JPWO2013121520A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JPWO2013121520A1
JPWO2013121520A1 JP2013558612A JP2013558612A JPWO2013121520A1 JP WO2013121520 A1 JPWO2013121520 A1 JP WO2013121520A1 JP 2013558612 A JP2013558612 A JP 2013558612A JP 2013558612 A JP2013558612 A JP 2013558612A JP WO2013121520 A1 JPWO2013121520 A1 JP WO2013121520A1
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
purification catalyst
catalyst
exhaust purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013558612A
Other languages
English (en)
Other versions
JP5725214B2 (ja
Inventor
寿丈 梅本
寿丈 梅本
吉田 耕平
耕平 吉田
三樹男 井上
三樹男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013121520A1 publication Critical patent/JPWO2013121520A1/ja
Application granted granted Critical
Publication of JP5725214B2 publication Critical patent/JP5725214B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

内燃機関の排気浄化装置は、炭化水素供給弁と、排気ガスに含まれるNOXと改質された炭化水素とを反応させる排気浄化触媒とを備える。排気浄化触媒は、流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させるとNOXを還元する性質を有すると共に、炭化水素濃度の振動周期を予め定められた範囲よりも長くするとNOXの吸蔵量が増大する性質を有している。排気浄化触媒は、粒子状物質を捕集する隔壁部を有する。貴金属触媒および塩基性部が、隔壁部の表面に形成されているコート部に配置されており、流入側通路のコート部における酸化能力が流出側通路のコート部における酸化能力よりも高くなるように形成されている。

Description

本発明は、内燃機関の排気浄化装置に関する。
ディーゼルエンジンやガソリンエンジンなどの内燃機関の排気には、例えば、一酸化炭素(CO)、未燃の燃料である炭化水素(HC)、窒素酸化物(NO)または粒子状物質(PM:Particulate Matter)などの成分が含まれている。NOを浄化する装置としては、排気浄化触媒に還元剤を供給することにより排気に含まれるNOを連続的に還元する還元触媒、または排気ガスの空燃比がリーンのときにはNOを吸蔵し、排気ガスの空燃比をリッチにすることにより吸蔵したNOを放出すると共に還元するNO吸蔵触媒が知られている。
特開2003−166412号公報においては、粒子状物質を捕集する装置としてパティキュレートが開示されている。パティキュレートフィルタは、排気流入通路と排気流出通路を隔てる隔壁を有する。排気が隔壁を通るときに粒子状物質が捕集される。さらに、この公報には、排気流入通路および排気流出通路の周壁の表面上には担体が配置され、そして担体上には吸蔵還元型NO触媒が坦持されることが開示されている。このフィルタは、堆積する微粒子の量が増加したときに、フィルタにおける圧力損失が増大する過程を経た後にフィルタの圧力損失が上昇しなくなる特性を有することが開示されている。この公報の装置では、圧力損失の飽和後に堆積した微粒子を燃焼させて除去している。
特開平9−220440号公報においては、排ガス中のNOとHCとを反応させて窒素炭化水素化合物を生成し、次いで、窒素炭化水素化合物を触媒と接触させて還元する排気ガスの浄化方法が開示されている。この方法は第1工程および第2工程を含む。第1工程では、排ガス中のNOとHCとを反応させて窒素炭化水素化合物を生成する。この反応は、概念的にはHCのニトロ化などを行う。この反応では、HCとNOとが共存する場に熱や光などのエネルギーを供給してNOを酸化させたり、HCをラジカル化させてニトロ化させたりする。また、第2工程では、窒素炭化水素化合物を触媒と接触させることにより、窒素炭化水素化合物をHCと反応させて還元するとともにHC分を酸化する。この公報には、NOを窒素炭化水素化合物に変換してから触媒上で反応させることにより、NO浄化率が格段に向上することが開示されている。
特開2003−166412号公報 特開平9−220440号公報
上記の特開2003−166412号公報に開示されているパティキュレートフィルタは、吸蔵還元型NO触媒の機能を有する。すなわち、粒子状物質を捕集するとともに、NOを吸蔵し、NOを放出する時に還元することができる。ところが、このパティキュレートフィルタにおいては、パティキュレートフィルタの温度が高温になるとNOの浄化率が低下するという問題があった。また、特開平9−220440号公報においては、窒素炭化水素化合物を生成し、窒素炭化水素化合物を炭化水素と反応させて還元する方法が開示されている。この方法においては、排気ガスの流速が速い場合等に還元性中間体の反応時間が不十分になり、十分にNOを浄化することができないという問題があった。
本発明は、排気中の粒子状物質が除去可能であり、高温においても高いNO浄化率にてNOを浄化することができる内燃機関の排気浄化装置を提供することを目的とする。
本発明の内燃機関の排気浄化装置は、炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されている。排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有している。排気浄化装置は、機関運転時に排気浄化触媒に流入する炭化水素の濃度変化の振幅が該予め定められた範囲内の振幅となるように炭化水素供給弁からの炭化水素の供給量が制御されると共に、排気浄化触媒に流入する炭化水素の濃度が予め定められた範囲内の周期でもって振動するように炭化水素供給弁からの炭化水素の供給間隔が制御されるように形成されている。排気浄化触媒は、排気ガスが流入する流入側通路と、排気ガスが流出する流出側通路と、流入側通路と流出側通路とを隔てる隔壁部とを含み、隔壁部の内部を排気ガスが通ることにより排気ガスに含まれる粒子状物質を捕集する機能を有する。貴金属触媒および塩基性部は、隔壁部の表面に形成されているコート部に配置されており、流入側通路のコート部における酸化能力が流出側通路のコート部における酸化能力よりも高くなるように配置されている。
上記発明においては、排気浄化触媒は、流入側通路のコート部に塩基性部が配置されておらずに、流出側通路のコート部に塩基性部が配置されていることが好ましい。
上記発明においては、排気浄化触媒は、流入側通路のコート部および流出側通路のコート部に貴金属触媒および塩基性部が配置されており、流入側通路のコート部に配置されている塩基性部の単位体積あたりの重量は、流出側通路のコート部に配置されている塩基性部の単位体積あたりの重量よりも小さくなるように形成されていることが好ましい。
上記発明においては、排気浄化触媒は、上流側部分と下流側部分とを有し、上流側部分には酸素吸蔵能力を有する助触媒が配置されておらず、下流側部分に酸素吸蔵能力を有する助触媒が配置されていることが好ましい。
上記発明においては、炭化水素供給弁からの炭化水素の供給量が多くなる内燃機関の運転状態が予め定められており、炭化水素の供給量が多くなる内燃機関の運転状態から排気ガスの流速が減少する予め定められた運転状態に移行した場合に、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させることが好ましい。
上記発明においては、炭化水素の供給量が多くなる内燃機関の運転状態から排気ガスの流速が減少する予め定められた運転状態に移行した場合に、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給を禁止することが好ましい。
上記発明においては、排気浄化触媒に堆積する粒子状物質の堆積量および排気浄化触媒の温度を推定し、粒子状物質の堆積量が予め定められた堆積量判定値を超えており、更に、排気浄化触媒の温度が予め定められた触媒温度判定値を超えている場合には、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させることが好ましい。
上記発明においては、粒子状物質の堆積量が予め定められた堆積量判定値を超えており、更に、排気浄化触媒の温度が予め定められた触媒温度判定値を超えている場合には、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給を禁止することが好ましい。
本発明によれば、排気中の粒子状物質が除去可能であり、高温においても高いNO浄化率にてNOを浄化することができる内燃機関の排気浄化装置を提供することができる。
実施の形態における内燃機関の全体図である。 排気浄化触媒の触媒担体の表面部分を図解的に示す図である。 排気浄化触媒における炭化水素の酸化反応を説明する図である。 第1のNO浄化方法における排気浄化触媒に流入する排気ガスの空燃比の変化を示す図である。 第1のNO浄化方法におけるNO浄化率を示す図である。 第1のNO浄化方法における排気浄化触媒の酸化還元反応を説明する拡大図である。 第1のNO浄化方法における還元性中間体の生成を説明する拡大図である。 第2のNO浄化方法における排気浄化触媒のNOの吸蔵を説明する拡大図である。 第2のNO浄化方法における排気浄化触媒のNOの放出および還元を説明する拡大図である。 第2のNO浄化方法における排気浄化触媒に流入する排気ガスの空燃比の変化を示す図である。 第2のNO浄化方法におけるNO浄化率を示す図である。 第1のNO浄化方法における排気浄化触媒に流入する排気ガスの空燃比の変化を示すタイムチャートである。 第1のNO浄化方法における排気浄化触媒に流入する排気ガスの空燃比の変化を示す他のタイムチャートである。 第1のNO浄化方法における排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。 第1のNO浄化方法において、同一のNO浄化率の得られる排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。 第1のNO浄化方法における炭化水素濃度の振幅ΔHとNO浄化率との関係を示す図である。 第1のNO浄化方法における炭化水素濃度の振動周期ΔTとNO浄化率との関係を示す図である。 第1のNO浄化方法における炭化水素の噴射時間のマップを示す図である。 第1のNO浄化方法における炭化水素の供給間隔のマップを示す図である。 第2のNO浄化方法における排気浄化触媒に流入する排気ガスの空燃比の変化等を示す図である。 機関本体から機関排気通路に排出されるNO量NOXAのマップを示す図である。 燃焼室において補助噴射を行うときの燃料噴射時期を示す図である。 補助噴射を行うときの炭化水素供給量WRのマップを示す図である。 内燃機関の運転状態に基づいたNO浄化方法の領域を説明するグラフである。 実施の形態における排気浄化触媒を排気ガスが流入する側から見たときの正面図である。 実施の形態における排気浄化触媒の概略断面図である。 実施の形態における排気浄化触媒の出口近傍の拡大概略断面図である。 実施の形態における第1の排気浄化触媒の流入側通路における触媒担体の表面の拡大概略断面図である。 実施の形態における第2の排気浄化触媒の概略図である。 実施の形態における第2の排気浄化触媒の下流側部分における触媒担体の表面の拡大概略断面図である。 実施の形態における排気浄化装置の第1の運転制御のフローチャートである。 実施の形態における排気浄化装置の第2の運転制御のフローチャートである。
図1から図29を参照して、実施の形態における内燃機関の排気浄化装置について説明する。本実施の形態においては、車両に取り付けられている圧縮着火式の内燃機関を例に取り上げて説明する。
図1は、本実施の形態における内燃機関の全体図である。内燃機関は、機関本体1を備える。また、内燃機関は、排気を浄化する排気浄化装置を備える。機関本体1は、各気筒としての燃焼室2と、それぞれの燃焼室2に燃料を噴射するための電子制御式の燃料噴射弁3と、吸気マニホールド4と、排気マニホールド5とを含む。
吸気マニホールド4は、吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結されている。コンプレッサ7aの入口は、吸入空気量検出器8を介してエアクリーナ9に連結されている。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置されている。更に、吸気ダクト6の途中には、吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置されている。図1に示される実施例では、機関冷却水が冷却装置11に導かれている。機関冷却水によって吸入空気が冷却される。
一方、排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結されている。排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結されている。
排気浄化触媒13上流には圧縮着火式内燃機関の燃料として用いられる軽油、又は、その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置されている。本実施の形態においては、炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明は、燃焼時の空燃比がリーンに制御される火花点火式の内燃機関にも適用することができる。この場合、炭化水素供給弁からは火花点火式の内燃機関の燃料として用いられるガソリン又は、その他の燃料からなる炭化水素が供給される。
排気マニホールド5と吸気マニホールド4との間には、排気再循環(EGR)を行うためにEGR通路16が配置されている。EGR通路16には電子制御式のEGR制御弁17が配置されている。また、EGR通路16の途中にはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置されている。図1に示される実施例では機関冷却水が冷却装置18内に導かれている。機関冷却水によってEGRガスが冷却される。
それぞれの燃料噴射弁3は、燃料供給管19を介してコモンレール20に連結されている。コモンレール20は、電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結されている。燃料タンク22に貯蔵される燃料は、燃料ポンプ21によってコモンレール20内に供給される。コモンレール20内に供給された燃料は、それぞれの燃料供給管19を介して燃料噴射弁3に供給される。
電子制御ユニット30は、デジタルコンピュータからなる。本実施の形態における電子制御ユニット30は、排気浄化装置の制御装置として機能する。電子制御ユニット30は、双方性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を含む。
排気浄化触媒13の下流には排気浄化触媒13の温度を検出するための温度センサ23が取付けられている。これらの温度センサ23および吸入空気量検出器8の出力信号は、夫々対応するAD変換器37を介して入力ポート35に入力される。
また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続されている。負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。クランク角センサ42の出力により、クランク角度や機関回転数を検出することができる。一方、出力ポート36は、対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続されている。これらの燃料噴射弁3、スロットル弁10、炭化水素供給弁15およびEGR制御弁17等は、電子制御ユニット30により制御されている。
本実施の形態における排気浄化触媒13は、NOを浄化する機能と排気ガスに含まれる粒子状物質を捕集する機能とを有する。始めに排気浄化触媒13のNOを浄化する機能について説明する。
図2は、排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には触媒粒子である貴金属触媒51,52が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性部53が形成されている。排気ガスは触媒担体50上に沿って流れるので貴金属触媒51,52は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性部53の表面は塩基性を呈するので塩基性部53の表面は塩基性の排気ガス流通表面部分54と称される。
一方、図2において貴金属触媒51は白金Ptからなり、貴金属触媒52はロジウムRhからなる。なおこの場合、いずれの貴金属触媒51,52も白金Ptから構成することができる。また、排気浄化触媒13の触媒担体50上には白金PtおよびロジウムRhに加えて更にパラジウムPdを担持させることができるし、或いはロジウムRhに代えてパラジウムPdを担持させることができる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金Pt、ロジウムRhおよびパラジウムPdの少なくとも一つにより構成される。
炭化水素供給弁15から排気ガス中に炭化水素が噴射されると、この炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13に流入する排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒13によるNO浄化率を排気浄化触媒13の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNO浄化に関する研究を重ねており、その研究課程において、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNO浄化率が得られることが判明したのである。
更に、このときには窒素および炭化水素を含む多量の還元性中間体が塩基性部53の表面上に、即ち排気浄化触媒13の塩基性の排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NO浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび図6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび図6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させたときに生ずると推測される反応が示されている。
図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。このとき排気ガス中に含まれるNOの一部は排気浄化触媒13上に付着し、排気ガス中に含まれるNOの一部は図6Aに示されるように白金の貴金属触媒51上において酸化されてNO2となり、次いでこのNO2は更に酸化されてNO3となる。また、NO2の一部はNO2 -となる。従って白金Ptの貴金属触媒51上にはNO2 - とNO3とが生成されることになる。排気浄化触媒13上に付着しているNOおよび白金Ptの貴金属触媒51上において生成されたNO2 -とNO3は活性が強く、従って以下これらNO、NO2 -およびNO3を活性NOと称する。
一方、炭化水素供給弁15から炭化水素が供給されるとこの炭化水素は排気浄化触媒13の全体に亘って吸着する。これら吸着した炭化水素の大部分は順次酸素と反応して燃焼せしめられ、吸着した炭化水素の一部は順次、図3に示されるように排気浄化触媒13内において改質されてラジカルになる。従って、図6Bに示されるように活性NO周りの炭化水素濃度が高くなる。ところで活性NOが生成された後、活性NO周りの酸素濃度が高い状態が一定時間以上継続すると活性NOは酸化され、硝酸イオンNO3 -の形で塩基性部53内に吸収される。しかしながらこの一定時間が経過する前に活性NO周りの炭化水素濃度が高くされると図6Bに示されるように活性NOは白金の貴金属触媒51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性部53の表面上に保持又は吸着される。
なお、このとき最初に生成される還元性中間体はニトロ化合物R−NO2であると考えられる。このニトロ化合物R−NO2は生成されるとニトリル化合物R−CNとなるがこのニトリル化合物R−CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R−NCOとなる。このイソシアネート化合物R−NCOは加水分解するとアミン化合物R−NH2となる。ただしこの場合、加水分解されるのはイソシアネート化合物R−NCOの一部であると考えられる。従って図6Bに示されるように塩基性部53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R−NCOおよびアミン化合物R−NH2であると考えられる。
一方、図6Bに示されるように生成された還元性中間体の周りに炭化水素HCが吸着しているときには還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下し、次いで還元性中間体の周りに吸着している炭化水素が酸化せしめられて消滅し、それにより還元性中間体周りの酸素濃度が高くなると、還元性中間体は図6Aに示されるように活性NOと反応するか、周囲の酸素と反応するか、或いは自己分解する。それによって還元性中間体R−NCOやR−NH2はN2,CO2,H2Oに変換せしめられ、斯くしてNOが浄化されることになる。
このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低下させた後、酸素濃度が高くなったときに還元性中間体が活性NOや酸素と反応し、或いは自己分解し、それによりNOが浄化される。即ち、排気浄化触媒13によりNOを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NOや酸素と反応させ、或いは自己分解させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体R−NCOやR−NH2が活性NOや酸素と反応するまで、或いは自己分解するまでこれら還元性中間体を塩基性部53上に、即ち塩基性の排気ガス流通表面部分54上に保持しておかなければならず、そのために塩基性の排気ガス流通表面部分54が設けられている。
一方、炭化水素の供給間隔を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NOは還元性中間体を生成することなく硝酸塩の形で塩基性部53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
そこで本発明による実施例では、排気ガス中に含まれるNOと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R−NCOやR−NH2を生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されており、生成された還元性中間体R−NCOやR−NH2を排気浄化触媒13内に保持しておくために貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R−NCOやR−NH2はN2,CO2,H2Oに変換せしめられ、炭化水素濃度の振動周期は還元性中間体R−NCOやR−NH2を生成し続けるのに必要な振動周期とされる。因みに図4に示される例では供給間隔が3秒とされている。
炭化水素濃度の振動周期、即ち炭化水素HCの供給間隔を上述の予め定められた範囲内の周期よりも長くすると塩基性部53の表面上から還元性中間体R−NCOやR−NH2が消滅し、このとき白金Ptの貴金属触媒51上において生成された活性NOは図7Aに示されるように硝酸イオンNO3 -の形で塩基性部53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOは硝酸塩の形で塩基性部53内に吸収されることになる。
一方、図7BはこのようにNOが硝酸塩の形で塩基性部53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして塩基性部53内に吸収されている硝酸塩は順次硝酸イオンNO3 -となって図7Bに示されるようにNO2の形で塩基性部53から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
図8は塩基性部53のNO吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性部53内に吸収されたNOは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性部53から一気に放出されて還元される。従ってこの場合には塩基性部53はNOを一時的に吸収するための吸収剤の役目を果している。
なお、このとき塩基性部53がNOを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性部53はNOを一時的に吸蔵するためのNO吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された排気ガスの空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOを放出するNO吸蔵触媒として機能している。
図9は、排気浄化触媒13をこのようにNO吸蔵触媒として機能させたときのNO浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をNO吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNO浄化率が得られるが触媒温度TCが400℃以上の高温になるとNO浄化率が低下する。
このように触媒温度TCが400℃以上になるとNO浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNO2の形で排気浄化触媒13から放出されるからである。即ち、NOを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNO浄化率を得るのは困難である。しかしながら図4から図6A、図6Bに示される新たなNO浄化方法では図6A、図6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNO浄化率が得られることになる。
そこで本発明では、炭化水素を供給するための炭化水素供給弁15を機関排気通路内に配置し、炭化水素供給弁15下流の機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されていると共に貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOを排気浄化触媒13において還元するようにしている。
即ち、図4から図6A、図6Bに示されるNO浄化方法は、貴金属触媒を担持しかつNOを吸収しうる塩基性部を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOを浄化するようにした新たなNO浄化方法であると言うことができる。実際、この新たなNO浄化方法を用いた場合には排気浄化触媒13をNO吸蔵触媒として機能させた場合に比べて、塩基性部53から検出される硝酸塩は極く微量である。なお、この新たなNO浄化方法を以下、第1のNO浄化方法と称する。
次に図10から図15を参照しつつこの第1のNO浄化方法についてもう少し詳細に説明する。
図10は、図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したように、この排気浄化触媒13に流入する排気ガスの空燃比(A/F)inの変化は同時に排気浄化触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは排気浄化触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気浄化触媒13に流入する炭化水素濃度の振動周期を示している。
更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気浄化触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NOが硝酸塩の形で塩基性部53内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NOと改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。
別の言い方をすると図10のXは活性NOと改質された炭化水素とを反応させて還元性中間体を生成させるのに必要な炭化水素の濃度の下限を表しており、還元性中間体を生成するためには炭化水素の濃度をこの下限Xよりも高くする必要がある。この場合、還元性中間体が生成されるか否かは活性NO周りの酸素濃度と炭化水素濃度との比率、即ち空燃比(A/F)inで決まり、還元性中間体を生成するのに必要な上述の空燃比の上限Xを以下、要求最小空燃比と称する。
図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒13の酸化力による。この場合、排気浄化触媒13は例えば貴金属触媒51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒13の酸化力は貴金属触媒51の担持量や酸性の強さによって変化することになる。
さて、酸化力が強い排気浄化触媒13を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに一部の炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒13を用いた場合には要求最小空燃比Xはリッチにする必要がある。
一方、酸化力が弱い排気浄化触媒13を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、一部の炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒13から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒13を用いた場合には要求最小空燃比Xはリーンにする必要がある。
即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒13の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒13の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、排気浄化触媒13に流入する炭化水素の濃度変化の振幅や排気浄化触媒13に流入する炭化水素濃度の振動周期について説明する。
さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴って還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
図13は同一のNO浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNO浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNO浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔHを増大させることが必要となる。別の言い方をすると、NOを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔHを減少させることができる。
ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNO浄化率を得ることができることになる。
一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNO浄化率が得られることがわかっている。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間において、活性NO周りの酸素濃度が高くなる期間が長くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NOが硝酸塩の形で塩基性部53内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNO浄化率が低下することになる。従って炭化水素濃度の振動周期ΔTは5秒以下とする必要がある。
一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNO浄化率が低下する。そこで本発明では炭化水素濃度の振動周期が0.3秒から5秒の間とされている。
さて、本発明による実施例では、炭化水素供給弁15からの炭化水素の供給量および供給間隔を変化させることによって炭化水素濃度の振幅ΔHおよび振動周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、本発明による実施例ではこの最適な炭化水素濃度の振幅ΔHを得ることのできる炭化水素の供給量WTが燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図16Aに示すようなマップの形で予めROM32内に記憶されている。また、最適な炭化水素濃度の振動周期ΔT、即ち炭化水素の供給間隔ΔTも燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図16Bに示すようなマップの形で予めROM32内に記憶されている。
次に図17から図20を参照しつつ排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法について具体的に説明する。このように排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法を以下、第2のNO浄化方法と称する。
この第2のNO浄化方法では図17に示されるように塩基性部53に吸蔵された吸蔵NO量ΣNOが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると排気ガスの空燃比(A/F)inがリーンのときに塩基性部53内に吸蔵されたNOが塩基性部53から一気に放出されて還元される。それによってNOが浄化される。
吸蔵NO量ΣNOは例えば機関から排出されるNO量から算出される。本発明による実施例では機関から単位時間当り排出される排出NO量NOXAが燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として、図18に示すようなマップの形で予めROM32内に記憶されており、この排出NO量NOXAから吸蔵NO量ΣNOが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
この第2のNO浄化方法では図19に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料としての主噴射の噴射量Qに加え、補助噴射としての追加の燃料を噴射量WRにて噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図19の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC90°の少し手前で噴射される。補助噴射の噴射量WRは、燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図20に示すようなマップの形で予めROM32内に記憶されている。無論、この場合に炭化水素供給弁15からの炭化水素の供給量を増大させることによって排気ガスの空燃比(A/F)inをリッチにすることもできる。
図21に、本実施の形態の排気浄化装置のNOの浄化方法を説明するグラフを示す。横軸は機関回転数Nであり、縦軸は燃料噴射弁3からの燃料の噴射量Qに対応する負荷Lである。図21は、本実施の形態における排気浄化装置の基本的なNO浄化方法を説明する図である。
本実施の形態の排気浄化装置では、機関回転数および負荷に基づいて、第1のNO浄化方法を実施する領域および第2のNO浄化方法を実施する領域が定められている。第1のNO浄化方法にて高い浄化率にてNOの浄化を行なうためには、排気浄化触媒13が活性化していることが好ましい。即ち、排気浄化触媒13に流入するNOからの活性NOの生成、炭化水素の部分酸化、および還元性中間体の生成等を十分に行なうためには、排気浄化触媒13が活性化していることが好ましい。排気浄化触媒13の温度が低い領域のNOの浄化率は、第2のNO浄化方法の方が第1のNO浄化方法よりも高くなる。排気浄化触媒13の温度が低い領域においては、排気浄化触媒13が十分に活性化していないために、NOの吸蔵により排気ガス中からNOを除去することが好ましい。
本実施の形態の排気浄化装置においては、負荷が小さく、更に機関回転数の小さな領域においては第2のNO浄化方法を採用し、その他の領域においては、第1のNO浄化方法を採用している。このように、第1のNO浄化方法および第2のNO浄化方法のうちNOの浄化率が高くなるNO浄化方法を、内燃機関の運転状態に応じて選択することができる。
次に、排気浄化触媒13の粒子状物質を除去する機能について説明する。本実施の形態における排気浄化触媒13は、パティキュレートフィルタにNOを浄化するための貴金属触媒および塩基性部が形成されている構造を有する。
図22に、本実施の形態における排気浄化触媒の概略正面図を示す。図23に、本実施の形態における排気浄化触媒を通路の延びる方向に沿って切断した時の概略断面図を示す。本実施の形態における排気浄化触媒13は、NOを浄化する機能に加えて粒子状物質を捕集するパティキュレートフィルタとしての機能を有する。本実施の形態における排気浄化触媒13は、排気ガスに含まれる炭素微粒子等の粒子状物質を除去する。
本実施の形態における排気浄化触媒13は、ハニカム構造を有する。排気浄化触媒13は、排気ガスの流れ方向に沿って延びる複数の流入側通路60と流出側通路61とを有する。流入側通路60は、排気ガスが排気浄化触媒13に流入する通路である。流出側通路61は、排気ガスが排気浄化触媒13から流出する通路である。流入側通路60は、下流端が栓62により閉塞されている。流出側通路61は、上流端が栓63により閉塞されている。図22においては、栓63の部分に斜線を付している。排気浄化触媒13の基材は、隔壁部64を含む。流入側通路60および流出側通路61は、隔壁部64にて隔てられている。従って、隔壁部64の表面は、流入側通路60の壁面および流出側通路61の壁面を構成する。
排気浄化触媒13の基材は、例えばコージライトのような多孔質材料から形成されている。流入側通路60は、隔壁部64を介して流出側通路61に囲まれている。流入側通路60に流入した排気ガスは、矢印200に示すように、隔壁部64の内部を通って隣接する流出側通路61に流出する。排気ガスが隔壁部64を通過するときに粒子状物質が捕捉される。排気ガスは、流出側通路61を通って排気浄化触媒13から流出する。排気浄化触媒13に捕集された粒子状物質は堆積する。
図1を参照して、本実施の形態における排気浄化触媒13には、排気浄化触媒13の前後差圧を検出するための差圧センサ24が取付けられている。差圧センサ24の出力信号は、対応するAD変換器37を介して入力ポート35に入力される。排気浄化触媒13に蓄積する粒子状物質の堆積量は、たとえば差圧センサ24の出力により推定することができる。排気浄化触媒13の前後差圧が予め定められた判定値に到達したときに、粒子状物質の堆積量が許容値に到達したと判別することができる。粒子状物質の堆積量が許容値に到達した場合には、空気過剰の雰囲気中で昇温することにより粒子状物質を除去する再生制御を行うことができる。
図24に、実施の形態における排気浄化触媒の拡大概略断面図を示す。図24は、排気浄化触媒の出口近傍における拡大概略断面図である。本実施の形態における排気浄化触媒13は、流入側通路60の壁面にコート部65が形成されている。すなわち、隔壁部64の流入側通路60の側の表面にコート部65が形成されている。また、流出側通路61の壁面にコート部66が形成されている。すなわち、隔壁部64の流出側通路61の側の表面にコート部66が形成されている。ここで、コート部65,66は、隔壁部64の表面部分のみではなく、隔壁部64の内部に形成されていても構わない。
本実施の形態の第1の排気浄化触媒において、流入側通路60に配置されているコート部65および流出側通路61に配置されているコート部66は、触媒担体50を含む。触媒担体50には、貴金属触媒51,52および塩基性部53が担持されている。
流出側通路61の壁面に配置されているコート部66は、図2に示すように、貴金属触媒51,52と塩基性部53とを有する。貴金属触媒51,52と塩基性部53とは、互いに近接して配置されている。
図25に、第1の排気浄化触媒の流入側通路のコート部の触媒担体の表面の拡大概略断面図を示す。流入側通路60に配置されているコート部65にも貴金属触媒51,52および塩基性部53が配置されている。流入側通路60に配置されている塩基性部53の密度は、流出側通路61に配置されている塩基性部53の密度よりも小さくなるように形成されている。
図24を参照して、内燃機関の運転を継続すると流入側通路60には粒子状物質68が堆積する。粒子状物質68は、コート部65に配置されている貴金属触媒51,52の触媒作用により酸化が促進される。酸化されなかった粒子状物質68は、流入側通路60の内部に堆積する。粒子状物質68の堆積量が予め定められた許容値を超えた場合には、粒子状物質68を除去する再生制御を行う。
一方で、排気浄化触媒13に流入する排気に含まれるNOは、第1のNO浄化方法または第2のNO浄化方法により浄化することができる。本実施の形態における第1の排気浄化触媒13は、流入側通路60の壁面および流出側通路61の壁面の両方に、貴金属触媒51,52および塩基性部53を含むコート部65,66が形成されている。排気ガスが流入側通路60および流出側通路61を流通するときに、NOの浄化を行なうことができる。または、排気ガスが隔壁部64を貫通するときにNOが浄化される。
本実施の形態における排気浄化触媒13は、排気ガスが隔壁部64内部を流通するウォールフロー型の排気浄化触媒である。排気ガスが隔壁部64を貫通するために、排気浄化触媒の内部における排気ガスの経路を長くすることができる。排気浄化触媒13における経路が長くなるために、排気ガスが排気浄化触媒13内を流れるときの流速が遅くなる。このために、排気に含まれるNOと触媒との反応時間またはNOと還元性中間体等との反応時間等を長くすることができる。
更には、排気浄化触媒13の内部を流れる排気ガスの流速が遅くなるために、通路の内部において排気ガスが拡散しやすくなり、反応が生じやすくなる。このために、NOの浄化率を向上させることができる。または、同一のNO浄化率を得る場合には、コート部の厚さを薄くすることができる。更に、コート部の厚さを薄くすると、排気ガスの通路の流路断面積が大きくなるために流速を更に低くすることができる。
特に、第1のNO浄化方法を行う場合に生成される還元性中間体には、NOとの反応時間が比較的長いものがある。排気ガスが隔壁部を貫通しないで通路を直進する排気浄化触媒においては、排気ガスに含まれるNOと還元性中間体との接触時間が短くなる。これに対して、本実施の形態の排気浄化触媒は、NOと還元性中間体との接触時間を長くすることができて、NOの浄化率を向上させることができる。このために、排気ガスの流速が高い内燃機関の運転状態、すなわち、排気浄化触媒における空間速度が高い内燃機関の運転状態においても、高いNOの浄化率を得ることができる。例えば、負荷が高く機関回転数が高い運転状態においても、高いNO浄化率にてNOを浄化することができる。
一方で、排気浄化触媒13における空間速度が小さくなる内燃機関の運転状態では、炭化水素供給弁15から供給される炭化水素の供給量が制限される場合がある。例えば、燃費の悪化を抑制するために、燃焼室2に噴射する燃料の噴射量に基づいて炭化水素供給弁からの炭化水素の供給量が制限される場合がある。すなわち、燃焼室に噴射する燃料の量に対して所定の割合未満になるように、炭化水素供給弁からの炭化水素の供給量が制限される場合がある。この結果、炭化水素供給弁15からの炭化水素の供給量が少なくなる。
排気浄化触媒13における空間速度が小さくなる内燃機関の運転状態としては、機関回転数が低い状態を維持して定速運転を行っている場合やアイドリングの運転状態を例示することができる。
このような炭化水素供給弁15からの炭化水素の供給量が制限される運転状態では、排気浄化触媒13に流入する排気ガスの炭化水素の濃度の振幅が小さくなり、NOの浄化率が低下する。しかしながら、本実施の形態における排気浄化触媒においては、反応時間を長くすることができるために、NOの浄化率の低下を抑制することができる。
また、第1のNO浄化方法によるNO浄化が行なわれているときに、炭化水素供給弁15から炭化水素が供給されると、炭化水素が排気浄化触媒に吸着する。排気浄化触媒13に吸着した炭化水素は、前述のように活性NOと反応して還元性中間体が生成される。第1のNO浄化方法にてNOを良好に浄化するためには、できるだけ多くの還元性中間体を生成することが好ましい。還元性中間体はラジカル状の炭化水素から生成され、ラジカル状の炭化水素は排気浄化触媒に吸着した炭化水素から生成される。このために、還元性中間体の生成量を増大させるには、多くの炭化水素を排気浄化触媒13に吸着させることが好ましい。
本実施の形態の排気浄化触媒は、流入側通路の端部が閉塞されており、排気ガスは隔壁部を通過する。このために本実施の形態における排気浄化触媒13は、炭化水素を吸着する能力が高いという特性を有する。排気浄化触媒13は、炭化水素供給弁15から炭化水素が供給されたときに、多くの炭化水素を吸着により保持することができる。このために、たとえば排気浄化触媒に流入する排気ガスの炭化水素の濃度の振幅が小さくなっても、NOの浄化率の低下を抑制することができる。
このように、本実施の形態の排気浄化触媒においては、排気ガスの空間速度が低くなる運転状態や空間速度が高くなる運転状態においてもNOの浄化率の低下を抑制することができる。
図2および図25を参照して、本実施の形態の第1の排気浄化触媒13は、流入側通路60の壁面に配置されているコート部65の構成と、流出側通路61の壁面に配置されているコート部66の構成とが互いに異なる。第1の排気浄化触媒13は、流入側通路60のコート部65の単位体積あたりの塩基性部53の重量が、流出側通路61のコート部66の単位体積あたりの塩基性部53の重量よりも小さくなるように形成されている。流入側通路60のコート部65の塩基性部53は、流出側通路61のコート部65の塩基性部53よりも、貴金属触媒51,52から離れて配置されている。
図24を参照して、粒子状物質68は流入側通路60に堆積され、更に酸化により燃焼される。このときに、貴金属触媒51の触媒作用により、粒子状物質68の酸化が促進される。ところが、貴金属触媒51の近傍に多くの塩基性部53が配置されていると、貴金属触媒51による酸化の触媒作用が低下してしまう。
本実施の形態の第1の排気浄化触媒13においては、流出側通路61のコート部65における塩基性部53の密度よりも流入側通路60のコート部66における塩基性部53の密度を小さくしている。コート部における塩基性部の単位体積あたりの重量を小さくすることにより、コート部における塩基性を小さくすることができる。流入側通路60のコート部66における塩基性は、流出側通路61のコート部65における塩基性よりも弱くなる。この結果、流入側通路60のコート部65における酸化能力が流出側通路61のコート部66における酸化能力よりも高くなる。流入側通路60のコート部65における貴金属触媒51の酸化能力の低下を抑制している。流入側通路60においては、貴金属触媒51による酸化機能を高く維持することができて、粒子状物質を好適に酸化することができる。
一方で、流出側通路61においては、第1のNO浄化方法においてNOを活性化する場合に、流入側通路60において粒子状物質を酸化するための酸化機能よりも低い酸化機能にてNOを活性化したり炭化水素をラジカル化したりすることができる。第1のNO浄化方法においては、塩基性部53は活性NOを保持したり還元性中間体を保持したりする機能を有する。また、第2のNO浄化方法においては、塩基性部53は、内部にNOを吸蔵する機能を有する。このために、主にNOを浄化する流出側通路61のコート部66においては、単位体積あたりの塩基性部53の重量を大きくすることが好ましい。たとえば、流入側通路60のコート部65よりも高密度で塩基性部53を配置することが好ましい。この構成により、コート部66の塩基性が強くなり、第1のNO浄化方法において活性NO等の保持力を大きくすることができて、NOの浄化率を高くすることができる。
このように、排気浄化触媒の貴金属触媒および塩基性部は、流入側通路のコート部の塩基性が流出側通路のコート部の塩基性よりも弱くなるように配置されていることが好ましい。この構成により、流入側通路においては、貴金属触媒の酸化能力の低下を抑制して粒子状物質を効率よく酸化することができる。また流出側通路において効率良くNOを浄化することができる。
流入側通路60のコート部65における酸化能力が流出側通路61のコート部66における酸化能力よりも高くなる構成としては、上記に限られず、たとえば、流入側通路60のコート部65における単位体積あたりの貴金属触媒の担持量を、流出側通路61のコート部66における単位体積あたりの貴金属触媒の担持量よりも多くしても構わない。
次に、本実施の形態における第1の排気浄化触媒の製造方法について説明する。流入側通路60におけるコート部65の構成と、流出側通路61におけるコート部66の構成とを互いに異なる構成にするための製造方法としては、例えば、粉担持法を採用することができる。粉担持法は、触媒担体を基体に配置する前に予め触媒担体に塩基性部を形成しておく方法である。
例えば、塩基性部がバリウムから構成されている排気浄化触媒を製造するための粉担持法では、酢酸バリウムを蒸留水に溶かして触媒担体であるアルミナの粉末と攪拌する。その後に、触媒担体を乾燥および固化し、さらに焼成することによりバリウムの塩基性部が形成された触媒担体を形成することができる。
このような触媒担体を予め製造し、触媒担体を含むペースト状の液体を基材の流入側の開口部または流出側の開口部のうち一方から流し込んで他方から吸引する。流入側通路または流出側通路の壁面全体に触媒担体を配置してコート部を形成することができる。この粉担持法においては、予め製造する触媒担体に担持させる塩基性部の量を任意に変更することができる。流入側通路の壁面と流出側通路の壁面とに個別にコート部を形成することにより、流入側通路におけるコート部の構成と、流出側通路におけるコート部との構成とを互いに異なるものにすることができる。また、隔壁の表面部分のみにコート部を形成することができる。更に、粉担持法を採用することにより、塩基性部を高密度で担持することができる。
本実施の形態における第1の排気浄化触媒は、流入側通路のコート部および流出側通路のコート部に塩基性部が配置されているが、この形態に限られず、流入側通路のコート部に塩基性部が配置されておらずに、流出側通路のコート部に塩基性部が配置されていても構わない。すなわち、流入側通路のコート部における塩基性部の担持量を零にして、流出側通路のコート部においては塩基性部を形成しても構わない。この構成によっても、流入側通路のコート部における塩基性を流出側通路のコート部における塩基性よりも弱くすることができる。または、流入側通路のコート部における酸化能力を流出側通路のコート部における酸化能力よりも高くすることができる。
本実施の形態における第1の排気浄化触媒は、流入側通路のコート部と流出側通路のコート部とで、塩基性部の単位体積あたりの重量が異なるが、この形態に限られず、流入側通路のコート部の構成と流出側通路のコート部の構成とを互いに同一にしても構わない。この排気浄化触媒においても、排気浄化触媒の内部における排気ガスの流速を遅くすることができて、NOの浄化率の向上を図ることができる。この排気浄化触媒は、上記の粉担持法のほかに、コート部を事前に基体に配置した後に、バリウム等の溶液に基体を浸す吸水担持にて製造することもできる。
なお、従来技術においてもパティキュレートフィルタに貴金属触媒と塩基性部とを担持したNOを浄化するためのNO吸蔵触媒が知られている。NO吸蔵触媒は、本実施の形態における第2のNO浄化方法のみを行う装置である。パティキュレートフィルタの機能を有するNO吸蔵触媒は、NOを多量に吸蔵することができるように、塩基性部を多く配置することが好ましい。ところが、排気浄化触媒の通路に多量の吸蔵剤を配置すると、貴金属触媒の酸化性能が低下する。また、NO吸蔵触媒における圧力損失が大きくなり、背圧が上昇する。このために、多くの塩基性部を配置することが難しいという問題がある。
これに対して、本実施の形態の第1のNO浄化方法においては、NO吸蔵触媒よりも弱い酸化能力にてNOの浄化を行なうことができる。このために、第1のNO浄化方法を行う排気浄化触媒においては、貴金属触媒の近傍に塩基性部を高密度で担持させることができる。
本実施の形態においては、隔壁部64の表面にコート部65,66が形成されているが、この形態に限られず、隔壁部64の内部にも塩基性部および貴金属触媒が配置されていても構わない。この場合には、排気ガスが流入側通路を通る時および流出側通路を通る時に加えて、隔壁部64の内部を通る時にもNOを浄化することができる。
図26に、本実施の形態における第2の排気浄化触媒の概略図を示す。排気ガスは、矢印201に示すように排気浄化触媒13に流入し、矢印202に示すように排気浄化触媒13から流出する。第2の排気浄化触媒13は、排気ガスの通路の延びる方向に沿って上流側部分と下流側部分とが定められている。図26に示す例においては、排気浄化触媒の通路が延びる方向のほぼ中央において領域が分割されている。本実施の形態の第2の排気浄化触媒13は、下流側部分に酸素吸蔵能力を有する助触媒が担持されている。
図27に、本実施の形態における第2の排気浄化触媒の下流側部分に配置されている触媒担体の表面の拡大概略断面図を示す。下流側部分においては、触媒担体50の表面に貴金属触媒51,52に加えて、酸素吸蔵能力を有する助触媒55が配置さている。本実施の形態においては、流入側通路60のコート部65および流出側通路61のコート部66の両方に助触媒55が配置されているが、この形態に限られず、流入側通路のコート部および流出側通路のコート部の少なくとも一方に助触媒を配置することができる。
本実施の形態における助触媒55は、酸化セリウム(セリア)の金属粒子から構成されている。助触媒55は、酸素が過剰の雰囲気中で酸素を保持し、酸素が不足する雰囲気中では酸素を放出する。酸素吸蔵能力を有する助触媒55が配置されていることにより、排気ガスの酸素濃度が大きな場合には、排気ガスに含まれる酸素を保持して、排気ガスの酸素濃度が小さくなったときに酸素を供給することができる。
本実施の形態の排気浄化触媒において第1のNO浄化方法を行なうと、流入する炭化水素を部分酸化して、ラジカル状の炭化水素が生成される。ところが、排気ガスに含まれる炭化水素の一部分は、更に酸化されて一酸化炭素COになる場合がある。本実施の形態の排気浄化触媒13は、前述のとおり排気ガスが隔壁部64を通過し、反応時間を長くすることができる。ところが、反応時間が長いために炭化水素の酸化が進んで、部分酸化で反応が停止せずに、一酸化炭素まで酸化される場合がある。
本実施の形態の第2の排気浄化触媒13においては、排気浄化触媒の内部で一酸化炭素が生成された場合においても、下流側部分において酸素を供給することにより一酸化炭素を酸化することができる。一酸化炭素を二酸化炭素まで更に酸化することができる。二酸化炭素の状態にて排気浄化触媒13から流出させることができる。
特に、炭化水素供給弁15から炭化水素を供給したときに、排気浄化触媒13の内部において局所的に酸素不足の状態になり、かつ触媒温度が高温で活性の高い状態では、炭化水素の酸化反応が進んで一酸化炭素の生成量が増加する場合がある。しかしながら下流側部分において、助触媒55から酸素が供給されて、一酸化炭素を二酸化炭素に変換することができる。このために、排気浄化触媒13から一酸化炭素が流出することを抑制することができる。
ところで、上流側部分に酸素吸蔵能力を有する助触媒が配置されていると、炭化水素を供給したときに助触媒から酸素が供給されて炭化水素濃度の振幅が小さくなる。このために、還元性中間体の生成が抑制される場合がある。本実施の形態の第2の排気浄化触媒では、上流側部分には酸素吸蔵能力を有する助触媒が配置されていない。このために、上流側部分においては、炭化水素濃度の振幅を大きくすることができて、還元性中間体を効率よく生成することができる。
本実施の形態の第2の排気浄化触媒においては、通路の延びる方向において基体をほぼ等分割することにより上流側部分と下流側部分とを設定しているが、この形態に限られず、この形態に限られず、上流側部分と下流側部分との境界は任意の位置に設定することができる。
次に、本実施の形態における内燃機関の排気浄化装置の運転制御について説明する。本実施の形態の排気浄化触媒は、パティキュレートフィルタとNO吸蔵触媒とが一体化されている構成を有する。このために、所定の運転状態においては、排気浄化触媒の温度が上昇して過温になる虞がある。すなわち、所定の運転状態においては、排気浄化触媒の温度が許容温度を超えてしまう虞がある。本実施の形態における排気浄化装置は、排気浄化触媒が過温になることを抑制する制御を行う。
第1のNO浄化方法において、燃焼室2から流出するNOが多くなる内燃機関の運転状態では、炭化水素供給弁15から多くの炭化水素が供給される。燃焼室2から流出するNOが多くなる運転状態としては、負荷が高く、更に機関回転数が高い運転状態を例示することができる。このような運転状態から急激に排気ガスの流量が小さくなる場合がある。例えば負荷および機関回転数が急激に減少する場合には、排気浄化触媒13に流入する排気ガスの流速が急激に小さくなる。
炭化水素供給弁15からの炭化水素の供給量が多い状態から急激に排気ガスの流量が低下すると、排気ガスによる排気浄化触媒13の熱の除去量が小さくなる。このために、排気浄化触媒13の温度が急激に上昇して過温になる場合がある。更に、排気浄化触媒13に吸着した炭化水素が酸化反応して、排気浄化触媒13の温度が急激に上昇する場合がある。
本実施の形態の排気浄化装置の第1の運転制御においては、排気浄化触媒13に供給する炭化水素の供給量が多い状態から、排気ガスの流速が急激に低下したことを検出した場合には、第1のNO浄化方法を行うための炭化水素の供給量を減少させる。すなわち、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させる制御を行う。本実施の形態においては、第1のNO浄化方法を行うたの炭化水素の供給を零にする制御を行う。すなわち、炭化水素の供給を禁止する制御を行う。
図28に、本実施の形態における排気浄化装置の第1の運転制御のフローチャートを示す。図28の運転制御は、例えば、予め定められた時間間隔ごとに繰り返して行うことができる。
ステップ111においては、燃焼室における燃料噴射量Q、機関回転数Nのおよび再循環率REGRを検出する。
次に、ステップ112においては、炭化水素供給弁15からの炭化水素の供給量が多い運転状態か否かを判別する。または、機関本体から流出するNO量が多い状態であるか否かを判別する。本実施の形態においては、燃焼室における燃料噴射量Q、機関回転数NおよびEGR率REGRを用いて判別する。
ステップ112においては、燃料噴射量Qが第1の噴射量判定値よりも大きいか否かを判別する。機関回転数Nが第1の回転数判定値よりも大きいか否かを判別する。更に、再循環率REGRが、再循環率判定値よりも小さいか否かを判別する。それぞれの判定値は予め定めておくことができる。ステップ112において、燃料噴射量Q、機関回転数Nおよび再循環率REGRの全てが、それぞれの判定条件を満たしている場合には、ステップ113に移行する。この場合には、炭化水素供給弁15からの炭化水素の供給量が予め定められた量よりも多い状態であると判別することができる。または、機関本体から流出するNO量が予め定められた量よりも多いと判別することができる。
ステップ112において、複数の判定条件のうち少なくとも一つの判定条件を満たさない場合には、ステップ119に移行する。この場合には、炭化水素供給弁15からの炭化水素の供給量が予め定められた量以下であると判別することができる。例えば、機関回転数が高く、燃焼室2における燃料噴射量が多い高負荷の運転状態においても、再循環率が高い場合には、燃焼室2から流出するNO量は少なくなる。このために、炭化水素供給弁15から供給される炭化水素の量も少なくなる。このような場合には、ステップ119に移行する。
ステップ119においては、第1のNO浄化方法を許可する制御を行なうことができる。既に、第1のNO浄化方法にてNOの浄化を行なっている場合には、第1のNO浄化方法を継続することができる。
ステップ113においては、後のステップにおいて排気ガスの流速の変化率(排気浄化触媒における空間速度の変化率)を推定するために、予め定められた時間待機する。ステップ114においては、所定の時間の経過後の燃料噴射量Qおよび機関回転数Nを検出する。
次に、ステップ115においては、排気ガスの流速が急減に低下したか否かを判別する。すなわち、排気ガスの流速の変化率(排気浄化触媒における空間速度の変化率に対応する)が絶対値の大きな負の値になっているか否かを判別する。燃料噴射量Qが、第2の噴射量判定値よりも小さいか否かを判別する。更に、機関回転数Nが、第2の回転数判定値よりも小さいか否かを判別する。第2の噴射量判定値は、第1の噴射量判定値よりも小さな値を予め定めておくことができる。また、第2の回転数判定値は、第1の回転数判定値よりも小さな値を予め定めておくことができる。
ステップ115において、燃料噴射量Qおよび機関回転数Nのうち少なくとも一方が、判定条件を満たしていない場合には、ステップ119に移行する。すなわち、燃料噴射量Qおよび機関回転数Nのうち少なくとも一方が、それぞれの判定値以上である場合には、ステップ119に移行する。この場合には、排気ガスの流速の低下率が小さくて排気浄化触媒が過温にならないと判別することができる。
ステップ115において、燃料噴射量Qおよび機関回転数Nの両方が、それぞれの判定値よりも小さい場合には、排気ガスの流速の変化率が所定の判定値未満であると判別することができる。すなわち、排気ガスの流速が急激に低下したと判別することができる。この場合には、ステップ116に移行する。
ところで、炭化水素の供給量が多い内燃機関の運転状態から、排気ガスの流速が急激に低下した場合においても、排気浄化触媒13の温度が低い場合には、排気浄化触媒が過温になる可能性は小さい。このために、本実施の形態の運転制御においては、触媒温度が予め定められた触媒温度判定値よりも高い場合に、炭化水素供給弁15による炭化水素の供給量を減少させる制御を行なっている。
ステップ116においては、触媒温度TCを検出する。次に、ステップ117において、触媒温度TCが予め定められた第1の触媒温度判定値よりも大きいか否かを判別する。第1の触媒温度判定値は予め定めておくことができる。触媒温度TCが、第1の触媒温度判定値以下である場合には、ステップ119に移行する。この場合には、触媒温度は許容温度よりも十分に低く、排気浄化触媒13が過温にならないと判別することができる。
ステップ117において、触媒温度TCが第1の触媒温度判定値よりも高い場合には、ステップ118に移行する。この場合には、炭化水素の供給量が多い運転状態から排気ガスの流速が急激に減少して、排気浄化触媒13が過温になると判別することができる。
ステップ118においては、所定の時間の間、第1のNO浄化方法を禁止する制御を行う。既に第1のNO浄化方法を行っている場合には、第1のNO浄化方法を停止する制御を行う。すなわち、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素供給弁から炭化水素の供給を禁止する制御を行なっている。NOの浄化は、第2のNO浄化方法により行うことができる。
第1のNO浄化方法を禁止する時間長さとしては、予め定めた時間長さを採用することができる。または、排気ガスの流速の低下率や排気浄化触媒の温度などの排気浄化触媒の状態に基づいて、第1のNO浄化方法を禁止する時間長さを定めても構わない。所定の時間の経過後には、第1のNO浄化方法を再開することができる。または、第1のNO浄化方法の炭化水素の供給を停止した後に排気浄化触媒の状態を検出し、排気浄化触媒の状態が予め定められた状態になった場合に、第1のNO浄化方法を許可しても構わない。
本実施の形態における第1の運転制御においては、第1のNO浄化方法を禁止する制御を行っているが、この形態に限られず、第1のNO浄化方法において、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させる制御を行なうことができる。すなわち、単位時間当たりに供給する平均的な炭化水素の供給量を減少させる制御を行なうことができる。たとえば、1回の炭化水素の供給量を減少させる制御および炭化水素の供給間隔を長くする制御のうち、少なくも一方の制御を採用することができる。炭化水素の供給の減少量は、例えば、予め定めておいた量を採用することができる。
本実施の形態の第1の運転制御においては、炭化水素供給弁からの炭化水素の供給量が多い運転状態から急激に排気ガスの流速が低下した場合にも、排気浄化触媒が過温になることを抑制することができる。
次に、本実施の形態の排気浄化装置の第2の運転制御について説明する。排気浄化触媒が過温になる虞のある他の運転状態としては、排気浄化触媒に堆積する粒子状物質の量が多いときに、第1のNO浄化方法により炭化水素供給弁から炭化水素を多量に供給する場合が挙げられる。この場合には、堆積している粒子状物質が燃焼を開始して、排気浄化触媒が過温になる場合がある。本実施の形態の第2の運転制御においては、排気浄化触媒に堆積する粒子状物質の堆積量が多いときには、炭化水素供給弁による炭化水素の供給量を減少させる制御を行う。
図29に、本実施の形態における排気浄化触媒の第2の運転制御のフローチャートを示す。図29に示す運転制御は、例えば、予め定められた時間間隔ごとに繰り返して行うことができる。
ステップ121においては、排気浄化触媒13における粒子状物質の堆積量PMAを推定する。粒子状物質の堆積量は、例えば、排気浄化触媒13に取り付けられた差圧センサ24の出力により推定することができる。
ステップ122においては、粒子状物質の堆積量PMAが予め定められた堆積量判定値よりも大きいか否かを判別する。堆積量判定値は、予め定めておくことができる。ここでの堆積量判定値は、例えば排気浄化触媒を600℃以上に昇温して粒子状物質を燃焼させるための判定値未満の値を採用することができる。
ステップ122において、粒子状物質の堆積量PMAが堆積量判定値以下の場合にはステップ124に移行する。ステップ124においては、第1のNO浄化方法を許可する制御を行う。既に、第1のNO浄化方法によりNOを浄化している場合には、第1のNO浄化方法を継続する制御を行なう。ステップ122において、排気浄化触媒13の粒子状物質の堆積量が、堆積量判定値よりも大きい場合はステップ123に移行する。
ステップ123においては、排気浄化触媒13の触媒温度TCを検出する。ステップ125においては、排気浄化触媒13の触媒温度TCが、第2の触媒温度判定値よりも大きいか否かを判別する。第2の触媒温度判定値は、排気浄化触媒13が過温になる温度を考慮して予め設定することができる。排気浄化触媒13が第2の触媒温度判定値以下である場合には、排気浄化触媒13の温度が低い状態である。粒子状物質が燃焼して排気浄化触媒13の温度が上昇しても、排気浄化触媒13が許容温度に到達しないと判別することができる。排気浄化触媒13が第2の触媒温度判定値以下である場合には、ステップ124に移行する。排気浄化触媒13が第2の触媒温度判定値よりも大きい場合には、ステップ126に移行する。
ステップ126においては、第1のNO浄化方法を禁止する制御を行っている。すなわち、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給を禁止する制御を行っている。第2の運転制御においては、図29に示す運転制御を繰り返して、粒子状物質の堆積量が堆積量判定値以下になるまで、または排気浄化触媒が第2の触媒温度判定値以下になるまで第1のNO浄化方法を禁止する制御を行っている。この場合のNOの浄化は、第2のNO浄化方法にて行うことができる。
なお、ステップ126においては、第1のNO浄化方法において、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させる制御を行っても構わない。たとえば、炭化水素供給弁15からの1回の炭化水素の供給量を減少させる制御および炭化水素の供給間隔を長くする制御のうち、少なくも一方の制御を採用することができる。炭化水素の供給の減少量は、例えば、粒子状物質の堆積量および触媒温度等に基づいて設定することができる。
本実施の形態の第2の運転制御においては、粒子状物質が多量に堆積した時に粒子状物質の燃焼が開始して、排気浄化触媒が過温になることを抑制することができる。このように、本実施の形態における第1の運転制御および第2の運転制御においては、排気浄化触媒の触媒温度が過温になる内燃機関の運転状態の変化を検出して、炭化水素供給弁からの炭化水素の供給パターンを変更することができる。
なお、上述の制御は、それぞれの作用および機能を有する範囲内において適宜ステップの順序を変更することができる。上述のそれぞれの図において、同一または相等する部分には同一の符号を付している。なお、上記の実施の形態は例示であり発明を限定するものではない。また実施の形態においては、請求の範囲に示される変更が含まれている。
1 機関本体
2 燃焼室
13 排気浄化触媒
15 炭化水素供給弁
16 EGR通路
17 EGR制御弁
23 温度センサ
24 差圧センサ
30 電子制御ユニット
50 触媒担体
51,52 貴金属触媒
53 塩基性部
54 排気流通表面部分
55 助触媒
60 流入側通路
61 流出側通路
64 隔壁部
65,66 コート部
68 粒子状物質

Claims (8)

  1. 炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、
    該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、
    機関運転時に排気浄化触媒に流入する炭化水素の濃度変化の振幅が該予め定められた範囲内の振幅となるように炭化水素供給弁からの炭化水素の供給量が制御されると共に、排気浄化触媒に流入する炭化水素の濃度が予め定められた範囲内の周期でもって振動するように炭化水素供給弁からの炭化水素の供給間隔が制御されるように形成されており、
    排気浄化触媒は、排気ガスが流入する流入側通路と、排気ガスが流出する流出側通路と、流入側通路と流出側通路とを隔てる隔壁部とを含み、隔壁部の内部を排気ガスが通ることにより排気ガスに含まれる粒子状物質を捕集する機能を有し、
    貴金属触媒および塩基性部は、隔壁部の表面に形成されているコート部に配置されており、流入側通路のコート部における酸化能力が流出側通路のコート部における酸化能力よりも高くなるように配置されている、内燃機関の排気浄化装置。
  2. 排気浄化触媒は、流入側通路のコート部に塩基性部が配置されておらずに、流出側通路のコート部に塩基性部が配置されている、請求項1に記載の内燃機関の排気浄化装置。
  3. 排気浄化触媒は、流入側通路のコート部および流出側通路のコート部に貴金属触媒および塩基性部が配置されており、流入側通路のコート部に配置されている塩基性部の単位体積あたりの重量は、流出側通路のコート部に配置されている塩基性部の単位体積あたりの重量よりも小さくなるように形成されている、請求項1に記載の内燃機関の排気浄化装置。
  4. 排気浄化触媒は、上流側部分と下流側部分とを有し、上流側部分には酸素吸蔵能力を有する助触媒が配置されておらず、下流側部分に酸素吸蔵能力を有する助触媒が配置されている、請求項1に記載の内燃機関の排気浄化装置。
  5. 炭化水素供給弁からの炭化水素の供給量が多くなる内燃機関の運転状態が予め定められており、
    炭化水素の供給量が多くなる内燃機関の運転状態から排気ガスの流速が減少する予め定められた運転状態に移行した場合に、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させる、請求項1に記載の内燃機関の排気浄化装置。
  6. 炭化水素の供給量が多くなる内燃機関の運転状態から排気ガスの流速が減少する予め定められた運転状態に移行した場合に、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給を禁止する、請求項5に記載の内燃機関の排気浄化装置。
  7. 排気浄化触媒に堆積する粒子状物質の堆積量および排気浄化触媒の温度を推定し、
    粒子状物質の堆積量が予め定められた堆積量判定値を超えており、更に、排気浄化触媒の温度が予め定められた触媒温度判定値を超えている場合には、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給量を減少させる、請求項1に記載の内燃機関の排気浄化装置。
  8. 粒子状物質の堆積量が予め定められた堆積量判定値を超えており、更に、排気浄化触媒の温度が予め定められた触媒温度判定値を超えている場合には、予め定められた範囲内の振幅および予め定められた範囲内の周期にて供給する炭化水素の供給を禁止する、請求項7に記載の内燃機関の排気浄化装置。
JP2013558612A 2012-02-14 2012-02-14 内燃機関の排気浄化装置 Active JP5725214B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053372 WO2013121520A1 (ja) 2012-02-14 2012-02-14 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JPWO2013121520A1 true JPWO2013121520A1 (ja) 2015-05-11
JP5725214B2 JP5725214B2 (ja) 2015-05-27

Family

ID=48983684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013558612A Active JP5725214B2 (ja) 2012-02-14 2012-02-14 内燃機関の排気浄化装置

Country Status (4)

Country Link
EP (1) EP2816205B1 (ja)
JP (1) JP5725214B2 (ja)
CN (1) CN104114823B (ja)
WO (1) WO2013121520A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501930B (en) * 2012-05-11 2018-11-14 Ford Global Tech Llc Engine out emission control system and method
JP6036764B2 (ja) * 2014-08-19 2016-11-30 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP6279448B2 (ja) * 2014-10-17 2018-02-14 株式会社キャタラー 排ガス浄化装置
CN105134344A (zh) * 2015-08-17 2015-12-09 南京航空航天大学 一种柴油车尾气污染物同步催化净化耦合装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220440A (ja) 1996-02-16 1997-08-26 Toyota Central Res & Dev Lab Inc 排ガス浄化方法
GB9919013D0 (en) * 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
JP2002188435A (ja) * 2000-10-12 2002-07-05 Toyota Motor Corp 排ガス浄化フィルタ
JP2003097250A (ja) * 2001-09-20 2003-04-03 Mitsubishi Motors Corp 排気浄化装置
JP3757853B2 (ja) 2001-11-30 2006-03-22 トヨタ自動車株式会社 排気浄化装置の再生制御方法
DE10214343A1 (de) * 2002-03-28 2003-10-09 Omg Ag & Co Kg Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase
US7490464B2 (en) * 2003-11-04 2009-02-17 Basf Catalysts Llc Emissions treatment system with NSR and SCR catalysts
JP2005207289A (ja) * 2004-01-22 2005-08-04 Hino Motors Ltd ディーゼルエンジンの排気管燃料添加方式
US20080241032A1 (en) * 2007-04-02 2008-10-02 Geo2 Technologies, Inc. Catalyzing Lean NOx Filter and Method of Using Same
GB0812544D0 (en) * 2008-07-09 2008-08-13 Johnson Matthey Plc Exhaust system for a lean burn IC engine
WO2010108083A1 (en) * 2009-03-20 2010-09-23 Basf Catalysts Llc EMISSIONS TREATMENT SYSTEM WITH LEAN NOx TRAP
JP2010270624A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 内燃機関の排気装置
EP2402571B1 (en) * 2010-03-15 2015-03-11 Toyota Jidosha Kabushiki Kaisha Exhaust purifying system of an internal combustion engine
JP5131388B2 (ja) * 2010-05-20 2013-01-30 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
EP2816205B1 (en) 2021-08-18
JP5725214B2 (ja) 2015-05-27
EP2816205A1 (en) 2014-12-24
EP2816205A4 (en) 2015-02-18
WO2013121520A1 (ja) 2013-08-22
CN104114823A (zh) 2014-10-22
CN104114823B (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5182429B2 (ja) 内燃機関の排気浄化装置
JP5131391B2 (ja) 内燃機関の排気浄化装置
JP5218672B2 (ja) 内燃機関の排気浄化装置
JP5131392B2 (ja) 内燃機関の排気浄化装置
JP5288055B1 (ja) 内燃機関の排気浄化装置
JP5304948B1 (ja) 内燃機関の排気浄化装置
WO2012086093A1 (ja) 内燃機関の排気浄化装置
JP5152415B2 (ja) 内燃機関の排気浄化装置
JP5273303B1 (ja) 内燃機関の排気浄化装置
JP5725214B2 (ja) 内燃機関の排気浄化装置
JP5880776B2 (ja) 内燃機関の排気浄化装置
JP5574042B2 (ja) 内燃機関の排気浄化装置
JP5177302B2 (ja) 内燃機関の排気浄化装置
JP5392411B1 (ja) 内燃機関の排気浄化装置
JP5152417B2 (ja) 内燃機関の排気浄化装置
JP5218698B1 (ja) 内燃機関の排気浄化装置
JP5168410B2 (ja) 内燃機関の排気浄化装置
JP5811286B2 (ja) 内燃機関の排気浄化装置
JP5257549B1 (ja) 内燃機関の排気浄化装置
JP5741643B2 (ja) 内燃機関の排気浄化装置
JP5354104B1 (ja) 内燃機関の排気浄化装置
JP2016145543A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5725214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151