JP4173795B2 - トロイダル式cvtの変速制御装置 - Google Patents

トロイダル式cvtの変速制御装置 Download PDF

Info

Publication number
JP4173795B2
JP4173795B2 JP2003385182A JP2003385182A JP4173795B2 JP 4173795 B2 JP4173795 B2 JP 4173795B2 JP 2003385182 A JP2003385182 A JP 2003385182A JP 2003385182 A JP2003385182 A JP 2003385182A JP 4173795 B2 JP4173795 B2 JP 4173795B2
Authority
JP
Japan
Prior art keywords
roller
input
offset amount
stroke
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003385182A
Other languages
English (en)
Other versions
JP2005147258A (ja
Inventor
博幸 西澤
喜三郎 早川
修三 三田
正信 木村
正敬 大澤
雄二 岩瀬
直人 田中
直樹 森口
正美 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2003385182A priority Critical patent/JP4173795B2/ja
Priority to US10/986,391 priority patent/US7503869B2/en
Priority to DE102004055055A priority patent/DE102004055055B4/de
Publication of JP2005147258A publication Critical patent/JP2005147258A/ja
Application granted granted Critical
Publication of JP4173795B2 publication Critical patent/JP4173795B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6648Friction gearings controlling of shifting being influenced by a signal derived from the engine and the main coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Friction Gearing (AREA)

Description

本発明は、トロイダル式CVTの変速制御装置、特に変速時におけるローラのオフセット量の制御に関する。
従来より、無段変速機(CVT)として、各種の形式のものが知られており、その中にトロイダル式CVTがある。このトロイダル式CVTは、入出力ディスクと、その中間で摩擦係合により入出力ディスク間の動力伝達を行うローラを有している。
入出力ディスクは、全体として三角錐に近い形であり、その斜面は円弧状に切り取られた形状になっている。そして、入出力ディスクは突出する中央部が対向するように配置されており、入出力ディスクをあわせた断面は両側から半円状に切り取られた形になっている。従って、ローラが入力ディスクの周辺側および出力側ディスクの内側で接触することで、入力ディスクの軸から離れた部分の回転を出力ディスクの軸に近い側に伝達することができ、減速比が小さくなり、この接触位置を変更することで、変速比を決定することができる。
そして、このローラはトラニオンという部材で、回転可能かつ入出力ディスクに接触する位置が変更可能に支持されており、このトラニオンの軸周りの回転角がローラの回転の入出力ディスクに対する傾き(傾転角)となっており、トロイダル式CVTでは、傾転角によって変速比が決定される。
また、この傾転角を変更する際には、トラニオンを入出力ディスク回転軸と直行する方向に移動させる。すなわち、ローラの回転軸をローラの回転軸と入出力ディスクの回転軸が直交する位置からオフセットさせる。このオフセット量をトラニオンストロークという。これによって、ローラには、傾転角を変更する方向の力が加わり、これによってローラの傾転角を変更し変速比を制御する。
そこで、トロイダル式CVTにおいては、トラニオンに支持されたローラのトラニオン軸周りの回転角である傾転角と、トラニオンの軸方向のオフセット量(トラニオンストローク)を検出する。そして、傾転角から変速比を求め、その変速比と目標変速比との偏差に基づいてローラのトラニオン軸方向の目標位置変位(オフセット量=トラニオンストローク)を算出する。そして、トラニオンストローク(オフセット量)を目標トラニオンストローク(オフセット量)に一致させるべく油圧アクチュエータでトラニオンを変位させる。このように傾転角(変速比)の目標との偏差からオフセット量を制御して変速比制御を行っている。なお、このような制御を電子的なフィードバック制御として行うこと特許文献1などに示されている。
特開平08−233085号公報
上述のようにして、トラニオンストロークをフィードバック制御するが、このトラニオンには各種の力がかかっている。そこで、ローラの支持機構などが変形し、トラニオンストロークの検出値自体に誤差が生じる可能性がある。
本発明は、ローラ回転軸のオフセット量をより正確に制御できるトロイダル式CVTの変速制御装置を提供することを目的とする。
本発明は、入出力ディスクと、その中間で摩擦係合により入出力ディスク間の動力伝達を行うローラと、を有するトロイダル伝導部材と、前記入出力ディスクを押しつけ前記ローラを狭圧する狭圧手段と、ローラの回転軸と入出力ディスクの回転軸が直交する位置から、ローラの回転軸をオフセットさせることにより、ローラの傾転角を変更し、変速比を制御する変速制御部と、前記オフセット量を検出するオフセット量検出手段と、前記入力ディスクからローラに伝達される入力トルクと、前記ローラと入力ディスクの接点位置に基づいて決定されるローラ接線方向の力であるローラ接線力を推定するローラ接線力推定手段と、を有し、前記ローラ接線力推定手段において推定したローラ接線力により前記オフセット量検出手段によって検出したオフセット量を補正し、補正されたオフセット量に基づいて、変速制御部によるオフセット量の制御を行う。
そして、前記狭圧手段による狭圧力によって生じる前記オフセットの変動量を推定するオフセット量変動推定手段をさらに有し、前記オフセット量を前記オフセット量変動推定手段により推定した変動量によっても補正し、補正されたオフセット量に基づいて、変速制御部によるオフセット量の制御を行うことを特徴とする
また、前記狭圧手段による狭圧力に基づく前記変速制御部によるローラの回転軸のオフセットに対する反力を推定する反力推定手段をさらに有し、この反力推定手段により推定した反力に基づいて前記変速制御部におけるローラの回転軸をオフセットさせる際の駆動力を制御することを特徴とする
また、前記狭圧手段は、油圧により入出力ディスク間に圧力をかけるものであることが好適である。
また、前記ローラの回転軸のオフセットには油圧を利用することが好適である。
このように、本発明では、ローラ接線力に基づいて、オフセット量を補正する。従って、ローラ接線力の変化に伴うローラ支持機構の変形などに基づくトラニオンストローク検出誤差を補正して、適切なローラオフセット量の制御が行える。
また、ローラ狭圧力に基づいて検出オフセット量を補正することで、ローラ狭圧力の変動に基づく検出オフセット量の変化を補正してさらに適切なローラオフセット量の制御を行うことができ、トルクシフトの発生を防止することができる。
また、ローラ狭圧力の変動に基づく、ローラオフセットに対する反力を推定してローラオフセットを制御することで、入力トルクの急変時に反力の変化に基づいてローラストロークが発生してしまうことを防止することができる。
以下、本発明の実施形態について、図面に基づいて説明する。
図1には、実施形態に係るトロイダル式CVTの全体構成が示されている。すなわち、エンジンの回転に基づいて回転される入力軸10には、2組の入力ディスク30a、30bが結合されている。この入力ディスク30a、30bは、中央に開口が形成され、外側から中央側に向け徐々に突出する形状を有しており、斜面はその軸方向の断面がほぼ円弧状になっている。また、入力ディスク30aは、図における左側に位置し、入力ディスク30bは図における右側に位置し、両者とも突出する中央が内側に対向するように位置している。入力ディスク30a、30bのそれぞれには、ほぼ同一形状の出力ディスク40a、40bがそれぞれ対向するように配置されている。すなわち、入力ディスク30aと出力ディスク40aが対向配置され、入力ディスク30bと出力ディスク40bとが対向配置されている。従って、軸方向の断面では、入力ディスク30aと出力ディスク40aの斜面が一対の半円を形成し、入力ディスク30bと出力ディスク40bとがもう一対の半円を形成している。
入出力ディスク30a、40aの間にはローラ35a−1、35a−2が挟持され、入出力ディスク30b、40bの間にはローラ35b−1、35b−2が挟持されている。すなわち、ローラ35a−1、35a−2、35b−1、35b−2は一方側が入力ディスク30a、30bに接触し、他方側が出力ディスク40a、40bに接触し、入力ディスク30a、30bの回転トルクを出力ディスク40a、40bに伝達する。また、ローラ35a−1、35a−2は、それぞれトラニオン36a−1、36a−2によって支持されローラ35b−1、35b−2は、それぞれトラニオン36b−1、36b−2によって支持されている。このトラニオン36a−1、36a−2、36b−1、36b−2は、図における紙面に直角な方向に軸を有し、その軸方向に移動可能でかつその軸を中心として回動可能となっている。また、このトラニオン36a−1、36a−2、36b−1、36b−2の軸の半径方向位置が固定されており、ローラ35a−1、35a−2、35b−1、35b−2が入出力ディスク30a、40a、30b、40bから離れないようになっている。
入力軸10は、油圧押圧(エンドロード)機構20に接続される。このエンドロード機構20は、内部に油圧を受け、入力ディスク30a、30bをそれぞれ出力ディスク40a、40b側に押圧することで、入出力ディスク30a、40a、入出力ディスク30b、40b間に狭圧力を生じさせ、これによってローラ35a−1、35a−2、35b−1、35b−2をそれぞれ所定の圧力で入出力ディスク30a、40a、30b、40b間に挟み込む。これによって、入出力ディスク30a、40a、30b、40bとローラ間のスリップを防ぎ、トラクション状態を維持する。なお、軸25は入力軸10と同一の回転をするものであり、この軸25によって入力ディスク30a、30bが回転される。また、入力ディスク30a、30bは、軸25にスラストベアリングを介し連結されており、軸25の軸方向に移動可能になっている。
出力ディスク40a、40bは、軸25にベアリングを介し回転可能に支持されている。この出力ディスク40a、40bの間には、出力ギア45が連結されており、出力ディスク40a、40bと一緒に回転する。出力ギア45には、カウンターギア60がかみ合わされており、このカウンターギア60に出力軸70が連結されている。従って、出力ディスク40a、40bの回転に伴い、出力軸70が回転する。
さらに、このトロイダル式CVTには、油圧ピストン室が設けられており、この油圧ピストン室からの油圧によって、トラニオン36a−1、36a−2、36b−1、36b−2のトラニオン軸方向の変位(トラニオンストローク:ローラオフセット量)が制御される。このトラニオン36a−1、36a−2、36b−1、36b−2のトラニオンストローク(ローラオフセット量)の制御によって、変速比の変更が行われる。なお、トラニオン36a−1、36a−2のストローク(ローラオフセット量)は、トラニオン36a−1、36a−2の中心を結ぶ線が入出力ディスク30、40の中心を通るように相補的に行われ、トラニオン36b−1、36b−2のトラニオンストローク(ローラオフセット量)は、トラニオン36b−1、36b−2の中心を結ぶ線が入出力ディスク30、40の中心を通るように相補的に行われる。
ここで、この変速比の変更について、図2に基づいて説明する。なお、この図2は、入力ディスク30を出力ディスク40の方から見た図であり、入力ディスク30とローラ35をそれぞれ1つだけ示している。図2(a)は、ローラ35が変位していない(トラニオンストローク=0)の場合を示しており、ローラ35の回転軸は、入力ディスク30の中心を通る。そして、変速する場合には、トラニオン36をその軸方向にオフセットさせる。例えば、図2(b)に示すように、入力ディスク30が回転してくる方向(図における上側)にオフセットさせる。これによって、ローラ35には、移動した場所における入力ディスク30の円周方向の力がかかり、ローラ35は入力ディスク30の周辺側に移動する力(傾転の力)がかかる。そして、ローラ35をオフセット量(トラニオンストローク)が0に戻ったときには、ローラ35の入力ディスク30と接触する位置が半径方向外側に変位している。これによって、ローラ35の出力ディスク40との接触位置は半径方向内側に変位し、変速比が変化する(アップシフトする)。なお、図における下方向(入力ディスクが遠ざかる側)にトラニオン36をオフセットさせることで、トラニオン36は反対方向に傾転し、ダウンシフトが行われる。
図3には、この変速比制御のための構成が示されている。なお、図3においては、1つの入力ディスク30と、2つのローラ35−1、35−2と、2つのトラニオン36−1、36−2を示している。
このように、油圧ピストン室50は、トラニオン36−1、36−2に相補的な動作をさせるために一対のピストン室50−1、50−2を有している。そして、このピストン室50−1、50−2には、油圧制御弁52が接続されており、この油圧制御弁52の制御によって油圧ピストン室50−1、50−2への供給油圧が制御され、トラニオン36−1、36−2のストローク(ローラオフセット量)を制御する。
そして、トラニオン36の傾転角θを傾転角センサ37で検出し、ストロークxをストロークセンサ38で検出し、コントローラ80に供給する。
コントローラ80には、アクセル開度、車速についての情報も供給されており、コントローラ80は、アクセル開度、車速から目標変速比を決定し、この目標変速比と傾転角センサ37によって検出した傾転角θに対応する変速比との偏差に基づいて目標ストロークを決定する。そして、この目標ストロークに基づいて、油圧制御弁52を制御して、トラニオン36のストロークxを制御する。これによって、傾転角から求められるそのときの変速比が目標変速比に一致したことで、変速比制御を終了する。
ここで、このような変速制御において、基本的に変速制御は傾転角θ(変速比)のみをフィードバック制御するだけでよい。しかし、ストロークxは傾転角θの微分に相当し、傾転制御における振動を抑制するダンピングの効果を持つ。このため、ストロークセンサ38により検出したストロークxが目標ストロークに一致するようにストロークのフィードバック制御もあわせて行っている。なお、ローラ35と入出力ディスク30、40の接触位置が分かれば変速比と傾転角の関係は、幾何学形状だけで決まるため、変速比は傾転角に置き換えられ、傾転角を変速比に置き換えることもできる。
図3においては、変速比を傾転角センサ37の傾転角により検出したが、入力軸回転数と出力軸回転数から求めた変速比としてもよい。また、トラニオン36のストロークの代わりに傾転角変化量、入力回転数変化量、変速比変化量を用いてもよい。
そして、本実施形態においては、コントローラ80により油圧制御弁52を制御して、トラニオン36のストロークを制御するが、これについて、図4に基づいて説明する。
上述のように、コントローラ80においては、供給されるアクセル開度、車速に基づき、目標変速比が決定され、これに対応する傾転角目標値が決定される。この傾転角目標値は、減算器81に入力される。この減算器81には、傾転角センサ37で実際に計測したローラ傾転角の検出値θが入力されており、傾転角目標値と現時点での傾転角θの偏差Δθが減算器81において、算出出力される。
減算器81の出力である偏差Δθは、第1コントローラ82に入力される。この第1コントローラ82では、傾転角の偏差Δθに所定の係数kを乗算し、傾転角フィードバック制御のフィードバック入力値であるkΔθを算出する。このkΔθが目標変速比と現在の変速比との差に応じて決定されるトラニオンストロークとなり、kΔθはトラニオンストロークに対応する油圧制御量となる。
第1コントローラ82の出力kΔθは、減算器83に入力される。この減算器83には、第2コントローラ84からの現在のトラニオンストロークに基づくフィードバック入力値も供給されている。従って、減算器83において、トラニオンストロークに基づくフィードバック入力値が合算され、これによって、流量制御弁52が制御されてトロイダル式CVT100におけるトラニオンストロークが制御されて変速比が制御される。
また、入力トルクなどに基づき、ローラ・ディスク間におけるスリップが発生しないように決定されるエンドロード指令値がエンドロード油圧制御弁53に供給され、エンドロード油圧制御弁53によりトロイダル式CVTのエンドロードが所定圧力にコントロールされる。
また、現在のトラニオンストロークは、ストロークセンサ38によって検出され、この検出された現在のストロークに基づいて第2コントローラ84がフィードバック量を決定するが、本実施形態では入力トルクなどに応じて、減算器83に供給するフィードバック入力値を補正する。
すなわち、ストロークセンサ38で検出されたストロークは、直接第2コントローラ84に供給されるのではなく、減算器93に入力される。この減算器93には、第1ストローク補正部95からのストローク補正量も入力され、検出したストロークからストローク補正量が減算され、補正されたストロークが第2コントローラ84に供給される。なお、第1ストローク補正部95においては、部材の熱変形やストロークセンサ38の熱特性の影響などを考慮に入れることでより精度のよい制御を行うことができる。
ここで、第1ストローク補正部95における補正について説明する。トラニオン36は、ローラ35を支持しているが、入力トルクに応じて入出力ディスク狭圧力(エンドロード)が変化する。すなわち、入力トルクの増加に伴い、伝達力が増加するため、入出力ディスクとローラ間のトラクション力を増加する必要があり、ディスクとローラの接触面圧を増加させる必要がある。この役目をエンドロード機構20が担い、入力トルクなどの変化に応じてディスクとローラがスリップせずかつ必要以上の面圧をかけないように制御される。
ところが、このエンドロードの変化によって、トラニオン36は変形する。すなわち、図5に示すように、トラニオン36はローラ35に押されて外側に膨らむ。これによって、トラニオン36自体の位置は変わらないにも拘わらず、トラニオンストロークの検出値が変化する。これは、トラニオンストローク36は、通常図3に示すようにトラニオンの先端位置で検出するからであり、この手法ではエンドロードが増大することによって、トラニオン36が外側に向けて膨らむとそのふくらみ量に応じてトラニオンの長さが短くなり、ストロークが検出されてしまう。あるいは、エンドロードの変化によって、入出力ディスク30,40やローラ35も変形する。これらの変形によっては、ローラの傾転力が発生しないトラニオンストロークゼロ位置自体が変化し、トラニオンストロークの検出値が変化しなくても傾転力が発生してしまう。これらによって、変速が起こり、目標変速比と実際の変速比が偏差を持つことになる。これをトルクシフトという。
本実施形態においては、第1ストローク補正部95は、エンドロード推定部94からのエンドロードのデータに従い、トラニオンの変形に伴うトラニオンストロークセンサによる検出誤差を算出する。なお、この検出誤差は、トラニオン36の材質・構造などによって異なるため、装置に応じて予め実験などにより定め、対応関係をマップとして持っていることが好適である。なお、エンドロードとストローク検出誤差の関係を数式として持つことも可能であり、その方が記憶容量を小さくすることができる。
なお、エンドロード推定部94は、エンドロード指令値によりエンドロード油圧制御弁53を介して、入出力ディスク間に印加されるエンドロード、もしくはエンドロードピストン油圧測定値から静的油圧力を求めるとともに、入力時回転速度から遠心油圧力を計算し、これを考慮してエンドロードを推定する。
第1ストローク補正部95からの誤差は、減算器93に供給され、ここで、ストロークセンサからの検出ストロークから誤差が減算され、誤差の補正されたトラニオンストロークが得られる。
ここで、本実施形態では、ストロークセンサ38の出力は、減算器96を介して、減算器93に供給される構成になっている。そして、この減算器96には、第2ストローク補正部97から補正量が供給され、トラニオンストロークの誤差を補正する。
すなわち、第2ストローク補正部97には、ローラ接線力推定部99からのローラ接線力が供給されており、第2ストローク補正部97は、ローラ接線力によるローラ支持ベアリング周辺での変形およびトラニオンの軸方向変形(伸び、圧縮)によるトラニオンストローク誤差を推定し、この誤差を補正するための補正量を発生する。
ローラ接線力推定部99には、入力トルク推定部98からの入力トルクと、傾転角センサ37からのローラ傾転角が供給されており、これらからローラ接線力を算出する。すなわち、ローラ接線力は、入力トルクをローラ傾転角から算出されるローラ接点の回転半径で割ることにより算出される。本実施形態では1つのローラの接点数は、2つであり、ローラ個数は2つである。
従って、ローラ接線力は、ローラ接線力=(接点数:2)×(入力トルク)/(ローラ個数:2)/(入力側接点の回転半径)で計算される。
なお、入力トルク推定部98は、スロットル開度、燃料噴射量などから算出されるエンジン出力トルクや、入力軸の伝達トルクをトルクセンサで検出することなどによって、入力トルクを推定する。
一方、第2ストローク補正部97では、このように得られたローラ接線力から補正量を算出するが、これは図6に示した特性などを利用する。すなわち、図6には、ローラ接線力に対するトラニオンストローク(=オフセット量)の変化状態が示されている。この例では、接線力が100kgf程度で、トラニオンストローク(=オフセット量)の変位が0.08mm程度、接線力が300kgf程度で、0.21mm程度であり、接線力の増加に対し、ほぼリニアにオフセット量が増大する。これは、ローラ接線力に応じて、ベアリング部及びトラニオンシャフト部のローラ接線方向の弾性変形によるローラ支持ベアリング周辺の機構変形およびトラニオンの軸方向変形が生じるためである。すなわち、図1および図3に示されるように、ローラ35−1、35−2は、トラニオン36−1、36−2によって支持されているが、ローラ35−1、35−2は、ベアリングを介し回転可能に支持されている。また、トラニオンストロークは、ピストン室50−1、50−2の油圧によってトラニオンシャフトの端部を保持して位置決めされている。従って、ローラ35−1、35−2に加わる接線方向の力に応じて、これらトラニオンシャフトや、ベアリングなどが弾性変形し、これによってトラニオンストロークの検出値に誤差が生じる。
そして、このトラニオンのオフセット方向の変形量は、図6に示すように、ローラ接線力に比例している。従って、第2ストローク補正部97においては、この図6の関係をマップや、線形1次式の形で記憶しておき、入力されてくるローラ接線力に応じて補正量を発生する。
このようにして、2つの減算器96、93において、2段階で誤差が補正されたトラニオンストロークが第2コントローラ84に供給される。このため、第2コントローラ84では、エンドロードの大小およびローラ接線力による誤差が解消されたトラニオンストロークに基づいてフィードバック入力値を決定して、そのフィードバック入力値を減算器83に供給することができる。
すなわち、第2コントローラ84では、補正された現在のトラニオンストロークxに対し、所定の係数kを乗算したトラニオンストロークについてのフィードバック入力値kxを算出しこれを減算器83に供給する。ここで、このフィードバック入力値kxも、目標とするトラニオンストロークについての油圧制御量である。
これによって、減算器83において、目標となるトラニオンストロークの制御量kθと実際のトラニオンストロークxに基づく制御量kxの差が算出され、これが油圧制御弁52の制御量として、油圧制御弁52に供給される。すなわち、トラニオンストロークについてのフィードバック制御が行われる。
そして、油圧制御弁52により制御された油圧がトロイダル式CVT100のトラニオン36に供給され、そのストロークが制御される。そして、このストローク制御によって、傾転角が変更され、目標変速比に合致するように変速比制御が行われる。
図7には、他の実施形態が示してある。この構成では、油圧ピストン力補正部111を有している。この油圧ピストン力補正部111は、伝達トルク推定部112からの伝達トルク推定値と、ローラ傾転角センサ37からの現在の傾転角情報から入力トルク急変時におけるローラの傾転を防止するための油圧ピストン力(補正値)を算出し、この補正値を減算器83に供給する。従って、入力トルク急変時におけるローラの傾転を防止することができる。
すなわち、上述のように、入力トルクの変化に応じて、エンドロードが変更される。そして、エンドロードの変化によって、ストロークゼロ位置が変化するが、それだけではなく入力トルクが急変したときには、トラニオンに急激な反力が作用することによって、ストローク位置が変化してしまう。すなわち、図8に示すように、定常時には、ディスクがローラに与えるトルク伝達方向の力F1と、油圧ピストン室50による油圧ピストン力は釣り合っている。しかし、入力トルク急変時には、フィードバック系の応答遅れによって、F1=F2という関係を保つことができなくなり、ストロークが発生し、これによってローラ傾転角が変化してしまう(トルクシフトが起こる)。
本実施形態では、油圧ピストン力補正部111が伝達トルクと傾転角または変速比(あるいはディスク押圧力とトラクション係数)により油圧ピストン室50の油圧ピストンへの反力を推定する。そして、この反力によりストロークが変化せず流量制御弁の指令値を算出するための補正値を算出する。そして、これによって、流量制御弁52における油圧を制御する。従って、油圧反力によるトルクシフトを効果的に防止できる。特に、この補正の制御は、ローラ狭圧力によるフィードフォワード制御になっており、フィードバック系の応答遅れを補償して効果的な制御が行える。
ここで、図9に示すように、伝達トルクと傾転角または変速比(あるいはディスク押圧力とトラクション係数)からピストン反力までの動特性モデルであるピストン反力モデルGpと、油圧指令値から油圧ピストンまでの動特性モデルである流量制御弁(油圧制御弁52)モデルGhとからの出力、つまりピストン反力と油圧ピストン力が動的に一致することによりトルクシフトが抑制される。このため、伝達トルクと傾転角または変速比(あるいはディスク押圧力とトラクション係数)から油圧指令値までの油圧ピストン補正部111は、Gp・Gh-1で表すことができる。
トロイダル式CVTの構成を示す図である。 ローラの傾転を説明する図である。 トラニオンストロークおよび傾転角制御の構成を示す図である。 ストローク補正の制御のための構成を示す図である。 ストロークゼロ位置変化を説明する図である。 ローラ接線力とトラニオンストロークのオフセット方向の変位の関係を示す図である。 油圧ピストン力補正の制御のための構成を示す図である。 入力トルクの急変時のトルクシフトを説明する図である。 油圧ピストン力補正部111の構成を説明する図である。
符号の説明
10 入力軸、30 入力ディスク、40 出力ディスク、50 油圧ピストン室、60 カウンターギア、70 出力軸、80 コントローラ、95 第1ストローク補正部、97 第2ストローク補正部、99 ローラ接線力推定部、111 油圧ピストン力補正部。

Claims (4)

  1. 入出力ディスクと、その中間で摩擦係合により入出力ディスク間の動力伝達を行うローラと、を有するトロイダル伝導部材と、
    前記入出力ディスクを押しつけ前記ローラを狭圧する狭圧手段と、
    ローラの回転軸と入出力ディスクの回転軸が直交する位置から、ローラの回転軸をオフセットさせることにより、ローラの傾転角を変更し、変速比を制御する変速制御部と、
    前記ローラの回転軸のオフセット量を検出するオフセット量検出手段と、
    前記入力ディスクからローラに伝達される入力トルクと、前記ローラと入力ディスクの接点位置に基づいて決定されるローラ接線方向の力であるローラ接線力を推定するローラ接線力推定手段と、
    前記狭圧手段による狭圧力によって生じる前記オフセットの変動量を推定するオフセット量変動推定手段と、
    を有し、
    前記ローラ接線力推定手段において推定したローラ接線力により前記オフセット量検出手段によって検出したオフセット量を補正し、補正されたオフセット量に基づいて、変速制御部によるオフセット量の制御を行うとともに、
    前記オフセット量を前記オフセット量変動推定手段により推定した変動量によっても補正し、補正されたオフセット量に基づいて、変速制御部によるオフセット量の制御を行うことを特徴とするトロイダル式CVTの変速制御装置。
  2. 入出力ディスクと、その中間で摩擦係合により入出力ディスク間の動力伝達を行うローラと、を有するトロイダル伝導部材と、
    前記入出力ディスクを押しつけ前記ローラを狭圧する狭圧手段と、
    ローラの回転軸と入出力ディスクの回転軸が直交する位置から、ローラの回転軸をオフセットさせることにより、ローラの傾転角を変更し、変速比を制御する変速制御部と、
    前記ローラの回転軸のオフセット量を検出するオフセット量検出手段と、
    前記入力ディスクからローラに伝達される入力トルクと、前記ローラと入力ディスクの接点位置に基づいて決定されるローラ接線方向の力であるローラ接線力を推定するローラ接線力推定手段と、
    前記狭圧手段による狭圧力に基づく前記変速制御部によるローラの回転軸のオフセットに対する反力を推定する反力推定手段と、
    を有し、
    前記ローラ接線力推定手段において推定したローラ接線力により前記オフセット量検出手段によって検出したオフセット量を補正し、補正されたオフセット量に基づいて、変速制御部によるオフセット量の制御を行うとともに、
    前記反力推定手段により推定した反力に基づいて前記変速制御部におけるローラの回転軸をオフセットさせる際の駆動力を制御することを特徴とするトロイダル式CVTの変速制御装置。
  3. 請求項1または2に記載の装置において、
    前記狭圧手段は、油圧により入出力ディスク間に圧力をかけるものであることを特徴とするトロイダル式CVTの変速制御装置。
  4. 請求項1〜のいずれか1つに記載の装置において、
    前記ローラの回転軸のオフセットには油圧を利用することを特徴とするトロイダル式CVTの変速制御装置。
JP2003385182A 2003-11-14 2003-11-14 トロイダル式cvtの変速制御装置 Expired - Fee Related JP4173795B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003385182A JP4173795B2 (ja) 2003-11-14 2003-11-14 トロイダル式cvtの変速制御装置
US10/986,391 US7503869B2 (en) 2003-11-14 2004-11-12 Speed change control apparatus for toroidal CVT
DE102004055055A DE102004055055B4 (de) 2003-11-14 2004-11-15 Gangwechselsteuervorrichtung für ein Toroid-CVT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385182A JP4173795B2 (ja) 2003-11-14 2003-11-14 トロイダル式cvtの変速制御装置

Publications (2)

Publication Number Publication Date
JP2005147258A JP2005147258A (ja) 2005-06-09
JP4173795B2 true JP4173795B2 (ja) 2008-10-29

Family

ID=34587351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385182A Expired - Fee Related JP4173795B2 (ja) 2003-11-14 2003-11-14 トロイダル式cvtの変速制御装置

Country Status (3)

Country Link
US (1) US7503869B2 (ja)
JP (1) JP4173795B2 (ja)
DE (1) DE102004055055B4 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008105441A1 (ja) * 2007-02-27 2010-06-03 味の素株式会社 リン吸収抑制活性を有するポリアミノ酸化合物及びリン吸収抑制剤
JP5152039B2 (ja) * 2009-03-03 2013-02-27 トヨタ自動車株式会社 変速制御装置
US8939866B2 (en) * 2012-03-15 2015-01-27 Hamilton Sundstrand Corporation Toroidal traction drive
JP5632049B1 (ja) * 2013-07-10 2014-11-26 川崎重工業株式会社 無段変速機の制御用油圧回路
JP6505477B2 (ja) * 2015-03-13 2019-04-24 川崎重工業株式会社 変速装置及びそれを備える発電システム
WO2016162840A1 (en) * 2015-04-10 2016-10-13 Ranade Atul Toroidal transmission system for hybrid vehicles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520593B2 (ja) 1995-02-28 2004-04-19 いすゞ自動車株式会社 トロイダル型無段変速機の変速制御装置
JP2002349691A (ja) 2001-05-30 2002-12-04 Nissan Motor Co Ltd トロイダル型無段変速機の変速制御装置

Also Published As

Publication number Publication date
US20050124454A1 (en) 2005-06-09
US7503869B2 (en) 2009-03-17
DE102004055055A1 (de) 2005-06-16
DE102004055055B4 (de) 2007-11-22
JP2005147258A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4198937B2 (ja) トロイダル式cvtの変速制御装置
US6159126A (en) Toroidal continuously variable transmission
JP3460547B2 (ja) 無段変速機の変速制御装置
JP4173795B2 (ja) トロイダル式cvtの変速制御装置
JP4198938B2 (ja) トロイダル式cvtの変速制御装置
JP6381682B2 (ja) 変速機制御システム
JP2705383B2 (ja) 摩擦車式無段変速機の変速制御装置
US6921350B2 (en) Toroidal continuously variable transmission
JP4967346B2 (ja) トロイダル型無段変速機の制御装置
JP4586433B2 (ja) トロイダル型無段変速機の変速制御装置
JP4564281B2 (ja) トロイダル式cvtの制御装置
JP3430276B2 (ja) 無段変速機の変速制御装置
JP4644788B2 (ja) トロイダル式cvtの制御装置
JP2001107992A (ja) 無段変速機のための発進クラッチ制御装置
JP3852173B2 (ja) トロイダル型無段変速機
JP2007198509A (ja) トロイダル型無段変速機の変速制御装置
JP3747583B2 (ja) トロイダル型無段変速機
JP2006009908A (ja) トロイダル型無段変速機の変速制御装置
JP3750177B2 (ja) トロイダル型無段変速機
JP2956419B2 (ja) 無段変速機の変速制御装置
JP3301365B2 (ja) トロイダル型無段変速機の変速制御装置
JP2009063021A (ja) 無段変速機
JPH1151139A (ja) トロイダル型無段変速機
JP2007198510A (ja) トロイダル型無段変速機の油圧制御装置
JP4457448B2 (ja) トロイダル型無段変速機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees