JP2017194022A - 排気浄化装置の制御装置 - Google Patents

排気浄化装置の制御装置 Download PDF

Info

Publication number
JP2017194022A
JP2017194022A JP2016085173A JP2016085173A JP2017194022A JP 2017194022 A JP2017194022 A JP 2017194022A JP 2016085173 A JP2016085173 A JP 2016085173A JP 2016085173 A JP2016085173 A JP 2016085173A JP 2017194022 A JP2017194022 A JP 2017194022A
Authority
JP
Japan
Prior art keywords
temperature
amount
nsr
catalyst
scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016085173A
Other languages
English (en)
Inventor
勝広 伊藤
Katsuhiro Ito
勝広 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016085173A priority Critical patent/JP2017194022A/ja
Priority to US15/490,139 priority patent/US20170306818A1/en
Priority to CN201710260570.8A priority patent/CN107304699A/zh
Priority to DE102017108467.3A priority patent/DE102017108467A1/de
Publication of JP2017194022A publication Critical patent/JP2017194022A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • F01N2570/145Dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】本発明は、内燃機関の排気通路に配置されるNSR触媒を具備する排気浄化装置の制御装置において、リッチスパイク処理の実行時にNSR触媒で生成されるNOの量を可及的に少なくすることを課題とする。
【解決手段】本発明に係わる制御装置は、NSR温度TnsrがNSR触媒の活性開始温度以上且つ活性完了温度未満の暖機温度範囲に属する場合において、前記NSR温度Tnsrが所定温度Tthr未満であるときは、前記NSR温度Tnsrが前記所定温度Tthr以上であるときに比べ、リッチスパイク処理の実行時にNSR触媒へ流入する排気の空燃比が低くなるように、燃料供給装置からNSR触媒へ供給される燃料の量を制御するようにした。
【選択図】図3

Description

本発明は、内燃機関の排気通路に配置されるNO吸蔵還元型触媒を含む排気浄化装置の制御装置に関する。
理論空燃比より高いリーン空燃比の混合気で運転される内燃機関の排気浄化装置として、該内燃機関の排気通路に配置されるNO吸蔵還元型触媒(NSR(NOX Storage Reduction)触媒)を備えたものが知られている。このような排気浄化装置においては、内燃
機関の排気に含まれるNOがNSR触媒に吸蔵される。そして、NSR触媒のNO吸蔵量が所定の閾値以上になったときに排気の空燃比をリッチ空燃比にする処理(リッチスパイク処理)が実行されることで、NSR触媒に吸蔵されているNOが還元及び浄化される。
ところで、上記したリッチスパイク処理が実行されると、NSR触媒においてNOが還元される際に、亜酸化窒素(NO)が生成される場合がある。NOは、二酸化炭素(CO)の約300倍の温室効果をもたらすといわれており、その排出を極力抑えることが望ましい。このような要求に対し、リッチスパイク処理の実行時にNSR触媒から流出するNOの量を予測して、その予測値が所定値を超える場合には、NSR触媒を昇温させてからリッチスパイク処理を実行し、又はリッチスパイク処理の実行時における排気の空燃比を低下させる方法が提案されている(例えば、特許文献1を参照)。
特開2004−211676号公報 特開2012−127295号公報 特開2002−188429号公報 特開2015−034504号公報
上記した従来技術は、リッチスパイク処理の実行時におけるNSR触媒の温度が低いときは高いときに比べ、NSR触媒で生成されるNOが多くなり易いという知見、及びリッチスパイク処理の実行時における排気の空燃比が高いときは低いときに比べ、NSR触媒で生成されるNOが多くなり易いという知見に基づくものである。
しかしながら、本願発明者が鋭意の実験及び検証を行った結果、リッチスパイク処理の実行時にNSR触媒で生成されるNOの量とNSR触媒へ流入する排気の空燃比との相関は、NSR触媒の温度が高いときと低いときとで異なる傾向の相関になるという新たな知見を得た。
本発明は、上記した新たな知見に基づいてなされたものであり、その目的は、内燃機関の排気通路に配置されるNSR触媒を具備する排気浄化装置の制御装置において、リッチスパイク処理の実行時にNSR触媒で生成されるNOの量を可及的に少なくすることにある。
本願発明者は、NSR触媒の温度が所定温度未満となる条件下においては、リッチスパ
イク処理の実行時にNSR触媒で生成されるNOの量は、排気の空燃比が高いときより排気の空燃比が低いときの方が少なくなる一方で、NSR触媒の温度が前記所定温度以上となる条件下においては、リッチスパイク処理の実行時にNSR触媒で生成されるNOの量は、排気の空燃比が低いときより高いときの方が少なくなるという知見を得た。この知見に基づくと、リッチスパイク処理が実行される際のNSR触媒の温度が所定温度未満である場合は、前記所定温度以上である場合に比べ、NSR触媒へ流入する排気の空燃比が低くなるように、リッチスパイク処理を実行することにより、NSR触媒で生成されるNOの量を少なく抑えることができる。
そこで、本発明は、NSR触媒の温度が所定温度度未満であるときは、NSR触媒の温度が前記所定温度以上であるときに比べ、リッチスパイク処理の実行時にNSR触媒へ流入する排気の空燃比が低くなるように、燃料供給装置から排気中に供給される燃料の量を制御するようにした。
詳細には、本発明は、内燃機関の排気通路に配置されるNSR触媒と、前記NSR触媒へ流入する排気に燃料を供給する燃料供給装置と、を備える排気浄化装置に適用される制御装置である。この制御装置は、前記NSR触媒の温度であるNSR温度を取得するNSR温度取得手段と、前記NSR触媒に吸蔵されているNOの量であるNO吸蔵量を取得するNO吸蔵量取得手段と、前記NSR温度取得手段により取得されるNSR温度が前記NSR触媒の活性開始温度以上である状態において、前記NO吸蔵量取得手段により取得されるNO吸蔵量が所定の閾値以上であるときに、前記NSR触媒へ流入する排気の空燃比が理論空燃比より低いリッチ空燃比となるように、前記燃料供給装置から燃料を供給させることで、前記NSR触媒に吸蔵されているNOを還元及び浄化する処理であるリッチスパイク処理を実行する制御手段を備える。そして、前記制御手段は、前記NSR温度取得手段により取得されるNSR温度が、前記NSR触媒の活性開始温度以上且つ前記NSR触媒の活性完了温度未満の温度範囲である暖機温度範囲に属する場合において、前記NSR温度取得手段により取得されるNSR温度が所定温度未満であるときは、前記NSR温度取得手段により取得されるNSR温度が前記所定温度以上であるときに比べ、前記リッチスパイク処理の実行時に前記NSR触媒へ流入する排気の空燃比が低くなるように、前記燃料供給装置から供給される燃料の量を制御するようにした。
ここでいう「活性開始温度」は、NSR触媒のNO浄化性能が活性し始めるNSR温度である。また、「活性完了温度」は、NSR触媒のNO浄化性能が所望のNO浄化性能を発揮し得る最低のNSR温度である。
上記した排気浄化装置の制御装置によれば、NSR温度が前記暖機温度範囲に属する場合において、NSR温度が所定温度未満であるときは、NSR温度が所定温度以上であるときに比べ、リッチスパイク処理の実行時にNSR触媒へ流入する排気の空燃比が低くされるため、NSR触媒で生成されるNOの量を少なく抑えつつ、NSR触媒に吸蔵されているNOを還元及び浄化することができる。
次に、本発明に係わる制御装置は、NSR触媒及び燃料供給装置に加えて、NSR触媒より下流の排気通路に配置される選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)を更に備える排気浄化装置に適用することもできる。その場合、本発明に係
わる制御装置は、SCR触媒の温度であるSCR温度を取得するSCR温度取得手段を備えるようにしてもよい。そして、前記制御手段は、前記NSR温度取得手段により取得されるNSR温度が前記暖機温度範囲に属し、且つ前記NO吸蔵量取得手段により取得されるNO吸蔵量が前記所定の閾値以上である場合であっても、前記SCR温度取得手段により取得されるSCR温度が前記SCR触媒の活性開始温度未満であるときは、前記リッチスパイク処理を実行しないようにしてもよい。ここでいう「SCR触媒の活性開始温
度」は、SCR触媒のNO浄化性能が活性し始める温度である。
NSR温度がNSR触媒の前記暖機温度範囲に属している場合において、NSR触媒のNO吸蔵量が前記所定の閾値以上に達したときに、NSR触媒へ流入する排気の空燃比がNOの生成抑制に適した空燃比となるように、リッチスパイク処理が実行されると、NSR触媒に吸蔵されていたNOのうち、該NSR触媒によって浄化されないNOの量が増える可能性がある。その際、SCR温度が該SCR触媒の活性開始温度以上であれば、NSR触媒によって浄化されなかったNOがSCR触媒によって浄化されることになる。一方、SCR温度が該SCR触媒の活性開始温度未満であれば、NSR触媒によって浄化されなかったNOがSCR触媒によっても浄化されないことになる。これに対し、NSR温度が前記暖機温度範囲に属し、且つNSR触媒のNO吸蔵量が前記所定の閾値以上である場合において、SCR温度が該SCR触媒の活性開始温度未満であるときは、リッチスパイク処理が実行されないようにすれば、NSR触媒及びSCR触媒で浄化されないNO量の増加を抑制することができる。
なお、NSR温度が前記暖機温度範囲に属し、且つNSR触媒のNO吸蔵量が前記所定の閾値以上である場合において、SCR温度がSCR触媒の活性開始温度未満となる状態が続くと、リッチスパイク処理が実行されない期間が長くなるため、NSR触媒のNO吸蔵能力が飽和してしまう可能性がある。そこで、本発明の制御手段は、前記NSR温度取得手段により取得されるNSR温度が前記暖機温度範囲に属している場合において、前記NO吸蔵量取得手段により取得されるNO吸蔵量が前記所定の閾値以上になったときに前記SCR温度取得手段によって取得されるSCR温度がSCR触媒の活性開始温度未満であれば、SCR触媒を昇温させるための昇温処理を、前記SCR温度取得手段によって取得されるSCR温度がSCR触媒の活性開始温度以上となるまで実行した後に、リッチスパイク処理を実行するようにしてもよい。このような構成によれば、NSR温度が前記暖機温度範囲に属し、且つNSR触媒のNO吸蔵量が前記所定の閾値以上となる状態において、リッチスパイク処理が実行されない期間が長くなることを抑制することができる。その結果、NSR触媒のNO吸蔵能力が飽和し難くなる。
また、本発明に係わる制御装置は、NSR触媒及び燃料供給装置に加えて、NSR触媒より下流の排気通路に配置されるSCR触媒と、SCR触媒へアンモニア(NH)又はNHの前駆体である添加剤を供給する添加剤供給装置と、を更に備える排気浄化装置に適用することもできる。その場合、本発明に係わる制御装置は、SCR温度を取得するSCR温度取得手段と、SCR触媒に吸着されているNHの量であるNH吸着量を取得するNH吸着量取得手段と、を更に備えるようにしてもよい。そして、前記制御手段は、前記NSR温度取得手段により取得されるNSR温度がNSR触媒の活性開始温度以上であり、且つ前記SCR温度取得手段により取得されるSCR温度がSCR触媒の活性開始温度以上である場合において、NO吸蔵量取得手段により取得されるNO吸蔵量が前記所定の閾値以上になったときに前記NH吸着量取得手段によって取得されるNH吸着量が所定量未満であれば、SCR触媒のNH吸着量が前記所定量以上となるように、前記添加剤供給装置から添加剤を供給させる処理であるNH補給処理を実行して、そのNH補給処理の終了後にリッチスパイク処理を実行するようにしてもよい。ここでいう「所定量」は、リッチスパイク処理の実行時にNSR触媒から流出し得る量のNOを、SCR触媒において還元及び浄化するために必要となる最低のNHの量に相当する。
NSR温度が該NSR触媒の活性開始温度以上であり、且つSCR温度が該SCR触媒の活性開始温度以上となる状態においてリッチスパイク処理が実行される場合は、前述したように、NSR触媒へ流入する排気の空燃比がNOの生成を抑制するのに適した空燃比になるように、燃料供給装置から供給される燃料の量が制御される。その場合、NSR触媒によって浄化しきれなかったNOがSCR触媒によって浄化されることになるが、
その際のSCR触媒のNH吸着量が前記所定量より少なければ、NSR触媒によって浄化しきれなかったNOの一部がSCR触媒によっても浄化されない可能性がある。これに対し、上記したように、NH補給処理が実行された後に、リッチスパイク処理が実行されれば、リッチスパイク処理の実行時にNSR触媒において浄化されないNOがSCR触媒においてより確実に浄化されるようになる。その結果、リッチスパイク処理の実行時に、NSR触媒及びSCR触媒によって浄化されないNO量の増加を抑制しつつ、NOの生成量を少なく抑えることができる。
ところで、SCR温度がSCR触媒の活性開始温度以上である場合において、SCR温度がある程度高くなると、SCR温度が高くなるほど、SCR触媒が吸着することができるNHの量(以下、「NH吸着容量」と称する)が少なくなる傾向がある。そのため、SCR触媒のNH吸着容量が前記所定量より少なくなる程度にSCR温度が高くなると、たとえ添加剤供給装置からSCR触媒へ添加剤を供給しても、SCR触媒のNH吸着量を増やすことができなくなる。よって、SCR触媒のNH吸着容量が前記所定量未満となる程度にSCR温度が高いときは、NSR触媒へ流入するNOのうち、単位時間あたりにNSR触媒をすり抜けるNOの量(NOすり抜け量)を演算して、そのNOすり抜け量に対するNHの量の当量比が所定比となる量の添加剤を単位時間あたりにSCR触媒へ供給する必要がある。しかしながら、上記したように、NSR触媒へ流入する排気の空燃比がNOの生成抑制に適した空燃比となるようにリッチスパイク処理が実行されるときは、NSR触媒に吸蔵されていたNOのうち、NSR触媒で浄化されずに該NSR触媒から流出するNOの量が増える可能性がある。そのため、NSR触媒へ流入する排気の空燃比がNOの生成抑制に適した空燃比となるようにリッチスパイク処理が実行されているときは、前記NOすり抜け量より多い量のNOがSCR触媒へ流入する可能性がある。そのような状態において、前記NOすり抜け量に対するNHの量の当量比が前記所定比となる量の添加剤がSCR触媒へ供給されると、SCR触媒へ流入するNOを還元するために必要となるNHの量に対して、SCR触媒へ供給されるNHの量が少なくなる可能性がある。それに伴い、SCR触媒において浄化されないNOの量が増える可能性がある。そこで、本発明の制御手段は、SCR温度が吸着限界温度以上である場合において、リッチスパイク処理が実行されていないときは、NOすり抜け量に対するNHの量の当量比が所定比となる量の添加剤がSCR触媒へ供給され、且つリッチスパイク処理が実行されているときは、NOすり抜け量に対するNHの量の当量比が所定比より大きくなる量の添加剤がSCR触媒へ供給されるように、前記添加剤供給装置を制御するための当量比制御を実行するようにしてもよい。ここでいう「吸着限界温度」は、SCR触媒のNH吸着容量が前記所定量より少なくなる最低のSCR温度である。このような構成によれば、SCR温度が吸着限界温度より高い状態でリッチスパイク処理が実行されても、NSR触媒及びSCR触媒で浄化されないNO量の増加を抑制しつつ、NOの生成を抑制することができる。
ここで、排気浄化装置がNSR触媒とSCR触媒とを備える構成において、NSR温度がNSR触媒の活性完了温度以上である場合は、NSR触媒のNO吸蔵量が前記所定の閾値以上になったときに、リッチスパイク処理が実行される。その際、NSR触媒へ流入する排気の空燃比がNOの浄化に適した空燃比になるように、燃料供給装置から供給される燃料の量が制御されると、NSR触媒に吸蔵されていたNOを効果的に浄化することができる。ただし、NSR温度が該NSR触媒の活性完了温度以上である場合であっても、リッチスパイク処理の実行時にNSR触媒へ流入する排気の空燃比がNOの浄化に適した空燃比にされると、NSR触媒において少量のNOが生成される可能性がある。そこで、本発明の制御手段は、前記NSR温度取得手段により取得されるNSR温度が前記NSR触媒の活性完了温度以上である場合において、前記SCR温度取得手段により取得されるSCR温度がSCR触媒の活性開始温度以上であるときは、前記SCR温度取得手段によりSCR温度がSCR触媒の活性開始温度未満であるときに比べ、リッチスパイ
ク処理の実行時にNSR触媒へ流入する排気の空燃比が高くなるように、前記燃料供給装置から供給される燃料の量を制御するようにしてもよい。このような構成によれば、NSR温度が該NSR触媒の活性完了温度以上である場合において、SCR触媒によって浄化されないNO量の増加を抑えつつ、NOが生成される機会を少なく抑えることができる。
本発明によれば、内燃機関の排気通路に配置されるNSR触媒を具備する排気浄化装置の制御装置において、リッチスパイク処理の実行時にNSR触媒で生成されるNOの量を可及的に少なくすることができる。
第1の実施形態において、本発明を適用する内燃機関とその排気系の概略構成を示す図である。 NSR温度TnsrとNSR触媒から排出される排気のNO濃度との相関を示す図である。 第1の実施形態において、リッチスパイク処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。 第2の実施形態において、本発明を適用する内燃機関とその排気系の概略構成を示す図である。 第2の実施形態において、リッチスパイク処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。 第2の実施形態の変形例において、リッチスパイク処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。 第2の実施形態の変形例において、当量比制御が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
<実施形態1>
先ず、本発明の第1の実施形態について、図1乃至図3に基づいて説明する。図1は、本発明を適用する内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、図示しない気筒内へ燃料を噴射する燃料噴射弁2を備える圧縮着火式の内燃機関(ディーゼルエンジン)である。なお、内燃機関1は、理論空燃比より高いリーン空燃比の混合気により運転される火花点火式の内燃機関であってもよい。
内燃機関1は、排気通路3と接続されている。排気通路3は、内燃機関1の気筒内で燃焼されたガス(排気)が流通する通路である。排気通路3の途中には、排気浄化装置が設けられている。排気浄化装置は、排気通路3に配置されるNSR触媒4と、該NSR触媒4より上流の排気通路3に配置される燃料添加弁6と、を備えている。
NSR触媒4は、アルミナ等のコート層によって被覆されたハニカム構造体と、コート層に担持される貴金属(白金、パラジウム、ロジウム等)と、コート層に担持されるNO吸蔵剤(バリウム、リチウム等)とから構成される。このように構成されるNSR触媒4は、該NSR触媒4へ流入する排気の空燃比がリーン空燃比であるときは、排気中のNOを吸蔵(ここでいう吸蔵とは、化学的にNOを吸蔵する態様、及び物理的にNOを吸着する態様を含む)する。また、NSR触媒4は、該NSR触媒4へ流入する排気の
酸素濃度が低く、且つ未燃燃料の濃度が高いとき(すなわち、該NSR触媒4へ流入する排気の空燃比がリッチ空燃比であるとき)は、吸蔵していたNOを脱離させつつ、脱離したNOを未燃燃料により窒素(N)やアンモニア(NH)に還元させる。燃料添加弁6は、NSR触媒4より上流の排気通路3を流れる排気中に燃料を添加する装置であり、本発明に係わる「燃料供給装置」に相当する。なお、燃料供給装置は、排気行程中の気筒の燃料噴射弁2から燃料を噴射させることによって実現してもよい。
前記NSR触媒4より上流の排気通路3には、NSR触媒4へ流入する排気の空燃比に相関する電気信号を出力する第一A/Fセンサ9と、NSR触媒4へ流入する排気に含まれるNOの濃度に相関する電気信号を出力する第一NOセンサ10と、NSR触媒4へ流入する排気の温度に相関する電気信号を出力する第一温度センサ11と、が設けられる。また、前記NSR触媒4より下流の排気通路3には、NSR触媒4から流出する排気の温度に相関する電気信号を出力する第二温度センサ12と、NSR触媒4から流出する排気の空燃比に相関する電気信号を出力する第二A/Fセンサ13と、NSR触媒4から流出する排気のNO濃度に相関する電気信号を出力する第二NOセンサ14と、が設けられる。
このように構成された内燃機関1には、ECU8が併設される。ECU8は、CPU、ROM、RAM、バックアップRAM等から構成される電子制御ユニットである。ECU8は、上記した第一A/Fセンサ9、第一NOセンサ10、第一温度センサ11、第二温度センサ12、第二A/Fセンサ13、及び第二NOセンサ14に加え、アクセルポジションセンサ17、クランクポジションセンサ18、エアフローメータ19等の各種センサと電気的に接続され、それら各種センサの出力信号が入力されるようになっている。なお、アクセルポジションセンサ17は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力するセンサである。クランクポジションセンサ18は、内燃機関1の機関出力軸(クランクシャフト)の回転位置に相関する電機信号を出力するセンサである。エアフローメータ19は、内燃機関1の吸入空気量に相関する電気信号を出力するセンサである。
また、ECU8は、上記した燃料噴射弁2、燃料添加弁6、尿素添加弁7等の各種機器と電気的に接続され、上記した各種センサの出力信号に基づいて、それらの各種機器を制御することができるようになっている。例えば、ECU8は、クランクポジションセンサ18の出力信号に基づいて演算される機関回転速度とアクセルポジションセンサ17の出力信号(アクセル開度)とに基づいて、燃料噴射弁2の燃料噴射量や燃料噴射時期を制御する。また、ECU8は、NSR触媒4の温度(NSR温度)が活性開始温度以上となる状態において、前記NSR触媒4に吸蔵されているNOの量(NO吸蔵量)が所定の閾値以上であるときに、前記燃料添加弁6から排気中に燃料を添加させることにより、前記NSR触媒4へ流入する排気を、酸素濃度が低く、且つ未燃燃料の濃度が高いガス(リッチ空燃比のガス)にするリッチスパイク処理を実行する。以下、本実施形態におけるリッチスパイク処理の実行方法について説明する。
リッチスパイク処理において、燃料添加弁6から排気中に添加される燃料量は、NSR触媒4へ流入する排気の空燃比がNSR触媒4に吸蔵されているNOの還元及び浄化に適したリッチ空燃比となるように制御されるのが一般的である。具体的には、NSR温度が活性完了温度(例えば、NSR触媒4がリッチ雰囲気にあるときのNO浄化率が80%以上になる温度であって、およそ350℃)以上であるときは、NSR触媒4へ流入する排気の空燃比がリッチ度合の比較的大きな基準リッチ空燃比(例えば、約13.5)となるように、燃料添加弁6の燃料添加量が制御される。また、NSR温度が、活性開始温度(例えば、NSR触媒4がリッチ雰囲気にあるときのNO浄化率が20%以上になる温度であって、およそ200℃)以上、且つ前記活性完了温度未満の暖機温度範囲に属す
るときは、基準リッチ空燃比よりリッチ度合の小さいリッチ空燃比であって、且つNSR温度が低くなるほどリッチ度合の小さいリッチ空燃比となるように、燃料添加弁6の燃料添加量が制御される。
ところで、NSR温度が暖機温度範囲に属する場合のように、NSR触媒4が暖機過程にある場合においては、リッチスパイク処理が実行された際に、NSR触媒4に吸蔵されていたNOの一部が窒素(N)に還元されずに、NOが生成される可能性がある。
ここで、本願発明者は、NSR温度が暖機温度範囲に属する場合において、リッチスパイク処理の実行時にNSR触媒4で生成されるNOの生成量を少なくする上で有効な方法を確立するにあたり、鋭意の実験及び検証を行った結果、リッチスパイク処理の実行時にNSR触媒4で生成されるNOの量は、NSR温度が所定温度(例えば、約250℃)未満であれば、NSR触媒4へ流入する排気の空燃比が高いとき(リッチ度合が小さいとき)より低いとき(リッチ度合が大きいとき)の方が少なくなる一方で、NSR温度が前記所定温度以上であれば、排気の空燃比が低いとき(リッチ度合が大きいとき)より高いとき(リッチ度合が小さいとき)の方が少なくなるという知見を得た。そのため、NSR温度が暖機温度範囲に属する場合において、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比が、上記したようなNOの浄化に適した空燃比にされると、NSR触媒4で生成されるNOの量が多くなる虞がある。
そこで、本実施形態のリッチスパイク処理では、NSR温度が前記暖機温度範囲に属する場合において、NSR温度が前記所定温度未満であるときは、NSR温度が前記所定温度以上であるときに比して、NSR触媒4へ流入する排気の空燃比が低くなるように、燃料添加弁6の燃料添加量を制御するようにした。詳細には、NSR温度が暖機温度範囲に属している状態において、NSR温度が前記所定温度未満となる条件下でリッチスパイク処理を実行する場合は、NSR触媒4へ流入する排気の空燃比が、NOの浄化に適した空燃比より低い第一リッチ空燃比となるように、燃料添加弁6の燃料添加量を制御する。また、NSR温度が暖機温度範囲に属している状態において、NSR温度が前記所定温度以上となる条件下でリッチスパイク処理を実行する場合は、NSR触媒4へ流入する排気の空燃比が、NOの浄化に適した空燃比より高い空燃比であって、且つ前記第一リッチ空燃比より高い第二リッチ空燃比となるように、燃料添加弁6の燃料添加量を制御する。
ここで、NSR温度とNSR触媒4から排出される排気のNO濃度との相関を図2に示す。図2中の横軸は、NSR温度Tnsrを示し、図2中の縦軸は、NSR触媒4から排出される排気のNO濃度を示す。また、図2中の実線は、NSR触媒4へ流入する排気の空燃比が第一リッチ空燃比A/Fr1であるときの相関を示す。一方、図2中の一点鎖線は、NSR触媒4へ流入する排気の空燃比が第二リッチ空燃比A/Fr2であるときの相関を示す。さらに、図2中のTnsr1は、NSR触媒4の活性開始温度を示し、図2中のTnsr2は、NSR触媒4の活性完了温度を示す。そして、図2中のTthrは、上記した所定温度を示す。
図2に示すように、NSR温度Tnsrが暖機温度範囲に属し、且つNSR温度Tnsrが所定温度Tthr未満である場合は、NSR触媒4へ流入する排気の空燃比が第二リッチ空燃比A/Fr2であるときに比べ、NSR触媒4へ流入する排気の空燃比が第一リッチ空燃比A/Fr1であるときの方が、NSR触媒4から排出される排気のNO濃度が低くなる。一方、NSR温度Tnsrが暖機温度範囲に属し、且つNSR温度Tnsrが所定温度Tthr以上である場合は、NSR触媒4へ流入する排気の空燃比が第一リッチ空燃比A/Fr1であるときに比べ、NSR触媒4へ流入する排気の空燃比が第二リッチ空燃比A/Fr2であるときの方が、NSR触媒4から排出される排気のNO濃度が低くなる。
したがって、NSR温度Tnsrが暖機温度範囲に属する場合において、NSR温度Tnsrが前記所定温度Tthr未満であるときは、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比を第一リッチ空燃比A/Fr1とし、且つNSR温度Tnsrが前記所定温度Tthr以上であるときは、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比を第二リッチ空燃比A/Fr2とすれば、NSR触媒4で生成されるNOの量を少なく抑えることができる。
なお、上記した第一リッチ空燃比A/Fr1は、NSR温度Tnsrが活性開始温度Tnsr1以上且つ前記所定温度Tthr未満であるときに、NSR触媒4のNO浄化率が所望の下限値を下回らない範囲においてNOの生成量が最も少なくなると考えられる空燃比である。一方、上記した第二リッチ空燃比A/Fr2は、NSR温度Tnsrが前記所定温度Tthr以上且つ活性完了温度Tnsr2未満であるときに、NSR触媒4のNO浄化率が所望の下限値を下回らない範囲においてNOの生成量が最も少なくなると考えられる空燃比である。このように第一リッチ空燃比A/Fr1及び第二リッチ空燃比A/Fr2が設定されると、NSR触媒4において浄化されないNOの量が過剰に多くなることを抑制しつつ、NSR触媒4において生成されるNOの量を少なく抑えることができる。なお、上記の条件を満たす第一リッチ空燃比A/Fr1及び第二リッチ空燃比A/Fr2は、予め実験的に求めておくものとする。
以下、本実施形態におけるリッチスパイク処理の実行手順について図3に沿って説明する。図3は、内燃機関1の運転中において所定の周期でECU8が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU8のROM等に記憶されている。
図3の処理ルーチンでは、ECU8は、先ずS101の処理において、NSR温度Tnsrを取得する。ここで、NSR温度Tnsrは、第一温度センサ11の測定値と第二温度センサ12の測定値との差、及び排気流量(吸入空気量(エアフローメータ19の測定値)と燃料噴射量との総和)をパラメータとして演算されるものとする。なお、NSR温度Tnsrは、第二温度センサ12の測定値と排気流量とをパラメータとして演算されてもよい。このように、ECU8がS101の処理を実行することにより、本発明に係わる「NSR温度取得手段」が実現される。
S102の処理では、ECU8は、前記S101の処理で取得されたNSR温度Tnsrが活性開始温度Tnsr1以上であるか否かを判別する。S102の処理において否定判定された場合は、NSR触媒4のNO浄化性能が活性していないため、ECU8は、本処理ルーチンの実行を終了する。一方、S102の処理において肯定判定された場合は、ECU8は、S103の処理へ進む。
S103の処理では、ECU8は、NSR触媒4のNO吸蔵量Anoxを取得する。NSR触媒4のNO吸蔵量Anoxは、前回のリッチスパイク処理が終了した時点から単位時間あたりにNSR触媒4に吸蔵されるNO量を積算する方法によって別途に求められる。単位時間あたりにNSR触媒4に吸蔵されるNO量は、単位時間あたりにNSR触媒4へ流入するNO量と単位時間あたりにNSR触媒4から流出するNO量との差に相当する。そして、単位時間あたりにNSR触媒4へ流入するNO量は、第一NOセンサ10の測定値(NSR触媒4へ流入する排気のNO濃度)と排気流量とを乗算することにより求めることができる。また、単位時間あたりにNSR触媒4から流出するNO量は、第二NOセンサ14の測定値と排気流量とを乗算することにより求めることができる。なお、単位時間あたりにNSR触媒4へ流入するNOの量は、内燃機関1の運転条件(機関負荷や機関回転速度等)をパラメータとして推定されてもよい。このよ
うに、ECU8がS103の処理を実行することにより、本発明に係わる「NO吸蔵量取得手段」が実現される。
S104の処理では、ECU8は、前記S103の処理で取得されたNO吸蔵量Anoxが所定の閾値Anoxthr以上であるか否かを判別する。ここでいう所定の閾値Anoxthrは、NSR触媒4のNO吸蔵量Anoxが該所定の閾値Anoxthr以上となる状態で内燃機関1が停止されると、次回の始動後においてNSR触媒4が所望のNO吸蔵能力を発揮することができなくなる可能性があると考えられる値である。S104の処理において否定判定された場合は、リッチスパイク処理を実行する必要がないため、ECU8は、本処理ルーチンの実行を終了する。一方、S104の処理において肯定判定された場合は、ECU8は、S105の処理へ進む。
S105の処理では、ECU8は、前記S101の処理で取得されたNSR温度Tnsrが活性完了温度Tnsr2以上であるか否かを判別する。S105の処理において肯定判定された場合は、NSR触媒4のNO浄化性能が十分に活性しているとみなすことができる。そこで、ECU8は、S106の処理へ進み、NSR触媒4へ流入する排気の空燃比(A/F)が前述した基準リッチ空燃比A/Frstとなるように、リッチスパイク処理を実行する。詳細には、ECU8は、内燃機関1から排出される排気の空燃比(第一NOセンサ10の測定値)と前記基準リッチ空燃比A/Frstとの差、及び排気流量をパラメータとして、NSR触媒4へ流入する排気の空燃比を前記基準リッチ空燃比A/Frstとするために必要な燃料添加量を演算する。次いで、ECU8は、前記燃料添加量に基づいて、燃料添加弁6を制御することにより、リッチスパイク処理を実行する。その場合、NSR触媒4に吸蔵されていたNOを効率的に還元及び浄化することができる。なお、S106の処理におけるリッチスパイク処理は、予め定められた期間が経過した時点で終了されてもよく、又は第二A/Fセンサ13の測定値が前記基準リッチ空燃比A/Frst以下に低下した時点で終了されてもよい。
前記S105の処理において否定判定された場合は、NSR温度Tnsrが暖機温度範囲に属することになるため、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比がNOの浄化に適した空燃比にされると、前述したようにNOの生成量が増える可能性がある。そこで、ECU8は、S107以降の処理において、NOの生成を抑制しつつ、リッチスパイク処理を実行する。
先ず、S107の処理では、ECU8は、前記S101の処理で取得されたNSR温度Tnsrが所定温度Tthr以上であるか否かを判別する。S107の処理で肯定判定された場合は、NSR温度Tnsrが所定温度Tthr以上且つ活性完了温度Tnsr2未満の温度範囲に属していることになる。所定温度Tthr以上且つ活性完了温度Tnsr2未満の温度範囲においてNSR触媒4で生成されるNOの量は、前述した図2の説明で述べたように、NSR触媒4へ流入する排気のリッチ度合が大きい場合より小さい場合の方が少なくなる。そこで、前記S107の処理において肯定判定された場合は、ECU8は、S108の処理へ進み、NSR触媒4へ流入する排気の空燃比が、NOの浄化に適した空燃比よりリッチ度合の大きな第二リッチ空燃比A/Fr2となるように、リッチスパイク処理を実行する。ここで、第二リッチ空燃比A/Fr2は、前述したように、NSR温度Tnsrが所定温度Tthr以上且つ活性完了温度Tnsr2未満であるときに、NSR触媒4のNO浄化率が所望の下限値を下回らない範囲においてNOの生成量が最も少なくなる空燃比であるため、NSR触媒4において浄化されないNOの量が過剰に多くなることを抑制しつつ、NSR触媒4において生成されるNOの量を少なく抑えることができる。なお、前記S108の処理におけるリッチスパイク処理は、予め定められた期間が経過した時点で終了されてもよく、又は第二A/Fセンサ13の測定値が前記第二リッチ空燃比A/Fr2以下に低下した時点で終了されてもよい。
一方、前記S107の処理で否定判定された場合は、NSR温度Tnsrが活性開始温度Tnsr1以上且つ所定温度Tthr未満の温度範囲に属していることになる。活性開始温度Tnsr1以上且つ所定温度Tthr未満の温度範囲においてNSR触媒4で生成されるNOの量は、前述した図2の説明で述べたように、NSR触媒4へ流入する排気のリッチ度合が小さい場合より大きい場合の方が少なくなる。そこで、ECU8は、S109の処理へ進み、NSR触媒4へ流入する排気の空燃比が、NOの浄化に適した空燃比より低い第一リッチ空燃比A/Fr1となるように、リッチスパイク処理を実行する。ここで、第一リッチ空燃比A/Fr1は、前述したように、NSR温度Tnsrが活性開始温度Tnsr1以上且つ所定温度Tthr未満であるときに、NSR触媒4のNO浄化率が所望の下限値を下回らない範囲においてNOの生成量が最も少なくなる空燃比であるため、NSR触媒4において浄化されないNOの量が過剰に多くなることを抑制しつつ、NSR触媒4において生成されるNOの量を少なく抑えることができる。なお、前記S109の処理におけるリッチスパイク処理は、予め定められた期間が経過した時点で終了されてもよく、又は第二A/Fセンサ13の測定値が前記第一リッチ空燃比A/Fr1以下に低下した時点で終了されてもよい。
なお、ECU8が図3の処理ルーチンのS102、S104−S109の処理を実行することにより、本発明に係わる「制御手段」が実現される。
以上述べた実施形態によれば、リッチスパイク処理の実行時に、NSR触媒4によって浄化されないNO量の過剰な増加を抑制しつつ、NSR触媒4において生成されるNOの量を可及的に少なく抑えることができる。
<実施形態2>
次に、本発明の第2の実施形態について図4乃至図5に基づいて説明する。ここでは、前述した第1の実施形態と異なる構成について説明し、同様の構成については説明を省略するものとする。
前述した第1の実施形態と本実施形態との相違点は、NSR触媒4に加えて、該NSR触媒4より下流の排気通路3に配置されるSCR触媒5を更に備える排気浄化装置において、NSR触媒4が暖機温度範囲に属する場合であっても、SCR触媒5が未活性状態であるときは、リッチスパイク処理を実行しない点にある。
図4は、本実施形態における内燃機関とその排気系の概略構成を示す図である。図4に示すように、実施形態における排気浄化装置は、NSR触媒4及び燃料添加弁6に加え、NSR触媒4より下流の排気通路3に配置されるSCR触媒5と、NSR触媒4とSCR触媒5との間の排気通路3に配置される添加弁7と、を更に備える。
SCR触媒5は、コーディライトやFe−Cr−Al系の耐熱鋼から成るハニカム構造体と、ハニカム構造体を被覆するアルミナ系又はゼオライト系のコート層と、コート層に担持される貴金属(白金やパラジウム等)とから構成される。このように構成されるSCR触媒5は、排気中に含まれるNHを吸着して、吸着されたNHを還元剤として排気中のNOを還元及び浄化する。
添加弁7は、NH又はNHの前駆体である添加剤を排気中に添加するための弁装置である。前記添加剤としては、尿素水溶液やNHガス等を使用することができるが、本実施形態では、尿素水溶液を使用するものとする(以下では、添加弁7を「尿素添加弁7」と記す)。尿素添加弁7から添加される尿素水溶液は、排気中又はSCR触媒5において熱分解され、且つSCR触媒5において加水分解されて、NHを生成する。このよう
にして生成されるNHは、SCR触媒5に吸着される。なお、尿素添加弁7は、本発明に係わる「添加剤供給装置」に相当する。
また、SCR触媒5より下流の排気通路3には、SCR触媒5から流出する排気のNO濃度に相関する電気信号を出力する第三NOセンサ15と、SCR触媒5から流出する排気の温度に相関する電気信号を出力する第三温度センサ16と、が設けられる。これらのセンサの出力信号は、ECU8に入力されるようなっている。
図4に示す構成において、NSR温度Tnsrが暖機温度範囲に属する場合において、NSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上に達しているときに、前述した第1の実施形態と同様の手順によってリッチスパイク処理が実行されると、NSR触媒4で浄化しきれないNOがSCR触媒5で浄化されることになる。その結果、NSR触媒4及びSCR触媒5で浄化されないNO量の増加を抑制することができる。ただし、リッチスパイク処理が実行されるときのSCR触媒5の温度(SCR温度)Tscrが該SCR触媒5の活性開始温度Tscr1未満であると、NSR触媒4によって浄化しきれないNOがSCR触媒5においても浄化されないことになる。
そこで、本実施形態においては、NSR温度Tnsrが暖機温度範囲に属し、且つNSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上である場合であっても、SCR温度TscrがSCR触媒5の活性開始温度Tscr1未満であるときは、リッチスパイク処理が実行されないようにした。このような構成によると、NSR温度Tnsrが暖機温度範囲に属する場合におけるリッチスパイク処理は、SCR温度Tscrが該SCR触媒5の活性開始温度Tscr1以上であることを前提として実行されることになる。そのため、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比を、NSR触媒4のNO浄化率が前述の下限値を下回る空燃比に設定しても、排気浄化装置で浄化されないNOの量の増加を抑制することができる。よって、本実施形態における第一リッチ空燃比A/Fr1は、NSR温度TnsrがNSR触媒4の活性開始温度Tnsr1以上且つ所定温度Tthr未満の温度範囲にあるときに、NSR触媒4で生成されるNOの量が最も少なくなる空燃比(例えば、約13.5)に設定されるものとする。同様に、本実施形態における第二リッチ空燃比A/Fr2は、NSR温度Tnsrが所定温度Tthr以上且つNSR触媒4の活性完了温度Tnsr2未満であるときに、NSR触媒4で生成されるNOの量が最も少なくなる空燃比(例えば、約14.0)に設定されるものとする。このように第一リッチ空燃比A/Fr1及び第二リッチ空燃比A/Fr2が設定されると、リッチスパイク処理の実行時に排気浄化装置で浄化されないNOの量の増加を抑制しつつ、NSR触媒4で生成されるNOの量をより確実に少なく抑えることができる。
ところで、NSR温度Tnsrが前記暖機温度範囲に属し、且つNSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上である状態において、排気温度が比較的低くなるような機関運転状態が続くと、SCR温度Tscrの上昇速度が遅くなるため、リッチスパイク処理が実行されない期間が長くなる可能性がある。そのような場合は、NSR触媒4のNO吸蔵能力が飽和してしまう虞がある。そこで、本実施形態では、NSR温度Tnsrが前記暖機温度範囲に属している状態において、NSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上に達したときのSCR温度TscrがSCR触媒5の活性開始温度Tscr1未満であれば、SCR触媒5を昇温させる処理(昇温処理)を、SCR温度TscrがSCR触媒5の活性開始温度Tscr1以上に上昇するまで実行して、その昇温処理の終了後にリッチスパイク処理を実行するようにした。このような構成によれば、NSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上である状態において、リッチスパイク処理が実行されない期間が長くなることを抑制することができる。それに伴い、NSR触媒4のNO吸蔵能力が飽和する
ことも抑制することができる。
ここで、上記した昇温処理の実行方法としては、燃料添加弁6からNSR触媒4へ燃料を供給することで、NSR触媒4において燃料の酸化反応を生起させて、その反応熱によってSCR触媒5へ流入する排気の温度を上昇させる方法を用いることができる。ただし、昇温処理の実行時にNSR触媒4へ流入する排気の空燃比が理論空燃比以下になると、NSR触媒4に吸蔵されていたNOが不要に脱離する可能性がある。そのため、昇温処理の実行時に燃料添加弁6からNSR触媒4へ供給される燃料量は、NSR触媒4へ流入する排気の空燃比が理論空燃比より高くなるように制御されるものとする。このような方法によって昇温処理が実行されると、NSR触媒4に吸蔵されているNOを不要に脱離させることなく、SCR触媒5を昇温させることができる。なお、排気浄化装置がSCR触媒5を電気的に加熱するヒータを備えている場合は、ヒータによってSCR触媒5を加熱する方法によって昇温処理が実行されてもよい。
また、NSR温度Tnsrが前記暖機温度範囲に属している状態において、NSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上に達したときのSCR温度TscrがSCR触媒5の活性開始温度Tscr1以上であっても、SCR触媒5のNH吸着量Anh3が少なければ、リッチスパイク処理の実行時にNSR触媒4において浄化されないNOの一部がSCR触媒5においても浄化されなくなる虞がある。これに対し、本実施形態では、リッチスパイク処理の実行条件(NSR温度TnsrがNSR触媒4の活性開始温度Tnsr1以上であり、且つSCR温度TscrがSCR触媒5の活性開始温度Tscr1以上であり、且つNSR触媒4のNO吸蔵量Anoxが所定の閾値Anoxthr以上である)が成立したときに、SCR触媒5のNH吸着量Anh3が所定量Anh3thr未満であれば、SCR触媒5のNH吸着量Anh3が前記所定量Anh3thr以上となるように、尿素添加弁7から尿素水溶液を供給させる処理(NH補給処理)を実行して、そのNH補給処理の終了後にリッチスパイク処理を実行するようにした。ここでいう「所定量Anh3thr」は、リッチスパイク処理の実行時にNSR触媒4から流出するNOの量が最も多くなると考えられる条件下において、NSR触媒4から流出するNOの全量をSCR触媒5によって浄化するために必要となるNH量である。このような所定量Anh3thrは、予め実験等を用いた適合処理によって求めておくものとする。このような構成によれば、リッチスパイク処理の実行時にNSR触媒4で浄化されないNOを、SCR触媒5においてより確実に浄化することができる。
以下、本実施形態におけるリッチスパイク処理の実行手順について図5のフローチャートに沿って説明する。図5は、内燃機関1の運転中において所定の周期でECU8が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU8のROM等に記憶されている。なお、前述した第1の実施形態における図3の処理ルーチンと同様の処理については、同一の符合を付している。
図5の処理ルーチンでは、ECU8は、先ずS201の処理においてNSR温度TnsrとSCR温度Tscrとを取得する。NSR温度Tnsrは、前述した第1の実施形態と同様の方法により取得されるものとする。一方、SCR温度Tscrは、第二温度センサ12の測定値と第三温度センサ16の測定値の差、及び排気流量をパラメータとして演算される。別法として、SCR温度Tscrは、第三温度センサ16の測定値と排気流量とをパラメータとして演算してもよい。このような方法によってECU8がSCR温度Tscrを取得することにより、本発明に係わる「SCR温度取得手段」が実現される。
ECU8は、前記S201の処理を実行した後に、S102−S104の処理を実行する。そして、S104の処理において肯定判定された場合に、ECU8は、S202の処
理へ進み、前記S201の処理で取得されたSCR温度TscrがSCR触媒5の活性開始温度Tscr1以上であるか否かを判別する。S202の処理において肯定判定された場合は、ECU8は、S203の処理へ進む。
S203の処理では、ECU8は、SCR触媒5のNH吸着量Anh3を取得する。SCR触媒5のNH吸着量Anh3は、以下の方法によって別途に求められて、RAM又はバックアップRAMの所定の記憶領域に書き込まれる。SCR触媒5のNH吸着量は、単位時間あたりSCR触媒5へ供給されるNHの量から、単位時間あたりのNH消費量(SCR触媒5においてNOの還元に寄与するNHの量)及び単位時間あたりのNHスリップ量(SCR触媒5をすり抜けるNHの量)を減算した値を積算することによって求められる。単位時間あたりにSCR触媒5へ供給されるNHの量は、尿素添加弁7から単位時間あたりに添加される尿素水溶液の量をパラメータとして演算される。単位時間あたりのNH消費量は、単位時間あたりにSCR触媒5へ流入するNOの量(NO流入量)とSCR触媒5のNO浄化率とをパラメータとして演算される。その際、単位時間あたりのNO流入量は、第二NOセンサ14の測定値と排気流量を乗算することにより求められる。一方、SCR触媒5のNO浄化率は、排気流量とSCR温度Tscrとをパラメータとして演算される。なお、SCR触媒のNO浄化率と排気流量とSCR温度との相関は、予め実験的に求めておくものとする。また、単位時間あたりのNHスリップ量は、NH吸着量の前回の演算値と、SCR温度と、排気の流量と、をパラメータとして求められる。このような方法によってECU8がNH吸着量を取得することにより、本発明に係わる「NH吸着量取得手段」が実現される。
ECU8は、前記S203の処理を実行した後にS204の処理へ進み、前記S203の処理で取得されたNH吸着量Anh3が前述した所定量Anh3thr以上であるか否かを判別する。S204の処理において否定判定された場合は、ECU8は、S205の処理へ進み、上記したNH補給処理を実行する。その際、尿素添加弁7から供給される尿素水溶液の量は、前記S203の処理で取得されたNH吸着量Anh3と前記所定量Anh3thrとの差(=Anh3thr−Anh3)を、尿素水溶液の量に換算した量に設定されるものとする。
ECU8は、前記S205の処理を実行した後に、S206の処理へ進む。なお、前記S204の処理において肯定判定された場合は、ECU8は、前記S205の処理をスキップしてS206の処理へ進む。S206の処理では、ECU8は、前記S201の処理で取得されたNSR温度TnsrがNSR触媒4の活性完了温度Tnsr2以上であるか否かを判別する。
前記S206の処理において肯定判定された場合は、ECU8は、S207の処理へ進み、NSR触媒4へ流入する排気の空燃比が第三リッチ空燃比A/Fr3となるように、リッチスパイク処理を実行する。ここでいう「第三リッチ空燃比A/Fr3」は、前述した基準リッチ空燃比A/Frstより高い空燃比であって、NOの生成を抑制するのに適した空燃比である。NSR温度TnsrがNSR触媒4の活性完了温度Tnsr2以上である場合は、前述の第1の実施形態で述べたように、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比を、NOの浄化に適した基準リッチ空燃比A/Frstにすることで、NSR触媒4に吸蔵されていたNOを効率的に浄化することができる。しかしながら、NSR温度TnsrがNSR触媒4の活性完了温度Tnsr2以上である場合であっても、リッチスパイク処理の実行時にNSR触媒4へ流入する排気の空燃比が前記基準リッチ空燃比A/Frstにされると、NSR触媒4において少量のNOが生成される可能性がある。これに対し、NSR触媒4へ流入する排気の空燃比がNOの生成を抑制するのに適した第三リッチ空燃比A/Fr3にされると、NSR触媒4で生成されるNOの量をより確実に少なく抑えることができる。そして、NSR触媒4に吸
蔵されていたNOのうち、NSR触媒4において浄化されないNOは、SCR触媒5において浄化される。その結果、NSR触媒4及びSCR触媒5により浄化されないNO量の増加を抑えつつ、NSR触媒4において生成されるNOの量をより確実に少なく抑えることができる。なお、前記S207の処理におけるリッチスパイク処理は、予め定められた期間が経過した時点で終了されてもよく、又は第二A/Fセンサ13の測定値が前記第三リッチ空燃比A/Fr3以下に低下した時点で終了されてもよい。
また、前記S206の処理において否定判定された場合は、ECU8は、S107乃至S109の処理を実行する。その際、S108の処理、又はS109の処理では、NSR触媒4へ流入する排気の空燃比が第一リッチ空燃比A/Fr1又は第二リッチ空燃比A/Fr2となるように、リッチスパイク処理が実行されることになるが、その際の第一リッチ空燃比A/Fr1と第二リッチ空燃比A/Fr2は、前述したように、NSR触媒4で生成されるNOの量が最も少なくなる空燃比に設定される。そのため、S108の処理、又はS109の処理の実行時にNSR触媒4で生成されるNOの量をより確実に少なく抑えることができる。さらに、S108の処理、又はS109の処理の実行時において、NSR触媒4によって浄化されないNOは、SCR触媒5によって浄化されるため、NSR触媒4及びSCR触媒5により浄化されないNO量の増加を抑えることもできる。
また、前記S202の処理において否定判定された場合は、ECU8は、S105の処理へ進む。そして、S105の処理において肯定判定された場合は、ECU8は、前述した第1の実施形態と同様に、S106の処理を実行する。一方、S105の処理において否定判定された場合は、NSR温度Tnsrが前記暖機温度範囲に属している状態で、NSR触媒4のNO吸蔵量Anoxが所定の閾値Anoxthr以上に達しているものの、SCR触媒5のNO浄化性能が活性していない状態になる。そのような状態において、前述した第1の実施形態と同様の方法によってリッチスパイク処理が実行されると、NSR触媒4におけるNOの生成を少なく抑えることはできるが、NSR触媒4及びSCR触媒5を含めた排気浄化装置で浄化されないNOの量が増える可能性がある。そのため、本実施形態では、S105の処理で否定判定された場合は、リッチスパイク処理を実行せずに、上記した昇温処理を実行するようにした。具体的には、ECU8は、先ずS208の処理において、昇温処理の実行を開始する。続いて、ECU8は、S209の処理へ進み、SCR温度Tscrを再度取得する。そして、ECU8は、S210の処理へ進み、前記S209の処理で取得されたSCR温度TscrがSCR触媒5の活性開始温度Tscr1以上まで上昇したか否かを判別する。S210の処理において否定判定された場合は、ECU8は、前記S209の処理へ戻る。一方、S210の処理において肯定判定された場合は、ECU8は、S211の処理において昇温処理を終了させた後に、前記S203の処理へ進む。このような手順で昇温処理が実行されると、NSR温度Tnsrが前記暖機温度範囲に属し、且つNSR触媒4のNO吸蔵量Anoxが前記所定の閾値Anoxthr以上となる状態において、SCR触媒5が未活性状態となる期間が短くなる。その結果、NSR触媒4のNO吸蔵能力が飽和することを抑制することができる。
以上述べた実施形態によれば、リッチスパイク処理の実行時に、NSR触媒4及びSCR触媒5を含む排気浄化装置によって浄化されないNO量を少なく抑えつつ、NSR触媒4で生成されるNOの量をより確実に少なくすることができる。
(実施形態2の変形例)
SCR温度TscrがSCR触媒5の活性開始温度Tscr1より高い吸着限界温度Tscrmax以上になると、SCR触媒5のNH吸着容量が前記所定量Anh3thrより少なくなる。そのため、SCR温度Tscrが前記吸着限界温度Tscrmax以上である場合には、単位時間あたりにSCR触媒5へ流入するNO量に応じて、単位時間
あたりに尿素添加弁7から排気中へ添加される尿素水溶液の量を制御する必要がある。その際、単位時間あたりにSCR触媒5へ流入するNO量を、第二NOセンサ14の測定値から演算する方法が考えられるが、第二NOセンサ14の位置と尿素添加弁7の位置とが近接していると、上記した方法によって求められた量のNOが尿素添加弁7の近傍を通過するまでに、そのNO量に適した量の尿素水溶液を尿素添加弁7から添加させることが困難となる。そこで、SCR温度Tscrが前記吸着限界温度Tscrmax以上であるときは、単位時間あたりにNSR触媒4へ流入するNOのうち、NSR触媒4をすり抜けるNOの量(NOすり抜け量)Anoxslpを予測して、そのNOすり抜け量Anoxslpに対するNH量の当量比Erが所定比Erst(例えば、1)となる量の尿素水溶液がSCR触媒5へ供給されるように、尿素添加弁7を制御する必要がある。
ところで、前述した第2の実施形態で述べたように、NSR触媒4へ流入する排気の空燃比がNOの生成抑制に適した空燃比となるようにリッチスパイク処理が実行された場合には、NSR触媒4に吸蔵されていたNOの一部が該NSR触媒4において浄化されずに、SCR触媒5へ流入する可能性がある。そのため、SCR温度Tscrが前記吸着限界温度Tscrmax以上である状態において、NSR触媒4へ流入する排気の空燃比がNOの生成抑制に適した空燃比となるようにリッチスパイク処理が実行されると、前記NOすり抜け量Anoxslpより多い量のNOがSCR触媒5へ流入する可能性がある。そのため、本変形例では、SCR温度Tscrが前記吸着限界温度Tscrmax以上である場合において、リッチスパイク処理が実行されていないときは、前記所定比に対応する量の尿素水溶液がSCR触媒5へ供給され、且つリッチスパイク処理が実行されているときは、前記所定比に対応する量より多い量の尿素水溶液がSCR触媒5へ供給されるように、尿素添加弁7を制御するための当量比制御を実行するようにした。
以下、本変形例におけるリッチスパイク処理の実行手順と当量比制御の実行手順について、図6、7に沿って説明する。図6は、リッチスパイク処理の実行時にECU8によって実行される処理ルーチンを示すフローチャートである。なお、図6において、前述した第2の実施形態における図5と同様の処理については、同一の符合を付している。
先ず、図6の処理ルーチンでは、ECU8は、S202の処理を実行した後に、S301の処理を実行する。S301の処理では、ECU8は、S201の処理で取得されたSCR温度Tscrが前記吸着限界温度Tscrmax未満であるか否かを判別する。S301の処理において肯定判定された場合は、SCR触媒5のNH吸着容量が前記所定量Anh3thr以上であるとみなすことができるため、ECU8は、前述した第2の実施形態と同様に、S203以降の処理を実行する。一方、S301の処理において否定判定された場合は、SCR触媒5のNH吸着容量が前記所定量Anh3thr未満であるとみなすことができるため、ECU8は、S203−S205の処理をスキップして、S206の処理へ進むことになる。その場合、SCR触媒5に対する尿素水溶液の供給は、図7に示す処理ルーチンに従って行われる。
図7に示す処理ルーチンは、内燃機関1の運転中において所定の周期でECU8が実行する処理ルーチンであり、予めECU8のROM等に記憶されている。
図7の処理ルーチンでは、ECU8は、先ずS401の処理において、SCR温度Tscrを取得する。SCR温度Tscrの取得方法は、前述した図5、6の処理ルーチンにおけるS201の処理と同様である。ECU8は、S401の処理を実行した後に、S402の処理へ進む。
S402の処理では、ECU8は、前記S401の処理で取得されたSCR温度Tsc
rが前記吸着限界温度Tscrmax以上であるか否かを判別する。S402の処理において否定判定された場合は、当量比制御を実行する必要がないため、ECU8は、本処理ルーチンの実行を終了する。一方、S402の処理において肯定判定された場合は、当量比制御を実行する必要があるため、ECU8は、S403以降の処理へ進む。
S403の処理では、ECU8は、NOすり抜け量Anoxslpを演算する。ここで、NOすり抜け量Anoxslpは、NSR触媒4のNO吸蔵量Anox、NSR温度Tnsr、NSR触媒4へ流入する排気の空燃比、及び排気流量に相関する。そこで、それらの相関を予めマップや関数式の形態でROMに記憶させておくものとする。そして、ECU8は、NO吸蔵量Anox、NSR温度Tnsr、NSR触媒4へ流入する排気の空燃比、及び排気流量を引数として、NOすり抜け量Anoxslpを導出するものとする。このような方法によってECU8がNOすり抜け量Anoxslpを演算することにより、本発明に係わる「演算手段」が実現される。
S404の処理では、ECU8は、リッチスパイク処理が実行中であるか否かを判別する。この判別方法としては、リッチスパイク処理が開始されるときにオンにされ、且つリッチ処理が終了されるときにオフにされるフラグを参照する方法を用いることができる。
前記S404の処理において肯定判定された場合は、SCR温度TscrがSCR触媒5の活性開始温度Tscr1以上である状態でリッチスパイク処理が実行されていることになるため、NSR触媒4へ流入する排気の空燃比がNOの生成抑制に適した空燃比になっているとみなすことができる。その場合、SCR触媒5へ流入する排気には、上記したように、前記NOすり抜け量Anoxslpに加え、NSR触媒4に吸蔵されていたNOの一部も含まれていることになる。そこで、前記S404の処理において肯定判定された場合は、ECU8は、S405の処理へ進み、前記NOすり抜け量Anoxslpに対するNH量の当量比Erが前記所定比Erstより大きな比Er1となる量の尿素水溶液がSCR触媒5へ供給されるように、尿素添加弁7を制御する。その際の比Er1は、予め実験等を用いた適合作業によって求めておくものとする。
また、前記S404の処理において否定判定された場合は、ECU8は、S406の処理へ進み、前記NOすり抜け量Anoxslpに対するNH量の当量比Erが前記所定比Erstとなる量の尿素水溶液がSCR触媒5へ供給されるように、尿素添加弁7を制御する。
以上述べた変形例によれば、SCR温度Tscrが前記吸着限界温度Tscrmax以上となる状態でリッチスパイク処理が実行される場合においても、NSR触媒4及びSCR触媒5を含む排気浄化装置で浄化されないNO量の増加を抑制しつつ、NOの生成量を少なく抑えることができる。
なお、前述した第1及び第2実施形態では、本発明に係わる燃料供給装置として、燃料添加弁6を使用する例を挙げたが、排気行程中の気筒の燃料噴射弁2から燃料を噴射させる方法を用いることで、本発明に係わる燃料供給装置を実現することも可能である。
1 内燃機関
2 燃料噴射弁
3 排気通路
4 NSR触媒
5 SCR触媒
6 燃料添加弁
7 尿素添加弁
8 ECU
9 第一A/Fセンサ
10 第一NOセンサ
11 第一温度センサ
12 第二温度センサ
13 第二A/Fセンサ
14 第二NOセンサ
15 第三NOセンサ
16 第三温度センサ

Claims (6)

  1. 内燃機関の排気通路に配置されるNO吸蔵還元型触媒と、
    前記NO吸蔵還元型触媒へ流入する排気に燃料を供給する燃料供給装置と、
    を備える排気浄化装置に適用される制御装置であって、
    前記制御装置は、
    前記NO吸蔵還元型触媒の温度であるNSR温度を取得するNSR温度取得手段と、
    前記NO吸蔵還元型触媒に吸蔵されているNOの量であるNO吸蔵量を取得するNO吸蔵量取得手段と、
    前記NSR温度取得手段により取得されるNSR温度が前記NO吸蔵還元型触媒の活性開始温度以上である状態において、前記NO吸蔵量取得手段により取得されるNO吸蔵量が所定の閾値以上であるときに、前記NO吸蔵還元型触媒へ流入する排気の空燃比が理論空燃比より低いリッチ空燃比となるように、前記燃料供給装置から燃料を供給させることで、前記NO吸蔵還元型触媒に吸蔵されているNOを還元及び浄化する処理であるリッチスパイク処理を実行する制御手段を備え、
    前記制御手段は、前記NSR温度取得手段により取得されるNSR温度が、前記NO吸蔵還元型触媒の活性開始温度以上且つ前記NO吸蔵還元型触媒の活性完了温度未満の温度範囲である暖機温度範囲に属している場合において、前記NSR温度取得手段により取得されるNSR温度が所定温度未満であるときは、前記NSR温度取得手段により取得されるNSR温度が前記所定温度以上であるときに比べ、前記リッチスパイク処理の実行時に前記NO吸蔵還元型触媒へ流入する排気の空燃比が低くなるように、前記燃料供給装置から供給される燃料量を制御する、排気浄化装置の制御装置。
  2. 前記排気浄化装置は、
    前記NO吸蔵還元型触媒より下流の排気通路に配置される選択還元型触媒を更に備え、
    前記制御装置は、
    前記選択還元型触媒の温度であるSCR温度を取得するSCR温度取得手段を更に備え、
    前記制御手段は、前記NSR温度取得手段により取得されるNSR温度が前記暖機温度範囲に属し、且つ前記NO吸蔵量取得手段により取得されるNO吸蔵量が前記所定の閾値以上である場合であっても、前記SCR温度取得手段により取得されるSCR温度が前記選択還元型触媒の活性開始温度未満であるときは、前記リッチスパイク処理を実行しない、請求項1に記載の排気浄化装置の制御装置。
  3. 前記制御手段は、前記NSR温度取得手段により取得される温度が前記暖機温度範囲に属している場合において、前記NO吸蔵量取得手段により取得されるNO吸蔵量が前記所定の閾値以上となったときに前記SCR温度取得手段により取得されるSCR温度が前記選択還元型触媒の活性開始温度未満であれば、前記選択還元型触媒を昇温させるための処理である昇温処理を、前記SCR温度取得手段により取得されるSCR温度が前記選択還元型触媒の活性開始温度以上となるまで実行した後に、前記リッチスパイク処理を実行する、請求項2に記載の排気浄化装置の制御装置。
  4. 前記排気浄化装置は、
    前記NO吸蔵還元型触媒より下流の排気通路に配置される選択還元型触媒と、
    前記選択還元型触媒へアンモニア又はアンモニアの前駆体である添加剤を供給する添加剤供給装置と、
    を更に備え、
    前記制御装置は、
    前記選択還元型触媒の温度であるSCR温度を取得するSCR温度取得手段と、
    前記選択還元型触媒に吸着されているアンモニアの量であるNH吸着量を取得するNH吸着量取得手段と、
    を更に備え、
    前記制御手段は、前記NSR温度取得手段により取得されるNSR温度が前記NO吸蔵還元型触媒の活性開始温度以上であり、且つ前記SCR温度取得手段により取得されるSCR温度が前記選択還元型触媒の活性開始温度以上である場合において、前記NO吸蔵量取得手段により取得されるNO吸蔵量が前記所定の閾値以上になったときに前記NH吸着量取得手段によって取得されるNH吸着量が所定量未満であれば、前記選択還元型触媒のNH吸着量が前記所定量以上となるように、前記添加剤供給装置から添加剤を供給させる処理であるNH補給処理を実行して、そのNH補給処理の終了後に前記リッチスパイク処理を実行する、請求項1に記載の排気浄化装置の制御装置。
  5. 前記制御装置は、
    前記NO吸蔵還元型触媒へ流入するNOのうち、単位時間あたりに前記NO吸蔵還元型触媒をすり抜けるNOの量であるNOすり抜け量を演算する演算手段を更に備え、
    前記制御手段は、前記SCR温度取得手段により取得されるSCR温度が、前記選択還元型触媒が吸着することができるアンモニアの量が前記所定量未満となる温度である吸着限界温度以上である場合において、前記リッチスパイク処理が実行されていないときは、前記演算手段により演算されるNOすり抜け量に対するアンモニアの量の当量比が所定比となる量の添加剤が前記選択還元型触媒へ供給され、且つ前記リッチスパイク処理が実行されているときは、前記演算手段により演算されるNOすり抜け量に対するアンモニアの量の当量比が所定比より大きくなる量の添加剤が前記選択還元型触媒へ供給されるように、前記添加剤供給装置を制御するための当量比制御を実行する、請求項4に記載の排気浄化装置の制御装置。
  6. 前記制御手段は、前記NSR温度取得手段により取得されるNSR温度が前記NO吸蔵還元型触媒の活性完了温度以上である場合において、前記SCR温度取得手段により取得されるSCR温度が前記選択還元型触媒の活性開始温度以上であるときは、前記SCR温度取得手段により取得されるSCR温度が前記選択還元型触媒の活性開始温度未満であるときに比べ、前記リッチスパイク処理の実行時に前記NO吸蔵還元型触媒へ流入する排気の空燃比が高くなるように、前記燃料供給装置から供給される燃料の量を制御する、請求項2乃至5の何れか一項に記載の排気浄化装置の制御装置。
JP2016085173A 2016-04-21 2016-04-21 排気浄化装置の制御装置 Withdrawn JP2017194022A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016085173A JP2017194022A (ja) 2016-04-21 2016-04-21 排気浄化装置の制御装置
US15/490,139 US20170306818A1 (en) 2016-04-21 2017-04-18 Control apparatus for exhaust gas purification apparatus
CN201710260570.8A CN107304699A (zh) 2016-04-21 2017-04-20 排气净化装置的控制装置
DE102017108467.3A DE102017108467A1 (de) 2016-04-21 2017-04-20 Steuerungsapparat für einen Abgasreinigungsapparat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085173A JP2017194022A (ja) 2016-04-21 2016-04-21 排気浄化装置の制御装置

Publications (1)

Publication Number Publication Date
JP2017194022A true JP2017194022A (ja) 2017-10-26

Family

ID=60021262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085173A Withdrawn JP2017194022A (ja) 2016-04-21 2016-04-21 排気浄化装置の制御装置

Country Status (4)

Country Link
US (1) US20170306818A1 (ja)
JP (1) JP2017194022A (ja)
CN (1) CN107304699A (ja)
DE (1) DE102017108467A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167935A (ja) * 2018-03-26 2019-10-03 マツダ株式会社 エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP2021050700A (ja) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 N2o推定方法及び装置
WO2022264565A1 (ja) * 2021-06-14 2022-12-22 株式会社豊田自動織機 触媒昇温システムの制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729543B2 (ja) * 2017-12-27 2020-07-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6733651B2 (ja) * 2017-12-27 2020-08-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP7044022B2 (ja) * 2018-09-25 2022-03-30 株式会社デンソー 排気浄化システムの制御装置
US10830118B2 (en) * 2019-01-31 2020-11-10 Hyundai Motor Company After treatment system and after treatment method for lean-burn engine
WO2020205112A1 (en) * 2019-03-29 2020-10-08 Cummins Emission Solutions Inc. Systems and methods for determining amount of reductant deposits in aftertreatment systems
US11396836B1 (en) * 2021-01-29 2022-07-26 Caterpillar Inc. Reductant dosing control system
US11808194B2 (en) * 2021-04-21 2023-11-07 Paccar Inc. Modular exhaust aftertreatment subsystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617450B2 (ja) 2000-12-20 2005-02-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4300862B2 (ja) 2002-11-11 2009-07-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4385593B2 (ja) * 2002-12-10 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4232690B2 (ja) * 2004-05-24 2009-03-04 トヨタ自動車株式会社 内燃機関の排気浄化装置に適用される燃料添加制御方法、及び排気浄化装置
JP4905415B2 (ja) * 2007-11-13 2012-03-28 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP5625872B2 (ja) 2010-12-16 2014-11-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5218672B2 (ja) * 2011-04-15 2013-06-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN103717851B (zh) * 2011-09-06 2017-04-19 丰田自动车株式会社 内燃机的排气净化装置
GB201222302D0 (en) * 2012-12-12 2013-01-23 Ford Global Tech Llc A method of operating a diesel engine system having LNT and SCR aftertreatment devices
JP6090051B2 (ja) 2013-08-08 2017-03-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6036772B2 (ja) * 2013-09-25 2016-11-30 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167935A (ja) * 2018-03-26 2019-10-03 マツダ株式会社 エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP2021050700A (ja) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 N2o推定方法及び装置
WO2022264565A1 (ja) * 2021-06-14 2022-12-22 株式会社豊田自動織機 触媒昇温システムの制御装置
JP7488995B2 (ja) 2021-06-14 2024-05-23 株式会社豊田自動織機 触媒昇温システムの制御装置

Also Published As

Publication number Publication date
DE102017108467A1 (de) 2017-10-26
US20170306818A1 (en) 2017-10-26
CN107304699A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
JP2017194022A (ja) 排気浄化装置の制御装置
JP6614187B2 (ja) 内燃機関の排気浄化装置
AU2017268543B2 (en) Exhaust gas control apparatus for internal combustion engine
JP2008303821A (ja) 内燃機関の排気浄化装置
JP5850166B2 (ja) 内燃機関の排気浄化システム
JP2019152137A (ja) 内燃機関の排気浄化装置
JP6015753B2 (ja) 内燃機関の排気浄化装置
JP2010261320A (ja) 内燃機関の排気浄化装置
JP6149940B2 (ja) 内燃機関の排気浄化装置
JP5672296B2 (ja) 内燃機関の排気浄化システム
JP2009264320A (ja) 内燃機関の排気ガス浄化装置
JP6128122B2 (ja) 内燃機関の排気浄化装置
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP6112093B2 (ja) 排気浄化システム
JP2015101968A (ja) 内燃機関の排気浄化装置
US10487712B2 (en) Exhaust gas control system for internal combustion engine and control method for exhaust gas control system
JP6248974B2 (ja) 内燃機関の制御装置
JP2013253540A (ja) 内燃機関の排気浄化システム
JP2015017515A (ja) 排気浄化装置の制御システム
JP2012062864A (ja) 内燃機関の排気浄化装置
JP2011226402A (ja) 排気浄化装置
JP6682972B2 (ja) 内燃機関の排ガス浄化装置
JP2013234608A (ja) 排気浄化装置の昇温制御システム
WO2015194022A1 (ja) 排気浄化装置
JP2018193867A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180724