JP4144831B2 - 磁気抵抗効果素子及び磁気記録装置 - Google Patents

磁気抵抗効果素子及び磁気記録装置 Download PDF

Info

Publication number
JP4144831B2
JP4144831B2 JP37403399A JP37403399A JP4144831B2 JP 4144831 B2 JP4144831 B2 JP 4144831B2 JP 37403399 A JP37403399 A JP 37403399A JP 37403399 A JP37403399 A JP 37403399A JP 4144831 B2 JP4144831 B2 JP 4144831B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
layers
antiferromagnetic
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37403399A
Other languages
English (en)
Other versions
JP2000252548A (ja
Inventor
口 裕 三 上
浅 裕 美 湯
橋 政 司 佐
崎 仁 志 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP37403399A priority Critical patent/JP4144831B2/ja
Publication of JP2000252548A publication Critical patent/JP2000252548A/ja
Application granted granted Critical
Publication of JP4144831B2 publication Critical patent/JP4144831B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気抵抗効果素子及び磁気記録装置に関し、より詳細には、本発明は、スピンバルブ膜を用いた磁気抵抗効果素子及びこの磁気抵抗効果素子を磁気ヘッドに搭載した磁気記録装置に関する。
【0002】
【従来の技術】
一般に、磁気記録媒体に記録された情報の読み出しは、コイルを有する再生用磁気ヘッドを記録媒体に対して相対的に移動させ、そのときに発生する電磁誘導でコイルに誘起される電圧を検出する方法によって行われてきた。一方、情報を読み出す場合に、磁気抵抗効果素子(以下、「MR」素子と呼ぶ)を用いることも知られている。(IEEE MAG−7,150(1971)等参照)。MR素子を用いた磁気ヘッド(以下、「MRヘッド」と呼ぶ)は、ある種の強磁性体の電気抵抗が外部磁界の強さに応じて変化するという現象を利用したものである。
【0003】
近年、磁気記録媒体の小型化・大容量化が進められ、情報読み出し時の再生磁気信号が極めて微弱になってきており、より高感度に大きな出力が取り出せるMRヘッドヘの期待が高まっている。とくに、強磁性体/非磁性体/強磁性体のサンドイッチ構造の積層膜で、大きな磁気抵抗効果が得られている。すなわち、非磁性層を挟んだ2つの強磁性層の一方に、交換バイアスを及ぼして磁化を固定しておき、他方の強磁性体を外部磁界(信号磁界等)により磁化反転させる。これにより、非磁性層を挟んで配置された2つの強磁性層の磁化方向の相対的な角度を変化させることによって、大きな磁気抵抗効果が得られる。この様なタイプの多層膜はスピンバルブ膜と呼ばれている(Phys.Rev.B.,Vo1.45,p806(1992)、J.Appl.Phys.,Vol.69,p4774(1991)等参照)。
【0004】
スピンバルブ膜の磁気抵抗変化率は、5〜8%と大きく低磁場で磁化を変化させることが出来るため、MR素子に適している。ただし、記録密度のさらなる高密度化に対応するためには、さらに大きなMR変化率をえる必要があり、現在の2倍から3倍以上のMR変化率を得ることが望まれている。しかし、単純な金属積層タイプのスピンバルブ膜では、10%以上のMR変化率を得ることは困難となっている。それに対して最近、バイアス膜として、NiO,Fe などの酸化物からなる絶縁性の反強磁性体を用い、もう片方の磁性体の表面にも酸化物層を積層した、「スペキュラースピンバルブ膜」が注目を集めている。スペキュラースピンバルブ膜では、磁性体/非磁性体/磁性体のサンドイッチ膜をさらに絶縁体で挟み込むことにより、金属/絶縁体界面で電子を鏡面反射させ、約20%程度の大きな磁気抵抗効果が得られることが知られている。スペキュラースピンバルブ膜では、磁性体/非磁性体/磁性体サンドイッチ膜の両側を酸化物層で挟む必要があるが、同時に、少なくとも片方の磁性体に接して磁化を固着するためのバイアス膜を積層する必要がある。そのため、現在ではNiO,Fe などの酸化物反強磁性体が用いられているが、現在のところ、十分に良好なバイアス特性を持った酸化物反強磁性体は知られておらず、実用化のネックになっている。すなわち十分に大きな交換バイアス磁場と十分に高いブロッキング温度を持った絶縁性の反強磁性体がないため、スペキュラースピンバルブ膜を実用材料として使用することが困難になっている。
【0005】
これに対して、最近、磁性体層の中に極薄の酸化物を挿入することによって、金属反強磁性体を用いながらスペキュラー効果を得る方法が提案されている。この方法を用いれば、大きな交換バイアス磁場と十分に高いブロッキング温度を持った金属反強磁性体を用いながら大きなMR効果を得ることが可能になる。しかし、この場合極薄の酸化物層を精度良く作成することが重要であり、十分な再現性をもって良好な酸化物層を作成する必要がある。
【0006】
【発明が解決しようとする課題】
本発明はこのような課題に鑑みてなされたものである。すなわち、その目的は、スペキュラースピンバルブ膜の大きなMR変化率を維持したうえで、良好な磁化固着膜のバイアス特性と両立させるとともに、軟磁気特性を改善した磁気抵抗効果素子を具備する磁気ヘッド及び磁気記録装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の磁気抵抗効果素子は、反強磁性層と、前記反強磁性層上に設けられた、第1の磁性層と、第2の磁性層と、前記第1の磁性層と前記第2の磁性層との間に設けられた非磁性中間層と、を有するスピンバルブ膜を備えた磁気抵抗効果素子であって、前記第1の磁性層は、第1の強磁性体金属層と、前記第1の強磁性体金属層の上に設けられたCr 層と、前記Cr 層の上に設けられた第2の強磁性体金属層と、を有し、前記Cr 層の厚さが0.5nmまたは0.7nmであることを特徴とし、電子を鏡面反射させる非金属層を極めて薄く且つ再現性良く形成することができる。
【0015】
一方、本発明の磁気記録装置は、磁気記録媒体に対して情報を記録または再生する磁気ヘッドを備えた磁気記録装置であって、前記磁気ヘッドは、前述したいずれかの磁気抵抗効果素子を有することを特徴とし、大きな再生信号出力と、良好な熱安定性とを実現させることができる。
【0016】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明の第1の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。すなわち、本発明の磁気抵抗効果素子は、所定の基板の上に、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50がこの順に積層された構造を有する。
【0017】
さらに、この積層構造の両側には、硬磁性膜80、80が設けられ、それぞれの硬磁性膜の上には、電極82、82が設けられている。
【0018】
本具体例においては、第1の磁性層20は、磁化が固定され一方向異性によるバイアスがかけられた「磁化固着層」として作用する。また、第2の磁性層40は、図示しない磁気記録媒体などから発生される外部磁場(例えば信号磁界など)により磁化反転される「磁場感受層」あるいは「フリー層」として作用する。
【0019】
「磁化固着層」である第1の磁性層20は、強磁性体金属層22と非金属層24と強磁性層金属層26をこの順に積層した構造を有する。さらに、本実施形態においては、非金属層24が、第1の非金属層24Aと第2の非金属層24Bとを積層した構造を有する。
【0020】
本発明の磁気抵抗効果素子においては、電極82、82を介して図1に向かって左右方向にバイアス電圧を印加して磁気抵抗の変化を測定することにより、第2の磁性層40に印加される磁場強度を検出することができる。この時に、バイアス電圧により生ずる電流は、主に第2の強磁性体金属層26、非磁性中間層30、及び第2の磁性層40において面内方向に流れる。
【0021】
ここで、磁気抵抗効果をより顕著に得るためには、バイアス電圧の印加に伴って面内方向に流れる電子の運動量の損失を低減する必要がある。
本発明によれば、まず、第2の磁性層40の上に非金属層50を設けることにより、これらの層の間で電子の鏡面反射を生じさせることができる。この結果として、電子の運動量の損失を低減することができる。
【0022】
さらに、本発明によれば、第1の磁性層20の中間に非金属層24を設けることにより、第2の強磁性体金属層26と非金属層24との界面においても電子の鏡面反射を生じさせることができる。つまり、反強磁性層10の材料として、NiMn,PtMn,IrMnなどの金属性の反強磁性体を用いた場合には、反強磁性層10と第1の磁性層20との間において電子の鏡面反射を生じさせることは困難であり電子の運動量の損失が生ずるのに対して、本発明によれば、金属性の反強磁性体を用いながら電流経路の上下いずれの磁性層の界面においても電子反射を起こすことができる。
【0023】
その結果として、電子の運動量の損失を極小化させ、反強磁性体を用いつつ、良好なバイアス磁場特性を実現することができる。さらに、250℃以上の高いブロッキング温度を保ちつつ、MR変化率として15%以上の大きな値を得ることが可能になる。
【0024】
ここで、第1の磁性層20の中間に設ける非金属層24は、その層厚が厚すぎるとその上下の強磁性体金属層22と26との磁気的なカップリングを妨害し、良好な磁化固着特性を得ることができないという問題を生ずる。一方、非金属層24の層厚が薄すぎると、均一で連続的な薄膜の形成が困難となり、電子の鏡面反射を十分に生じさせることができない。つまり、非金属層24として、極めて薄く且つ均一な薄膜を再現性良く形成する必要が生ずる。
【0025】
一般に、極薄の非金属層を形成する場合には、まず非金属層を形成するための下地の金属層を形成し、その表面を酸素(O)、窒素(N)、あるいはフッ素(F)などを含有した気体、もしくはそのプラズマなどの雰囲気に曝して反応させることより、形成することが望ましい。ただし、この場合に反応が進みすぎると、非金属層の厚さが厚くなりすぎるため、非金属層で磁気カップリングが切れてしまい、良好な磁化固着特性を得ることが難しくなってしまう。この為、再現性良く反応の進行を制御する必要があるが、従来の構成では反応の精密な制御は容易でなかった。
【0026】
これに対して、本実施形態によれば、非金属層24を第1の第1の非金属層24Aと第2の非金属層24Bとの積層構造とすることにより、非金属層24の全体の層厚を再現性良く薄く形成することが可能となる。すなわち、本実施形態では、非金属層24を形成するための材料として2種以上の材料の積層構成を用いる。第1の非金属層24Aの材料としては、酸化や窒化などの反応に対してより耐性の強い材料を用いる。また、第2の非金属層24Bの材料としては、反応の後に、良好な電子反射を起こすことができる材料を用いる。
【0027】
図2は、非金属層24の形成方法を概念的に表す工程断面図である。
まず、図2(a)に表したように、下地層22と薄膜Xとの積層構造を用意する。ここで、下地層22は、第1の強磁性体金属層の一部を兼ねるものであり、且つ酸化や窒化あるいはフッ化に対して耐性の大きい材料からなることが望ましい。その材料としては、ニッケル(Ni)を含有したものであることが望ましく、例えば、ニッケル・鉄(NiFe)合金を用いることができる。
【0028】
また、薄膜Xは、酸化、窒化またはフッ化により、良好な電子反射を起こすことができる材料からなる。その材料としては、例えば、コバルト鉄(CoFe)に、リチウム(Li)、ベリリウム(Be)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、シリコン(Si)、りん(P)、カリウム(K)、カルシウム(Ca)、スカンジウム(Sc)、ガリウム(Ga)、ルビジウム(Rb)、ストロンチウム(Sr)、イットリウム(Y)、セシウム(Cs)、バリウム(Ba)及びランタン系列に属する元素の少なくともいずれかの元素を添加したものを用いることができる。
【0029】
また、薄膜Xの堆積は、例えば、スパッタリング、真空蒸着、CVDなどの方法により行うことができる。この際に、薄膜Xを十分に薄く堆積することは比較的容易である。
【0030】
次に、図2(b)に表したように、第1の非金属層24Aと第2の非金属層24Bを形成する。具体的には、酸素(O)、窒素(N)あるいはフッ素(F)を含有した雰囲気に曝すことにより、薄膜Xと下地22の表面を反応させる。この際に、薄膜Xは、反応性が比較的高いために全体が反応し、第2の非金属層24Bが形成される。しかし、その下の下地層22は反応の耐性が大きい材料を含有するため、反応の進行が阻止され、極薄の非金属層24Aが形成される。つまり、非金属層24の全体の膜厚は、薄膜Xの膜厚により実質的に決定される。このため、極薄且つ均一な非金属層24を再現性良く形成することができる。
【0031】
本発明によれば、下地が反応に対するストッパ層として作用し、極薄且つ均一な非金属層を再現性よく形成することができる。その結果として、電子の鏡面反射を生じさせつつ、第1の強磁性体金属層22と第2の強磁性体金属層26との磁気的なカップリングを確保して良好な磁化固着特性を得ることができる。
【0032】
また、図1乃至図2においては、非金属層24が2種類の非金属層からなる場合を例示したが、本発明はこれに限定されるものではない。すなわち、非金属層24の構造として、3種類あるいはそれ以上の非金属層からなる積層構造を採用しても良い。このような場合においても、上側に電子の鏡面反射を確保する層を設け、下側に過度の反応を阻止する役割を有する層を設けることにより、同様の効果を得ることができる。
【0033】
以下に、本実施形態にかかる磁気抵抗効果素子を構成する各層の構成についてさらに詳細に説明する。
【0034】
まず、非金属層24の材料としては、酸化物、窒化物、あるいはフッ化物などを用いることができる。これらのうちで、非磁性材料(室温でスピンの強磁性磁化配列も、反強磁性配列もしない材料)を用いる場合は、非金属層24のトータル厚さは3nm以下とすることが望ましい。これは、非金属層24の厚さがこれ以上に厚くなると非金属層24を挟んだ両側の強磁性体金属層22、26の間での磁気的結合力が小さくなり、非磁性中間層30に接した強磁性体金属層26の磁化の固着が困難になるためである。また、より良好な磁化固着を得るためには、非金属層24の合計厚さを2nm以下とすることがより望ましい。
【0035】
非金属層24の材料として反強磁性体、もしくは強磁性体を用いる場合には、非金属層24を介して上下の磁性層22、26を磁気的に固着出来る。従って、非金属層24の合計の膜厚が5nm以下であれば十分に非磁性中間層30に接した強磁性体金属層26の磁化を固着することが可能である。ただし、より強固な磁性的結合を得るためには、非金属層24の合計の厚さは3nm以下であることが望ましい。
【0036】
特に、強磁性体を用いることより大きなMR変化率と層間結合を得ることができる。
【0037】
また、非金属層24の材料が反強磁性体である場合には、動作環境温度を考えるとネール温度が250℃以上であることが望ましく、300℃以上であることがより望ましい。これは、ネール温度が低いと、上下の強磁性体層22、26の結合の熱的安定性が劣化するためである。
【0038】
ただし、本発明においは、電子を鏡面反射させる非金属層24を両側から強磁性体22、26で挟むため、強磁性体からの分子磁界によってバルク値よりもネール温度が上昇する。このため、電子反射層となる非金属層24の両側は、キューリー点の高いFe(鉄)系またはCo(コバルト)系合金によってサンドイッチすることが望ましい。この方法によって、NiO(酸化ニッケル)のような材料においても、組成を適宜調整することによって十分に高いネール点を確保することが出来る。
【0039】
一方、非金属層24の材料が強磁性体である場合には、動作環境温度を考えるとキューリー温度が100℃以上であることが望ましく、200℃以上であることがさらに望ましい。この場合も、電子反射層となる非金属層24を両側から強磁性体層22、26で挟むため、強磁性体からの分子磁界によってバルク値よりもキュリー点は上昇する。このため、非金属層24の両側はキューリー点の高いFe系またはCo系合金でサンドイッチすることが望ましい。この方法によって、例えばペロブスカイト系のような材料においても、組成を適宜調整することによって十分に高いキューリー点を確保することが出来る。また、フェライト系のような材料においても、さらに十分なキューリー点を確保することが出来る。
【0040】
一方、上下の強磁性体金属層22、26の磁気的な結合の形態は、磁化が平行になるように結合していてもよく、磁化が反平行に結合していてもよい。また、磁化が略90度の角度をなして結合していても良い。または、それ以外の角度をなしていても問題はない。結合の強さは、400Oeの外部磁場で10度以内の角度変化となることが望ましい。
【0041】
上下磁性層の結合を平行にするためには、非金属層24の材料として強磁性体、もしくはフェリ磁性体を用いることが望ましい。ただし、反強磁性体を用いることもできる。その場合には、NiOのように原子のスタック(積層)に対して各原子層の磁化が反平行に配列するような絶縁体を用いることが望ましい。その場合に、磁性原子層の数が偶数に近くなるように非金属層24の膜厚を設定することが望ましい。
【0042】
すなわち、非金属層24の材料としては、強磁性体であり、且つ、その膜厚をT、その時期的周期をP、整数をnとした時に、式P×(n−0.2)≦T≦P×(n+0.2)が満足されるようなものを用いることが望ましい。ここで、時期的周期とは、非金属層の膜厚方向において生ずる磁化スピンの周期のことであり、例えば、磁気的な1周期が数原子層にわたってスパイラル状に変化するような場合も含む。
【0043】
具体的には、例えば、NiO(酸化ニッケル)のように、原子スタックに対して各原子層の磁化が反平行に配列している絶縁体を用いることができる。NiOの(111)配向膜はNi原子層/酸素原子層/ニッケル原子層/酸素原子層/ニッケル原子層という積層構造を持っている。この場合の時期的周期は、酸素原子層/ニッケル原子層/酸素原子層/ニッケル原子層である。従って、非金属層の膜厚方向にみた酸素原子層の数が偶数に近くなるように、非金属層24の膜厚を設定することが望ましい。但し、トータルとしての磁気的結合が平行であればよいため、必ずしもぴったりと偶数である必要はない。
【0044】
ここで、前記非金属層の厚さは、一番界面に近い酸素原子層の強磁性金属層側に接している金属原子層の中心位置から、中心位置までの距離で定義する。また、より複雑な結晶構造を持った非金属層の場合も、一番界面に近い酸素原子層の金属層側に接している金属原子層の中心地位から、中心位置までの距離で定義する。また、より複雑な結晶構造を有する酸化物の場合においても、上記定義は同様に適用することができる。
【0045】
上下の強磁性体金属層22、26の結合を反平行にするためには、非金属層24の材料として、反強磁性体であり、且つ、その膜厚をT、その磁気的周期をP、整数をnとした時に、式P×(n+0.3)≦T≦P×(n+0.7)が満足されるようなものを用いることが望ましい。ここで、「磁気的周期」とは、非金属層の膜厚方向において生ずる磁化スピンの周期のことであり、例えば、磁気的な1周期が数原子層に渡ってスパイラル状に変化するような場合も含む。
【0046】
具体的には、例えば、NiO(酸化ニッケル)のように、原子スタックに対して各原子層の磁化が反平行に配列している絶縁体を用いることができる。この場合の「磁気的周期」は、酸素原子層/ニッケル原子層/酸素原子層/ニッケル原子層である。従って、非金属層の膜厚方向にみた原子層の数が奇数に近くなるように非金属層24の膜厚を設定することが望ましい。但し、トータルとしての磁気結合が反平行であればよいため、からなずしもぴったりと奇数である必要はない。
【0047】
また、フェリ磁性体を用いる場合も、強磁性体と電子反射層となる非金属層24との界面での電子反射層の磁性サイトが一方向のスピンサイトが多くなるような面を選び、その上側界面と下側界面とでその方向が反平行となるよう、膜厚を選択することが望ましい。
【0048】
また、非金属層24は、アモルファス(非晶質)状態であってもよいが、微結晶状態または多結晶状態であることが望ましく、磁性体層とエピタキシャル関係にあることがさらに望ましい。特に、上下磁性層22、26の結合を強くし、かつ電子反射係数を増大させるためには、エピタキシャル関係にあることが望ましい。
【0049】
また、非金属層24は、完全に連続的な薄膜の状態であってもよいが、ピンホールがあいていてもよい。ピンホールが開いていると、その穴を通して上下磁性層22、26が磁気的に結合することが可能になるため、強い磁気結合を得ることが出来る。ただし、あまりピンホールの存在が多いと電子反射効果が小さくなるため、ピンホールの割合は面積にして全体の50%以下であることが望ましい。さらに電子反射効果を上昇させるためには、ピンホールの割合は20%以下であることが望ましく、10%以下であることがさらに望ましい。
【0050】
また、電子を鏡面反射する界面すなわち、第2の非金属層24Bと強磁性体金属層26との界面の平均の凹凸は2nm以上あってもよいが、2nm以下であることがより望ましい。界面の凹凸が2nm以上であると、電子反射係数が劣化するためにMR変化率は減少してしまう。図1に例示したように、反強磁性層10を下側に設けた場合にはスピンバルブ膜の平滑性が上昇し、表面、もしくは界面の凹凸が減少するため、より大きな電子反射効果を得ることができる。この場合に界面の凹凸をさらに減少させるために、反強磁性層10の下地としては、タンタル(Ta),チタン(Ti),クロム(Cr),アルミニウム(Al)などを用いることができる。
【0051】
また、基板との濡れ性を向上させる下地層を設け、さらに、その上に銅(Cu),金(Au),銀(Ag)のような結晶配向性を向上させる材料を積層した上に反強磁性層10を堆積しても良い。このとき下地と、その上に積層される金属層との格子定数の差は、5%以内とすることが望ましい。このことによって、全体の平滑性と配向性を向上させることが可能となり、電子反射係数が上昇し、より大きなMR効果を得ることができる。
【0052】
電子反射層としての非金属層24は、必ずしも配向している必要はないが、より望ましくは最密面配向している方がよい。電子反射層を最密面に配向させることにより、より大きな電子反射率を得ることが可能となる。また、その上に積層する強磁性体金属層26の膜質が向上し、図1のような反強磁性層10を下側に設けた構造では、軟磁気特性を向上させることも可能である。
【0053】
強磁性体金属層22、26、あるいは第2の磁性層40の材料としては、ニッケル(Ni)、コバルト(Co)、鉄(Fe)などの磁性体を用いることができるが、NiFe、CoFeなどのような2元系磁性合金でも良い。特に大きなMR変化率と良好な軟磁気特性を得るためには、コバルト(Co)を含んだ磁性合金を用いることが望ましい。コバルト系合金を用いることにより大きなスピン依存散乱と、良好な電子反射効果とを得ることが可能となり、大きなMR効果を得ることができる。また、同様に3元以上の磁性体合金を用いても良い。
【0054】
また、強磁性体金属層22、26の材料は、必ずしも同一である必要はなく、一方がNiFeで、他方がCoFeというように変えてもよい。この場合には、非磁性中間層30に接していない強磁性体金属層22の抵抗が高い方がシャントの効果を低減することができるため、強磁性体金属層22には、クロム(Cr)、タンタル(Ta)、チタン(Ti)、バナジウム(V)、タングステン(W)、ロジウム(Rh)、ルテニウム(Ru)などの高抵抗化添加物を添加することが望ましい。
【0055】
特に、図1に例示した構造において、第1の強磁性体金属層22を2層構造とし、その下側の層を、磁気固着層として実質的に作用する層、上側の層を反応を阻止する層として作用させることができる。この場合の下側の層の材料としては、MR変化量に影響を及ぼすバルク効果が大きいものが望ましい。具体的には、例えば、コバルト(Co)系磁性合金を挙げることができ、その層厚は相対的に厚く形成することが望ましい。一方、この場合の上側の層の材料としては、前述したように、ニッケル系の磁性合金とすることができ、その層厚は反応を阻止することができる範囲で薄く形成することが望ましい。
【0056】
さらに、これらの磁性層22、26、40は、それぞれ2層以上の磁性体と非磁性体の積層構造となっていても良い。例えば、CoFe/Cuのような2層構造とされていても良い。または、CoFe/Ru/CoFeのような3層構造とされていても良く、または、4層以上の積層構造であっても良い。
【0057】
また、これらの磁性層は、必ずしも配向している必要はないが、最密面配向していることが望ましく、結晶格子の構造がfccの磁性体では(111)面配向していることが望ましく、bcc構造の磁性体では(100)面配向していることが望ましく、hcp構造の磁性体では、c面が面内配向していることが望ましい。
【0058】
次に、本発明の第2の実施の形態について説明する。
図3は、本発明の第2の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。すなわち、本実施形態の磁気抵抗効果素子も、所定の基板の上に、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50がこの順に積層された構造を有する。各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。
【0059】
また、図1に例示した硬磁性膜80、80と電極82、82は、図3においては簡単のために省略した。
【0060】
本実施形態においては、第1の強磁性体金属層22が、2種以上の強磁性体の積層構造からなることを特徴としている。すなわち、図3に表した具体例においては、第1の強磁性体金属層22は、第1の層22Aと第2の層22Bとを積層した構造を有する。
【0061】
第1の層22Aは、磁気固着層として実質的に作用し、その材料としては、大きな一方向異方性を得られるものが望ましい。具体的には、例えば、コバルト(Co)系磁性合金を挙げることができ、コバルトに、鉄(Fe)、ニッケル(Ni)、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、ハフニウム(Hf)などの元素のいずれか1種あるいは2種以上を添加した合金を挙げることができる。
【0062】
第2の層22Bは、磁気固着層として作用しうる強磁性特性を有するとともに、非金属層24の形成の際の酸化、窒化またはフッ化反応に対する耐性が高い材料からなる。つまり、第1実施形態に関して前述したように、非金属層24を反応により形成させる際に、第2の層22Bの表面層が反応して非金属層24が形成されるが、この際に過度の反応を阻止して、全体として極薄且つ均一な非金属層24を再現性良く得ることができる。第2の層22Bの材料としては、例えば、ニッケル(Ni)系の合金を挙げることができる。
【0063】
本実施形態によれば、第1実施形態に関して前述した種々の効果が同様に得られ、さらに、第1の強磁性体金属層22において、バルク効果が高い第1の層22Aを設けることにより、磁化固着特性を改善してより大きな一方向異方性磁界を得ることができる。
【0064】
次に、本発明の第3の実施の形態について説明する。
図4は、本発明の第3の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。すなわち、本実施形態の磁気抵抗効果素子も、所定の基板の上に、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50がこの順に積層された構造を有する。各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。
【0065】
また、図1に例示した硬磁性膜80、80と電極82、82は、図4においては簡単のために省略した。
【0066】
本実施形態においては、第1の磁性層20が、少なくとも2層の非金属層と少なくとも3層の強磁性体金属層とを交互に積層させた構造を有する。すなわち、図4に表した具体例においては、第1の磁性層20は、強磁性体金属からなる第1の層22A、第1の非金属層24A、強磁性体金属からなる第2の層22B、第2の非金属層24B及び、強磁性体金属からなる第3の層26をこの順に積層した構造を有する。
【0067】
磁化固着特性を確保するためには、強磁性体金属からなる各層、すなわち第1〜第3の層22A、22B、及び26の磁気的なカップリングを維持する必要がある。このためには、これらの間に介在させる非金属層24A及び24Bの膜厚を薄くする必要があるが、あまりに薄く形成すると、ピンホールなどが生じやすく、電子の鏡面反射の効率が低下する。
【0068】
これに対して、本実施形態によれば、非金属層24Aと24Bとを別個に設けることにより、強磁性体層との界面が増え、電子が鏡面反射される確率を倍増させることができる。つまり、本実施形態によれば、複数の非金属層を強磁性体からなる層の間に別個に介在させることにより、ピンホールなどが存在しうるような極薄の非金属層を用いて強磁性体層の間の磁気的なカップリングを確保しつつ、電子の鏡面反射の効率を倍増させることができる。その結果として、磁気固着特性を維持しつつ、電子の運動量の損失を大幅に低減して大きなMR特性を実現することができる。
【0069】
次に、本発明の第4の実施の形態について説明する。
図5は、本発明の第4の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。すなわち、本実施形態の磁気抵抗効果素子も、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50がこの順に積層された構造を有する。各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。
【0070】
また、図1に例示した硬磁性膜80、80と電極82、82は、図5においては簡単のために省略した。
【0071】
本実施形態においては、第1の磁性層20が、少なくとも1層の非金属層を中間に有し、この非金属層に接して設けられた強磁性体金属層が、リチウム(Li)、ベリリウム(Be)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、シリコン(Si)、りん(P)、カリウム(K)、カルシウム(Ca)、スカンジウム(Sc)、ガリウム(Ga)、ルビジウム(Rb)、ストロンチウム(Sr)、イットリウム(Y)、セシウム(Cs)、バリウム(Ba)及びランタン系列に属する元素の少なくともいずれかを1%以上含有することを特徴としている。例えば、図5に表した具体例においては、第1の磁性層20は、第1の強磁性体金属層22’と非金属層24と第2の強磁性体金属層26とをこの順に積層してなる。そして、第1の強磁性体金属層22’は、上記したいずれかの元素を1at%以上含有している。
【0072】
非金属層24の形成は、第1の強磁性体金属層22’の表面を酸化、窒化、またはフッ化させることにより行う。この形成工程において、クロム、アルミニウム、またはシリコンが優先的に反応し、緻密で平滑な非金属層24を形成することができる。その結果として、良好なMR変化率を再現性良く得ることができる。
【0073】
なお、図5に例示した構造の他にも、例えば、図4に例示した構造において、強磁性体金属層22A及び22Bの少なくともいずれかに、リチウム(Li)、ベリリウム(Be)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、シリコン(Si)、りん(P)、カリウム(K)、カルシウム(Ca)、スカンジウム(Sc)、ガリウム(Ga)、ルビジウム(Rb)、ストロンチウム(Sr)、イットリウム(Y)、セシウム(Cs)、バリウム(Ba)及びランタン系列に属する元素の少なくともいずれかを1at%以上含有させても同様の効果を得ることができる。
【0074】
次に、本発明の第5の実施の形態について説明する。
図6は、本発明の第5の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。すなわち、本実施形態の磁気抵抗効果素子も、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50がこの順に積層されたスピンバルブ構造を有する。各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。
【0075】
また、図1に例示した硬磁性膜80、80と電極82、82は、図6においては簡単のために省略した。
【0076】
本実施形態においても、第1の磁性層20は、強磁性体金属層22と非金属層24’と強磁性体金属層26とを積層した構造を有する。そして、非金属層24’は、反強磁性体であり、且つ、その膜厚をT、その磁気的周期をP、整数をnとした時に、式P×(n+0.3)≦T≦P×(n+0.7)の範囲内とする。
【0077】
このような構成とすることにより、非金属層24′を挟んだ上下の強磁性体金属層22、26の磁気的な結合を反平行とすることができる。すなわち、非金属層24’の原子面の数を上記のように制御すると、第1の磁性層20をいわゆる「シンセティック反強磁性構造」とすることができる。そして、このように、上下の磁性層22、26の磁化が打ち消しあうため、磁化固着層すなわち第1の磁性層20がフリー層すなわち第2の磁性層40に与える静磁場を十分に小さくすることができる。磁化固着層すなわち第1の磁性層20からの静磁場による動作点のシフトは、実際の磁気ヘッドを製作する上での大きな問題となっているが、本実施形態によれば、第1の磁性層20をシンセティック反強磁性体とすることにより、この問題を解消することができる。
【0078】
また、いわゆるスペキュラースピンバルブでは、フリー層の膜厚を薄くすることにより、より大きなMR変化率を得ることが可能となるが、フリー層を単純に薄くすると、前述したように静磁場の影響により動作点がシフトするという問題が生ずる。これに対して、本実施形態によれば、第1の磁性層20をシンセティック反強磁性体とすることよりフリー層を十分に薄くすることが可能となり、スペキュラ効果をより有効に利用することができる。
【0079】
非金属層24’の具体例としては、例えば、ニッケル(Ni)を含有した酸化物を挙げることができる。例えば、酸化ニッケルを最密面配向させた薄膜を形成する場合には、ニッケルが含有された原子層と酸素が主体となる原子層とが交互に積層される。本実施形態においては、非金属層24’の膜厚方向にみて、これらの原子層の数を合計で偶数とすることにより、その上下の強磁性体の磁化方向を反平行とすることができる。
【0080】
次に、本第5実施形態の変型例について図6を参照しつつ説明する。
【0081】
すなわち、本変型例の磁気抵抗効果素子も、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50がこの順に積層されたスピンバルブ構造を有する。各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。
【0082】
本実施形態においても、第1の磁性層20は、強磁性体金属層22と非金属層24’と強磁性体金属層26とを積層した構造を有する。そして、非金属層24’は、反強磁性体であり、且つ、その膜厚をT、その磁気的周期をP、整数をnとした時に、式P×(n−0.2)≦T≦P×(n+0.2)の範囲内とする。
【0083】
このような構成とすることにより、非金属層24′を挟んだ上下の強磁性体金属層22、26の磁気的な結合を平行とすることができる。すなわち、非金属層24’の原子面の数を上記のように制御すると、反強磁性体の磁気的結合を用いて、強磁性体22、26を強く磁気結合させることが可能となり、良好な磁気的安定性を得ることが可能となる。本変型例によれば、磁気的安定性を改善することにより、より安定な磁気抵抗効果素子を提供することができる。
【0084】
非金属層24’の具体例としては、例えば、ニッケル(Ni)を含有した酸化物を挙げることができる。例えば、酸化ニッケルを最密面配向させた薄膜を形成する場合には、ニッケルが含有された原子層と酸素が主体となる原子層とが交互に積層される。本変型例においては、非金属層24’の膜厚方向にみて、これらの酸素原子層の数を合計で偶数とすることにより、その上下の強磁性体の磁化方向を平行となることかできる。NiOの場合には酸素原子層を挟んで磁化が反平行に結合するため、これは酸素原子層がほぼ偶数層だけ含まれていることに等しい。
【0085】
次に、本発明の第6の実施の形態について説明する。
図7は、本発明の第6の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。すなわち、本実施形態の磁気抵抗効果素子も、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50を有する。各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。
【0086】
また、図1に例示した硬磁性膜80、80と電極82、82は、図7においては簡単のために省略した。
【0087】
本実施形態においては、各層の積層の順序が逆転している。すなわち、前述した第1実施形態においては、基板上に、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、及び非金属層50の順に積層されている。これに対して、本実施形態においては積層の順序が逆であり、所定の下地層60の上に、非金属層50、第2の磁性層40、非磁性中間層30、第1の磁性層20、反強磁性層10がこの順に積層されている。
【0088】
但し、本実施形態においても、第1の磁性層20を構成する層22、24A、24B、及び26の積層の順序は、第1実施形態の場合と同様である。すなわち、非金属層24Aは、酸化、窒化あるいはフッ化反応を阻止して非金属層24の膜厚を薄く且つ均一に形成するためのストップ層としての役割を有する。但し、本実施形態においては、層24Aと強磁性体金属層22との界面において電子の鏡面反射が生ずる。
【0089】
本実施形態によっても、非金属層24の膜厚を極薄く且つ均一に形成することができ、第1実施形態と同様の種々の効果を同様に得ることができる。
【0090】
また、前述した第2〜第5実施形態に関して例示した各構造についても、同様に逆の順番に積層しても良い。つまり、図3〜図6に表した積層構造のそれぞれについて、非金属層50、第2の磁性層40、非磁性中間層30、第1の磁性層20、反強磁性層10の順番に積層しても良い。但し、これらの場合にも、第1の磁性層20を構成する各層の積層構造は、図3〜図6に表したものと同様とする必要がある。
【0091】
このように、積層の順番を逆転させても、同様の効果を得ることができる。
【0092】
以上、第1〜第6の実施の形態として、非金属層を第1の磁性層の中間に設けた構成について説明した。
【0093】
一方、電子を鏡面反射する非金属層は、図8に例示したように、反強磁性層と第1の磁性層との間に設けても良い。すなわち、図8に表した例においては、所定の基板上に、反強磁性層10、非金属層24、第1の磁性層20、非磁性中間層30、第2の磁性層40、非金属層50がこの順に積層されている。同図に関しても、各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。また、図1に例示した硬磁性膜80、80と電極82、82も、図8においては簡単のために省略した。
【0094】
図8に例示した構造においては、電子は、非金属層24と非金属層50との間で鏡面反射を繰り返して流れる。ここで、反強磁性層10の材料としては、例えば、IrMn、PtMn、NiMn、FeMn等を用いることができる。特に、反強磁性を有する金属を用いることにより、高いブロッキング温度をもち、大きな一方向異方性をもつ、良好な磁化固着特性を得ることができる。
【0095】
また、非金属層24の材料としては、例えば、NiO、CoO、Fe、Fe 等を用いることができる。特に、非金属層24の材料として、反強磁性を有する材料を選択することにより、金属反強磁性体がもつ良好な磁化固着特性を損なうことなく良好な電子反射効果を得ることができる。
【0096】
図8の構成においては、良好なバイアス効果を得るためには、電子反射層となる非金属層24は、反強磁性体であるか、または強磁性体であることが望ましい。非金属層24として、反強磁性体を用いる場合には、その膜厚を5nm以下とすることが望ましく、さらに2nm以下とすることによってさらに温度特性に優れたバイアス特性を得ることができる。
【0097】
非金属層24として、強磁性体を用いる場合にも、その膜厚は5nm以下とすることが望ましく、さらに2nm以下とすることによってさらに温度特性に優れたバイアス特性を得ることができる。
【0098】
一方、図9に例示したように、電子を鏡面反射する非金属層を反強磁性層の中間に設けても良い。すなわち、図9に例示した構造においては、所定の基板の上に、第1の反強磁性層10A、非金属層24、第2の反強磁性層10B、第1の磁性層20、非磁性中間層30、第2の磁性層40、非金属層50がこの順に積層されている。同図に関しても、各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。また、図1に例示した硬磁性膜80、80と電極82、82も、図9においては簡単のために省略した。
【0099】
このように、反強磁性層10の中間に電子を鏡面反射させる非金属層24を設けることにより、反強磁性体と強磁性体とを直接積層し、ダイレクトな交換結合により、より良好な磁化固着特性を実現しつつ、鏡面反射効果によるMRの増大を得ることができる。
【0100】
また、第1の反強磁性層10A及び10Bの材料としては、IrMn、PtMn、NiMn、FeMn等を用いることができる。特に、金属性の材料を用いることにより、高いブロッキング温度をもち、大きな一方向異方性をもつ、良好な磁化固着特性を得ることができる。
【0101】
また、非金属層24の材料としては、例えば、NiO、CoO、Fe 、Fe 等を用いることができる。特に、非金属層24の材料として、反強磁性を有する材料を選択することにより、金属反強磁性体がもつ良好な磁化固着特性を損なうことなく、良好な電子反射効果を得ることができる。
【0102】
また、より大きなMR効果を得るためには、第2の反強磁性層10Bの膜厚をできるだけ薄くすることが望ましく、3nm以下であることが望ましい。また、第1の反強磁性層10Aについては、これよりも厚くても良いが、電流のシャント効果を抑制するためには、10nm以下であることが望ましい。さらに、十分なバイアス効果が得られる場合には、第1の反強磁性層10Aは、省略することもできる。
【0103】
一方、磁化固着層を複数設けても良い。
図10は、磁化固着層を上下に設けた構造を例示する概念図である。すなわち、同図に例示した構造においては、例示したように、所定の基板の上に、バッファ層2、反強磁性層10、第1の磁性層20、非磁性中間層30、第2の磁性層40、非磁性中間層30、第1の磁性層20、反強磁性層10、保護層60がこの順に積層されている。つまり、積層構造のほぼ中央に、フリー層となる第2の磁性層40が設けられ、その上下に対称に中間層30や固着層20などが設けられている。同図に関しても、各層の具体的な構成や役割は、図1乃至図2に関して前述したものと概略同様とすることができるので、同一の部分には同一の符号を付して詳細な説明は省略する。また、図1に例示した硬磁性膜80、80と電極82、82も、図10においては簡単のために省略した。
【0104】
ここで、図10に表した構造に対して、図1〜図9に例示したようなそれぞれの積層構造を適用することができる。すなわち、図1〜図9に関して前述したそれぞれの積層構造を第2の磁性層40を中心として上下に対称に設けることができる。
【0105】
このように、フリー層となる磁性層40の上下に磁化固着層となる磁性層20を設けることにより、図1〜図9に関して前述した種々の効果に加えて、やや低い反射率の場合でも大きなMR変化率を得ることができるという効果も得られる。また、フリー層が電流の流路の中心付近に配置されるため、電流磁界によってフリー層が受ける影響が少なく、動作が安定するという効果も併せて得られる。
【0106】
一方、このように、フリー層の上下に磁化固着層を設けると、磁化固着層からの静磁気的結合が磁化固着層が1層の場合の2倍になる。従って、磁化固着層の内部において反平行の磁化を形成するために、いわゆる「シンセティック反強磁性構造」を用いることがより重要になる。
図11は、このようなシンセティック反強磁性構造を採用した変形例を表す断面概念図である。すなわち、図11においては、磁化固着層となる第1の磁性層20が、それぞれ第1の強磁性体金属層22A、ルテニウム(Ru)層28、第2の強磁性体金属層22B、非金属層24、第3の強磁性体金属層22Cを順に積層した構造とされている。このように、ルテニウム(Ru)層28を設けると、その上下の強磁性体層の磁化方向が反平行となる。つまり、第1の強磁性体金属層22Aの磁化方向に対して、第2の強磁性体金属層22Bと第3の強磁性体金属層22Cの磁化方向が反平行となる。従って、層22Aの膜厚に対して、層22Bの膜厚と層22Cの膜厚の合計がほぼ等しくなるようにすれば、第1の磁性層20の内部において全体の磁化方向がキャンセルされ、磁化固着層からの静電的カップリングを解消することができる。
【0107】
また、図11の構造においては、非金属層24を設けることによって、電子を鏡面反射させるスペキュラ効果も同時に得ることができる。つまり、電子は、フリー層すなわち第2の磁性層40の上下に設けられた2つの非金属層24の間において鏡面反射を受けながら流れる。このため、電子の運動量の損失が低減され、フリー層すなわち第2の磁性層40として膜厚2nm以下の磁性層でも十分な感度を確保することができ、さらに大きなMR効果を得ることができる。
【0108】
また、図11の構造においては、非金属層24をルテニウム層28と第2の磁性層40との間に設けている。この理由は、ルテニウム層28は、電子を散乱する性質を有するからである。すなわち、電流の主要な経路内にルテニウム層を設けると、電子が散乱されて損失が生ずる。これに対して、図11の構成においては、非金属層24をルテニウム層28と第2の磁性層40との間に設けることにより、電流経路からルテニウム層28を外して、電子の散乱による損失を解消することができる。
【0109】
次に、本発明の磁気記録装置について説明する。
以上説明した各実施形態の磁気抵抗効果素子は、例えば、記録再生一体型の磁気ヘッドに組み込まれ、磁気記録装置に搭載される。
【0110】
図12は、このような磁気記録装置の概略構成を例示する要部斜視図である。すなわち、本発明の磁気記録装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、磁気ディスク151は、スピンドル152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより回転する。磁気ディスク151が浮上した状態で情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ここで、ヘッドスライダ153は、例えば、前述したいずれかの実施の形態にかかる磁気抵抗効果素子を磁気ヘッドの一部として搭載している。
【0111】
磁気ディスク151が回転すると、ヘッドスライダ153の媒体対向面(ABS)は磁気ディスク151の表面から所定の浮上量をもって保持される。
【0112】
サスペンション154は、図示しない駆動コイルを保持するボビン部などを有するアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、アクチュエータアーム155のボビン部に巻き上げられた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。
【0113】
アクチュエータアーム155は、固定軸157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。
【0114】
本発明によれば、前述した各実施形態にかかる磁気抵抗効果素子を磁気ヘッドの要部として採用することにより、大きな再生出力信号と、良好な熱安定性とを得ることができる。さらに、その結果として、再生出力の経時変化を解消することもできる。また、アセンブリの際に印加されうるESD(electro-static discharge:静電気)に対する耐性も改善され、組立の際の歩留まりも向上する。
【0115】
以上の効果から、狭トラック化、低素子ハイト化が可能となり、高密度磁気記録に対応した磁気記録装置を実現することができる。
【0116】
以上、本発明の実施の形態について説明した。
【0117】
次に、本発明の具体的な実施例を説明する。
【0118】
(実施例1)
図1及び図2を参照しつつ本発明の第1の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/NiFe1nm/CoFe0.5nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらし、非金属層24を形成した。そして、その上にさらにCoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/NiFe0.6nm/NiFeO0.4nm/CoFeO0.5nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nm
という積層構造が得られた。ここで、酸化しにくいNiFeをIrMn層とCoFe層との間に挟んだことにより、非金属層24の膜厚は1nmに抑制され、再現性良く極薄の非金属層を形成することが可能となった。
【0119】
このため、磁化固着層20における非金属層24を介した磁気的結合は十分に強く、磁化固着特性に優れたスピンバルブ構造を実現することができた。具体的には、MR変化率18%、一方向異方性磁場(HUA)400Oeを得ることができた。また、全体の結晶性を改善するために、非金属層24の形成のための酸化処理を200℃において実施した場合においても、固着層20の磁化固着特性に劣化はみられなかった。
【0120】
(比較例1)
上記実施例1に対する比較のために、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFe2.0nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらし、非金属層を形成した。そして、その上にさらにCoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらして非金属層を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFe0.5nm/CoFeO1.5nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nm
という積層構造が得られた。すなわち、本比較例においては、CoFeの酸化が進みすぎてしまい、得られたCoFeO層の厚さは1.5nmと厚くなってしまった。このため、磁化固着層におけるCoFe層を介した磁気的結合は弱く、磁化固着特性には劣化が見られた。具体的には、HUAは、200Oeに低下した。また、全体の結晶性を改善するために、非金属層の形成のための酸化処理を200℃において実施したところ、固着層の磁化固着特性はさらに劣化してしまい、非金属層の酸化による厚膜化がさらに進行したことがわかった。
【0121】
(実施例2)
図3を参照しつつ本発明の第2の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFe1nm/Ni1nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらし、非金属層24を形成した。そして、その上にさらにCoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFe1nm/Ni0.5nm/NiO0.5nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nm
という積層構造が得られた。
【0122】
本実施例においては、酸化しにくいNi層を表面に設け、IrMn層と接する層にはCoFe層を挟んだことにより、非金属層24の膜厚は1nmに抑制され、再現性良く極薄の非金属層を形成することが可能となった。
【0123】
このため、磁化固着層20における非金属層24を介した磁気的結合は十分に強く、磁化固着特性に優れたスピンバルブ構造を実現することができた。また、IrMn層とCoFe層との組み合わせにより、十分に強い一方向異方性を得ることができた。具体的には、MR変化率として17%、一方向異方性磁場として550Oeを得ることができた。さらに、全体の結晶性を改善するために、非金属層24の形成のための酸化処理を200℃において実施した場合においても、固着層20の磁化固着特性に劣化はみられなかった。
【0124】
(実施例3)
図4を参照しつつ本発明の第3の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFe1nmという積層構造を成膜し、その表面を1x10−5torrの酸素に10秒間さらし、第1の非金属層24Aを形成した。そして、その上にさらにCoFe1nmを堆積し、もう一度その表面を1x10−5torrの酸素に10秒間さらし、第2の非金属層24Bを形成した。
【0125】
さらにその上に、CoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFe0.7nm/CoFeO0.3nm/CoFe0.7nm/CoFeO0.3nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nmという積層構造が得られた。
【0126】
本実施例においては、弱い酸化によりピンホールが存在しうる極薄のCoFeO層24A、24Bを設けるが、このように非金属層を2層とすることより、全体の電子の鏡面反射率を改善し、約18%という大きなMR効果を得ることができた。
【0127】
(実施例4)
図5を参照しつつ本発明の第4の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFeCr2nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらし、非金属層24を形成した。そして、その上にさらに、CoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1x10−4torrの酸素に60秒間さらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFeCr1.2nm/CoFeCrO0.8nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nm
という積層構造が得られた。
【0128】
本実施例においては、Crが選択的に酸化されて安定な酸化物を形成するため、極薄の非金属層24を再現性良く形成することができた。さらに、全体の結晶性を改善するために、非金属層24の形成のための酸化処理を200℃において実施した場合においても、固着層20の磁化固着特性に劣化はみられなかった。
【0129】
(実施例5)
次に、図6を参照しつつ、本発明の第5の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFe0.5nm/Cr0.4nmという積層構造を成膜し、その表面を1×10−5torrの酸素に10秒間さらし、非金属層24’を形成した。
【0130】
さらにその上に、CoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1×10−4torrの酸素にさらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFe0.5nm/Cr0.5nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nmという積層構造が得られた。
【0131】
本実施例においては、膜全体として(111)配向性を有し、CoFe層は、fcc構造をとり、(111)面を積層させた構造となった。また、Crは、コランダム構造をとり、最密充填層が膜面に対して平行に形成された。コランダム構造の場合には、酸素層を介してCR層が反強磁性的結合をしており、最密充填層に垂直な方向の磁気的周期は、0.452nmである。このため、Cr層の厚さを0.5nmとしたときには、膜厚方向にほぼ酸素層が2層積層されることになる。この結果、Cr層を挟んだ上下CoFe層は平行に磁化結合し、安定な磁気特性を得ることが可能となった。具体的には、MR変化率として20%であり、一方向異方性磁場(HUA)として600Oeを得ることができた。
【0132】
(実施例6)
次に、図6を参照しつつ本発明の第6の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFe2nm/Cr0.6nmという積層構造を成膜し、その表面を1×10−5torrの酸素に10秒間さらし、非金属層24’を形成した。
【0133】
さらにその上に、CoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1×10−4torrの酸素にさらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFe2nm/Cr0.7nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nmという積層構造が得られた。
【0134】
本実施例においても、膜全体として(111)配向性を有し、CoFe層は、fcc構造をとり、(111)面を積層させた構造となった。また、Cr2O3は、コランダム構造をとり、最密充填層が膜面に対して平行に形成された。コランダム構造の場合には、酸素層を介してCr層が反強磁性的結合をしており、最密充填層に垂直な方向の磁気的周期は、0.452nmである。このため、Cr層の厚さを0.7nmとしたときには、膜厚方向にほぼ酸素層が3層積層されることになる。この結果、Cr層を挟んだ上下CoFe層は反平行に磁化結合し、シンセティック磁化配列を得ることができ、MR変化率として19%を得ることができた。
【0135】
(実施例7)
次に、図6を参照しつつ本発明の第7の実施例について説明する。まず、熱酸化シリコン(Si)基板上にスパッタ法によって、Ta5nm/NiFe2nm/IrMn5nm/CoFe0.5nm/Fe0.4nmという積層構造を成膜し、その表面を1×10−5torrのラジカル酸素に10秒間さらし、非金属層24’を形成した。
【0136】
さらにその上に、CoFe2nm/Cu2nm/CoFe2nmという積層構造を成膜し、その表面を1×10−4torrの酸素にさらして非金属層50を形成した。そして、その上に、保護膜としてTa0.4nmを堆積し、大気中に取り出した。この結果、表面のTaも酸化されて酸化層が形成された。この結果として、
Ta5nm/NiFe2nm/IrMn5nm/CoFe0.5nm/α−Fe0.5nm/CoFe2nm/Cu2nm/CoFe1.6nm/CoFeO0.4nm/TaO0.4nmという積層構造が得られた。
【0137】
本実施例においても、膜全体として(111)配向性を有し、CoFe層は、fcc構造をとり、(111)面を積層させた構造となった。また、α−Feは、コランダム構造をとり、最密充填層が膜面に対して平行に形成された。コランダム構造の場合には、酸素層を介してFe層が反強磁性的結合をしており、最密充填層に垂直な方向の磁気的周期は、0.458nmである。このため、Fe層の厚さを0.5nmとしたときには、膜厚方向にほぼ酸素層が2層積層されることになる。この結果、Fe層を挟んだ上下CoFe層は平行に磁化結合し、安定な磁気特性を得ることが可能となった。具体的には、MR変化率として20%、一方向異方性磁場(HUA)として600Oeを得ることができた。
【0138】
また、α−Feは、反強磁性が消失する温度(ネール温度)が670℃と非常に高いため、実際にデバイスとして使用される環境温度である100℃においても、600Oeという大きな一方向異方性磁場を得ることができた。
【0139】
【発明の効果】
本発明は、以上説明した形態で実施され、以下に説明する効果を奏する。
【0140】
まず、本発明によれば、磁化固着層の中間に電子反射層としての非金属層を設け、且つその非金属層の下地として、2種類の層を積層させることにより、下側の層を反応に対するストッパ層として作用させ、極薄且つ均一な非金属層を再現性よく形成することができる。その結果として、電子の鏡面反射を生じさせつつ、第1の強磁性体金属層と第2の強磁性体金属層との磁気的なカップリングを確保して良好な磁化固着特性を得ることができる。
【0141】
また、本発明によれば、磁化固着層の非金属層の下側の強磁性体金属層を多層構造とし、その下側の層をバルク効果が高い強磁性体の層とすることにより、磁化固着特性をさらに改善してより大きなMR変化量を得ることができる。
【0142】
また、本発明によれば、磁化固着層において、電子を反射させる複数の非金属層を別個に設けることにより、強磁性体層との界面が増え、電子が鏡面反射される確率を倍増させることができる。つまり、ピンホールなどが存在しうるような極薄の非金属層を用いて強磁性体層の間の磁気的なカップリングを確保しつつ、電子の鏡面反射の効率を倍増させることができる。その結果として、磁気固着特性を維持しつつ、電子の運動量の損失を大幅に低減して大きなMR特性を実現することができる。
【0143】
また、本発明によれば、非金属層を中間に含んだ磁化固着層をシンセティック反強磁性体とすることにより、磁化固着層からの静磁場による動作点のシフトをを解消することができる。さらに、静磁場の影響がなくなるため、フリー層を十分に薄くすることが可能となり、スペキュラ効果をより有効に利用することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。
【図2】非金属層24の形成方法を概念的に表す工程断面図である。
【図3】本発明の第2の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。す
【図4】本発明の第3の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。
【図5】本発明の第4の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。
【図6】本発明の第5の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。
【図7】本発明の第6の実施の形態にかかる磁気抵抗効果素子の断面構造を表す概念図である。
【図8】電子を鏡面反射する非金属層を反強磁性層と第1の磁性層との間に設けた例を表す概念図である。
【図9】電子を鏡面反射する非金属層を反強磁性層の中間に設けた例を表す概念図である。
【図10】磁化固着層を上下に設けた構造を例示する概念図である。
【図11】シンセティック反強磁性構造を採用した変形例を表す断面概念図である。
【図12】本発明の磁気記録装置の概略構成を例示する要部斜視図である。
【符号の説明】
2 バッファ層
10、10A、10B 反強磁性層
20 第1の磁性層
22、22A、22B、22C 強磁性体金属層
24 非金属層
24A 第1の非金属層
24B 第2の非金属層
26 強磁性金属層
28 ルテニウム層
30 非磁性中間層
40 第2の磁性層
50 非金属層
60 下地層、保護層
80 硬磁性膜
82 電極
150 磁気記録装置
151 磁気ディスク
153 ヘッドスライダ
154 サスペンション
155 アクチュエータアーム
156 ボイスコイルモータ
157 固定軸

Claims (2)

  1. 反強磁性層と、前記反強磁性層上に設けられた、第1の磁性層と、第2の磁性層と、前記第1の磁性層と前記第2の磁性層との間に設けられた非磁性中間層と、を有するスピンバルブ膜を備えた磁気抵抗効果素子であって、
    前記第1の磁性層は、第1の強磁性体金属層と、前記第1の強磁性体金属層の上に設けられたCr 層と、前記Cr 層の上に設けられた第2の強磁性体金属層と、を有し、前記Cr 層の厚さが0.5nmまたは0.7nmであることを特徴とする磁気抵抗効果素子。
  2. 磁気記録媒体に対して情報を再生する磁気ヘッドを備えた磁気記録装置であって、
    前記磁気ヘッドは、請求項1に記載の磁気抵抗効果素子を有することを特徴とする磁気記録装置。
JP37403399A 1998-12-28 1999-12-28 磁気抵抗効果素子及び磁気記録装置 Expired - Fee Related JP4144831B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37403399A JP4144831B2 (ja) 1998-12-28 1999-12-28 磁気抵抗効果素子及び磁気記録装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37738598 1998-12-28
JP10-377385 1998-12-28
JP37403399A JP4144831B2 (ja) 1998-12-28 1999-12-28 磁気抵抗効果素子及び磁気記録装置

Publications (2)

Publication Number Publication Date
JP2000252548A JP2000252548A (ja) 2000-09-14
JP4144831B2 true JP4144831B2 (ja) 2008-09-03

Family

ID=26582551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37403399A Expired - Fee Related JP4144831B2 (ja) 1998-12-28 1999-12-28 磁気抵抗効果素子及び磁気記録装置

Country Status (1)

Country Link
JP (1) JP4144831B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392853B1 (en) * 2000-01-24 2002-05-21 Headway Technologies, Inc. Spin valve structure design with laminated free layer
JP3560284B2 (ja) 2000-01-28 2004-09-02 Tdk株式会社 磁気変換素子、薄膜磁気ヘッドおよびそれらの製造方法
JP4896587B2 (ja) * 2000-10-20 2012-03-14 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
JP2002150512A (ja) * 2000-11-08 2002-05-24 Sony Corp 磁気抵抗効果素子および磁気抵抗効果型磁気ヘッド
US6700757B2 (en) * 2001-01-02 2004-03-02 Hitachi Global Storage Technologies Netherlands B.V. Enhanced free layer for a spin valve sensor
JP2002358610A (ja) * 2001-06-01 2002-12-13 Fujitsu Ltd 磁気抵抗ヘッド及びその製造方法
JP3590006B2 (ja) 2001-06-22 2004-11-17 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
US6913782B2 (en) 2002-12-03 2005-07-05 Hitachi Global Storage Technologies Netherlands B.V. Fabrication of self-aligned reflective/protective overlays on magnetoresistance sensors, and the sensors
JP6350841B2 (ja) * 2017-05-22 2018-07-04 Tdk株式会社 磁界発生体および磁気センサ

Also Published As

Publication number Publication date
JP2000252548A (ja) 2000-09-14

Similar Documents

Publication Publication Date Title
US6348274B1 (en) Magnetoresistive element and magnetic recording apparatus
US7026063B2 (en) Spin-valve type magnetoresistance sensor and thin-film magnetic head
JP2778626B2 (ja) 磁気抵抗効果膜及びその製造方法並びに磁気抵抗効果素子
JP3625199B2 (ja) 磁気抵抗素子
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US7897274B2 (en) Magnetoresistive device, magnetoresistive head and magnetic recording-reproducing apparatus
JP3557140B2 (ja) 磁気抵抗効果素子及び磁気再生装置
US7336451B2 (en) Magnetic sensing element containing half-metallic alloy
JP4409656B2 (ja) 磁気抵抗効果素子及び磁気再生装置
JP2690623B2 (ja) 磁気抵抗効果素子
US7212385B2 (en) Ferromagnetic tunnel magnetoresistive devices and magnetic head
JP2738312B2 (ja) 磁気抵抗効果膜およびその製造方法
JP2004524708A (ja) 磁気抵抗効果素子とこれを用いた磁気抵抗効果型磁気ヘッド、磁気記録装置および磁気抵抗効果型メモリー装置
US20110134563A1 (en) Magnetoresistive effect head having a multilayered pinned layer or free layer and systems thereof
KR20070106433A (ko) 자기-저항 소자 및 이를 제조하는 방법
JP2004335931A (ja) Cpp型巨大磁気抵抗効果素子
JP4245318B2 (ja) 磁気検出素子
JP4237991B2 (ja) 磁気検出素子
JP2006005185A (ja) 磁気検出素子
JPH10198927A (ja) 磁気抵抗効果膜およびその製造方法
JP4144831B2 (ja) 磁気抵抗効果素子及び磁気記録装置
JP3177184B2 (ja) 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気記録再生装置
US6982854B2 (en) Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus
JP4387955B2 (ja) 磁気抵抗効果素子
JP2001358381A (ja) 磁気抵抗効果膜、磁気抵抗効果型ヘッド、および情報再生装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051024

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees