JP4194408B2 - Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate - Google Patents

Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate Download PDF

Info

Publication number
JP4194408B2
JP4194408B2 JP2003100787A JP2003100787A JP4194408B2 JP 4194408 B2 JP4194408 B2 JP 4194408B2 JP 2003100787 A JP2003100787 A JP 2003100787A JP 2003100787 A JP2003100787 A JP 2003100787A JP 4194408 B2 JP4194408 B2 JP 4194408B2
Authority
JP
Japan
Prior art keywords
substrate
main surface
reinforcing material
semiconductor element
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003100787A
Other languages
Japanese (ja)
Other versions
JP2004311598A (en
Inventor
耕三 山崎
伸治 由利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003100787A priority Critical patent/JP4194408B2/en
Publication of JP2004311598A publication Critical patent/JP2004311598A/en
Application granted granted Critical
Publication of JP4194408B2 publication Critical patent/JP4194408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias

Description

【0001】
【発明の属する技術分野】
本発明は、補強材付き基板、半導体素子と補強材と基板とからなる配線基板に関するものである。
【0002】
【従来の技術】
パソコンや携帯電話のようなエレクトロニクス機器の普及は、IT革命として社会構造に大きな変革をもたらしつつある。この技術の核となるのが大規模半導体集積回路(LSI)技術であり、かかるLSIの動作周波数は演算速度の向上を達成するために益々上がる傾向にある。しかし、LSIの高周波数化を実現しようとする場合、金属配線間を層間にて絶縁している材料の誘電率が高いと、信号の遅延を来たしてしまう。このため、次世代のLSIの開発においては、低誘電率絶縁膜の開発が重要課題の1つとされている。また、このような低誘電率絶縁膜を実現するための具体的手法として、現段階では、絶縁膜中にサブナノメートルからナノメートル領域の微小空隙を形成し、絶縁膜を多孔質組織化することが提唱されている。
【0003】
なお、このような低誘電率LSIチップについても、通常と同様に、LSI搭載用基板上にフリップチップ接続してなる配線基板(いわゆる半導体パッケージ)の状態で使用される(例えば、特許文献1参照)。なお、LSIチップは、一般に熱膨張係数が2.0ppm/℃〜5.0ppm/℃程度の半導体材料(例えばシリコン等)を用いて形成される。一方、LSI搭載用基板については、それよりも熱膨張係数がかなり大きい樹脂材料等を用いて形成されることが多い。
【0004】
【特許文献1】
特開2002−26500号公報(図1)
【0005】
【発明が解決しようとする課題】
ところで、低誘電率化を図るためにLSIチップ表層の絶縁膜を多孔質組織化した場合、LSIチップの剛性の低下が避けられず、特に絶縁膜部分が脆くなる。しかし、はんだを用いてフリップチップ接続をする場合において、はんだが溶融温度から常温に冷却する際には、チップ材料と基板材料との熱膨張係数差に起因して、パッケージ全体をチップ搭載面側に反らそうとする熱応力が発生する。よって、かかる熱応力が作用して反りが生じる結果、脆い絶縁膜部分が破壊しやすくなる。また、絶縁膜部分の破壊に到らないような場合であっても、チップ接合部分にクラックが起こり、オープン不良などが生じやすくなるおそれもある。つまり、上記のような低誘電率のLSIチップを用いて半導体パッケージを構成した場合、高い歩留まりや信頼性を実現できないという問題が生じる。
【0006】
また最近では、少ない半導体材料を用いてより多くの演算回路を形成すべく、LSIチップを大型化(例えばチップ一辺の大きさが10.0mm以上)かつ薄肉化(チップ厚みが1.0mm未満)する動向がある。この場合には、剛性が低下するにもかかわらず熱応力の影響を受けやすいチップ構造となるため、上記の問題がいっそう顕著になる。
【0007】
本発明は上記の課題に鑑みてなされたものであり、その目的は、歩留まり及び信頼性が高い、半導体素子と補強材と基板とからなる配線基板を提供することにある。また、本発明の別の目的は、上記の優れた配線基板を実現するうえで好適な補強材付き基板を提供することにある。
【0008】
【課題を解決するための手段、作用及び効果】
そして上記課題を解決するための手段としては、素子第1主面、素子第2主面及び前記素子第2主面側に形成されたフリップチップ用接続端子を有するとともに、前記素子第2主面側の表層に比誘電率が4未満の多孔質組織からなる絶縁膜を有し、熱膨張係数が5.0ppm/℃未満である半導体素子と、基板第1主面及び基板第2主面を有し、前記基板第1主面及び前記基板第2主面の少なくとも一方の上にて主として銅からなる導体層により形成された複数の面接続パッドを有し、前記複数の面接続パッド上に各々取り付けられたボール状またはピン状の複数の基板接続端子を有し、前記基板第1主面側に前記半導体素子がフリップチップ接続される樹脂基板と、前記複数の基板接続端子を露出させる複数の開口部が形成され、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方を補強材接合面としその補強材接合面に対して面接触状態で接合固定され、前記樹脂基板を構成している前記導体層よりも剛性の高い材料からなり、その厚さが、前記半導体素子の厚さ及び前記面接続パッドの厚さよりも大きくかつ前記補強材接合面を基準とした前記基板接続端子の突出高さよりも小さくなるように設定された補強材とを備えることを特徴とする、半導体素子と補強材と基板とからなる配線基板がある。
【0009】
また、半導体素子と補強材と基板とからなる上記の配線基板を実現するうえで好適なものとしては、素子第1主面、素子第2主面及び前記素子第2主面側に形成されたフリップチップ用接続端子を有するとともに、前記素子第2主面側の表層に比誘電率が4未満の多孔質組織からなる絶縁膜を有し、熱膨張係数が5.0ppm/℃未満である半導体素子を搭載するための補強材付き基板において、基板第1主面及び基板第2主面を有し、前記基板第1主面及び前記基板第2主面の少なくとも一方の上にて主として銅からなる導体層により形成された複数の面接続パッドを有し、前記複数の面接続パッド上に各々取り付けられたボール状またはピン状の複数の基板接続端子を有し、前記基板第1主面側に前記半導体素子がフリップチップ接続される樹脂基板と、前記複数の基板接続端子を露出させる複数の開口部が形成され、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方を補強材接合面としその補強材接合面に対して面接触状態で接合固定され、前記樹脂基板を構成している前記導体層よりも剛性の高い材料からなり、その厚さが、前記半導体素子の厚さ及び前記面接続パッドの厚さよりも大きくかつ前記補強材接合面を基準とした前記基板接続端子の突出高さよりも小さくなるように設定された補強材とを備えることを特徴とする補強材付き基板がある。
【0010】
従って、これらの発明によれば、樹脂基板に対して補強材を接合固定することにより、基板全体の厚さが増して樹脂基板の剛性が向上する。その結果、半導体素子との熱膨張係数差に起因する熱応力に樹脂基板が十分に耐えられるようになり、配線基板全体が半導体素子実装面側に反りにくくなる。それゆえ、半導体素子の反りに起因する絶縁膜部分の破壊が防止されるとともに、接合部分におけるクラックの発生も防止される。以上の結果、例えば低誘電率の半導体素子を用いた場合であっても、高歩留まり及び高信頼性の配線基板を実現することが可能となる。
【0011】
しかも、補強材は樹脂基板に対して面接触状態で強固に接合固定されていて、いわば両者は一体化した状態となっている。ゆえに、補強材と樹脂基板との界面にある程度大きな熱応力が集中したとしても、その界面には剥離が起こりにくい。従って、樹脂基板に対して補強材に相当する部材を単に面接触させただけで接合固定していないものや、樹脂基板に対して補強材に相当する部材を接合固定しているが面接触状態ではないもの(実質的に点接触状態または線接触状態にすぎないもの)等は、除かれる。
【0012】
上記配線基板を構成する半導体素子としては、素子第1主面、素子第2主面及び前記素子第2主面側に形成されたフリップチップ用接続端子を有し、熱膨張係数が5.0ppm/℃未満かつ比誘電率が4未満であるものが使用される。フリップチップ用接続端子とは、面接続によって電気的な接続を図るための端子を指す。かかるフリップチップ用接続端子は、例えば線状や格子状(千鳥状も含む)に形成される。面接続とは、被接続物の平面上に線状や格子状(千鳥状も含む)にパッドあるいは端子を形成し、それら同士を接続する場合を指す。
【0013】
半導体素子の熱膨張係数は、特に2.0ppm/℃以上5.0ppm/℃未満であることがよく、その例としては、熱膨張係数が2.6ppm/℃程度のシリコンからなる半導体集積回路チップ(LSIチップ)などを挙げることができる。前記半導体素子の大きさ及び形状は特に限定されないが、少なくとも一辺が10.0mm以上であることがよい。このような大型の半導体素子になると、発熱量が増大しやすく熱応力の影響も受けやすいため、本願発明の課題が発生しやすくなるからである。また、前記半導体素子の厚さは1.0mm未満、さらには0.5mm未満であることがよい。このような薄肉の半導体素子になると、剛性が弱くなって熱応力の影響を受けやすくなるため、本願発明の課題が発生しやすくなるからである。ここで「熱膨張係数」とは、厚み方向(Z方向)に対して垂直な方向(XY方向)の熱膨張係数のことを意味し、0℃〜100℃の間のTMA(熱機械分析装置)にて測定した値のことをいう。「TMA」とは、熱機械的分析をいい、例えばJPCA−BU01に規定されるものをいう。
【0014】
前記半導体素子は配線間を絶縁するための絶縁膜を少なくとも表層部に備えるとともに、その絶縁膜は多孔質組織により構成される。この場合、半導体素子の比誘電率、正確にいうと半導体素子表層の絶縁膜の比誘電率は、少なくとも酸化シリコンの比誘電率よりも低い値、具体的には4.0未満であり、さらには1.1以上3.0未満であることがよりよく、特には1.1以上2.0未満であることが最もよい。その理由は、上記の構造を有する半導体素子の場合、多孔質組織化に伴って絶縁膜部分が脆弱化するため、本願発明の課題が発生しやすくなるからである。
【0015】
上記配線基板、補強材付き基板を構成する樹脂基板としては、基板第1主面及び基板第2主面の少なくとも一方の側に前記半導体素子がフリップチップ接続されるものが使用される。なお、樹脂基板の熱膨張係数は、5.0ppm/℃以上20.0ppm/℃未満程度である。
【0016】
前記樹脂基板とは、樹脂を主材料として用いて絶縁層部分が構成されている樹脂基板のことを指し、コスト性、加工性、絶縁性、機械的強度などを考慮して適宜選択することができる。
【0017】
樹脂基板を構成する樹脂の具体例としては、EP樹脂(エポキシ樹脂)、PI樹脂(ポリイミド樹脂)、BT樹脂(ビスマレイミド−トリアジン樹脂)、PPE樹脂(ポリフェニレンエーテル樹脂)などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料からなる基板を、樹脂基板として使用してもよい。あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた樹脂−樹脂複合材料からなる基板等を、樹脂基板として使用してもよい。また、樹脂基板における内層には、コアとして金属板(メタルコア)が設けられていてもよい。かかる金属板を構成する金属の例としては、銅や銅合金、銅以外の金属単体や合金などがある。銅合金としては、アルミニウム青銅(Cu−Al系)、りん青銅(Cu−P系)、黄銅(Cu−Zn系)、キュプロニッケル(Cu−Ni系)などがある。銅以外の金属単体としては、アルミニウム、鉄、クロム、ニッケル、モリブテンなどがある。銅以外の合金としては、ステンレス(Fe−Cr系、Fe−Cr−Ni系などの鉄合金)、アンバー(Fe−Ni系合金、36%Ni)、いわゆる42アロイ(Fe−Ni系合金、42%Ni)、いわゆる50アロイ(Fe−Ni系合金、50%Ni)、ニッケル合金(Ni−P系、Ni−B系、Ni−Cu−P系)、コバルト合金(Co−P系、Co−B系、Co−Ni−P系)、スズ合金(Sn−Pb系、Sn−Pb−Pd系)などがある。また、樹脂基板は、特開2002−26500号公報(図1)のように、コア基板(樹脂製)上に、絶縁層と配線層とを交互に形成した形態としてもよい。
【0018】
前記樹脂基板は導体層を1層または複数層有する配線基板であることがよい。前記導体層は主として銅からなり、サブトラクティブ法、セミアディティブ法、フルアディティブ法などといった公知の手法によって形成される。具体的にいうと、例えば、銅箔のエッチング、無電解銅めっきあるいは電解銅めっきなどの手法が適用される。なお、スパッタやCVD等の手法により薄膜を形成した後にエッチングを行うことで導体層を形成したり、導電性ペースト等の印刷により導体層を形成したりすることも可能である。
【0019】
前記樹脂基板における基板第1主面、基板第2主面、あるいは基板第1主面及び基板第2主面の表面上には、半導体素子のフリップチップ接続を可能とするために、複数の面接続パッドが設けられている。さらに、それらの面接続パッド上には、はんだ等からなるバンプが形成されている。面接続パッドとは、電気的接続のための端子用パッドであって、面接続によって接続を行うものを指す。かかる面接続パッドは例えば線状や格子状(千鳥状も含む)に形成される。面接続パッドについても同様に、サブトラクティブ法、セミアディティブ法、フルアディティブ法などといった公知の手法によって形成される。また、前記面接続パッドは基板第1主面上や基板第2主面上における任意の位置に配置可能であるが、通常はほぼ中央部に配置される。なお、半導体素子は同一面上に1つのみ搭載されてもよいほか2つ以上搭載されてもよく、それに併せて面接続パッドも1群または2群以上配置される。
【0020】
樹脂基板における基板第1主面上や基板第2主面上には、上記半導体素子のほかに電子部品が実装されていてもよい。前記電子部品としては、例えば、裏面または側面に複数の端子を有するチップ部品(例えばチップトランジスタ、チップダイオード、チップ抵抗、チップコンデンサ、チップコイルなど)などがある。前記電子部品は能動部品であっても受動部品であってもよい。
【0021】
樹脂基板における基板第2主面の表面上には、別の配線基板との接続を図るための複数の基板接続端子が取り付けられている。かかる基板接続端子の形状は、ボール状(バンプ状)やピン状である。
【0022】
上記配線基板、補強材付き基板を構成する補強材は、基板第1主面、基板第2主面あるいは基板第1主面及び基板第2主面の両方に対して、面接触状態で接合固定される。前記補強材はその内部に導通構造を有していないことが好ましい。また、前記補強材は単層構造であっても複数層構造であってもよいが、どちらかと言えば単層構造であることが好ましい。その理由は、単層構造であれば構造が比較的簡単となり製造も容易になるので、低コスト化を達成しやすくなるからである。また、単層構造であれば、内部に界面が存在しないため、たとえ大きな熱応力が作用したときでも、クラックの発生に至らないからである。
【0023】
補強材の形状等は特に限定されず任意であるが、少なくとも、基板側の主面に対して面接触状態で接合固定されうる面(平面)を有していることがよい。従って、例えば、表面及び裏面を有する略板形状の補強材を用いることが、一般的には好ましい。
【0024】
このような板状の補強材の外形寸法は特に限定されないが、強いて言えば半導体素子の外形寸法よりも大きく、かつ、樹脂基板の外形寸法よりも小さいまたはそれと同等であることがよい。また、補強材の厚さは、半導体素子の厚さよりも厚く(大きく)なるように設定される。その理由は、補強材の厚さがあまりに薄すぎると、樹脂基板全体の厚さを十分に増すことができず、樹脂基板の剛性の向上が達成されにくくなるからである。また、補強材の外形寸法があまりに小さすぎると、たとえ十分な厚さの補強材を用いたとしても、やはり樹脂基板の剛性の向上が達成されにくくなるからである。
【0025】
前記補強材は少なくとも樹脂基板よりも剛性の高い材料からなることが好ましく、例えば樹脂基板よりもヤング率が高い材料からなることが好ましい。具体的には、補強材のヤング率は100GPa以上、特には140GPa以上であることが好適である。その理由は、補強材自体に高い剛性が付与されていれば、それを接合固定することで樹脂基板に高い剛性を付与することができ、熱応力に対していっそう強くなるからである。また、高い剛性を有する補強材であれば、補強材の厚さを薄くしても樹脂基板に十分高い剛性を付与することができるため、配線基板全体の薄肉化を阻害しないからである。なお、樹脂基板よりもヤング率が高いという条件を満たすものであれば、補強材はセラミック製であっても金属製であってもよい。
【0026】
また前記補強材は、高い剛性を有することに加えて、低い熱膨張係数を有することが好ましい。補強材の熱膨張係数は、少なくとも樹脂基板の熱膨張係数よりも低いことがよく、具体的には5.0ppm/℃未満であること、特には3.0ppm/℃以上5.0ppm/℃未満であることがよい。なお、上記の熱膨張係数の条件を満たしているものであれば、補強材はセラミック製であっても金属製であってもよい。
【0027】
低熱膨張性及び高剛性を備える好適なセラミック材料としては、例えば、酸化物系、炭化物系、窒化物系のエンジニアリングセラミック材料を挙げることができる。酸化物系のエンジニアリングセラミック材料としては、例えば、アルミナ、シリカ、ベリリア、マグネシア等を挙げることができる。炭化物系のエンジニアリングセラミック材料としては、例えば、炭化珪素などを挙げることができる。窒化物系のエンジニアリングセラミック材料としては、窒化アルミニウム、窒化珪素等を挙げることができる。一方、低熱膨張性及び高剛性を備える好適な金属材料としては、例えば、アンバー(Fe−Ni系合金、36%Ni)、いわゆる42アロイ(Fe−Ni系合金、42%Ni)、いわゆる50アロイ(Fe−Ni系合金、50%Ni)等といったFe−Ni系合金、タングステン、モリブデンなどを挙げることができる。これらの中でも、コスト性や加工性等の観点から、Fe−Ni系合金を選択することがよい。
【0028】
前記補強材は基板側に対して面接触状態で接合固定されるが、接合固定の手法は特に限定されることはなく、補強材を形成している材料の性質、形状等に合った周知の手法を採用することができる。例えば、補強材が金属板であるような場合には、ポリマを主成分とする接着剤等のような有機系接合材、はんだ等のように金属からなる無機系接合材を使用してそれを樹脂基板に接合固定することができる。補強材がセラミック板であるような場合においても、ポリマを主成分とする接着剤等のような有機系接合材、はんだ等のように金属からなる無機系接合材を使用してそれを樹脂基板に接合固定することができる。ただし、はんだ等を用いる場合には、樹脂基板側にはんだ濡れ性のよい部分(例えば金属層)を形成しておくことがよい。なお、このような金属層が不要であるという観点からすると、接着剤等のような有機系接合材を用いることが好ましいと言える。
【0029】
基板第1主面に接合固定される補強材については、半導体素子の搭載箇所に対応した位置に抜き穴または凹部を形成しておくことがよい。このような構造があれば、半導体素子との干渉を回避できるので、例えば補強材接合固定工程後に半導体素子搭載工程を行うことも可能となる。つまり、製造する際の自由度が大きくなる。また、基板第2主面に接合固定される補強材については、各々の基板接続端子に対応する位置に開口部を形成しておく。このように複数の開口部を形成しておくと、基板接続端子が補強材から露出した状態となり、別の基板と接続する際に支障を来たさなくなる。また、例えば補強材接合固定工程後に端子取付工程を行うことも可能となる。つまり、製造する際の自由度が大きくなる。
【0030】
上記のような配線基板は、例えば、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の表面に対して前記補強材を接合固定する補強材接合固定工程と、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の側に前記半導体素子をフリップチップ接続する半導体素子搭載工程と、を経て製造されることができる。
【0031】
なお、補強材接合固定工程は半導体素子搭載工程の前後を問わず実施されることができるが、強いて言えば半導体素子搭載工程の前に実施されることがよい。即ち、半導体素子を搭載した状態で接着剤を塗布して補強材を圧着するような場合には、半導体素子自体や、半導体素子と樹脂基板との接続部分に曲げ応力が加わるおそれがある。これに対して、補強材の接合固定後に半導体素子を搭載すれば、半導体素子自体や、半導体素子と樹脂基板との接続部分に曲げ応力が加わる心配もなく、確実に歩留まりや信頼性を向上させることができる。
【0032】
ここで、補強材は周知の手法により作製されることができる。例えば、セラミック製の補強材であれば、プレス成形法やシート成形法により作製されたグリーンシートを脱脂しかつ高温で焼成すること等により作製可能である。金属製の補強材であれば、金属板に対して必要に応じて抜き穴、凹部、開口部を加工形成することにより作製可能である。この場合の加工方法としては、エッチング等の化学的加工法でもよく、切削加工やパンチング加工等のような機械的加工でもよい。半導体素子についても周知の手法により作製されることができる。特に、低誘電率絶縁膜を有する半導体素子については、例えば、絶縁膜中にサブナノメートルからナノメートル領域の微小空隙を形成し、絶縁膜を多孔質組織化すること等により作製されることができる。具体的な手法の一例を挙げると、プラズマCVD法を用いて多孔質絶縁膜を形成する方法などがある。
【0033】
補強材接合固定工程では、前記基板第1主面、前記基板第2主面、補強材の片側面のうちの少なくともいずれかに接着剤等を塗布しておき、補強材を樹脂基板に重ね合わせる。そして、接着剤を硬化させる処理(例えば加熱、光照射など)を行い、補強材を樹脂基板に強固に接合固定する。なお、前記接着剤としては、熱硬化性樹脂、感光性樹脂などを用いることができる。
【0034】
半導体素子搭載工程では、はんだ等を用いて半導体素子をフリップチップ接続する。なおこの工程に先立って、樹脂基板の基板主面上にバンプを形成しておいてもよく、半導体素子の素子第2主面側のフリップチップ用接続端子上にバンプを形成してもよく、あるいは両方にバンプを形成しておいてもよい。そして、前記バンプが溶融する温度に加熱し、その溶融したバンプを介して半導体素子と樹脂基板とを接合する。なお、このようなバンプに依らない接合方法を採用することも許容される。
【0035】
また、上記2つの工程のほかにも、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の表面上に基板接続端子を取り付ける端子取付工程と、前記半導体素子搭載工程後において前記半導体素子と前記樹脂基板との隙間にアンダーフィル材を充填形成する樹脂封止工程と、を行ってもよい。この場合、端子取付工程はどの段階で行われてもよいが、例えば同一面上に補強材が配置されるときには補強材接合固定工程後に行われることがよい。即ち、既に基板接続端子が立設した状態で補強材を接合固定しようとしても、基板接続端子が邪魔になりやすく、基板接続端子を変形させる原因にもなる。これに対して、基板接続端子のないほぼフラットな面に対して補強材を接合固定するようにすれば、かかる心配もなくなり、基板接続端子の変形も未然に防ぐことができるからである。また、前記樹脂封止工程は、基本的に半導体素子搭載工程後であれば、どの段階で行われてもよい。
【0036】
【発明の実施の形態】
[第1の実施の形態]
【0037】
以下、本発明を具体化した一実施形態を図1〜図3に基づき詳細に説明する。図1は、LSIチップ21(半導体素子)と、スティフナ31(補強材)と、樹脂基板41とからなる半導体パッケージ11(配線基板)を示す概略断面図である。図2は、半導体パッケージ11の製造過程において、接合固定前のスティフナ31及び樹脂基板41を示す概略断面図である。図3は、同じく前記製造過程において、スティフナ付き樹脂基板51(補強材付き基板)に、LSIチップ21を実装するときの状態を示す概略断面図である。
【0038】
図1に示されるように、本実施形態の半導体パッケージ11は、上記のように、LSIチップ21と、スティフナ31と、樹脂基板41とからなるPGA(ピングリッドアレイ)である。なお、半導体パッケージ11の形態は、PGAのみに限定されず、例えばBGA(ボールグリッドアレイ)やLGA(ランドグリッドアレイ)等であってもよい。なお、かかる半導体パッケージ11は、有機樹脂材料を主体として構成されるため、オーガニックパッケージとも呼ばれる。MPUとしての機能を有するLSIチップ21は、10mm角かつ0.8mm厚の矩形平板状であって、熱膨張係数が2.6ppm/℃程度のシリコンからなる。かかるLSIチップ21の下面24(素子第2主面)の表層には図示しない回路部が形成されている。前記回路部は微細な銅配線とその銅配線を層間絶縁する絶縁膜とからなり、前記絶縁膜は比誘電率が2.0前後の多孔質組織からなる。なお、LSIチップ21の下面24において前記回路部の周囲には、複数のフリップチップ用接続端子22が規則的に設けられている。
【0039】
図1に示されるように、前記樹脂基板41は、上面42(基板第1主面)及び下面43(基板第2主面)を有する矩形平板状の部材からなり、複数層の樹脂絶縁層44と複数層の導体回路45とを有する、いわゆる多層樹脂配線基板である。本実施形態の場合、具体的にはエポキシ樹脂をガラスクロスに含浸させてなる絶縁基材により樹脂絶縁層44が形成され、銅箔または銅めっき層により導体回路45が形成されている。かかる樹脂基板41の熱膨張係数は、13.0ppm/℃以上16.0ppm/℃未満となっている。樹脂基板41の上面42(基板第1主面)には、LSIチップ21側との電気的な接続を図るための複数の面接続パッド46が格子状に形成されている。樹脂基板41の下面43(基板第2主面)には、図示しないマザーボード側との電気的な接続を図るための複数の面接続パッド47が格子状に形成されている。なお、隣り合うマザーボード接続用の面接続パッド47,47間のピッチは、隣り合うLSIチップ接続用の面接続パッド46,46間のピッチよりも広いピッチ(中心間距離)となっている。マザーボード接続用の面接続パッド47上には、マザーボード側の凹所に嵌挿可能な端子ピン49(基板接続端子)が取り付けられている。樹脂絶縁層44にはビアホール導体48が設けられていて、これらのビアホール導体48を介して、異なる層の導体回路45、面接続パッド46、面接続パッド47が相互に電気的に接続されている。また、樹脂基板41の上面42(基板第1主面)には、LSIチップ21以外にもその他の電子部品(図示略)が実装されていてもよい。
【0040】
複数の面接続パッド46上には、はんだバンプ35が設けられている。そして、これらのはんだバンプ35を介して、LSIチップ21のフリップチップ用接続端子22と面接続パッド46とが互いに接続されている。また、LSIチップ21と樹脂基板41との隙間には、熱硬化性樹脂からなるアンダーフィル材36が充填形成されている。
【0041】
図1に示されるように、本実施形態におけるスティフナ31は、アンバー(Fe−Ni系合金、36%Ni)からなる板状の部材である。スティフナ31は単層構造をなしていて、ビア等の導通構造については特に備えていない。前記スティフナ31は矩形状の抜き穴38を有する矩形平板状(矩形リング状)であって、樹脂基板41の外形形状及び寸法とほぼ等しくなっている。スティフナ31の厚さは約2mmに設定されている。なお、前記抜き穴38はスティフナ31の表面32及び裏面33を貫通しており、LSIチップ21よりも若干大きな開口面積を有している。
【0042】
アンバーからなるスティフナ31の熱膨張係数は約1.2ppm/℃、ヤング率は約142GPaである。従って、このスティフナ31の熱膨張係数は、樹脂基板41の熱膨張係数よりも小さく、かつ、LSIチップ21の熱膨張係数よりも大きな値となっている。即ち、本実施形態のスティフナ31は、樹脂基板41よりも低い熱膨張性を備えており、むしろLSIチップ21に近い熱膨張性を備えていると言える。また、本実施形態のスティフナ31は少なくとも樹脂基板41よりも高い剛性を備えている。
【0043】
かかるスティフナ31は、樹脂基板41の上面42(基板第1主面)の外周部(即ち、LSIチップ21の実装エリアであるダイエリアを除く領域)に対して面接触した状態で配置され、かつ、接着剤34を用いて前記上面42に強固に接合固定されている。なお、この接着剤34は熱硬化性樹脂からなるものである。
【0044】
ここで、上記構造の半導体パッケージ11を製造する手順について説明する。
【0045】
まず、周知の導体回路形成技術を利用して樹脂基板41を作製した後、その樹脂基板41における複数の面接続パッド46上に略半球状のはんだバンプ35を形成しておく。はんだバンプ35を形成する手法としては特に限定されず、印刷法やめっき法などの周知の手法を採用することができる。一方、周知の方法によってアンバーからなるスティフナ31を作製しておく。具体的には、アンバー材に対するパンチング加工などを行って、外形形状を矩形状にするとともに、中央部に抜き穴38を貫通形成しておく。
【0046】
次に、樹脂基板41の上面42(基板第1主面)に接着剤34を塗布し、その上にスティフナ31を載置する(図2参照)。そして、接着剤34を熱硬化させることにより、スティフナ31を樹脂基板41に対して接合固定する。その結果、図3に示すスティフナ付き樹脂基板51(補強材付き基板)が完成する。
【0047】
次に、スティフナ付き樹脂基板51の上面42(基板主面)上にLSIチップ21を載置する。このとき、LSIチップ21側のフリップチップ用接続端子22と、樹脂基板41側の面接続パッド46とを位置合わせするようにする。そして、200℃前後の温度に加熱して各はんだバンプ35をリフローすることにより、各フリップチップ用接続端子22と各面接続パッド46とを接合する。
【0048】
この後、はんだ付けにより端子ピン49の取り付けを行った後、LSIチップ21と樹脂基板41との隙間にアンダーフィル材36である熱硬化性樹脂を充填しかつ熱硬化させる。その結果、図1に示す半導体パッケージ11を得ることができる。
【0049】
従って、本実施形態によれば以下の効果を得ることができる。
【0050】
(1)樹脂基板41に対してスティフナ31を接合固定しているため、基板全体の厚さが増して樹脂基板41の剛性が向上する。その結果、LSIチップ21との熱膨張係数差に起因する熱応力に樹脂基板41が十分に耐えられるようになり、半導体パッケージ11全体がチップ実装面側に反りにくくなる。それゆえ、LSIチップ21の反りに起因する絶縁膜部分の破壊が防止されるとともに、接合部分におけるクラックの発生も防止される。以上の結果、低誘電率のLSIチップ21を用いた本実施形態の場合であっても、高歩留まり及び高信頼性の半導体パッケージ11を実現することが可能となる。しかも、補強材であるスティフナ31は樹脂基板41に対して面接触状態で強固に接合固定されていて、いわば両者は一体化した状態となっている。ゆえに、スティフナ31と樹脂基板41との界面にある程度大きな熱応力が集中したとしても、その界面には剥離が起こりにくい。
【0051】
(2)本実施形態のアンバーからなるスティフナ31は、高い剛性を有することに加えて低い熱膨張係数を有しており、LSIチップ21との熱膨張係数が整合している。また、前記スティフナ31は層構造を有しない比較的単純なものであるので、製造が容易で低コスト化に向いていることに加え、クラックが発生しにくいという利点がある。しかも、アンバー自体はそれほど高価な金属ではないので、低コスト化に有利である。
[第2の実施の形態]
【0052】
以下、本発明を具体化した第2の実施形態を図4に基づき詳細に説明する。図4は、LSIチップ21(半導体素子)と、スティフナ61(補強材)と、樹脂基板41とからなる本実施形態の半導体パッケージ11(配線基板)を示す概略断面図である。なお、第1の実施形態と同じ構成については共通の部材番号を付す代わりに、その詳細な説明を省略する。
【0053】
本実施形態のスティフナ61は、第1実施形態のスティフナ31とは異なり、樹脂基板41の下面43(基板第2主面)に接合固定されている。樹脂基板41の下面43には複数の端子ピン49(基板接続端子)が取り付けられている。このため、前記スティフナ61において各々の端子ピン49に対応した位置には、表面63及び裏面62を貫通する複数の円形状のクリアランスホール64(開口部)が形成されている。なお、クリアランスホール64の直径は、少なくとも端子ピン49の基端部の直径及び面接続パッド4の直径よりも大きくなるように設定されている。従って、複数の端子ピン49は複数のクリアランスホール64を介して外部に露出されている。スティフナ61の厚さは、下面43(基板第2主面)を基準とした端子ピン49の突出高さよりも小さくなるように設定されている。従って、端子ピン49の先端部はスティフナ61の表面63からも突出し、図示しないマザーボードに対して嵌挿可能な状態となっている。
【0054】
そして、このような構造の半導体パッケージ11であっても、基板全体がスティフナ61によって補強されることから、第1実施形態と同様に歩留まり及び信頼性に優れたものとすることができる。
【0055】
なお、本発明の実施形態は以下のように変更してもよい。
【0056】
・第1及び第2実施形態では、LSIチップ21(半導体素子)と端子ピン49(基板接続端子)とを異なる面に配置した、いわゆるフェースアップタイプの半導体パッケージ11を例示した。しかし、本発明はフェースアップタイプのみに限定されず、図5に示す別の実施形態のように、LSIチップ21(半導体素子)と端子ピン49(基板接続端子)とを同一面内に配置した、いわゆるフェースダウンタイプの半導体パッケージ11として具体化することもできる。なお、図5におけるスティフナ71は、表面63及び裏面62を貫通する抜き穴38を略中央部に有し、表面63及び裏面62を貫通する複数のクリアランスホール64をその抜き穴38の周囲に有している。
【0057】
・第1及び第2実施形態では樹脂基板41の片側面のみにスティフナ31,61を接合固定していたが、図6に示す別の実施形態のようにスティフナ31,61を2枚用いてそれらを樹脂基板41の上面42及び下面43の両方に接合固定してもよい。
【0058】
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。
【0059】
(1)前記半導体素子はその少なくとも表層に多孔質組織を有するとともに、その多孔質組織の比誘電率が4未満であることを特徴とする請求項1乃至4のいずれか1項に記載の補強材付き基板。
【0060】
(2)前記半導体素子における少なくとも一辺は10.0mm以上であることを特徴とする請求項1乃至4のいずれか1項に記載の補強材付き基板。
【0061】
(3)前記半導体素子の厚さは1.0mm未満であることを特徴とする請求項1乃至4のいずれか1項に記載の補強材付き基板。
【0062】
(4)前記半導体素子はその少なくとも表層に多孔質組織を有するとともに、その多孔質組織の比誘電率が4未満であり、前記半導体素子における少なくとも一辺は10mm以上であり、前記半導体素子の厚さは1.0mm未満であることを特徴とする請求項1乃至4のいずれか1項に記載の補強材付き基板。
【0063】
(5)素子第1主面、素子第2主面及び前記素子第2主面側に形成されたフリップチップ用接続端子を有し、熱膨張係数が5.0ppm/℃未満であり、比誘電率が4未満の多孔質組織を有する半導体集積回路チップを搭載するための補強材付き基板において、基板第1主面及び基板第2主面を有し、前記基板第1主面及び前記基板第2主面の少なくとも一方の側に前記半導体集積回路チップがフリップチップ接続される樹脂基板と、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の表面に対して面接触状態で接合固定され、前記樹脂基板よりも剛性の高い鉄系の板材からなり、熱膨張係数が3.0ppm/℃以上5.0ppm/℃未満である補強材と、前記補強材を前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の表面に対して面接触状態で接合固定する接着剤と、を備えることを特徴とする補強材付き基板。
【0064】
(6)請求項5乃至8のいずれか1項に記載の配線基板の製造方法において、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の表面に対して前記補強材を接合固定する補強材接合固定工程と、前記補強材接合固定工程後に、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方の側に前記半導体素子をフリップチップ接続する半導体素子搭載工程と、を含むことを特徴とする、半導体素子と補強材と基板とからなる配線基板の製造方法。
【図面の簡単な説明】
【図1】本発明を具体化した第1実施形態において、LSIチップ(半導体素子)と、スティフナ(補強材)と、樹脂基板とからなる半導体パッケージ(配線基板)を示す概略断面図。
【図2】第1実施形態の半導体パッケージ(配線基板)の製造過程において、接合固定前のスティフナ(補強材)及び樹脂基板を示す概略断面図。
【図3】同じく前記製造過程において、スティフナ付き樹脂基板(補強材付き基板)に、LSIチップ(半導体素子)を実装するときの状態を示す概略断面図。
【図4】本発明を具体化した第2実施形態において、LSIチップ(半導体素子)と、スティフナ(補強材)と、樹脂基板とからなる半導体パッケージ(配線基板)を示す概略断面図。
【図5】別の実施形態において、LSIチップ(半導体素子)と、スティフナ(補強材)と、樹脂基板とからなる半導体パッケージ(配線基板)を示す概略断面図。
【図6】別の実施形態において、LSIチップ(半導体素子)と、スティフナ(補強材)と、樹脂基板とからなる半導体パッケージ(配線基板)を示す概略断面図。
【符号の説明】
11…半導体素子と補強材と基板とからなる配線基板としての半導体パッケージ
21…半導体素子としてのLSIチップ
22…フリップチップ用接続端子
23…素子第1主面としての上面
24…素子第2主面としての下面
31,61,71…補強材としてのスティフナ
34…接着剤
41…樹脂基板
42…基板第1主面としての上面
43…基板第2主面としての下面
49…基板接続端子としての端子ピン
51…補強材付き基板としてのスティフナ付き樹脂基板
64…開口部としてのクリアランスホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate with a reinforcing material, and a wiring substrate comprising a semiconductor element, a reinforcing material, and a substrate.
[0002]
[Prior art]
The spread of electronic devices such as personal computers and mobile phones is revolutionizing the social structure as an IT revolution. The core of this technology is a large-scale semiconductor integrated circuit (LSI) technology, and the operating frequency of such LSI tends to increase more and more in order to achieve an increase in calculation speed. However, when attempting to increase the frequency of the LSI, if the dielectric constant of the material that insulates the metal wirings between the layers is high, the signal will be delayed. For this reason, in the development of the next generation LSI, the development of a low dielectric constant insulating film is regarded as one of the important issues. In addition, as a specific method for realizing such a low dielectric constant insulating film, at the present stage, a minute gap in the sub-nanometer to nanometer range is formed in the insulating film, and the insulating film is made porous. Has been proposed.
[0003]
Note that such a low dielectric constant LSI chip is also used in a state of a wiring board (so-called semiconductor package) formed by flip chip connection on an LSI mounting board, as usual (see, for example, Patent Document 1). ). The LSI chip is generally formed using a semiconductor material (for example, silicon) having a thermal expansion coefficient of about 2.0 ppm / ° C. to 5.0 ppm / ° C. On the other hand, the LSI mounting substrate is often formed using a resin material having a considerably larger thermal expansion coefficient.
[0004]
[Patent Document 1]
JP 2002-26500 A (FIG. 1)
[0005]
[Problems to be solved by the invention]
By the way, when the insulating film on the surface of the LSI chip is made porous in order to reduce the dielectric constant, the rigidity of the LSI chip is inevitably lowered, and the insulating film portion becomes particularly fragile. However, in the case of flip chip connection using solder, when the solder cools from the melting temperature to room temperature, the entire package is placed on the chip mounting surface side due to the difference in thermal expansion coefficient between the chip material and the substrate material. Thermal stress that tends to warp is generated. Therefore, as a result of the thermal stress acting and warping, the brittle insulating film portion is easily broken. Even if the insulating film portion is not destroyed, cracks may occur in the chip bonding portion, and open defects may easily occur. That is, when a semiconductor package is configured using an LSI chip having a low dielectric constant as described above, there is a problem that high yield and reliability cannot be realized.
[0006]
Recently, in order to form more arithmetic circuits using a small amount of semiconductor material, the LSI chip is increased in size (for example, the size of one side of the chip is 10.0 mm or more) and thinned (the chip thickness is less than 1.0 mm). There is a trend to do. In this case, since the chip structure is easily affected by the thermal stress even though the rigidity is lowered, the above problem becomes more remarkable.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a wiring substrate including a semiconductor element, a reinforcing material, and a substrate, which has high yield and reliability. Another object of the present invention is to provide a substrate with a reinforcing material suitable for realizing the above excellent wiring substrate.
[0008]
[Means, actions and effects for solving the problems]
  As means for solving the above problems, the first main surface of the element, the second main surface of the element, and the flip chip connection terminal formed on the second main surface side of the elementAnd an insulating film comprising a porous structure having a relative dielectric constant of less than 4 on a surface layer on the second main surface side of the elementWith a coefficient of thermal expansion of less than 5.0 ppm / ° C.IsSemiconductor element, substrate first main surface and substrate second main surfaceA plurality of surface connection pads formed by a conductor layer mainly made of copper on at least one of the first substrate main surface and the second substrate main surface; and on the plurality of surface connection pads. Each has a plurality of ball-shaped or pin-shaped board connection terminals attached,A resin substrate on which the semiconductor element is flip-chip connected to the substrate first main surface side;A plurality of openings for exposing the plurality of substrate connection terminals are formed,At least one of the first substrate main surface and the second substrate main surface of the resin substrateReinforcement joint surface and its reinforcement joint surfaceBonded and fixed in a surface contact state with respect to the resin substrateConstituting the conductor layerFrom a stiffer materialThe thickness of the substrate connection terminal is set to be larger than the thickness of the semiconductor element and the surface connection pad and smaller than the protruding height of the substrate connection terminal with respect to the reinforcing material bonding surface.There is a wiring board comprising a semiconductor element, a reinforcing material, and a substrate, characterized by comprising a reinforcing material.
[0009]
  Moreover, as a suitable thing to implement | achieve said wiring board which consists of a semiconductor element, a reinforcing material, and a board | substrate, it was formed in the element 1st main surface, the element 2nd main surface, and the said element 2nd main surface side. Flip chip connection terminalAnd an insulating film comprising a porous structure having a relative dielectric constant of less than 4 on a surface layer on the second main surface side of the elementWith a coefficient of thermal expansion of less than 5.0 ppm / ° C.IsIn a substrate with a reinforcing material for mounting a semiconductor element, a substrate first main surface and a substrate second main surface areA plurality of surface connection pads formed by a conductor layer mainly made of copper on at least one of the first substrate main surface and the second substrate main surface; and on the plurality of surface connection pads. Each has a plurality of ball-shaped or pin-shaped board connection terminals attached,A resin substrate on which the semiconductor element is flip-chip connected to the substrate first main surface side;A plurality of openings for exposing the plurality of substrate connection terminals are formed,At least one of the first substrate main surface and the second substrate main surface of the resin substrateReinforcement joint surface and its reinforcement joint surfaceBonded and fixed in a surface contact state with respect to the resin substrateConstituting the conductor layerFrom a stiffer materialThe thickness of the substrate connection terminal is set to be larger than the thickness of the semiconductor element and the surface connection pad and smaller than the protruding height of the substrate connection terminal with respect to the reinforcing material bonding surface.There exists a board | substrate with a reinforcing material characterized by providing a reinforcing material.
[0010]
Therefore, according to these inventions, by bonding and fixing the reinforcing material to the resin substrate, the thickness of the entire substrate is increased and the rigidity of the resin substrate is improved. As a result, the resin substrate can sufficiently withstand the thermal stress caused by the difference in thermal expansion coefficient with the semiconductor element, and the entire wiring board is unlikely to warp to the semiconductor element mounting surface side. Therefore, the breakage of the insulating film portion due to the warp of the semiconductor element is prevented, and the occurrence of cracks at the joint portion is also prevented. As a result, for example, even when a semiconductor element having a low dielectric constant is used, a high yield and highly reliable wiring board can be realized.
[0011]
In addition, the reinforcing material is firmly bonded and fixed to the resin substrate in a surface contact state, so to speak, both are integrated. Therefore, even if a certain amount of thermal stress is concentrated on the interface between the reinforcing material and the resin substrate, the interface is unlikely to peel off. Therefore, the member corresponding to the reinforcing material is simply brought into surface contact with the resin substrate and is not bonded and fixed, or the member corresponding to the reinforcing material is bonded and fixed to the resin substrate, but the surface contact state. What is not (substantially only a point contact state or a line contact state) etc. are excluded.
[0012]
The semiconductor element constituting the wiring board has a flip chip connection terminal formed on the element first main surface, element second main surface, and element second main surface side, and has a thermal expansion coefficient of 5.0 ppm. Those having a relative dielectric constant of less than 4 / ° C are used. The flip-chip connection terminal refers to a terminal for electrical connection by surface connection. Such flip-chip connection terminals are formed in, for example, a linear shape or a lattice shape (including a staggered shape). The surface connection refers to a case where pads or terminals are formed in a line shape or a lattice shape (including a staggered shape) on a plane of an object to be connected, and these are connected to each other.
[0013]
The thermal expansion coefficient of the semiconductor element is particularly preferably not less than 2.0 ppm / ° C. and less than 5.0 ppm / ° C., for example, a semiconductor integrated circuit chip made of silicon having a thermal expansion coefficient of about 2.6 ppm / ° C. (LSI chip). The size and shape of the semiconductor element are not particularly limited, but at least one side is preferably 10.0 mm or more. This is because such a large semiconductor element tends to increase the amount of heat generation and is easily affected by thermal stress, so that the problem of the present invention is likely to occur. The thickness of the semiconductor element is preferably less than 1.0 mm, and more preferably less than 0.5 mm. This is because such a thin semiconductor element is weak in rigidity and easily affected by thermal stress, and therefore the problem of the present invention is likely to occur. Here, “thermal expansion coefficient” means a thermal expansion coefficient in a direction (XY direction) perpendicular to the thickness direction (Z direction), and a TMA (thermomechanical analyzer between 0 ° C. and 100 ° C. ) Means the value measured. “TMA” refers to thermomechanical analysis, such as that defined in JPCA-BU01.
[0014]
  The semiconductor element includes an insulating film for insulating between wirings at least in a surface layer portion, and the insulating filmIs manyComposed of porous tissueTheIn this case, the relative dielectric constant of the semiconductor element, more precisely, the relative dielectric constant of the insulating film on the surface of the semiconductor element is at least lower than the relative dielectric constant of silicon oxide, specifically less than 4.0.TheFurthermore, it is better that it is 1.1 or more and less than 3.0, and it is best that it is 1.1 or more and less than 2.0 in particular. The reason is that, in the case of the semiconductor element having the above structure, the insulating film portion becomes weak as the porous structure is formed, so that the problem of the present invention is likely to occur.
[0015]
As the resin substrate constituting the wiring board and the substrate with the reinforcing material, those in which the semiconductor element is flip-chip connected to at least one side of the first substrate main surface and the second substrate main surface are used. The thermal expansion coefficient of the resin substrate is about 5.0 ppm / ° C. or more and less than 20.0 ppm / ° C.
[0016]
The resin substrate refers to a resin substrate in which an insulating layer portion is formed using a resin as a main material, and may be appropriately selected in consideration of cost, workability, insulation, mechanical strength, and the like. it can.
[0017]
Specific examples of the resin constituting the resin substrate include EP resin (epoxy resin), PI resin (polyimide resin), BT resin (bismaleimide-triazine resin), and PPE resin (polyphenylene ether resin). In addition, a substrate made of a composite material of these resins and organic fibers such as glass fibers (glass woven fabric or glass nonwoven fabric) or polyamide fibers may be used as the resin substrate. Alternatively, a substrate made of a resin-resin composite material in which a thermosetting resin such as an epoxy resin is impregnated in a three-dimensional network fluorine-based resin base material such as continuous porous PTFE may be used as the resin substrate. Moreover, the inner layer in the resin substrate may be provided with a metal plate (metal core) as a core. Examples of the metal constituting the metal plate include copper, a copper alloy, and a simple metal or alloy other than copper. Examples of the copper alloy include aluminum bronze (Cu—Al series), phosphor bronze (Cu—P series), brass (Cu—Zn series), cupronickel (Cu—Ni series), and the like. Examples of simple metals other than copper include aluminum, iron, chromium, nickel, molybdenum and the like. Examples of alloys other than copper include stainless steel (iron alloy such as Fe—Cr and Fe—Cr—Ni), amber (Fe—Ni alloy, 36% Ni), so-called 42 alloy (Fe—Ni alloy, 42 % Ni), so-called 50 alloy (Fe—Ni alloy, 50% Ni), nickel alloy (Ni—P, Ni—B, Ni—Cu—P), cobalt alloy (Co—P, Co—) B series, Co-Ni-P series), tin alloys (Sn-Pb series, Sn-Pb-Pd series) and the like. Further, the resin substrate may have a form in which insulating layers and wiring layers are alternately formed on a core substrate (made of resin) as disclosed in JP-A-2002-26500 (FIG. 1).
[0018]
The resin substrate may be a wiring substrate having one or more conductor layers. The conductor layer is mainly made of copper, and is formed by a known method such as a subtractive method, a semi-additive method, or a full additive method. Specifically, for example, techniques such as etching of copper foil, electroless copper plating, or electrolytic copper plating are applied. Note that a conductor layer can be formed by etching after forming a thin film by a technique such as sputtering or CVD, or a conductor layer can be formed by printing a conductive paste or the like.
[0019]
  In order to enable flip chip connection of a semiconductor element on the first substrate main surface, the second substrate main surface, or the surfaces of the first substrate main surface and the second substrate main surface of the resin substrate, a plurality of surfaces are provided. Connection pad is providedTheFurthermore, bumps made of solder or the like are formed on these surface connection pads.TheThe surface connection pad refers to a terminal pad for electrical connection, which is connected by surface connection. Such surface connection pads are formed in, for example, a linear shape or a lattice shape (including a staggered shape). Similarly, the surface connection pads are formed by a known method such as a subtractive method, a semi-additive method, or a full additive method. In addition, the surface connection pads can be arranged at any position on the first main surface of the substrate or the second main surface of the substrate, but are usually arranged almost at the center. Note that only one semiconductor element may be mounted on the same surface, or two or more semiconductor elements may be mounted. In addition, one or two or more surface connection pads are arranged.
[0020]
In addition to the semiconductor element, an electronic component may be mounted on the first main surface or the second main surface of the resin substrate. Examples of the electronic component include a chip component (for example, a chip transistor, a chip diode, a chip resistor, a chip capacitor, and a chip coil) having a plurality of terminals on the back surface or side surface. The electronic component may be an active component or a passive component.
[0021]
  On the surface of the substrate second main surface of the resin substrate, a plurality of substrate connection terminals for connecting to another wiring substrate are attached.TheShape of such board connection terminalsIsBall shape (bump shape) or pin shapeIt is.
[0022]
The wiring board and the reinforcing material constituting the substrate with the reinforcing material are bonded and fixed to the first substrate main surface, the second substrate main surface, or both the first substrate main surface and the second substrate main surface in a surface contact state. Is done. It is preferable that the reinforcing material does not have a conductive structure therein. The reinforcing material may have a single-layer structure or a multi-layer structure, but it is preferably a single-layer structure. The reason for this is that a single-layer structure is relatively simple and easy to manufacture, making it easy to achieve cost reduction. In addition, since a single-layer structure does not have an interface, cracks do not occur even when a large thermal stress is applied.
[0023]
The shape or the like of the reinforcing material is not particularly limited and is arbitrary, but it is preferable to have at least a surface (plane) that can be bonded and fixed in a surface contact state to the main surface on the substrate side. Therefore, for example, it is generally preferable to use a substantially plate-shaped reinforcing material having a front surface and a back surface.
[0024]
  The external dimensions of such a plate-like reinforcing material are not particularly limited, but to be strong, it is preferable that the external dimensions of the semiconductor element are larger than the external dimensions of the semiconductor element and smaller than or equal to the external dimensions of the resin substrate. Also, the thickness of the reinforcing materialHalfThicker than the thickness of the conductor elementIt is set to be (large).The reason is that if the thickness of the reinforcing material is too thin, the thickness of the entire resin substrate cannot be increased sufficiently, and it becomes difficult to achieve improvement in the rigidity of the resin substrate. Further, if the external dimension of the reinforcing material is too small, even if a reinforcing material having a sufficient thickness is used, it is difficult to improve the rigidity of the resin substrate.
[0025]
The reinforcing material is preferably made of a material having rigidity higher than that of at least the resin substrate. For example, the reinforcing material is preferably made of a material having a higher Young's modulus than the resin substrate. Specifically, the Young's modulus of the reinforcing material is preferably 100 GPa or more, particularly 140 GPa or more. The reason is that if the reinforcing material itself is given high rigidity, it can be given high rigidity to the resin substrate by bonding and fixing it, and it becomes stronger against thermal stress. Moreover, if the reinforcing material has high rigidity, even if the thickness of the reinforcing material is reduced, sufficient rigidity can be imparted to the resin substrate, so that the thinning of the entire wiring board is not hindered. The reinforcing material may be made of ceramic or metal as long as it satisfies the condition that the Young's modulus is higher than that of the resin substrate.
[0026]
The reinforcing material preferably has a low coefficient of thermal expansion in addition to having a high rigidity. The thermal expansion coefficient of the reinforcing material is preferably at least lower than the thermal expansion coefficient of the resin substrate, specifically less than 5.0 ppm / ° C., particularly 3.0 ppm / ° C. or more and less than 5.0 ppm / ° C. It is good that it is. The reinforcing material may be made of ceramic or metal as long as it satisfies the above conditions of the thermal expansion coefficient.
[0027]
Examples of suitable ceramic materials having low thermal expansion and high rigidity include oxide-based, carbide-based, and nitride-based engineering ceramic materials. Examples of the oxide-based engineering ceramic material include alumina, silica, beryllia, magnesia, and the like. Examples of the carbide-based engineering ceramic material include silicon carbide. Examples of the nitride-based engineering ceramic material include aluminum nitride and silicon nitride. On the other hand, suitable metal materials having low thermal expansion and high rigidity include, for example, amber (Fe—Ni alloy, 36% Ni), so-called 42 alloy (Fe—Ni alloy, 42% Ni), so-called 50 alloy. Fe-Ni alloys such as (Fe-Ni alloy, 50% Ni), tungsten, molybdenum, and the like can be given. Among these, it is preferable to select an Fe—Ni-based alloy from the viewpoint of cost and workability.
[0028]
The reinforcing material is bonded and fixed to the substrate side in a surface contact state, but the method of bonding and fixing is not particularly limited, and is well known according to the nature, shape, etc. of the material forming the reinforcing material. Techniques can be employed. For example, when the reinforcing material is a metal plate, use an organic bonding material such as an adhesive mainly composed of a polymer, or an inorganic bonding material made of metal such as solder. It can be bonded and fixed to a resin substrate. Even when the reinforcing material is a ceramic plate, an organic bonding material such as an adhesive mainly composed of a polymer or an inorganic bonding material made of metal such as solder is used as a resin substrate. Can be fixed to the joint. However, when using solder or the like, it is preferable to form a portion with good solder wettability (for example, a metal layer) on the resin substrate side. From the viewpoint that such a metal layer is unnecessary, it can be said that it is preferable to use an organic bonding material such as an adhesive.
[0029]
  About the reinforcing material joined and fixed to the 1st main surface of a board | substrate, it is good to form a punch hole or a recessed part in the position corresponding to the mounting location of a semiconductor element. With such a structure, interference with the semiconductor element can be avoided, so that the semiconductor element mounting process can be performed after the reinforcing material joining and fixing process, for example. That is, the degree of freedom in manufacturing increases. For the reinforcing material bonded and fixed to the second main surface of the substrate, an opening is formed at a position corresponding to each substrate connection terminal.TheIf a plurality of openings are formed in this way, the board connection terminals are exposed from the reinforcing material, and there is no problem when connecting to another board. Further, for example, the terminal attaching step can be performed after the reinforcing material joining and fixing step. That is, the degree of freedom in manufacturing increases.
[0030]
The wiring board as described above includes, for example, a reinforcing material bonding and fixing step of bonding and fixing the reinforcing material to at least one surface of the first substrate main surface and the second substrate main surface of the resin substrate, A semiconductor element mounting step of flip-chip connecting the semiconductor element to at least one side of the substrate first main surface and the substrate second main surface of the resin substrate can be manufactured.
[0031]
The reinforcing material bonding and fixing step can be performed before or after the semiconductor element mounting step, but it is better to be performed before the semiconductor element mounting step. That is, in the case where the adhesive is applied and the reinforcing material is pressure-bonded with the semiconductor element mounted, bending stress may be applied to the semiconductor element itself or a connection portion between the semiconductor element and the resin substrate. On the other hand, if the semiconductor element is mounted after the reinforcing material is bonded and fixed, there is no fear of bending stress being applied to the semiconductor element itself or the connection part between the semiconductor element and the resin substrate, and the yield and reliability are improved reliably. be able to.
[0032]
Here, the reinforcing material can be produced by a known method. For example, a ceramic reinforcing material can be produced by degreasing and firing at a high temperature a green sheet produced by a press molding method or a sheet molding method. If it is a metal reinforcing material, it can be manufactured by processing and forming a punched hole, a concave portion, and an opening portion on the metal plate as necessary. The processing method in this case may be a chemical processing method such as etching, or a mechanical processing such as cutting or punching. The semiconductor element can also be manufactured by a known method. In particular, a semiconductor element having a low dielectric constant insulating film can be produced, for example, by forming a microscopic void in the sub-nanometer to nanometer region in the insulating film and organizing the insulating film into a porous structure. . An example of a specific technique is a method of forming a porous insulating film using a plasma CVD method.
[0033]
In the reinforcing material joining and fixing step, an adhesive or the like is applied to at least one of the first main surface of the substrate, the second main surface of the substrate, or one side surface of the reinforcing material, and the reinforcing material is overlapped on the resin substrate. . And the process (for example, heating, light irradiation, etc.) which hardens an adhesive agent is performed, and a reinforcement material is firmly joined and fixed to a resin substrate. As the adhesive, a thermosetting resin, a photosensitive resin, or the like can be used.
[0034]
In the semiconductor element mounting process, the semiconductor elements are flip-chip connected using solder or the like. Prior to this step, bumps may be formed on the substrate main surface of the resin substrate, bumps may be formed on the flip chip connection terminals on the element second main surface side of the semiconductor element, Alternatively, bumps may be formed on both. And it heats to the temperature which the said bump fuse | melts, and a semiconductor element and a resin substrate are joined via the fuse | melted bump. It is also acceptable to employ such a bonding method that does not rely on bumps.
[0035]
In addition to the above two steps, a terminal mounting step of mounting a substrate connection terminal on at least one surface of the substrate first main surface and the substrate second main surface of the resin substrate, and the semiconductor element mounting step A resin sealing step of filling and forming an underfill material in a gap between the semiconductor element and the resin substrate may be performed later. In this case, the terminal attaching process may be performed at any stage, but for example, when the reinforcing material is disposed on the same surface, it may be performed after the reinforcing material joining and fixing process. That is, even if the reinforcing material is tried to be bonded and fixed in a state where the board connection terminals are already erected, the board connection terminals are likely to be in the way and cause the board connection terminals to be deformed. On the other hand, if the reinforcing material is bonded and fixed to a substantially flat surface without the substrate connection terminal, such a concern is eliminated and deformation of the substrate connection terminal can be prevented. The resin sealing step may be performed at any stage as long as it is basically after the semiconductor element mounting step.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
[0037]
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment embodying the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing a semiconductor package 11 (wiring substrate) including an LSI chip 21 (semiconductor element), a stiffener 31 (reinforcing material), and a resin substrate 41. FIG. 2 is a schematic cross-sectional view showing the stiffener 31 and the resin substrate 41 before bonding and fixing in the manufacturing process of the semiconductor package 11. FIG. 3 is a schematic cross-sectional view showing a state where the LSI chip 21 is mounted on the stiffener-equipped resin substrate 51 (substrate with a reinforcing material) in the same manufacturing process.
[0038]
As shown in FIG. 1, the semiconductor package 11 of this embodiment is a PGA (pin grid array) including the LSI chip 21, the stiffener 31, and the resin substrate 41 as described above. The form of the semiconductor package 11 is not limited to PGA, but may be, for example, BGA (ball grid array), LGA (land grid array), or the like. The semiconductor package 11 is also called an organic package because it is composed mainly of an organic resin material. The LSI chip 21 having a function as an MPU is a 10 mm square and 0.8 mm thick rectangular flat plate made of silicon having a thermal expansion coefficient of about 2.6 ppm / ° C. A circuit portion (not shown) is formed on the surface layer of the lower surface 24 (element second main surface) of the LSI chip 21. The circuit portion includes a fine copper wiring and an insulating film that insulates the copper wiring from each other, and the insulating film includes a porous structure having a relative dielectric constant of about 2.0. A plurality of flip chip connection terminals 22 are regularly provided around the circuit portion on the lower surface 24 of the LSI chip 21.
[0039]
As shown in FIG. 1, the resin substrate 41 is formed of a rectangular plate-shaped member having an upper surface 42 (substrate first main surface) and a lower surface 43 (substrate second main surface), and a plurality of resin insulation layers 44 are formed. And a multi-layered resin circuit board having a plurality of conductor circuits 45. In the case of this embodiment, specifically, the resin insulating layer 44 is formed of an insulating base material obtained by impregnating a glass cloth with an epoxy resin, and the conductor circuit 45 is formed of a copper foil or a copper plating layer. The thermal expansion coefficient of the resin substrate 41 is 13.0 ppm / ° C. or more and less than 16.0 ppm / ° C. On the upper surface 42 (substrate first main surface) of the resin substrate 41, a plurality of surface connection pads 46 for electrical connection with the LSI chip 21 side are formed in a lattice shape. On the lower surface 43 (substrate second main surface) of the resin substrate 41, a plurality of surface connection pads 47 for electrical connection with a mother board (not shown) are formed in a lattice shape. It should be noted that the pitch between adjacent surface connection pads 47, 47 for connecting the mother board is wider than the pitch between adjacent surface connection pads 46, 46 for connecting LSI chips (distance between centers). On the surface connection pad 47 for connecting the motherboard, terminal pins 49 (board connection terminals) that can be inserted into the recesses on the motherboard side are attached. Via hole conductors 48 are provided in the resin insulating layer 44, and the conductor circuits 45, the surface connection pads 46, and the surface connection pads 47 of different layers are electrically connected to each other via these via hole conductors 48. . In addition to the LSI chip 21, other electronic components (not shown) may be mounted on the upper surface 42 (substrate first main surface) of the resin substrate 41.
[0040]
Solder bumps 35 are provided on the plurality of surface connection pads 46. The flip chip connection terminals 22 and the surface connection pads 46 of the LSI chip 21 are connected to each other through these solder bumps 35. In addition, an underfill material 36 made of a thermosetting resin is filled in the gap between the LSI chip 21 and the resin substrate 41.
[0041]
As shown in FIG. 1, the stiffener 31 in the present embodiment is a plate-like member made of amber (Fe—Ni alloy, 36% Ni). The stiffener 31 has a single-layer structure and is not particularly provided with a conductive structure such as a via. The stiffener 31 has a rectangular flat plate shape (rectangular ring shape) having a rectangular hole 38 and is substantially equal to the outer shape and dimensions of the resin substrate 41. The thickness of the stiffener 31 is set to about 2 mm. The punched hole 38 passes through the front surface 32 and the back surface 33 of the stiffener 31 and has a slightly larger opening area than the LSI chip 21.
[0042]
The thermal expansion coefficient of the stiffener 31 made of amber is about 1.2 ppm / ° C., and the Young's modulus is about 142 GPa. Therefore, the thermal expansion coefficient of the stiffener 31 is smaller than the thermal expansion coefficient of the resin substrate 41 and larger than the thermal expansion coefficient of the LSI chip 21. That is, it can be said that the stiffener 31 of this embodiment has lower thermal expansion than that of the resin substrate 41, but rather has thermal expansion close to that of the LSI chip 21. In addition, the stiffener 31 of this embodiment has at least higher rigidity than the resin substrate 41.
[0043]
The stiffener 31 is disposed in surface contact with the outer peripheral portion of the upper surface 42 (substrate first main surface) of the resin substrate 41 (that is, the region excluding the die area that is the mounting area of the LSI chip 21), and The upper surface 42 is firmly bonded and fixed using an adhesive 34. The adhesive 34 is made of a thermosetting resin.
[0044]
Here, a procedure for manufacturing the semiconductor package 11 having the above structure will be described.
[0045]
First, a resin substrate 41 is manufactured using a known conductor circuit forming technique, and then a substantially hemispherical solder bump 35 is formed on a plurality of surface connection pads 46 on the resin substrate 41. A method for forming the solder bump 35 is not particularly limited, and a known method such as a printing method or a plating method can be employed. On the other hand, a stiffener 31 made of amber is prepared by a known method. Specifically, punching or the like is performed on the amber material to make the outer shape rectangular, and a through hole 38 is formed through the center.
[0046]
Next, the adhesive 34 is applied to the upper surface 42 (substrate first main surface) of the resin substrate 41, and the stiffener 31 is placed thereon (see FIG. 2). Then, the stiffener 31 is bonded and fixed to the resin substrate 41 by thermosetting the adhesive 34. As a result, the stiffener-equipped resin substrate 51 (substrate with a reinforcing material) shown in FIG. 3 is completed.
[0047]
Next, the LSI chip 21 is placed on the upper surface 42 (substrate main surface) of the resin substrate 51 with a stiffener. At this time, the flip chip connection terminal 22 on the LSI chip 21 side and the surface connection pad 46 on the resin substrate 41 side are aligned. Then, each flip bump connection terminal 22 and each surface connection pad 46 are joined by reflowing each solder bump 35 by heating to a temperature around 200 ° C.
[0048]
Thereafter, after the terminal pins 49 are attached by soldering, the gap between the LSI chip 21 and the resin substrate 41 is filled with the thermosetting resin as the underfill material 36 and is thermoset. As a result, the semiconductor package 11 shown in FIG. 1 can be obtained.
[0049]
Therefore, according to the present embodiment, the following effects can be obtained.
[0050]
(1) Since the stiffener 31 is bonded and fixed to the resin substrate 41, the thickness of the entire substrate is increased and the rigidity of the resin substrate 41 is improved. As a result, the resin substrate 41 can sufficiently withstand the thermal stress caused by the difference in thermal expansion coefficient with the LSI chip 21, and the entire semiconductor package 11 is less likely to warp on the chip mounting surface side. Therefore, the breakage of the insulating film portion due to the warp of the LSI chip 21 is prevented, and the occurrence of cracks at the joint portion is also prevented. As a result, even in the case of the present embodiment using the LSI chip 21 with a low dielectric constant, it is possible to realize the semiconductor package 11 with a high yield and high reliability. In addition, the stiffener 31 that is a reinforcing material is firmly bonded and fixed to the resin substrate 41 in a surface contact state, so to speak, both are integrated. Therefore, even if a certain amount of thermal stress is concentrated on the interface between the stiffener 31 and the resin substrate 41, peeling is unlikely to occur at the interface.
[0051]
(2) The stiffener 31 made of amber of this embodiment has a low coefficient of thermal expansion in addition to high rigidity, and the coefficient of thermal expansion with the LSI chip 21 matches. Further, since the stiffener 31 is relatively simple and does not have a layer structure, it has the advantage that it is easy to manufacture and is suitable for cost reduction, and that cracks are unlikely to occur. Moreover, since the amber itself is not a very expensive metal, it is advantageous for cost reduction.
[Second Embodiment]
[0052]
Hereinafter, a second embodiment of the present invention will be described in detail with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the semiconductor package 11 (wiring substrate) of the present embodiment including the LSI chip 21 (semiconductor element), a stiffener 61 (reinforcing material), and a resin substrate 41. In addition, about the same structure as 1st Embodiment, the detailed description is abbreviate | omitted instead of attaching | subjecting a common member number.
[0053]
Unlike the stiffener 31 of the first embodiment, the stiffener 61 of the present embodiment is bonded and fixed to the lower surface 43 (substrate second main surface) of the resin substrate 41. A plurality of terminal pins 49 (substrate connection terminals) are attached to the lower surface 43 of the resin substrate 41. Therefore, a plurality of circular clearance holes 64 (openings) penetrating the front surface 63 and the back surface 62 are formed at positions corresponding to the respective terminal pins 49 in the stiffener 61. The diameter of the clearance hole 64 is set to be at least larger than the diameter of the base end portion of the terminal pin 49 and the diameter of the surface connection pad 4. Accordingly, the plurality of terminal pins 49 are exposed to the outside through the plurality of clearance holes 64. The thickness of the stiffener 61 is set to be smaller than the protruding height of the terminal pin 49 with respect to the lower surface 43 (substrate second main surface). Therefore, the tip end portion of the terminal pin 49 also protrudes from the surface 63 of the stiffener 61 and is in a state where it can be inserted into a mother board (not shown).
[0054]
And even if it is the semiconductor package 11 of such a structure, since the whole board | substrate is reinforced by the stiffener 61, it can be set as the thing excellent in the yield and reliability like 1st Embodiment.
[0055]
In addition, you may change embodiment of this invention as follows.
[0056]
In the first and second embodiments, the so-called face-up type semiconductor package 11 in which the LSI chip 21 (semiconductor element) and the terminal pins 49 (substrate connection terminals) are arranged on different surfaces has been exemplified. However, the present invention is not limited to the face-up type, and the LSI chip 21 (semiconductor element) and the terminal pins 49 (substrate connection terminals) are arranged in the same plane as in another embodiment shown in FIG. The so-called face-down type semiconductor package 11 can also be embodied. The stiffener 71 in FIG. 5 has a through hole 38 penetrating the front surface 63 and the back surface 62 in the substantially central portion, and has a plurality of clearance holes 64 penetrating the front surface 63 and the back surface 62 around the perforation hole 38. is doing.
[0057]
In the first and second embodiments, the stiffeners 31 and 61 are bonded and fixed only to one side surface of the resin substrate 41. However, as in another embodiment shown in FIG. 6, two stiffeners 31 and 61 are used. May be bonded and fixed to both the upper surface 42 and the lower surface 43 of the resin substrate 41.
[0058]
Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below.
[0059]
(1) The reinforcement according to any one of claims 1 to 4, wherein the semiconductor element has a porous structure in at least a surface layer thereof, and a relative dielectric constant of the porous structure is less than 4. Substrate with material.
[0060]
(2) The substrate with a reinforcing material according to any one of claims 1 to 4, wherein at least one side of the semiconductor element is 10.0 mm or more.
[0061]
(3) The board | substrate with a reinforcement material of any one of Claims 1 thru | or 4 characterized by the thickness of the said semiconductor element being less than 1.0 mm.
[0062]
(4) The semiconductor element has a porous structure on at least a surface layer thereof, a relative dielectric constant of the porous structure is less than 4, and at least one side of the semiconductor element is 10 mm or more, and the thickness of the semiconductor element 5 is less than 1.0 mm, The board | substrate with a reinforcement material of any one of the Claims 1 thru | or 4 characterized by the above-mentioned.
[0063]
(5) It has a flip chip connecting terminal formed on the element first main surface, element second main surface and element second main surface side, and has a thermal expansion coefficient of less than 5.0 ppm / ° C. A substrate with a reinforcing material for mounting a semiconductor integrated circuit chip having a porous structure with a rate of less than 4, the substrate having a first main surface and a second substrate main surface, wherein the first substrate main surface and the second substrate surface A resin substrate to which the semiconductor integrated circuit chip is flip-chip connected to at least one side of two main surfaces; and a surface with respect to at least one surface of the substrate first main surface and the substrate second main surface of the resin substrate A reinforcing material that is bonded and fixed in a contact state and is made of an iron-based plate material that is higher in rigidity than the resin substrate, and has a thermal expansion coefficient of 3.0 ppm / ° C. or more and less than 5.0 ppm / ° C., and the reinforcing material is the resin. The substrate first main surface of the substrate and the substrate Stiffener coated substrate, characterized in that it comprises, an adhesive for bonding fixed in surface contact state with respect to second major surface of at least one surface.
[0064]
(6) In the method for manufacturing a wiring board according to any one of claims 5 to 8, the reinforcement is performed with respect to at least one surface of the substrate first main surface and the substrate second main surface of the resin substrate. After the reinforcing material bonding and fixing step for bonding and fixing the material, and after the reinforcing material bonding and fixing step, the semiconductor element is flip-chip connected to at least one side of the substrate first main surface and the substrate second main surface of the resin substrate A method of manufacturing a wiring board comprising a semiconductor element, a reinforcing material, and a substrate.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a semiconductor package (wiring substrate) including an LSI chip (semiconductor element), a stiffener (reinforcing material), and a resin substrate in the first embodiment embodying the present invention.
FIG. 2 is a schematic cross-sectional view showing a stiffener (reinforcing material) and a resin substrate before bonding and fixing in the manufacturing process of the semiconductor package (wiring substrate) of the first embodiment.
FIG. 3 is a schematic cross-sectional view showing a state where an LSI chip (semiconductor element) is mounted on a resin substrate with a stiffener (substrate with a reinforcing material) in the same manufacturing process.
FIG. 4 is a schematic cross-sectional view showing a semiconductor package (wiring substrate) including an LSI chip (semiconductor element), a stiffener (reinforcing material), and a resin substrate in a second embodiment embodying the present invention.
FIG. 5 is a schematic cross-sectional view showing a semiconductor package (wiring substrate) including an LSI chip (semiconductor element), a stiffener (reinforcing material), and a resin substrate in another embodiment.
6 is a schematic cross-sectional view showing a semiconductor package (wiring substrate) including an LSI chip (semiconductor element), a stiffener (reinforcing material), and a resin substrate in another embodiment. FIG.
[Explanation of symbols]
11: Semiconductor package as a wiring substrate comprising a semiconductor element, a reinforcing material, and a substrate
21 ... LSI chip as a semiconductor element
22 ... Flip chip connection terminal
23. Upper surface as element first main surface
24: Lower surface as element second main surface
31, 61, 71 ... Stiffeners as reinforcement
34 ... Adhesive
41 ... Resin substrate
42 ... Upper surface as substrate first main surface
43 .. Lower surface as substrate second main surface
49 ... Terminal pins as board connection terminals
51. Resin substrate with stiffener as substrate with reinforcing material
64: Clearance hole as an opening

Claims (8)

素子第1主面、素子第2主面及び前記素子第2主面側に形成されたフリップチップ用接続端子を有するとともに、前記素子第2主面側の表層に比誘電率が4未満の多孔質組織からなる絶縁膜を有し、熱膨張係数が5.0ppm/℃未満である半導体素子を搭載するための補強材付き基板において、
基板第1主面及び基板第2主面を有し、前記基板第1主面及び前記基板第2主面の少なくとも一方の上にて主として銅からなる導体層により形成された複数の面接続パッドを有し、前記複数の面接続パッド上に各々取り付けられたボール状またはピン状の複数の基板接続端子を有し、前記基板第1主面側に前記半導体素子がフリップチップ接続される樹脂基板と、
前記複数の基板接続端子を露出させる複数の開口部が形成され、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方を補強材接合面としその補強材接合面に対して面接触状態で接合固定され、前記樹脂基板を構成している前記導体層よりも剛性の高い材料からなり、その厚さが、前記半導体素子の厚さ及び前記面接続パッドの厚さよりも大きくかつ前記補強材接合面を基準とした前記基板接続端子の突出高さよりも小さくなるように設定された補強材と
を備えることを特徴とする補強材付き基板。
The device has a first main surface of the element, a second main surface of the element, and a flip chip connection terminal formed on the second main surface side of the element, and has a relative dielectric constant of less than 4 on a surface layer on the second main surface side of the element. an insulating film made of quality tissue, in the reinforcing material-attached substrate of the thermal expansion coefficient of the semiconductor element is mounted is less than 5.0 ppm / ° C.,
A plurality of surface connection pads having a first substrate main surface and a second substrate main surface, and formed by a conductor layer mainly made of copper on at least one of the first substrate main surface and the second substrate main surface. And a plurality of ball-shaped or pin-shaped substrate connection terminals respectively mounted on the plurality of surface connection pads, and the semiconductor element is flip-chip connected to the substrate first main surface side When,
A plurality of openings for exposing the plurality of substrate connection terminals are formed, and at least one of the first substrate main surface and the second substrate main surface of the resin substrate is used as a reinforcing material bonding surface with respect to the reinforcing material bonding surface. It is made of a material that is bonded and fixed in a surface contact state and is more rigid than the conductor layer constituting the resin substrate , and its thickness is larger than the thickness of the semiconductor element and the thickness of the surface connection pad. And a reinforcing material set so as to be smaller than a protruding height of the substrate connecting terminal with respect to the reinforcing material joint surface .
前記補強材における複数の開口部は、各々の基板接続端子に対応した位置に形成されていることを特徴とする請求項1に記載の補強材付き基板。 The board | substrate with a reinforcement material of Claim 1 with which the several opening part in the said reinforcement material is formed in the position corresponding to each board | substrate connection terminal . 前記補強材の熱膨張係数は3.0ppm/℃以上5.0ppm/℃未満であることを特徴とする請求項1または2に記載の補強材付き基板。  The thermal expansion coefficient of the reinforcing material is 3.0 ppm / ° C or more and less than 5.0 ppm / ° C, and the substrate with the reinforcing material according to claim 1 or 2. 前記補強材は鉄系の高剛性材料からなる金属板であり、前記金属板は前記基板第1主面及び前記基板第2主面の少なくとも一方の表面に対して接着剤で接着されていることを特徴とする請求項1乃至3のいずれか1項に記載の補強材付き基板。  The reinforcing material is a metal plate made of an iron-based high-rigidity material, and the metal plate is bonded to at least one surface of the substrate first main surface and the substrate second main surface with an adhesive. The board | substrate with a reinforcing material of any one of Claim 1 thru | or 3 characterized by these. 素子第1主面、素子第2主面及び前記素子第2主面側に形成されたフリップチップ用接続端子を有するとともに、前記素子第2主面側の表層に比誘電率が4未満の多孔質組織からなる絶縁膜を有し、熱膨張係数が5.0ppm/℃未満である半導体素子と、
基板第1主面及び基板第2主面を有し、前記基板第1主面及び前記基板第2主面の少なくとも一方の上にて主として銅からなる導体層により形成された複数の面接続パッドを有し、前記複数の面接続パッド上に各々取り付けられたボール状またはピン状の複数の基板接続端子を有し、前記基板第1主面側に前記半導体素子がフリップチップ接続される樹脂基板と、
前記複数の基板接続端子を露出させる複数の開口部が形成され、前記樹脂基板の前記基板第1主面及び前記基板第2主面の少なくとも一方を補強材接合面としその補強材接合面に対して面接触状態で接合固定され、前記樹脂基板を構成している前記導体層よりも剛性の高い材料からなり、その厚さが、前記半導体素子の厚さ及び前記面接続パッドの厚さよりも大きくかつ前記補強材接合面を基準とした前記基板接続端子の突出高さよりも小さくなるように設定された補強材と
を備えることを特徴とする、半導体素子と補強材と基板とからなる配線基板。
The device has a first main surface of the element, a second main surface of the element, and a flip chip connection terminal formed on the second main surface side of the element, and has a relative dielectric constant of less than 4 on a surface layer on the second main surface side of the element. an insulating film made of quality tissue, a semiconductor device thermal expansion coefficient is less than 5.0 ppm / ° C.,
A plurality of surface connection pads having a first substrate main surface and a second substrate main surface, and formed by a conductor layer mainly made of copper on at least one of the first substrate main surface and the second substrate main surface. And a plurality of ball-shaped or pin-shaped substrate connection terminals respectively mounted on the plurality of surface connection pads, and the semiconductor element is flip-chip connected to the substrate first main surface side When,
A plurality of openings for exposing the plurality of substrate connection terminals are formed, and at least one of the first substrate main surface and the second substrate main surface of the resin substrate is used as a reinforcing material bonding surface with respect to the reinforcing material bonding surface. fixedly joined in surface contact Te, the than the conductor layer of the resin substrate constituting Ri Do material having a high rigidity, its thickness is, than the thickness of the thickness and the surface connecting pads of the semiconductor element A wiring board comprising a semiconductor element, a reinforcing material, and a substrate, comprising a reinforcing material that is large and set to be smaller than a protruding height of the substrate connection terminal with respect to the reinforcing material joint surface .
前記補強材における複数の開口部は、各々の基板接続端子に対応した位置に形成されていることを特徴とする請求項5に記載の半導体素子と補強材と基板とからなる配線基板。 6. The wiring board comprising a semiconductor element, a reinforcing material, and a substrate according to claim 5, wherein the plurality of openings in the reinforcing material are formed at positions corresponding to the respective substrate connection terminals . 前記補強材の熱膨張係数は3.0ppm/℃以上5.0ppm/℃未満であることを特徴とする請求項5または6に記載の半導体素子と補強材と基板とからなる配線基板。  The wiring board comprising the semiconductor element, the reinforcing material, and the substrate according to claim 5, wherein a thermal expansion coefficient of the reinforcing material is 3.0 ppm / ° C. or more and less than 5.0 ppm / ° C. 前記補強材は鉄系の高剛性材料からなる金属板であり、前記金属板は前記基板第1主面及び前記基板第2主面の少なくとも一方の表面に対して接着剤で接着されていることを特徴とする請求項5乃至7のいずれか1項に記載の半導体素子と補強材と基板とからなる配線基板。  The reinforcing material is a metal plate made of an iron-based high-rigidity material, and the metal plate is bonded to at least one surface of the substrate first main surface and the substrate second main surface with an adhesive. A wiring substrate comprising the semiconductor element according to claim 5, a reinforcing material, and a substrate.
JP2003100787A 2003-04-03 2003-04-03 Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate Expired - Fee Related JP4194408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100787A JP4194408B2 (en) 2003-04-03 2003-04-03 Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100787A JP4194408B2 (en) 2003-04-03 2003-04-03 Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate

Publications (2)

Publication Number Publication Date
JP2004311598A JP2004311598A (en) 2004-11-04
JP4194408B2 true JP4194408B2 (en) 2008-12-10

Family

ID=33464805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100787A Expired - Fee Related JP4194408B2 (en) 2003-04-03 2003-04-03 Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate

Country Status (1)

Country Link
JP (1) JP4194408B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007037055A1 (en) * 2005-09-29 2009-04-02 日本電気株式会社 Semiconductor package, substrate, electronic device using this semiconductor package or substrate, and method for correcting warpage of semiconductor package
JP5433923B2 (en) * 2006-06-30 2014-03-05 富士通株式会社 Substrate with stiffener and manufacturing method thereof
JP4518114B2 (en) * 2007-07-25 2010-08-04 Tdk株式会社 Electronic component built-in substrate and manufacturing method thereof
JP4518113B2 (en) 2007-07-25 2010-08-04 Tdk株式会社 Electronic component built-in substrate and manufacturing method thereof
JP5290017B2 (en) * 2008-03-28 2013-09-18 日本特殊陶業株式会社 Multilayer wiring board and manufacturing method thereof
JP5260215B2 (en) * 2008-09-29 2013-08-14 日本特殊陶業株式会社 Manufacturing method of wiring board with reinforcing material
WO2012029549A1 (en) * 2010-08-30 2012-03-08 住友ベークライト株式会社 Semiconductor package, and semiconductor device
JPWO2012029526A1 (en) * 2010-08-30 2013-10-28 住友ベークライト株式会社 Semiconductor package and semiconductor device
JPWO2012035972A1 (en) * 2010-09-17 2014-02-03 住友ベークライト株式会社 Semiconductor package and semiconductor device
JP2012069739A (en) 2010-09-24 2012-04-05 Shinko Electric Ind Co Ltd Manufacturing method of wiring board
JP2012104557A (en) * 2010-11-08 2012-05-31 Ngk Spark Plug Co Ltd Wiring board with electronic component and manufacturing method of the same
WO2013054504A1 (en) * 2011-10-13 2013-04-18 住友ベークライト株式会社 Semiconductor package and semiconductor device
JP5923943B2 (en) * 2011-11-24 2016-05-25 富士通株式会社 Semiconductor device and electronic device
CN108242431A (en) * 2017-12-29 2018-07-03 通富微电子股份有限公司 A kind of package substrate and chip packing-body
WO2023148840A1 (en) * 2022-02-02 2023-08-10 キオクシア株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2004311598A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
TWI436717B (en) Wiring board capable of having built-in functional element and method for manufacturing the same
US8035035B2 (en) Multi-layer wiring board and method of manufacturing the same
TWI475932B (en) Wiring substrate with reinforcement
US8146243B2 (en) Method of manufacturing a device incorporated substrate and method of manufacturing a printed circuit board
JP5331958B2 (en) Wiring board and semiconductor package
JP4194408B2 (en) Substrate with reinforcing material, wiring substrate comprising semiconductor element, reinforcing material and substrate
US20100044845A1 (en) Circuit substrate, an electronic device arrangement and a manufacturing process for the circuit substrate
US20090242262A1 (en) Multi-layer wiring board and method of manufacturing the same
JP4806356B2 (en) Multilayer ceramic substrate with pads fixed by a single via
US8436456B2 (en) Wiring board, semiconductor device and method for manufacturing semiconductor device
JP4460341B2 (en) Wiring board and manufacturing method thereof
JP4659802B2 (en) Insulating wiring board, semiconductor package using the same, and manufacturing method of insulating wiring board
US20230209729A1 (en) Wiring board
JPH10335528A (en) Semiconductor package and manufacture thereof
JP4786914B2 (en) Composite wiring board structure
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP2004327940A (en) Wiring board and its manufacturing process
CN114585147A (en) Printed circuit board and electronic component package
JP2008098202A (en) Multilayer wiring circuit board, multilayer wiring circuit board structure
JP2006310543A (en) Wiring board and its production process, wiring board with semiconductor circuit element
JP2004071698A (en) Semiconductor package
JP2004311597A (en) Semiconductor element with reinforcement, wiring board consisting of semiconductor element, reinforcement and substrate, and its producing process
JP2006237230A (en) Compound wiring board structure and its production process
JP2007012961A (en) Wiring board
JP2004327939A (en) Wiring board and its manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees