図4と同様な図である。
【図15】NOx触媒におけるNOxの保持および離脱を説明するための図である。
【符号の説明】
5…燃焼室
23…排気浄化触媒、NOx触媒
25…温度センサ
40…ECU

Claims (9)

  1. 内燃機関の排気通路上に配置された排気浄化触媒と、該排気浄化触媒からのN2O流出量を推定するためのN2O流出量推定手段と、上記N2O流出量を減少させるためのN2O流出抑制手段とを具備し、上記N2O流出量推定手段によって推定されるN2O流出量が所定量以上である場合には、上記N2O流出抑制手段によって排気浄化触媒からのN2O流出量を減少させるようにし
    上記排気浄化触媒は、流入する排気ガスの空燃比がリーンのときには排気ガス中のNO x を保持すると共に、流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときには保持しているNO x を離脱させるNO x 触媒であり、該NO x 触媒に流入する排気ガスの空燃比をほぼ理論空燃比またはリッチにしてNO x 触媒が保持しているNO x を離脱させるNO x 離脱処理を実行するNO x 離脱手段をさらに具備し、
    上記N 2 O流出量推定手段は、排気浄化触媒の温度と、排気浄化触媒に流入する排気ガス中の酸素濃度と、排気浄化触媒の劣化度合と、NO x 触媒に保持されているNO x 量およびNO x 触媒に保持されている硫黄成分量のうちの少なくともいずれか一つに基づいてNO x 触媒からのN 2 O流出量を推定する内燃機関の排気浄化装置。
  2. 上記N2O流出量推定手段は、NOx離脱処理を実行する前にNOx離脱処理を実行した場合のNOx触媒からのN2O流出量を推定し、上記N2O流出抑制手段は、推定されたN2O流出量が上記所定量以上であるときには、N2O流出量が該所定量よりも少ないと推定されるまでNOx離脱処理を禁止する請求項に記載の内燃機関の排気浄化装置。
  3. 内燃機関の排気通路上に配置された排気浄化触媒と、該排気浄化触媒からのN2O流出量を推定するためのN2O流出量推定手段と、上記N2O流出量を減少させるためのN2O流出抑制手段とを具備し、上記N2O流出量推定手段によって推定されるN2O流出量が所定量以上である場合には、上記N2O流出抑制手段によって排気浄化触媒からのN2O流出量を減少させるようにし
    上記排気浄化触媒は、流入する排気ガスの空燃比がリーンのときには排気ガス中のNO x を保持すると共に、流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときには保持しているNO x を離脱させるNO x 触媒であり、該NO x 触媒に流入する排気ガスの空燃比をほぼ理論空燃比またはリッチにしてNO x 触媒が保持しているNO x を離脱させるNO x 離脱処理を実行するNO x 離脱手段をさらに具備し、
    上記N 2 O流出量推定手段は、NO x 離脱処理を実行する前にNO x 離脱処理を実行した場合のNO x 触媒からのN 2 O流出量を推定し、上記N 2 O流出抑制手段は、推定されたN 2 O流出量が上記所定量以上であるときには、N 2 O流出量が該所定量よりも少ないと推定されるまでNO x 離脱処理を禁止する内燃機関の排気浄化装置。
  4. 上記N2O流出抑制手段は、排気浄化触媒の温度をN2O流出量が上記所定量よりも少なくなるような温度以上に上昇させる請求項1〜3のいずれか1項に記載の内燃機関の排気浄化装置。
  5. 上記N2O流出抑制手段は、さらに、推定されたN2O流出量が上記所定量よりも少なくなるような温度にまでNOx触媒を昇温してから上記NOx離脱手段によってNOx離脱処理を実行する請求項2又は3に記載の内燃機関の排気浄化装置。
  6. 上記NOx触媒の昇温は該NOx触媒に流入する排気ガス中に還元剤を含有させる還元剤混入手段によって行われ、上記還元剤混入手段はNOx離脱処理を実行するまでNOx触媒に流入する排気ガスの空燃比がほぼ理論空燃比またはリーンとなるように還元剤を含有させる請求項に記載の内燃機関の排気浄化装置。
  7. 上記NOx離脱手段はNOx触媒に流入する排気ガス中に還元剤を含有させる還元剤混入手段であり、上記N2O流出抑制手段は、排気ガスに含有させる還元剤としてNOx触媒からのN2O流出量が上記所定量よりも少なくなるような還元剤を還元剤混入手段に選択させる請求項1〜6のいずれか一つに記載の内燃機関の排気浄化装置。
  8. 上記NOx触媒の排気上流側において機関排気通路を通過する排気ガスに還元剤を添加する還元剤添加装置と、内燃機関本体から排出される機関排気ガスの空燃比を所定範囲内に低下させる機関排気空燃比低下手段とをさらに具備し、上記N2O流出抑制手段は、上記機関排気空燃比低下手段によって空燃比が低下せしめられた機関排気ガスに上記還元剤添加装置から還元剤を添加することによってNOx離脱処理を実行するようにした請求項1〜5のいずれか一つに記載の内燃機関の排気浄化装置。
  9. 機関排気通路から機関吸気通路へ排気ガスを戻す排気再循環通路をさらに具備し、該排気再循環通路には該排気再循環通路を通過する排気ガスを冷却する再循環ガス冷却装置が設けられると共に、該再循環ガス冷却装置をバイパスさせる冷却装置バイパス通路が設けられ、上記機関排気空燃比低下手段は再循環ガス冷却装置を通さずに冷却装置バイパス通路を通して排気ガスを機関吸気通路へ戻しつつ機関排気ガスの空燃比を低下させる請求項に記載の内燃機関の排気浄化装置。
JP2003122435A 2002-11-11 2003-04-25 内燃機関の排気浄化装置 Expired - Lifetime JP4300862B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122435A JP4300862B2 (ja) 2002-11-11 2003-04-25 内燃機関の排気浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002326974 2002-11-11
JP2003122435A JP4300862B2 (ja) 2002-11-11 2003-04-25 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2004211676A JP2004211676A (ja) 2004-07-29
JP4300862B2 true JP4300862B2 (ja) 2009-07-22

Family

ID=32828401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122435A Expired - Lifetime JP4300862B2 (ja) 2002-11-11 2003-04-25 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP4300862B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613894B2 (ja) * 2006-08-02 2011-01-19 株式会社デンソー 内燃機関用排気浄化装置
JP4706659B2 (ja) * 2007-04-05 2011-06-22 トヨタ自動車株式会社 アンモニア酸化触媒におけるn2o生成量推定方法および内燃機関の排気浄化システム
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
JP2010112290A (ja) * 2008-11-07 2010-05-20 Toyota Motor Corp 内燃機関の排気浄化装置
WO2010146717A1 (ja) * 2009-06-15 2010-12-23 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8434297B2 (en) 2009-06-15 2013-05-07 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CN102482969B (zh) * 2009-06-16 2014-05-28 丰田自动车株式会社 内燃机的排气净化装置
JP5349208B2 (ja) * 2009-08-28 2013-11-20 株式会社日本自動車部品総合研究所 内燃機関の排気浄化装置
JP2011047384A (ja) * 2009-08-28 2011-03-10 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2011122552A (ja) * 2009-12-14 2011-06-23 Suzuki Motor Corp 内燃機関の排出ガス浄化装置
SE536140C2 (sv) * 2010-08-13 2013-05-28 Scania Cv Ab Arrangemang och förfarande för att styra mängden av ett reduktionsmedel som tillförs en avgasledning hos en förbränningsmotor
JP5534020B2 (ja) * 2010-09-14 2014-06-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR101251505B1 (ko) 2010-12-02 2013-04-05 현대자동차주식회사 질소산화물 저감 촉매에 저장되는 질소산화물의 양을 예측하는 방법 및 이를 이용한 배기 장치
KR101189241B1 (ko) * 2010-12-02 2012-10-09 현대자동차주식회사 질소산화물 저감 촉매의 재생 예측 방법 및 이를 이용한 배기 장치
JP5625872B2 (ja) * 2010-12-16 2014-11-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
FR2971302B1 (fr) * 2011-02-03 2015-04-24 Peugeot Citroen Automobiles Sa Procede de commande de l'introduction d'un reducteur d'oxydes d'azote dans une conduite d'echappement d'un moteur a combustion
US8883102B1 (en) * 2014-01-14 2014-11-11 Ford Global Technologies, Llc Methods for controlling nitrous oxide emissions
US9562486B2 (en) * 2014-10-24 2017-02-07 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2017194022A (ja) 2016-04-21 2017-10-26 トヨタ自動車株式会社 排気浄化装置の制御装置
JP2021050700A (ja) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 N2o推定方法及び装置

Also Published As

Publication number Publication date
JP2004211676A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4300862B2 (ja) 内燃機関の排気浄化装置
JP3599012B2 (ja) 内燃機関の排気浄化装置
US6672050B2 (en) Exhaust gas purification device of an engine
JP3929296B2 (ja) 内燃機関
JP3613676B2 (ja) 内燃機関の排気浄化装置
WO2009087819A1 (ja) 内燃機関の排気浄化装置
KR20110136798A (ko) 내연 기관의 배기 정화 장치
JP5056725B2 (ja) 内燃機関の制御装置
JP3945350B2 (ja) 内燃機関の排気浄化装置
US20180038302A1 (en) Exhaust emission control system of engine
JP2003254042A (ja) 内燃機関の排気浄化装置
WO2014128860A1 (ja) 内燃機関の排気浄化装置
JP2003148211A (ja) 内燃機関の排気浄化装置
JP4661013B2 (ja) 内燃機関
JP2003020930A (ja) 内燃機関の排気浄化装置
JP4556364B2 (ja) 内燃機関の排気浄化装置
JP3624747B2 (ja) 内燃機関の排気浄化装置
JP4357918B2 (ja) 内燃機関の排気浄化装置
JP2002155737A (ja) 内燃機関の排気浄化装置
JP2010159727A (ja) 内燃機関の排気浄化装置
JP4639565B2 (ja) 内燃機関の排気浄化装置
JP4106913B2 (ja) 内燃機関の排気浄化装置
JP3496557B2 (ja) 内燃機関の排気浄化装置
JP4341351B2 (ja) 排気浄化器の浄化能力回復方法
JP2004308525A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4300862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

EXPY Cancellation because of completion of term