JP2015101968A - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- JP2015101968A JP2015101968A JP2013240961A JP2013240961A JP2015101968A JP 2015101968 A JP2015101968 A JP 2015101968A JP 2013240961 A JP2013240961 A JP 2013240961A JP 2013240961 A JP2013240961 A JP 2013240961A JP 2015101968 A JP2015101968 A JP 2015101968A
- Authority
- JP
- Japan
- Prior art keywords
- addition valve
- additive
- exhaust gas
- fuel
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
【課題】本発明は、排気温度が高いときに、内燃機関の運転状態に影響を与えることなく、NOXに転化されるアンモニアの量を減少させることを課題とする。【解決手段】本発明は、内燃機関の排気通路に配置された酸化触媒と、酸化触媒より下流の排気通路に配置されたSCR触媒と、酸化触媒より上流において排気中に燃料を添加する燃料添加弁と、SCR触媒より上流において排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、を備えた内燃機関の排気浄化装置において、SCR触媒が高温に曝されているときは、燃料添加弁によって燃料が添加された排気が添加剤添加弁に到達するタイミングで添加剤添加弁から添加剤を添加させるようにした。【選択図】図2
Description
本発明は、内燃機関の排気通路に配置された選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)と、アンモニア又はアンモニアの前駆体である添加剤を排気中
に添加する添加弁と、を備えた内燃機関の排気浄化装置に関する。
に添加する添加弁と、を備えた内燃機関の排気浄化装置に関する。
内燃機関の排気浄化装置として、酸化触媒と、パティキュレートフィルタと、SCR触媒と、を排気の流れ方向の上流側から順に配置したものが知られている。このような排気浄化装置は、パティキュレートフィルタ等を昇温させる場合に酸化触媒より上流の排気中に未燃燃料成分を添加するための燃料添加弁と、SCR触媒にアンモニア(NH3)を供給する場合にSCR触媒より上流の排気中にアンモニア又はアンモニアの前駆体である添加剤を添加するための添加剤添加弁と、を備えている。
上記したような排気浄化装置において、排気温度が高くなる場合に添加剤添加弁の冷却を目的として添加剤添加弁から添加剤を噴射させる場合がある。ここで、SCR触媒は、排気中の一酸化窒素(NO)を二酸化窒素(NO2)へ酸化するための物質(たとえば、鉄(Fe)や銅(Cu)などの金属)を含む場合がある。このようなSCR触媒が高温に曝されているときに、添加剤添加弁の冷却を目的として添加剤が排気中に添加されると、NH3と酸素(O2)とが反応してNOXが生成される可能性がある。また、SCR触媒の下流に該SCR触媒をすり抜けたNH3を酸化するための触媒(以下「ASC」と称する)が配置された構成において、添加剤添加弁の冷却を目的として添加剤が排気中に添加されると、SCR触媒をすり抜けたNH3がASCにおいて高温下で酸化されることになるため、NOXが生成され易い。
上記したような問題に対し、添加剤添加弁の冷却を目的とした添加剤の添加が行われる場合に、内燃機関から排出されるNOXの量を増加させることで、NOXの還元に消費されるNH3を増加させる方法が提案されている(たとえば、特許文献1を参照)。
上記した従来の方法によれば、SCR触媒をすり抜けるNH3を減少させることができるが、内燃機関の運転状態を変更する必要がある。そのため、内燃機関の運転条件によっては該内燃機関から排出されるNOXの量を増加させることができず、添加剤の添加が制約される可能性がある。
本発明は、上記したような実情に鑑みてなされたものであり、その目的は、排気中に燃料を添加する燃料添加弁と、酸化触媒と、排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、SCR触媒と、を備えた内燃機関の排気浄化装置において、排気温度が高いときに、内燃機関の運転状態に影響を与えることなく、NOXに転化されるアンモニアの量を減少させることができる技術の提供にある。
本発明は、上記した課題を解決するために、内燃機関の排気通路に配置された酸化触媒と、酸化触媒より下流の排気通路に配置された選択還元型触媒と、酸化触媒より上流において排気中に燃料を添加する燃料添加弁と、選択還元型触媒より上流において排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、を備えた内燃機関の排気浄化装置において、SCR触媒が高温に曝されているときは、添加剤添加弁から添加剤を添加するタイミングを、燃料添加弁から燃料が添加された排気が添加剤添加弁の位置に到達するタイミングに同期させるようにした。
詳細には、本発明は、内燃機関の排気通路に配置された酸化触媒と、
前記酸化触媒より下流に配置された選択還元型触媒と、
前記酸化触媒より上流において排気中に燃料を添加する燃料添加弁と、
前記酸化触媒と前記選択還元型触媒との間の排気通路において排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、
排気の温度が所定温度より高い場合は、前記燃料添加弁によって燃料が添加された排気が前記添加剤添加弁に到達するタイミングで該添加剤添加弁から添加剤を添加させる制御手段と、
を備えるようにした。
前記酸化触媒より下流に配置された選択還元型触媒と、
前記酸化触媒より上流において排気中に燃料を添加する燃料添加弁と、
前記酸化触媒と前記選択還元型触媒との間の排気通路において排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、
排気の温度が所定温度より高い場合は、前記燃料添加弁によって燃料が添加された排気が前記添加剤添加弁に到達するタイミングで該添加剤添加弁から添加剤を添加させる制御手段と、
を備えるようにした。
燃料添加弁により燃料が添加された排気(燃料添加弁が燃料を添加するときに該燃料添加弁の位置を通る排気)は、酸化触媒を経由した後に添加剤添加弁が配置された部分の排気通路を通り、次いでSCR触媒に流入する。前記した排気が酸化触媒を経由した際に、排気中の酸素(O2)の少なくとも一部が添加燃料の酸化に消費される。その結果、酸化触媒から流出する際の排気に含まれるO2の量は、酸化触媒へ流入する際の排気に含まれるO2の量より少なくなる。
O2含有量の少ない排気が添加剤添加弁に到達した時点で該添加剤添加弁から添加剤が排気中へ添加されると、O2の含有量が少なく且つ添加剤を含有した排気が生成される。このような排気がSCR触媒へ流入すると、SCR触媒において排気中のO2と反応するNH3の量が減少する。その結果、SCR触媒においてNOXに転化されるNH3の量を少なくすることができる。
したがって、本発明によれば、排気温度が高いときに、内燃機関の運転状態に影響を与えることなく、SCR触媒においてNOXに転化されるNH3の量を少なくすることができる。
また、SCR触媒より下流の排気通路にASCが配置される構成においては、SCR触媒をすり抜けたNH3が排気中のO2と反応して窒素(N2)と水(H2O)に分解されるが、排気温度が高いときはN2がさらに酸化されてNOXを生成する可能性がある。これに対し、O2含有量の少ない排気が添加剤添加弁に到達した時点で該添加剤添加弁から添加剤が排気中へ添加されると、NH3がASCに到達した際の排気に含まれるO2の量が少なくなるため、N2の酸化量が減少する。その結果、ASCにおいてNOXに転化されるNH3の量を少なくすることもできる。
したがって、本発明によれば、SCR触媒の下流にASCが配置される構成において、排気温度が高いときに、内燃機関の運転状態に影響を与えることなく、ASCでNOXに転化されるNH3の量を少なくすることもできる。
ここで、添加剤の添加機会が燃料添加弁の添加時期に制限されると、添加剤の添加機会が少なくなることが懸念されるが、排気温度が高いときは燃料添加弁の冷却を目的とした
燃料添加が定期的に実施されるため、その時期に合わせて添加剤の添加が実施されれば、添加剤の添加機会が少なくなることが回避される。
燃料添加が定期的に実施されるため、その時期に合わせて添加剤の添加が実施されれば、添加剤の添加機会が少なくなることが回避される。
また、本発明における所定温度は、SCR触媒においてNH3の酸化反応が支配的になると考えられる最小の温度、或いはSCR触媒の下流に配置されたASCにおいてNH3をNOX化する反応が支配的になると考えられる最小の温度である。
ここで、SCR触媒においては、以下の(1)乃至(3)の化学反応式が成立する。
4NO+4NH3+O2→4N2+6H2O・・・(1)
NO+NO2+2NH3→2N2+3H2O・・・(2)
6NO2+8NH3→7N2+12H2O・・・(3)
NH3+O2→NOX+H2O・・・(4)
4NO+4NH3+O2→4N2+6H2O・・・(1)
NO+NO2+2NH3→2N2+3H2O・・・(2)
6NO2+8NH3→7N2+12H2O・・・(3)
NH3+O2→NOX+H2O・・・(4)
SCR触媒へ流入する排気の温度が所定温度以下である場合は、前記(1)乃至(3)の化学反応式に示す反応(以下、「第一の反応」と称する)が支配的になると考えられる。そのため、排気中のNOXと反応するNH3の量が多くなるとともに、排気中のO2と反応するNH3の量が少なくなる。
一方、SCR触媒へ流入する排気の温度が所定温度より高い場合は、前記(4)の化学反応式に示す反応(以下、「第二の反応」と称する)が支配的になると考えられる。そのため、排気中のNOXと反応するNH3の量が少なくなるとともに、排気中のO2と反応するNH3の量が多くなる。
したがって、SCR触媒へ流入する排気の温度が所定温度より高い場合に、燃料添加弁により燃料が添加された排気が添加剤添加弁に到達するタイミングで該添加剤添加弁から添加剤が添加されると、前記第二の反応を抑制することができる。その結果、SCR触媒から流出するNOXの量を少なく抑えることができる。
次に、ASCにおいては、以下の(5)又は(6)の化学反応式が成立する。
2NH3+3O2→N2+3H2O・・・(5)
NH3+O2→NOX+H2O・・・(6)
2NH3+3O2→N2+3H2O・・・(5)
NH3+O2→NOX+H2O・・・(6)
ASCへ流入する排気の温度が所定温度以下である場合は、前記(5)の化学反応式に示す反応(以下、「第三の反応」と称する)が支配的になると考えられる。一方、ASCへ流入する排気の温度が所定温度より高い場合は、前記(6)の化学反応式に示す反応(以下、「第四の反応」と称する)が支配的になると考えられる。
したがって、ASCへ流入する排気の温度が所定温度より高い場合に、燃料添加弁により燃料が添加された排気が添加剤添加弁に到達するタイミングで該添加剤添加弁から添加剤が添加されると、前記第四の反応によりNOX化されるNH3の量を少なく抑えることができる。その結果、ASCから流出するNOXの量を少なく抑えることができる。
本発明によれば、排気中に燃料を添加する燃料添加弁と、酸化触媒と、排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、SCR触媒と、を備えた内燃機関の排気浄化装置において、排気温度が高いときに、内燃機関の運転状態に影響を与えることなく、NOXに転化されるアンモニアの量を少なくすることができる。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1は、本発明を適用する内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)である。
内燃機関1には、排気通路2が接続されている。排気通路2は、内燃機関1の気筒内から排出される既燃ガス(排気)を流通させるための通路である。排気通路2の途中には、第一触媒ケーシング3と第二触媒ケーシング4が上流側から直列に配置されている。
第一触媒ケーシング3は、筒状のケーシング内に酸化触媒とパティキュレートフィルタを内装している。その際、酸化触媒は、パティキュレートフィルタの上流に配置される触媒担体に担持されてもよく、或いはパティキュレートフィルタに担持されてもよい。
第二触媒ケーシング4は、筒状のケーシング内に、選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)が担持された触媒担体を収容する。前記触媒担体は、た
とえば、コーディライトやFe−Cr−Al系の耐熱鋼等から形成されるハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。なお、第二触媒ケーシング4におけるSCR触媒の下流には、酸化触媒が担持された触媒担体が配置されてもよい。その場合の酸化触媒は、後述する添加剤添加弁6からSCR触媒へ供給される添加剤のうち、SCR触媒をすり抜けた添加剤を酸化する触媒(ASC)である。
とえば、コーディライトやFe−Cr−Al系の耐熱鋼等から形成されるハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。なお、第二触媒ケーシング4におけるSCR触媒の下流には、酸化触媒が担持された触媒担体が配置されてもよい。その場合の酸化触媒は、後述する添加剤添加弁6からSCR触媒へ供給される添加剤のうち、SCR触媒をすり抜けた添加剤を酸化する触媒(ASC)である。
前記第一触媒ケーシング3より上流の排気通路2には、燃料を排気中へ添加(噴射)する燃料添加弁5が配置されている。第一触媒ケーシング3と第二触媒ケーシング4との間の排気通路2には、アンモニア(NH3)又はNH3の前駆体である添加剤を排気中へ添加(噴射)するための添加剤添加弁6が配置されている。添加剤添加弁6から添加される添加剤は、NH3ガス、又は尿素やカルバミン酸アンモニウム等の水溶液である。本実施例では、当該添加剤として尿素水溶液を用いるものとする。
添加剤添加弁6から尿素水溶液が噴射されると、該尿素水溶液が排気とともに第二触媒ケーシング4へ流入する。その際、尿素水溶液が排気の熱を受けて熱分解され、又はSCR触媒により加水分解される。尿素水溶液が熱分解又は加水分解されると、NH3が生成される。このようにして生成されたNH3は、SCR触媒に吸着又は吸蔵される。SCR触媒に吸着又は吸蔵されたNH3は、排気中に含まれる窒素酸化物(NOX)と反応して窒素(N2)や水(H2O)を生成する。つまり、NH3は、NOXの還元剤として機能する。
このように構成された内燃機関1には、ECU10が併設されている。ECU10は、CPU、ROM、RAM、バックアップRAM等を備えた電子制御ユニットである。EC
U10には、第一排気温度センサ7、NOXセンサ8、第二排気温度センサ9、クランクポジションセンサ11、アクセルポジションセンサ12、及びエアフローメータ13等の各種センサが電気的に接続されている。
U10には、第一排気温度センサ7、NOXセンサ8、第二排気温度センサ9、クランクポジションセンサ11、アクセルポジションセンサ12、及びエアフローメータ13等の各種センサが電気的に接続されている。
第一排気温度センサ7は、第一触媒ケーシング3と第二触媒ケーシング4の間の排気通路2に配置され、第二触媒ケーシング4へ流入する排気の温度に相関する電気信号を出力する。NOXセンサ8は、第二触媒ケーシング4より下流の排気通路2に配置され、第二触媒ケーシング4から流出するNOXの量(以下、「NOX流出量」と称する)に相関する電気信号を出力する。第二排気温度センサ9は、第二触媒ケーシング4より下流の排気通路2に配置され、第二触媒ケーシング4から流出する排気の温度と相関する電気信号を出力する。クランクポジションセンサ11は、内燃機関1の出力軸(クランクシャフト)の回転位置に相関する電気信号を出力する。アクセルポジションセンサ12は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力する。エアフローメータ13は、内燃機関1に吸入される空気の量(質量)に相関する電気信号を出力する。
ECU10に、内燃機関1に取り付けられた各種機器(たとえば、燃料噴射弁等)、燃料添加弁5、添加剤添加弁6等と電気的に接続されている。ECU10は、前記した各種センサの出力信号に基づいて、内燃機関1の各種機器、燃料添加弁5、及び添加剤添加弁6を電気的に制御する。たとえば、ECU10は、内燃機関1の燃料噴射制御等の既知の制御に加え、排気温度が高いときに添加剤添加弁6の冷却制御を実行する。以下では、本実施例における添加剤添加弁6の冷却制御について説明する。
排気温度が高いときは、添加剤添加弁6が高温な雰囲気に曝されるため、添加剤添加弁6の周辺において尿素水溶液の一部が結晶化やデポジット化して付着してしまい、尿素水溶液の噴霧形成が阻害されたり、不均一になったり等の弊害が生じる可能性がある。これに対し、排気温度が高いときに、添加剤添加弁6から定期的に尿素水溶液を添加させ、尿素水溶液により添加剤添加弁6を冷却させる方法が考えられる。
ところで、排気温度が高いときは、SCR触媒の雰囲気も高温になるため、SCR触媒においてNH3が酸化されてNOXが生成される可能性がある。また、SCR触媒の温度が高いときは、該SCR触媒のNH3吸着能力が低くなるため、SCR触媒をすり抜けるNH3が多くなる可能性もある。SCR触媒をすり抜けるNH3の量(NH3スリップ量)が多くなると、ASCにおいて酸化されるNH3の量が多くなる。ここで、ASCの雰囲気が適温であるときは、NH3が窒素(N2)と水(H2O)に分解されるが、ASCの雰囲気が適温より高いときは、NH3から分解されたN2がさらに酸化されてNOXが生成される可能性がある。
そこで、本実施例の冷却制御では、ECU10は、排気温度が所定温度より高いときは、燃料添加弁5によって燃料が添加された排気が添加剤添加弁6に到達するタイミングで該添加剤添加弁6から排気へ尿素水溶液を添加させるようにした。ここでいう「所定温度」は、SCR触媒においてNH3の酸化反応が支配的になる最小の温度である。
ここで、SCR触媒において、以下の(1)乃至(3)の化学反応式が成立する。
4NO+4NH3+O2→4N2+6H2O・・・(1)
NO+NO2+2NH3→2N2+3H2O・・・(2)
6NO2+8NH3→7N2+12H2O・・・(3)
NH3+O2→NOX+H2O・・・(4)
4NO+4NH3+O2→4N2+6H2O・・・(1)
NO+NO2+2NH3→2N2+3H2O・・・(2)
6NO2+8NH3→7N2+12H2O・・・(3)
NH3+O2→NOX+H2O・・・(4)
よって、前記所定温度は、前記(4)の化学反応式に示す反応(第二の反応)が支配的になると考えられる最小の温度(たとえば、450〜500℃)に設定されればよい。
また、SCR触媒の下流にASCが配置される場合は、ASCにおいて、以下の(5)又は(6)の化学反応式が成立する。
2NH3+3O2→N2+3H2O・・・(5)
NH3+O2→NOX+H2O・・・(6)
2NH3+3O2→N2+3H2O・・・(5)
NH3+O2→NOX+H2O・・・(6)
よって、SCR触媒の下流にASCが配置される場合は、前記所定温度は、前記(6)の化学反応式に示す反応(第四の反応)が支配的になると考えられる最小の温度(たとえば、450〜500℃)に設定されてもよい。
次に、尿素水溶液の添加タイミングについて図2に基づいて説明する。図2は、燃料添加弁5の燃料添加信号と、添加剤添加弁6周辺のO2濃度と、添加剤添加弁6の添加信号との関係を示すタイミングチャートである。
排気温度が高いときは、添加剤添加弁6と同様に燃料添加弁5も冷却する必要があるため、燃料添加弁5から排気中へ定期的に燃料が添加される。燃料添加弁5から添加された燃料は、第一触媒ケーシング3へ流入し、酸化触媒において排気中のO2と反応する。その結果、燃料添加弁5から添加された燃料を含む排気が第一触媒ケーシング3を経由すると、該排気に含まれるO2の量が消費され、O2濃度が小さくなる。そして、O2濃度が小さい排気が添加剤添加弁6の位置に到達するタイミングに同期して添加剤添加弁6から尿素水溶液が添加されると、尿素水溶液を含み且つO2の含有量が少ない排気が生成される。
その結果、尿素水溶液(又は、尿素水溶液が排気中で熱分解されて生成されるNH3)がSCR触媒へ到達したときに、SCR触媒に存在するO2の量が少なくなる。よって、SCR触媒においてO2と反応するNH3の量が少なくなり、NH3に由来したNOXの生成量が少なくなる。同様に、SCR触媒をすり抜けた尿素水溶液(又は、尿素水溶液が排気中で熱分解されて生成されたNH3や尿素水溶液がSCR触媒で加水分解されて生成されるNH3)がASCへ到達したときに、ASCに存在するO2の量も少なくなる。よって、ASCにおいてO2と反応するNH3(詳細には、NH3から分解したN2)の量が少なくなり、NH3に由来したNOXの生成量が少なくなる。
ところで、燃料添加弁5の冷却に適した燃料の添加周期と、添加剤添加弁6の冷却に適した尿素水溶液の添加周期とは必ずしも一致しない。そのため、燃料の添加周期が長くなる場合は添加剤添加弁6から一回あたりに添加される尿素水溶液の量を増加(図3を参照)させ、燃料の添加周期が短くなる場合は添加剤添加弁6から一回あたりに添加される尿素水溶液の量を減少(図4を参照)させるようにしてもよい。要は、一定期間(添加周期に比して長い期間)に添加される尿素水溶液の総量が一定となるように一回あたりの尿素水溶液の添加量が調整されればよい。
以下、本実施例における冷却制御の実行手順について図5に沿って説明する。図5は、ECU10によって周期的に実行される処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU10のROMに記憶されており、内燃機関1が運転されているときにECU10(CPU)によって周期的に実行される。なお、この処理ルーチンの実行周期は、燃料添加弁5による燃料添加周期に比して短く設定されるものとする。
図5の処理ルーチンでは、ECU10は、先ずS101の処理において、排気温度が所定温度(たとえば、500℃)より高いか否かを判別する。S101の処理において否定判定された場合は、ECU10は、本ルーチンの実行を一旦終了する。一方、S101の処理において肯定判定された場合は、ECU10は、S102の処理へ進む。
S102の処理では、燃料添加弁5の次回の燃料添加タイミングを読み込む。この燃料添加タイミングは、前回の燃料添加タイミングと燃料添加周期とに基づいて決定される。燃料添加周期は、排気温度が高くなるほど短く設定される。
S103の処理では、ECU10は、次回の燃料添加タイミングにおいて燃料添加弁5の位置を通過する排気が添加剤添加弁6の位置に到達するまでに要する時間(以下、「ディレイ時間」と称する)を演算する。ディレイ時間は、燃料添加弁5の位置から添加剤添加弁6の位置までの排気通路2の容積及び第一触媒ケーシング3の容積の総和と、排気の流速と、排気の温度と、をパラメータとして演算することができる。排気の流速は、エアフローメータ13の測定値(吸入空気量)と、機関回転速度と、をパラメータとして演算することができる。
S104の処理では、ECU10は、前記S103の処理で算出されたディレイ時間(又は、燃料添加周期)と排気温度とをパラメータとして、尿素水溶液の添加量(一回あたりの添加量)を演算する。その際、ECU10は、ディレイ時間が長くなるほど(又は、燃料添加周期が長くなるほど)、且つ、排気温度が高くなるほど、一回あたりの尿素水溶液の添加量を多く設定する。
S105の処理では、燃料添加弁5の次回の燃料タイミングから前記ディレイ時間が経過したときに、前記S104の処理で設定された量の尿素水溶液が排気中に添加されるように、前記添加剤添加弁6を制御する。
このようにECU10が図5の処理ルーチンを実行することにより、本発明に係わる制御手段が実現される。その結果、排気温度が所定温度より高いときに添加剤添加弁6の冷却を目的とした尿素水溶液の添加が実施されても、SCR触媒においてO2と反応するNH3の量を少なく抑えることができる。また、SCR触媒の下流にASCが配置される構成においては、排気温度が所定温度より高いときに添加剤添加弁6の冷却を目的とした尿素水溶液の添加が実施されても、ASCにおいてNOX化されるNH3の量を少なく抑えることもできる。さらに、本実施例の冷却制御によれば、内燃機関1の運転状態に影響を与えることなく、SCR触媒又はASCにおいてNOX化されるNH3の量を少なく抑えることができる。
なお、本実施例では、添加剤添加弁6の冷却を目的とした尿素水溶液の添加が行われる場合を例に挙げたが、SCR触媒におけるNOXの浄化(還元)を目的とした尿素水溶液の添加が行われる場合において、燃料添加弁5が燃料を添加するときに該燃料添加弁5の位置を通過する排気が添加剤添加弁6の位置に到達するタイミングで尿素水溶液を添加させてもよい。
また、本実施例では、燃料添加弁5が燃料を添加するときに該燃料添加弁5の位置を通過する排気が添加剤添加弁6の位置に到達するタイミングで尿素水溶液を添加させる例について述べたが、内燃機関1から排出される排気のO2濃度が所定値以下になるときに尿素水溶液を添加させてもよい。さらに、燃料添加弁5が燃料を添加するときに該燃料添加弁5の位置を通過する排気が添加剤添加弁6の位置に到達するタイミングと、内燃機関1から排出される排気のO2濃度が所定値以下になるタイミングとの少なくとも一方において、添加剤添加弁6から尿素水溶液を添加させてもよい。このような方法によれば、尿素水溶液を添加するタイミングの自由度を高めることができる。
1 内燃機関
2 排気通路
3 第一触媒ケーシング
4 第二触媒ケーシング
5 燃料添加弁
6 添加剤添加弁
7 第一排気温度センサ
8 NOXセンサ
9 第二排気温度センサ
10 ECU
11 クランクポジションセンサ
12 アクセルポジションセンサ
13 エアフローメータ
2 排気通路
3 第一触媒ケーシング
4 第二触媒ケーシング
5 燃料添加弁
6 添加剤添加弁
7 第一排気温度センサ
8 NOXセンサ
9 第二排気温度センサ
10 ECU
11 クランクポジションセンサ
12 アクセルポジションセンサ
13 エアフローメータ
Claims (1)
- 内燃機関の排気通路に配置された酸化触媒と、
前記酸化触媒より下流に配置された選択還元型触媒と、
前記酸化触媒より上流において排気中に燃料を添加する燃料添加弁と、
前記酸化触媒と前記選択還元型触媒との間の排気通路において排気中にアンモニア又はアンモニアの前駆体である添加剤を添加する添加剤添加弁と、
排気の温度が所定温度より高い場合は、前記燃料添加弁によって燃料が添加された排気が前記添加剤添加弁に到達するタイミングで該添加剤添加弁から添加剤を添加させる制御手段と、
を備える内燃機関の排気浄化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013240961A JP2015101968A (ja) | 2013-11-21 | 2013-11-21 | 内燃機関の排気浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013240961A JP2015101968A (ja) | 2013-11-21 | 2013-11-21 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015101968A true JP2015101968A (ja) | 2015-06-04 |
Family
ID=53377898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013240961A Withdrawn JP2015101968A (ja) | 2013-11-21 | 2013-11-21 | 内燃機関の排気浄化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015101968A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016063915A1 (ja) * | 2014-10-24 | 2017-08-03 | 王子ホールディングス株式会社 | 光学素子、光学複合素子及び保護フィルム付光学複合素子 |
JP2018528350A (ja) * | 2015-08-27 | 2018-09-27 | スカニア シーブイ アクチボラグ | 排気ガス流の処理のための排気処理システムおよび方法 |
EP3533979A1 (en) | 2018-03-02 | 2019-09-04 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification apparatus for internal combustion engine |
US10920632B2 (en) | 2015-08-27 | 2021-02-16 | Scania Cv Ab | Method and exhaust treatment system for treatment of an exhaust gas stream |
-
2013
- 2013-11-21 JP JP2013240961A patent/JP2015101968A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016063915A1 (ja) * | 2014-10-24 | 2017-08-03 | 王子ホールディングス株式会社 | 光学素子、光学複合素子及び保護フィルム付光学複合素子 |
JP2018528350A (ja) * | 2015-08-27 | 2018-09-27 | スカニア シーブイ アクチボラグ | 排気ガス流の処理のための排気処理システムおよび方法 |
US10920632B2 (en) | 2015-08-27 | 2021-02-16 | Scania Cv Ab | Method and exhaust treatment system for treatment of an exhaust gas stream |
US11007481B2 (en) | 2015-08-27 | 2021-05-18 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust gas stream |
EP3533979A1 (en) | 2018-03-02 | 2019-09-04 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification apparatus for internal combustion engine |
CN110219722A (zh) * | 2018-03-02 | 2019-09-10 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
KR20190104908A (ko) | 2018-03-02 | 2019-09-11 | 도요타 지도샤(주) | 내연 기관의 배기 정화 장치 |
US10487713B2 (en) | 2018-03-02 | 2019-11-26 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification apparatus for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4438828B2 (ja) | 内燃機関の排気浄化装置 | |
US7858060B2 (en) | Current storage estimation for selective catalytic reduction catalysts | |
JP3951774B2 (ja) | 内燃機関のNОx浄化装置 | |
US8161731B2 (en) | Selective catalytic reduction using controlled catalytic deactivation | |
GB2473999A (en) | Exhaust system for a lean burn ic engine | |
EP2460990B1 (en) | Exhaust gas purification device for internal combustion engine | |
JP2013241859A (ja) | 排気ガス浄化システム及び排気ガス浄化方法 | |
JP2013234639A (ja) | 排気ガス浄化システム及び排気ガス浄化方法 | |
JP2010096039A (ja) | 尿素水噴射量制御装置及び尿素水噴射制御システム | |
JP2007255345A (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP2017194022A (ja) | 排気浄化装置の制御装置 | |
JP5850166B2 (ja) | 内燃機関の排気浄化システム | |
JP2011196311A (ja) | 排気浄化方法及び排気浄化装置 | |
JP2015101968A (ja) | 内燃機関の排気浄化装置 | |
JP2019152137A (ja) | 内燃機関の排気浄化装置 | |
JP6149940B2 (ja) | 内燃機関の排気浄化装置 | |
WO2010087005A1 (ja) | 排気浄化装置 | |
JP2009097471A (ja) | 内燃機関の排気浄化システム | |
EP2977578B1 (en) | Exhaust purification device for internal combustion engine | |
JPWO2013121520A1 (ja) | 内燃機関の排気浄化装置 | |
JP5561059B2 (ja) | 内燃機関の排気浄化装置 | |
JP6147563B2 (ja) | 排気浄化システム及び排気浄化方法 | |
JP2011226402A (ja) | 排気浄化装置 | |
KR100587807B1 (ko) | 차량 배기계의 선택적 촉매장치의 제어 방법 | |
JP6241160B2 (ja) | 排ガス浄化システム、内燃機関、及び内燃機関の排ガス浄化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160517 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20160912 |