JP4158966B2 - 複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル - Google Patents
複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル Download PDFInfo
- Publication number
- JP4158966B2 JP4158966B2 JP2002220626A JP2002220626A JP4158966B2 JP 4158966 B2 JP4158966 B2 JP 4158966B2 JP 2002220626 A JP2002220626 A JP 2002220626A JP 2002220626 A JP2002220626 A JP 2002220626A JP 4158966 B2 JP4158966 B2 JP 4158966B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- oxide ion
- electrochemical cell
- group
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
- C01F17/32—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
- C01F17/34—Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0054—Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/66—Cobaltates containing alkaline earth metals, e.g. SrCoO3
- C01G51/68—Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Inert Electrodes (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の属する技術分野】
本発明は、複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セルに関するものである。
【0002】
【従来の技術】
酸化物イオン伝導体は、固体電解質型燃料電池 (SOFC) の電解質、酸素センサー、電気化学式酸素ポンプ用酸素分離膜への応用が試みられている。特開平11−335164号公報においては、希土類ガレート系のペロブスカイト構造をとる複合酸化物が、新規な酸化物イオン伝導体として開示されている。この文献の請求項1に開示された複合酸化物の一般式は、Ln1−xAxGa1− y − zB1yB2zO3である(Lnは、La、Ce、Pr、Smであり、AはSr、Ca、Baであり、B1はMg、Al、Inであり、B2はCo、Fe、Ni、Cuである)。また、Risφ−R−796(EN)84−107頁の「Perovskite-Type Metal Oxides. Electrical Conductivity and Structure 」の第91頁には、Sm〔Al0.95Mg0.05〕O3が、酸化物イオン伝導性を有することが開示されている。
【0003】
【発明が解決しようとする課題】
本発明の課題は、酸化物イオン伝導体として使用可能な新規な複合酸化物とそれを用いた電気化学セルを提供することである。
【0004】
【課題を解決するための手段】
本発明は、(Sm1−xAx)(Al1− yBy)O3(Aは、バリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上の元素である;Bは、マグネシウム、鉄およびコバルトからなる群より選ばれた一種以上の元素である;x=0.15〜0.30;y=0〜0.30;ただし Cu 、 Ni 、 Mn 、 Ti 、 V または Cr が複合酸化物中の全金属元素数に対するmol比率で0.1以下含有されていてもよい)の組成を有することを特徴とする。
【0005】
また、本発明は、前記複合酸化物からなることを特徴とする、酸化物イオン伝導体に係るものであり、この酸化物イオン伝導体を備える電気化学セルに係るものである。また、本発明は、前記酸化物イオン伝導体からなることを特徴とする、酸化物イオン伝導膜に係るものである。
【0006】
本発明者は、SmAlO3系のペロブスカイト構造体において、Aサイト(Smのサイト)をバリウム、ストロンチウムおよび/またはカルシウムによって一部置換することを試みた。この結果、得られた複合酸化物は、高い酸化物イオン伝導性を備えていることを見いだし、本発明に到達した。
【0007】
本発明において、「酸化物イオン伝導体」とは、酸化物イオン伝導性を示す物質を意味する。本発明の酸化物イオン伝導体の電気伝導性は、酸化物イオン伝導性の他、電子伝導性を同時に示しても良い。
【0008】
ただし、酸化物イオン伝導体の導電性の大部分を電子伝導性が占めていると、酸素分圧の勾配下において起電力を得ることが必要となるような用途には使用できない。例えば、このような酸化物イオン伝導体によって固体電解質型燃料電池の固体電解質膜を形成すると、起電力が理論値に比べて大きく低下する。従って、酸化物イオン伝導体の導電性に占める電子伝導性の割合は低く、酸化物イオン伝導性の割合が高いことが好ましい。この観点からは、イオン輸率 (導電性に占める酸化物イオン伝導性の割合) は、0.70以上であることが好ましく、0.90以上であることが更に好ましい。本発明の酸化物イオン伝導体は、一般にイオン輸率が高く、0.90以上、更には0.95以上とすることが可能である。
【0009】
本発明の酸化物イオン伝導体の使用温度は限定はされない。しかし、酸化物イオン伝導度を高くするという観点からは、600℃以上が好ましく、 800℃以上が更に好ましい。また、使用温度が低い方が、電気化学セルや酸化物イオン伝導膜として使いやすいので、この観点からは使用温度は1000℃以下であることが好ましい。
【0010】
本発明の複合酸化物においては、ペロブスカイト構造のAサイトの一部をバリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上の元素が占めている。これら二価の金属元素によって、本来3価のAサイトの一部を置換することによって、酸化物イオン伝導性が発現する。また、Bサイトの一部をマグネシウム、鉄および/またはコバルトによって一部置換した場合には、この置換元素も酸化物イオン伝導性に寄与するものと考えられる。
【0011】
上記一般組成式においては、酸素原子数が3であるように表示されている。しかし、本発明の複合酸化物においては、実際には、酸素原子数は厳密には3ではなく、3未満である。従って、上記一般式は次のようにも表現できる。
(Sm1−xAx)(Al1− yBy)O3 −δ
【0012】
ここで、δは、酸素空孔の数である。δは、二価であるA、Bの原子数x、yの他、温度、酸素分圧に応じて変動するので、厳密に表記することができない。このため、ペロブスカイト型材料を示す化学式では、酸素原子比の数値を便宜上「3」として表示することが慣行として行われているので、本発明においてもこの表記法を踏襲する。
【0013】
上記一般式において、Aは、バリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上の元素である。
【0014】
xは、AによるSmの置換割合であるが、0.15以上、0.30以下である。xを0.15以上とすることによって、高い酸化物イオン伝導性を得ることができる。xが0.30を超えると、Aの原子がペロブスカイトの結晶格子に固溶せず、異相を形成する。この観点からは、xは0.30以下とすることが好ましい。
【0015】
Bは、マグネシウム、鉄およびコバルトからなる群より選ばれた一種以上の元素である。特に好ましくは、Bが少なくともマグネシウムを含む。
【0016】
yは、BによるAlの置換割合であるが、0.30以下である。yが0.30を超えると、Bの原子がペロブスカイトの結晶格子に固溶せず、異相を形成する。この観点からはyが0.30以下であることが好ましい。
【0017】
yの下限は特になく、0であってもよい。yが0の場合には、本発明の複合酸化物の組成は以下のように表示できる。
(Sm1−xAx)AlO3
【0018】
本発明の複合酸化物は、前述の組成式を基本組成とするが,酸化物イオン伝導性を損なわない限り、他の金属元素が含有されていてもよい。こうした金属元素としては、Cu、Ni、Mn、Ti、V、Crがある。複合酸化物中の全金属元素数に対する「他の金属元素」のmol比率は、0.1以下である。また、本発明の複合酸化物には、不可避的な不純物、例えば各金属元素の原料に由来する不純物が含有されることを妨げない。
【0019】
本発明の酸化物イオン伝導体は、酸化物イオン伝導膜として使用可能であり、また、電気化学セルの酸化物イオン伝導部の材料として使用可能である。
【0020】
本発明の酸化物イオン伝導体は、電気化学セルの酸化物イオン伝導膜の他、酸素透過膜、酸素分離膜として利用できる。
【0021】
本発明が対象とする電気化学セルは、電気化学反応を生じさせるためのセル一般を意味している。例えば図1(a)に示すセル5Aは、一方の電極2、他方の電極3、および一方の電極2と他方の電極3との間に介在する複合酸化物1を含む。
【0022】
本発明の電気化学セルとしては、以下を例示できる。
(1)発電装置:例えば固体酸化物型燃料電池
(2)酸素センサー
(3)電気化学的反応装置:例えば、電気化学的酸素ポンプ、高温水蒸気電解セル、水素製造装置、水蒸気除去装置、NOx分解セル、SOx分解セル
【0023】
好適な実施形態においては、本発明の電気化学セルは、例えば図1(a)に示すように、本発明の複合酸化物からなる酸化物イオン伝導部1を備えている。この酸素イオン伝導部1の形態は特に問わず、板状、膜状であってよい。
【0024】
また、好適な実施形態においては、本発明の複合酸化物以外の酸化物イオン伝導体からなる酸化物イオン伝導部を設ける。この場合には、例えば図1(b)のセル5Bのように、一方の電極2と酸化物イオン伝導部1Aとの間に、本発明の複合酸化物からなる中間層4を設ける。
【0025】
本発明の複合酸化物はペロブスカイト構造を有している。従って、本発明の複合酸化物と隣接する電極の材質は、ペロブスカイト構造を有する複合酸化物であることが好ましい。これによって、電極の混合導電性を有効に発揮させることができる。
【0026】
こうした観点からは、以下の組成の複合酸化物が特に好ましい。
(D1 - pEp)MO3
Dは、ランタン、プラセオジム、ネオジム、サマリウムおよびガドリニウムからなる群より選ばれた一種以上の希土類元素であり、Eは、バリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上のアルカリ土類元素であり、pは0〜1.0であり、Mは、鉄、コバルトおよびマンガンからなる群より選ばれた一種以上の金属元素である。pは好ましくは0.1〜0.8であり、更に好ましくは0.3〜0.6である。
【0027】
特に好ましくは、Dが、プラセオジム、ネオジム、サマリウムおよびガドリニウムからなる群より選ばれた一種以上の希土類元素であり、一層好ましくはサマリウムである。これによって、電極を構成する複合酸化物の元素、特にランタンと、酸素イオン伝導部または中間層を構成する複合酸化物のサマリウムとの相互拡散による高抵抗層生成を防止でき、これによって、電極と酸素イオン伝導部または中間層との界面における抵抗を低減することができる。
【0028】
特に好ましくは、一方の電極の材質が以下の一般式を有する。
(Sm1 - pE p)MO3
ここで、Eは、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上のアルカリ土類金属元素である。
【0029】
更に好ましくは、一方の電極の材質が以下の一般式を有する。
(Sm1 - pE p)(Co1-qB'q)O3
ここで、Eは、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上のアルカリ土類金属元素であり、B'は、鉄およびマンガンからなる群より選ばれた一種以上の金属元素である。qは、0.0〜0.8である。こうした組成の混合導電性を有する複合酸化物は、特開2001−176518号公報に一部記載されている。
【0030】
また、他方の電極の材質としては、前記複合酸化物の他、ニッケル、パラジウム、白金、ニッケル−ジルコニアサーメット、白金−ジルコニアサーメット、パラジウム−ジルコニアサーメット、ニッケル−酸化セリウムサーメット、白金−酸化セリウムサーメット、パラジウム−酸化セリウムサーメット、ルテニウム、ルテニウム−ジルコニアサーメットを例示できる。
【0031】
本発明の複合酸化物を製造する際には、例えば、各金属元素の各化合物の粉末を所定の配合割合で混合して混合物を得、混合物を成形して成形体を得、成形体を焼成して焼結させることができる。この際、成形工程は必ずしも必要ない。
【0032】
あるいは、各金属元素の各化合物の粉末を所定の配合割合で混合して混合物を得、混合物を成形せずに焼成し、目的組成の複合酸化物を得ることができる。そして、この複合酸化物を粉砕して粉末を得,この粉末を成形して成形体を得、成形体を焼結させることができる。
【0033】
あるいは、前記成形体を焼結に供する前に、焼成温度よりも低温で予備焼成することができる。予備焼成の際には、例えば、500〜1300℃で加熱する。予備焼成した焼成物を粉砕した後、成形し、この成形体を焼結させる。
【0034】
成形方法は限定されず、一軸圧縮成形、静水圧プレス、押出し成形、テープキャスト成形であってよい。焼成雰囲気は、酸化性雰囲気か不活性ガス雰囲気が好ましい。原料を構成する化合物としては、酸化物や、焼成中に熱分解して酸化物になる前駆体物質 (例えば炭酸塩、シュウ酸塩、カルボン酸) を使用できる。焼結温度は限定されないが、1200℃以上であることが好ましく、1300℃以上であることが更に好ましい。また、焼成温度の上限は特にないが、1700℃以下が好ましい。焼成時間も限定されず、例えば1時間以上が好ましく、50時間以下が好ましい。
【0035】
【実施例】
(実験A)
(実施例1の複合酸化物の製造:Sm0.8Ca0.2AlO3)
Sm2O3、CaCO3、Al2O3の各粉末を所定量混合し、混合物を1600℃で5時間焼成し、複合酸化物の粉末を製造した。この粉末を粉砕し、成形することによって、円盤状の成形体を得、成形体を1600℃で24時間焼成し、円盤状の焼結体を得た(厚さ2mm、直径20mm)。この組成は、Sm0.8Ca0.2AlO3である。得られた焼結体の結晶構造をX線回折により調べたところ、ペロブスカイト型結晶構造を有していた。
【0036】
(実施例2の複合酸化物の製造:Sm0.9Sr0.1AlO3)Sm2O3、SrCO3、Al2O3の各粉末を所定量混合し、混合物を1600℃で5時間焼成し、複合酸化物の粉末を製造した。この粉末を粉砕し、成形することによって、円盤状の成形体を得、成形体を1600℃で24時間焼成し、円盤状の焼結体を得た(厚さ2mm、直径20mm)。この組成は、Sm0.9Sr0.1AlO3である。得られた焼結体の結晶構造をX線回折により調べたところ、ペロブスカイト型結晶構造を有していた。
【0037】
(実施例3の複合酸化物の製造:Sm0.9Ca0.1Al0.9 5Mg0.05O3)
Sm2O3、CaCO3、Al2O3、MgOの各粉末を所定量混合し、混合物を1600℃で5時間焼成し、複合酸化物の粉末を製造した。この粉末を粉砕し、成形することによって、円盤状の成形体を得、成形体を1600℃で24時間焼成し、円盤状の焼結体を得た(厚さ2mm、直径20mm)。この組成は、Sm0.9Ca0.1Al0.95Mg0.05O3である。得られた焼結体の結晶構造をX線回折により調べたところ、ペロブスカイト型結晶構造を有していた。
【0038】
(比較例1の複合酸化物の製造:Sm0.95Sr0.05AlO3)
Sm2O3、SrCO3、Al2O3の各粉末を所定量混合し、混合物を1600℃で5時間焼成し、複合酸化物の粉末を製造した。この粉末を粉砕し、成形することによって、円盤状の成形体を得、成形体を1600℃で24時間焼成し、円盤状の焼結体を得た(厚さ2mm、直径20mm)。この組成は、Sm0.95Sr0.05AlO3である。得られた焼結体の結晶構造をX線回折により調べたところ、ペロブスカイト型結晶構造を有していた。
【0039】
(電気伝導度の比較)
実施例1、2、3,比較例1の各焼結体について、空気中で温度を変化させたときの電気伝導度の測定値を表1に示す。
【0040】
【表1】
【0041】
この結果、Sm0.8Ca0.2AlO3(実施例1)は、1000℃〜800℃において8YSZ(8mol%イットリア安定化ジルコニア)、Sm(Al0.95Mg0.05)O3を超える酸化物イオン伝導度を示した。Sm0.9Sr0.1AlO3(実施例2)は、1000℃〜800℃において、3mol%イットリア安定化ジルコニア、Sm(Al0.95Mg0.05)O3を超える酸化物イオン伝導性を示した。 また、Sm0.9Ca0.1Al0.95Mg0.05O3(実施例3)も、3mol%イットリア安定化ジルコニアを超える酸化物イオン伝導性を示した。実施例1〜3の各例の電気伝導度は、比較例1の焼結体の電気伝導度よりも顕著に高いことが分かった。
【0042】
(起電力の測定)
実施例1、2の円盤状焼結体の両面に白金電極を形成した後、一方の電極を空気に接触させ、他方の電極を、加湿した水素に接触させ、電極間に酸素分圧の勾配を設けた。この状態で起電力を測定し、起電力の理論値との比から酸化物イオン輸率を求めた結果を表2に示す。酸化物イオン輸率の値は0.90以上の値である。従って、酸化物イオンが電気伝導の支配的なキャリアーであることが実証された。
【0043】
【表2】
【0044】
(実験B)
図1(a)に示すような固体電解質型燃料電池5Aを、下記の例B1〜4のようにして製造した。
例B1、B2においては、Sm0.8Ca0.2AlO3からなる酸化物イオン伝導部1を製造した。具体的には、Sm2O3、CaCO3、Al2O3の各粉末を所定量混合し、混合物を1600℃で5時間焼成し、複合酸化物の粉末を製造した。この粉末を粉砕し、成形することによって、円盤状の成形体を得、成形体を1600℃で24時間焼成し、円盤状の焼結体を得た(厚さ0.5mm、直径20mm)。この組成は、Sm0.8Ca0.2AlO3である。得られた焼結体の結晶構造をX線回折により調べたところ、ペロブスカイト型結晶構造を有していた。
【0045】
例B1においては、Sm2O3、SrCO3、Co3O4の各粉末を所定量混合し、混合物を1200℃で5時間合成した後に粉砕した。この粉末を含むペーストを酸化物イオン伝導部1の表面に塗布し、かつ白金ペーストを裏面側に塗布した。そして、ペースト塗布後の酸化物イオン伝導部1を1000℃で2時間熱処理することで各ペーストを焼き付けた。得られた空気極2は、(Sm0.5Sr0.5)CoO3の組成を有していた。
【0046】
例B2においては、La2O3、CaCO3、Mn3O4の各粉末を所定量混合し、混合物を1200℃で5時間合成した後に粉砕した。この粉末を含むペーストを酸化物イオン伝導部1の表面に塗布し、かつ白金ペーストを裏面側に塗布した。そして、ペースト塗布後の酸化物イオン伝導部1を1000℃で2時間熱処理することで各ペーストを焼き付けた。得られた空気極2は、(La0.8Ca0.2)MnO3の組成を有していた。
【0047】
例B3においては、3mol%イットリア安定化ジルコニアからなる酸化物イオン伝導部1を準備した。Sm2O3、SrCO3、Co3O4の各粉末を所定量混合し、混合物を1200℃で5時間合成した後に粉砕した。この粉末を含むペーストを酸化物イオン伝導部1の一方の表面上に塗布し、かつ白金ペーストを裏面側に塗布した。そして、ペースト塗布後の酸化物イオン伝導部1を1000℃で2時間熱処理することで各ペーストを焼き付けた。得られた空気極2は、(Sm0.5Sr0.5)CoO3の組成を有していた。
【0048】
例B4においては、3mol%イットリア安定化ジルコニアからなる酸化物イオン伝導部1を準備した。La2O3、CaCO3、Mn3O4の各粉末を所定量混合し、混合物を1200℃で5時間合成した後に粉砕した。この粉末を含むペーストを酸化物イオン伝導部1の表面に塗布し、かつ白金ペーストを裏面側に塗布した。そして、ペースト塗布後の酸化物イオン伝導部1を1000℃で2時間熱処理することで各ペーストを焼き付けた。得られた空気極2は、(La0.8Ca0.2)MnO3の組成を有していた。
【0049】
例B1〜4の各試料について、空気極2の電極反応に伴う過電圧ηと電流密度(電極単位面積当たりの電流値)との関係を測定し、図2に示す。ηは、温度800℃の空気中で電流遮断法によって測定した。
【0050】
この結果から分かるように、本発明の複合酸化物からなる酸化物イオン伝導部1を用いた場合には、汎用の3mol%イットリア安定化ジルコニアからなる酸化物イオン伝導部1を使用した場合と比べて、空気極のηが低減される。特に、Sm系のペロブスカイト酸化物からなる空気極を用いた場合には、ηが著しく低減されることが分かった。
【0051】
【発明の効果】
以上述べたように、本発明によれば、酸化物イオン伝導体として使用可能な新規な複合酸化物を提供できる。
【図面の簡単な説明】
【図1】(a)、(b)は、それぞれ電気化学セル5A、5Bを模式的に示す図である。
【図2】例B1〜4の各試料の電流密度と空気極の電極反応に伴う過電圧ηとの関係を示すグラフである。
【符号の説明】
1 本発明の複合酸化物からなる酸化物イオン伝導部 1A 本発明の複合酸化物以外の酸化物イオン伝導体からなる酸化物イオン伝導部
2 一方の電極 3 他方の電極 4 本発明の複合酸化物からなる中間層
Claims (10)
- (Sm1− x Ax)(Al1− yBy)O3(Aは、バリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上の元素である;Bは、マグネシウム、鉄およびコバルトからなる群より選ばれた一種以上の元素である;x=0.15〜0.30;y=0〜0.30;ただし Cu 、 Ni 、 Mn 、 Ti 、 V または Cr が複合酸化物中の全金属元素数に対するmol比率で0.1以下含有されていてもよい)の組成を有することを特徴とする、複合酸化物。
- 一方の電極および他方の電極を備えており、請求項1記載の複合酸化物が前記一方の電極と前記他方の電極との間に介在することを特徴とする、電気化学セル。
- 前記複合酸化物からなる酸化物イオン伝導部を備えていることを特徴とする、請求項2記載の電気化学セル。
- 前記酸化物イオン伝導部が膜状であることを特徴とする、請求項3記載の電気化学セル。
- 前記複合酸化物以外の酸化物イオン伝導体からなる酸化物イオン伝導部と、前記酸化物イオン伝導部と前記一方の電極との間に介在し、前記複合酸化物からなる中間層とを備えていることを特徴とする、請求項2記載の電気化学セル。
- 前記一方の電極が、(D1 - pEp)MO3(Dは、ランタン、プラセオジム、ネオジム、サマリウムおよびガドリニウムからなる群より選ばれた一種以上の希土類元素であり、Eは、バリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上のアルカリ土類元素であり、pは0〜1.0であり、Mは、鉄、コバルトおよびマンガンからなる群より選ばれた一種以上の金属元素である)の組成を有することを特徴とする、請求項2〜5のいずれか一つの請求項に記載の電気化学セル。
- Dがサマリウムであり、Eが、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上のアルカリ土類金属元素であることを特徴とする、請求項6記載の電気化学セル。
- Mがコバルトであることを特徴とする、請求項7記載の電気化学セル。
- (Sm1− x Ax)(Al1− yBy)O3(Aは、バリウム、ストロンチウムおよびカルシウムからなる群より選ばれた一種以上の元素である;Bは、マグネシウム、鉄およびコバルトからなる群より選ばれた一種以上の元素である;x=0.15〜0.30;y=0〜0.30;ただし Cu 、 Ni 、 Mn 、 Ti 、 V または Cr が複合酸化物中の全金属元素数に対するmol比率で0.1以下含有されていてもよい)の組成を有する複合酸化物からなることを特徴とする、酸化物イオン伝導体。
- 請求項9記載の酸化物イオン伝導体からなることを特徴とする、酸化物イオン伝導膜。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002220626A JP4158966B2 (ja) | 2001-09-28 | 2002-07-30 | 複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル |
CA002405379A CA2405379C (en) | 2001-09-28 | 2002-09-26 | Complex oxides, oxide-ion conductors, oxide-ion conducting films and electrochemical cells |
US10/255,226 US7063908B2 (en) | 2001-09-28 | 2002-09-26 | Complex oxides, oxide-ion conductors, oxide-ion conducting films and electrochemical cells |
EP02256790A EP1300365B1 (en) | 2001-09-28 | 2002-09-30 | Complex oxides, oxide-ion conductors, oxide-ion conducting films and electrochemical cells |
DE60217787T DE60217787T2 (de) | 2001-09-28 | 2002-09-30 | Komplexe Oxide, Oxidionenleiter, leitende Oxidionenschichten und elektrochemische Zellen |
AT02256790T ATE352521T1 (de) | 2001-09-28 | 2002-09-30 | Komplexe oxide, oxidionenleiter, leitende oxidionenschichten und elektrochemische zellen |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001299268 | 2001-09-28 | ||
JP2001-299268 | 2001-09-28 | ||
JP2001-379657 | 2001-12-13 | ||
JP2001379657 | 2001-12-13 | ||
JP2002220626A JP4158966B2 (ja) | 2001-09-28 | 2002-07-30 | 複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003238154A JP2003238154A (ja) | 2003-08-27 |
JP4158966B2 true JP4158966B2 (ja) | 2008-10-01 |
Family
ID=27347602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002220626A Expired - Fee Related JP4158966B2 (ja) | 2001-09-28 | 2002-07-30 | 複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル |
Country Status (6)
Country | Link |
---|---|
US (1) | US7063908B2 (ja) |
EP (1) | EP1300365B1 (ja) |
JP (1) | JP4158966B2 (ja) |
AT (1) | ATE352521T1 (ja) |
CA (1) | CA2405379C (ja) |
DE (1) | DE60217787T2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4822748B2 (ja) * | 2005-06-23 | 2011-11-24 | 三菱重工業株式会社 | ガスタービン発電プラント及びガスタービン発電プラントの制御方法 |
JP4855012B2 (ja) * | 2005-08-18 | 2012-01-18 | 株式会社ノリタケカンパニーリミテド | 酸素イオン伝導体および酸素分離膜並びに炭化水素の酸化用反応装置 |
KR101213060B1 (ko) * | 2009-03-12 | 2012-12-17 | 한창산업 주식회사 | 고체산화물 연료전지용 공기극 물질 |
JP5204816B2 (ja) * | 2010-08-11 | 2013-06-05 | 株式会社ノリタケカンパニーリミテド | 酸素分離膜エレメント及びその製造方法 |
US9093692B2 (en) | 2013-08-14 | 2015-07-28 | Board Of Regents, The University Of Texas System | Oxide-ion conductors and related composites and devices |
JP6519001B2 (ja) * | 2014-06-06 | 2019-05-29 | 日本製鉄株式会社 | 固体酸化物型燃料電池の空気極、固体酸化物型燃料電池、及び固体酸化物型燃料電池の空気極の製造方法 |
WO2022230686A1 (ja) * | 2021-04-27 | 2022-11-03 | Agc株式会社 | 酸化物イオン伝導性固体電解質 |
CN116444272B (zh) * | 2023-03-13 | 2024-08-09 | 成都先进金属材料产业技术研究院股份有限公司 | 一种旋转盘的制备方法、旋转盘及其应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4178610B2 (ja) | 1997-08-29 | 2008-11-12 | 祐作 滝田 | 酸化物イオン伝導体とその用途 |
DE19839202B4 (de) * | 1997-08-29 | 2009-09-10 | Mitsubishi Materials Corp. | Leitfähige Substanz aus Mischoxidionen und deren Verwendung |
US6844098B1 (en) * | 1997-08-29 | 2005-01-18 | Mitsubishi Materials Corporation | Oxide-ion conductor and use thereof |
JP2001176518A (ja) | 1999-12-14 | 2001-06-29 | Mitsubishi Materials Corp | 固体酸化物型燃料電池 |
-
2002
- 2002-07-30 JP JP2002220626A patent/JP4158966B2/ja not_active Expired - Fee Related
- 2002-09-26 CA CA002405379A patent/CA2405379C/en not_active Expired - Fee Related
- 2002-09-26 US US10/255,226 patent/US7063908B2/en not_active Expired - Lifetime
- 2002-09-30 EP EP02256790A patent/EP1300365B1/en not_active Expired - Lifetime
- 2002-09-30 AT AT02256790T patent/ATE352521T1/de not_active IP Right Cessation
- 2002-09-30 DE DE60217787T patent/DE60217787T2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1300365A3 (en) | 2004-01-02 |
DE60217787D1 (de) | 2007-03-15 |
EP1300365A2 (en) | 2003-04-09 |
CA2405379C (en) | 2006-01-24 |
EP1300365B1 (en) | 2007-01-24 |
US7063908B2 (en) | 2006-06-20 |
DE60217787T2 (de) | 2007-11-15 |
CA2405379A1 (en) | 2003-03-28 |
ATE352521T1 (de) | 2007-02-15 |
JP2003238154A (ja) | 2003-08-27 |
US20030068553A1 (en) | 2003-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4178610B2 (ja) | 酸化物イオン伝導体とその用途 | |
JP4608047B2 (ja) | 混合イオン伝導体およびこれを用いたデバイス | |
CN104201410B (zh) | 互连器用材料、单元间分离结构体及固体电解质型燃料电池 | |
JP2007197315A (ja) | 混合イオン伝導体およびこれを用いたデバイス | |
US6872331B2 (en) | Oxide ion conductor, manufacturing method therefor, and fuel cell using the same | |
JP2012528438A (ja) | カソード | |
JP5219370B2 (ja) | イオン伝導体 | |
US20040214070A1 (en) | Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices | |
JP4158966B2 (ja) | 複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル | |
JP3456436B2 (ja) | 固体酸化物型燃料電池 | |
JP4374631B2 (ja) | 酸化物イオン混合伝導体とその用途 | |
JP3121993B2 (ja) | 導電性セラミックスの製造方法 | |
JPH04219364A (ja) | ランタンクロマイト系複合酸化物と用途 | |
JP3446649B2 (ja) | 酸化物イオン伝導体の製造方法 | |
JP2001250563A (ja) | 酸化物固体電解質用の酸化極 | |
US7758992B2 (en) | Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices | |
JP3389407B2 (ja) | 導電性セラミックス及び燃料電池セル | |
JP3091100B2 (ja) | 導電性セラミックスの製造方法 | |
JP5597177B2 (ja) | 固体酸化物形燃料電池の空気極材料及び固体酸化物形燃料電池 | |
JP3085632B2 (ja) | 導電性セラミックスの製造方法 | |
JP2022170723A (ja) | 積層体 | |
Moriyama et al. | Synthesis and electrical conductivity of La0. 6Sr0. 4Ru0. 9Mg0. 1O3-δ perovskite solid solution | |
JP5296516B2 (ja) | 固体酸化物形燃料電池 | |
JP3370446B2 (ja) | 導電性セラミックスの製造方法 | |
JP2005056588A (ja) | 固体酸化物燃料電池用固体電解質及びそれを用いた固体酸化物燃料電池並びにLaGaO3系固体酸化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080613 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080709 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080710 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4158966 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |