JP4121504B2 - リモコン二輪車のロール角制御装置 - Google Patents

リモコン二輪車のロール角制御装置 Download PDF

Info

Publication number
JP4121504B2
JP4121504B2 JP2004560593A JP2004560593A JP4121504B2 JP 4121504 B2 JP4121504 B2 JP 4121504B2 JP 2004560593 A JP2004560593 A JP 2004560593A JP 2004560593 A JP2004560593 A JP 2004560593A JP 4121504 B2 JP4121504 B2 JP 4121504B2
Authority
JP
Japan
Prior art keywords
roll angle
steering
angle
vehicle body
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004560593A
Other languages
English (en)
Other versions
JPWO2004054678A1 (ja
Inventor
覚 小嶋
Original Assignee
覚 小嶋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 覚 小嶋 filed Critical 覚 小嶋
Publication of JPWO2004054678A1 publication Critical patent/JPWO2004054678A1/ja
Application granted granted Critical
Publication of JP4121504B2 publication Critical patent/JP4121504B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • A63H17/26Details; Accessories
    • A63H17/36Steering-mechanisms for toy vehicles
    • A63H17/395Steering-mechanisms for toy vehicles steered by program
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • A63H17/16Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor in the form of a bicycle, with or without riders thereon
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • A63H30/04Electrical arrangements using wireless transmission

Landscapes

  • Toys (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Devices For Bicycles And Motorcycles (AREA)

Description

【技術分野】
本発明は、リモコン二輪車に用いられるロール角制御装置に関するものである。なお、リモコン二輪車とはラジコン二輪車を含む呼称である。
【背景技術】
主にホビー用として普及しているラジコン(ラジオコントロールの略、すなわち無線操縦のこと:以下同意である)模型には、四輪車や二輪車のように陸上を走行するもの、飛行機やヘリコプタのように空中を飛行するもの、及び船舶のように水上を航行するもの等がある。これらのラジコン模型においては、模型本体(四輪車や二輪車では車体、飛行機やヘリコプタでは機体、船舶では船体)にラジコン受信機と、操舵用アクチュエータを有する操舵部とが搭載されており、操縦者がラジコン送信機の操作スティックを操作すると、その操作に応じて動く操舵用アクチュエータにより操舵部が駆動され、走行(飛行,航行)している模型本体が旋回等をするようになっている。
ところで、例えば二輪車の操舵部は通常、車体(フレーム)の前部に所定のキャスタ角で後傾して支持された操舵軸と、この操舵軸を中心として左右に回動するフロントフォークと、このフロントフォークの下端部に回転自在に支持された前輪等から構成されている。そして、例えば直進走行状態から左へ旋回する場合には、ハンドルを介し操舵軸を右へ回して前輪を僅かに右に向けると、慣性力により車体が左に傾く(ロールする)ので、この状態から前輪を左に向けて適宜なロール角を保つようにすれば、二輪車は前記ロール角と車速とによって決まる旋回半径で左に旋回しながら走行することになる。このように二輪車では、操舵部の動作に応じ車体がロールして旋回するようになっている。
また、操舵軸が回動自在に構成されている場合には、操舵軸に加えていたトルクを無くすと、前輪まわりのアライメント(キャスタ角,トレール量等)による復原力がはたらき、車体は略直立状態(ロール角がほぼ0°の状態)まで起き上がって、直進走行に移行する。そして、一定以上の車速で直進走行しているときに、車体を傾けようとする風等の外乱が入った場合には、前記アライメント及び前輪が有するジャイロ効果により、その外乱に抗して車体を直立させようとする力がはたらき、自転車で所謂「手離し運転」をしているときと同様に、車体は自律的に安定して直進走行状態を保持する。
このような性質を「自律安定性」という。模型二輪車であっても、前輪まわりのアライメントが適切で、車体(模型本体)の左右の重量バランスも取れている場合には、実車を縮小したような寸法及び形状で、大まかな自律安定性が得られるが、実車に比べ車輪の慣性モーメントが小さいので動的安定性にかかわる前輪のジャイロ効果が十分でなく、また、寸法精度がばらつくことや路面状況の影響を受けやすいことから静的安定性(直進性能)にかかわるキャスタ効果も十分ではなかった。
また、このような機械的な自律安定性を確保するために操舵軸を回転自由に支持すると、前輪舵角に直接影響を与えるような外乱、例えば走行面の小石のような小突起によって前輪がぶれる場合等には安定した走行状態が困難になるという問題があった。
本発明者は、以上のような問題点を解決するために、リモコン二輪車の制御装置について種々研究を重ねた結果、上述した自律安定性を電気的制御で補助、あるいは置き換えた上で、模型本体のロール角を制御量とすることにより安定した姿勢制御が行なえることを知得して、本発明を完成させるに至ったものである。
すなわち、本発明の目的は、ロール軸まわりに操縦の自由度のあるリモコン二輪車において動的安定性にかかわるジャイロ効果だけでなく、とくに直進性を向上させるために静的安定性にかかわるキャスタ効果も電気的制御で補助、あるいは置き換えることにより操縦者の操縦操作を容易にすることができ、しかも低速から高速までの広い速度域で模型本体等のリモコン二輪車の姿勢を安定させることができる、ラジコン模型等のリモコン走行体のロール角制御装置を提供することにある。
【発明の開示】
前記目的を達成するため、本発明に係るリモコン二輪車のロール角制御装置は、
車体本体と、この車体本体の前部に所定のキャスタ角で支持された操舵軸と、前輪を支持するとともに前記操舵軸を中心として左右に回動するフロントフォークと、前記操舵軸または前記フロントフォークに左右何れの方向の回転トルクをも付加し得る操舵用アクチュエータと、少なくとも中立点を境にして前記前輪の舵角が左右の何れに切れているかを検出する舵角検出手段と、前記車体本体の後部側に設けられ原動機により回転駆動される後輪と、前記車体本体に搭載されたリモコン受信機とを備えたリモコン二輪車におけるロール角制御装置であって、
前記車体本体のロール角を検出するロール角検出手段と、
このロール角検出手段から検出されたロール角検出値と前記リモコン受信機からのロール角目標値とに基づき前記操舵用アクチュエータに対する操作量を出力して前記ロール角検出値を前記ロール角目標値に近づけるように制御するロール角制御手段と、
前記リモコン受信機が受信したロール角目標値が 0 °か否かを判定する目標値判定手段と、
前記舵角検出手段によって検出した舵角が右切れ方向の場合には、前記操舵用アクチュエータを介して前記操舵軸または前記フロントフォークに右回転トルクを付加するような信号を生成し、また前記舵角検出手段によって検出した舵角が左切れ方向の場合には、前記操舵用アクチュエータを介して前記操舵軸または前記フロントフォークに左回転トルクを付加するような信号を生成するキャスタ効果制御手段とを備えるとともに、
少なくとも前記目標値判定手段がロール角目標値は 0 °と判定しているときに、前記キャスタ効果制御手段からの信号が前記操舵用アクチュエータに対して出力される操作量に加算されるように構成したことを特徴とするものである。
なお、本明細書において、
「リモコン二輪車」とは模型の二輪車に限定されるものではなく、ロール角や舵角を電気的に制御可能に構成されているものであれば人間が実際に乗車可能な二輪車をも含むものである。
また、「ロール角」とは、図4に符号θrで示す、重力方向の鉛直線と模型本体(車体2)の縦方向の中心線とがなす角度のことをいう。また、「ロール軸回りの回転角速度」とは、模型本体(車体2)のロール方向への倒れ角速度のことをいう。
また、「舵角」とは、模型本体(車体2)が直進状態のときの前輪の向きを0°として、平面視時計回り方向を正の舵角(右切れ方向)として、反時計回り方向を負の舵角(左切れ方向)とする。
【発明を実施するための最良の形態】
ラジコン模型二輪車の全体側面図
以下、本発明の実施形態に係るラジコン模型のロール角制御装置を、この制御装置を備えたラジコン模型二輪車とともに説明する。
図1における符号1は、この実施形態に係るラジコン模型二輪車を全体的に示している。ラジコン模型二輪車1は、走行体としての車体2(模型本体)と、この車体2に搭載されたラジコン受信機3と、車体2の前部に所定のキャスタ角で後傾して回動自在に支持された操舵軸4と、この操舵軸4の下方に連設され操舵軸4を中心として左右に回動するフロントフォーク5と、このフロントフォーク5の下端部に回転自在に支持された前輪6と、車体2の後部にリヤアーム7を介して回転自在に支持された後輪8と、この後輪8をギヤボックス(不図示),駆動側スプロケット9,駆動チェーン10,及び被駆動側スプロケット11を介して回転駆動する走行用モータ12(原動機)とを備えている。
また、符号13は車体2に搭載された操舵用モータ(操舵用アクチュエータ)を示している。操舵用モータ13のモータ軸にはピニオンギヤ14が固設されるとともに、このピニオンギヤ14と噛み合う扇形の減速ギヤ15が、支持軸16を介して水平軸心回りに回動自在に車体2に枢支されている。減速ギヤ15にはアーム部17が一体形成される一方、操舵軸4の上端部には板状のハンドルアーム18が固着され、このハンドルアーム18と前記アーム部17とが図3で示すボールリンク19を介して連結されている。
以上のような各部材により、操舵用モータ13が正逆方向に回転すると、アーム部17が図1に矢印イで示す方向に揺動し、これに伴いハンドルアーム18の先端部が図2に矢印ロで示す方向に揺動して、操舵軸4,フロントフォーク5,及び前輪6を操舵軸4の軸心回りに左右に回動させる前輪操舵部20(操舵部)が構成されている。
また、モータ軸のピニオンギヤ14と減速ギヤ15とのギヤ比は、操舵軸4を回動するのに必要なトルクが得られるようなギヤ比に設定されている。
これにより、操舵用モータ13から前記減速ギヤ15,ボールリンク19,ハンドルアーム18等を介して操舵軸4に正逆方向の回転トルクを印加可能な構成となっている。
図1の符号21は、車体2のロール角を制御するロール角制御装置を示している。このロール角制御装置21は、車体2のロール軸回りの回転角速度を検出するための角速度センサ22(この実施形態では振動ジャイロが用いられている)と、後述する直流アンプ,マイクロコンピュータ,及び操舵用アンプ等(図1では図示省略)とを備えている。また、図1の符号23は操縦者が操作するラジコン送信機(不図示)からの操縦信号を受信するためにラジコン受信機3に付設された受信アンテナを、24はラジコン受信機3からの信号に基づき走行用モータ12へ駆動電流を出力する走行用アンプを、25は電源として車体2に搭載された電池を、それぞれ示している。さらに、図4の符号Gはラジコン模型二輪車1が走行する地面(路面)を示している。なお、この実施形態ではラジコン送信機として、速度調節用とロール角調節用との、2つの操作スティックを備えた2チャンネルの送信機が用いられる。なお、角速度センサ22としては、前記した振動ジャイロ以外に、例えば光ファイバジャイロ、機械式ジャイロ、ガスレートジャイロ等を用いることも考えられる。
符号50は舵角センサであり、例えば回転型のポテンショメータで構成されており、その回転軸は、前記操舵軸4もしくは減速ギア15に対して、同軸もしくはギア等の回転量伝達機構を介して取り付けられている。
制御関係のハードウエアの説明
次いで、図5を参照しつつ、ラジコン模型二輪車1の走行制御(速度制御及びロール角制御)に係るハードウェア構成を説明する。
ラジコン受信機3は、図外のラジコン送信機からの操縦信号を受信し、この受信した信号に応じ、速度目標値を走行用アンプ24へ、ロール角目標値をロール角制御装置21へ、それぞれPWM(パルス幅変調)信号26,27として出力するように構成されている。
そして、走行用アンプ24は、ラジコン受信機3からの速度目標値に応じた電流を走行用モータ12へ出力し、この出力に応じて走行用モータ12が後輪8を回転駆動し、車体2を速度目標値に応じた速度で走行させるようになっている。
一方、ロール角制御装置21は、前記角速度センサ22と、この角速度センサ22の出力信号を増幅する直流アンプ28と、前記舵角センサ50と前記直流アンプ28及びラジコン受信機3からの入力信号に基づき所定の演算処理を行なうマイクロコンピュータ29と、このマイクロコンピュータ29の出力信号に応じて操舵用モータ13へ電流を出力する操舵用アンプ30とを備えている。
角速度センサ22の出力は電圧(アナログ値)であり、これが直流アンプ28で増幅された後、AD変換器等を含んだマイクロコンピュータ29へ入力される。
前記舵角センサ50を構成するポテンショメータの入力端子には所定の安定した定電圧が印加され、ポテンショメータの出力端子から前記回転軸の回転量に応じた電圧が、舵角に対応した電圧信号として得られるように構成されている。このようにして得られる電圧信号(アナログ値)は、AD変換器等を含んだ前記マイクロコンピュータ29へ入力される。
マイクロコンピュータ29は、CPU以外に、ROMやRAM等のメモリ、入出力ポート、タイマ、AD(アナログ−デジタル)変換器、DA変換器の一種であるPWM出力部等を1つのチップ上に集積したワンチップ・マイコンで構成されており、前記ROMには後述する図7のフローチャートに示される処理手順(アルゴリズム)を当該マイクロコンピュータ29で実行するためのプログラムが予め記憶されている。そして、前記舵角センサ50の出力と、直流アンプ28を経て入力される角速度センサ22の出力と、ラジコン受信機3からPWM信号27として入力されるロール角目標値とに基づいて生成した制御信号を前記PWM出力部から操舵用アンプ30へ出力するようになっている。
ブロック線図の説明
図6は、ロール角制御装置21によるラジコン模型二輪車1のロール角制御動作の概略を説明するブロック線図であって、図中、符号31,32,52は加え合せ点を、33,54は引出し点を、A1,A2,A3は比例定数を、それぞれ示している。また、符号34は角速度センサ22の出力から得られた角速度ω(検出値)を積分して車体2のロール角θiを算出する積分手段を示している。積分手段34の積分動作はマイクロコンピュータ29で所定のプログラムを実行することにより実現され、この積分手段34及び角速度センサ22により本発明にいうロール角検出手段35が構成されている。
51はキャスタ効果制御手段であり、舵角センサ50にて検出した舵角が右切れ方向の場合には右回転トルクを付加し、舵角が左切れ方向の場合には左回転トルクを付加するようなキャスタ効果加算量d2を加え合わせ点32に出力する。
なお、外乱▲1▼は、小石や縦溝などのように前輪の動きに直接害を及ぼす要素である。なお、前輪のジャイロ効果やキャスタ効果による自律安定性は有益な外乱といえる。外乱▲2▼は、風などのように、制御量(ロール角)を直接乱す要素である。(注:▲▼で挟んだ数字は、図6に示した丸付き数字に対応している。)
また、車体→角速度センサ→積分手段→加え合わせ点31〜車体からなる制御ループ▲1▼を角度制御ループとし、車体→角速度センサ→加え合わせ点32〜車体からなる制御ループ▲2▼を角速度制御ループとし、引き出し点54→舵角センサ→微分手段→加え合わせ点52〜引き出し点54からなる制御ループ▲3▼を舵角速度制御ループとし、引き出し点54→舵角センサ→キャスタ効果制御手段→加え合わせ点32〜引き出し点54からなる制御ループ▲4▼を舵角制御ループとする。
この図6に基づいてロール角制御動作の概略を説明すると以下のようになる。なお、以下の説明では、前記舵角速度制御ループ▲3▼と前記舵角制御ループ▲4▼とをはずした基本構成の説明である。
先ず、ラジコン受信機3により入力されたロール角目標値から前記ロール角検出手段35で検出されたロール角θiを減算することにより、ロール角θi(検出値)と前記ロール角目標値との角度偏差37を得る。次いで、この角度偏差37に比例定数A1を乗じて得られた角速度目標値38から角速度ω(検出値)を減算して角速度偏差39を得る。そして、この角速度偏差39に比例定数A2×A3を乗じて得られた操作量40に基づいた電流を操舵用モータ13に出力する。これにより前輪操舵部20を介して前輪6が操舵され、それに応じて車体2がロールする。この際の車体2のロール軸回りの回転角速度を角速度センサ22で検出し、角速度ω(検出値)を加え合せ点32へフィードバックするとともに、角速度ωを積分して得たロール角θi(検出値)を加え合せ点31へフィードバックする。
このように、ロール角制御は、前記角度制御ループ▲1▼と前記角速度制御ループ▲2▼との、2つの閉ループを有するフィードバック制御だけでも原理的には可能である。
なお、「ロール角目標値」→定数→操舵用モータ→前輪へ至る伝達経路では、例えば「右へ30°傾け」というロール角目標値が与えられたときには、操舵用モータ→前輪へ至る経路は必ず「左」を向くように、配線・ギア・リンクが構成されている。このような構成の結果、右方向へあたかも「足をすくわれる」かのような挙動を開始するのである。このようにして、二輪車固有の「逆切り」構成となっている。
さらに、図6において、
舵角速度制御ループ▲3▼は、舵角センサ50を流用して微分手段53を通じて舵角速度を検出し、これが舵角速度目標値と一致するように操作量を調節するためのマイナーループである。
これは、外乱▲1▼に対して抵抗力を持たせ(自律安定性の影響も減る)、また、舵角速度目標値に応じて早く操舵部(アクチュエータ→前輪)がまわり始め、その回転速度が舵角速度目標値にできるだけ一致するように制御するためのものである。これにより外側の制御ループ▲1▼、▲2▼も改善されてロール角の制御が早く正確になり、運動性能が向上するのである。
前記舵角速度制御ループ▲3▼の働きによってフロントフォークの自由な回動、すなわち自律安定性をも妨げる場合があるが、後述するキャスタ効果制御手段51が代わりに同様の機能を果たすので、外部からは回動自由でなくてもよい。このため、舵角速度制御ループ▲3▼を付加できるようになって以上のような間接的な利点が得られるのである。
電気的直進性補助システム
構成の説明
次に、車体の中立状態における直進性を改善するために設けた舵角センサ50とキャスタ効果制御手段51を用いた舵角制御ループ▲4▼による直進性補助機能を説明する。
キャスタ効果制御手段51は舵角センサ50にて得られた舵角に基づいたキャスタ効果加算量d2を算出して加え合わせ点32へ出力する。
符号53は微分手段であり、前記舵角の微分値である舵角速度d1を加え合わせ点52へ出力する。
以下に、舵角センサの詳細例を説明する。
の(a)、(b)は、前記舵角センサ50を用いた直進性補助機能の制御特性例を示したものであり、横軸に「舵角」をとり、縦軸に「右回転方向に回転トルクが働く加算操作量(加算電流)」をとったものである。なお、図の(a)、(b)に示した制御特性は、舵角センサ50からキャスタ効果制御手段51までを通じた入出力特性であり、図の(a)は、舵角センサ50が比例的な出力特性であって、さらにキャスタ効果制御手段51が比例要素である場合の制御特性を示している。
即ち、舵角が正(右切れ)の場合には右回転トルクが働く加算操作量が出力され、舵角が負(左切れ)の場合には回転トルクが働く加算操作量が出力されるように制御されるのである。
舵角センサとしてポテンショメータを用いると、キャスタ効果制御手段51が比例要素である場合には、図の(a)のように舵角の変化と加算操作量とが直線的に相関するが、キャスタ効果制御手段51を非比例要素として、図の(b)において実線や破線で示したように非直線的な相関関係が得られる制御特性としてもよい。キャスタ効果制御手段を直進中だけ働かせる場合は中立状態の近傍のみが関係し、それ以外の舵角が大きい部分は無関係となるので、図の(b)に示したような制御特性でも構わないのである。
の(a)、(b)に示したような制御特性に限らず種々の制御特性を、テーブルを参照したり種々の関数を用ることによって実現し、付加的な効果を得ることもできる。例えば、キャスタ効果制御手段51に積分要素を加えることによって定常偏差を無くせるという効果も得られる。
また、前記舵角センサ50は、中立状態から左右へのずれを検出できる構成であればよい。例えば、支持軸16を減速ギア15の回動と連動するように構成するとともに、前記支持軸16に舵角センサ50を構成するポテンショメータの回転軸を連設する構成や、舵角センサ50の回転軸を、前記操舵軸4の上端等に直接もしくはギア等の回転量伝達機構を介して取り付ける構成や、操舵用モータ13のモータ軸に連設する構成や、ハンドルアーム18の変位を検出する構成等のように種々の構成が可能である。
また、前記舵角センサとしては、回転型の電気抵抗式ポテンショメータに代えて、ホール素子等の磁気センサと磁石片とを組み合わせた構成や、フォトトランジスタ等の光学センサと光学的スリットとを組み合わせた構成等のように種々の構成が可能であることは言うまでもない。また、取り付け方法によっては、回転型に代えて直線型の変位センサを使用することも可能である。
また、舵角センサとしては、舵角に応じたリニアな信号を出力する必要はなく、少なくとも中立点を境にして舵角が左右の何れに切れているかを検出できるものであれば直進性の補助が可能となる。この場合には種々の光学センサや磁気スイッチ等の2値センサを使用することが可能である。
例えば、図8に示したように、操舵軸と連動して回動する回動板60を設け、この回動板60の周縁に光を透過する透明部分61と透過しない不透明部分62とを設け、直進時における両部分の境界部分にフォトインタラプタ63を配置した構成を使用することができる。
このとき、キャスタ効果制御手段51が比例要素の場合には、図10に示したように、舵角が右切れの場合には所定の右回転トルクが付与され、左切れの場合には所定の左回転トルクが付与される。この場合も、キャスタ効果制御手段51に積分要素を加える場合もある。
作用の説明
外乱等によって操舵軸4が舵角0°の中立状態から左右何れかの方へ若干ずれると、操舵軸4の舵角を舵角センサ50によって検出し、舵角に応じた信号をキャスタ効果制御手段51へ出力する。キャスタ効果制御手段51は、前記舵角に応じたキャスタ効果加算量d2を算出して加え合わせ点32へ出力する。
そして、舵角に基づいたキャスタ効果加算量d2と加算して得られた操作量40が、操舵用モータ13へ出力される。
このようにして、操舵用モータ13は、操舵軸4を、前記ずれた方へさらに操舵することになる。このような操舵によって、舵角のずれを大きくして、充分なキャスタ効果が得られるので、車体は傾いた状態から立ち上がり操舵軸4は中立状態に復元するのである。
即ち、車体が、外乱等により例えば右に傾くと、ジャイロ効果と角速度制御ループ▲2▼の作用により、角速度ωを抑えるように前輪が右に切れ、ある程度傾いた状態でロール角θrは収まって旋回運動に入る。このとき、舵角は、一旦ロール角θr(慣性に起因する水平方向の加速度と、重力加速度とに基づいた角度)と車速に見合った角度で定常旋回状態になるが、キャスタ効果と、上述したキャスタ効果制御手段51を含んだ舵角制御ループ▲4▼の作用により右トルクが付加されて更に右へ切れる。
これによって、定常旋回状態が崩れて、車体は傾いた状態から立ち上がり中立状態に復元するのである。
このようにして、特に誤差補正動作を行っているときに、角度制御ループ▲1▼が実質的に停止しても、角速度制御ループ▲2▼と舵角制御ループ▲4▼とが協調して車体の直進状態を安定させる。
この状態では、舵角は平均的には中立であって直進しているから、水平方向の加速度は発生せず、重力加速度のみが作用した状態となっており、前後の車輪の2点だけで接地している二輪車においては、この重力加速度と平衡を保つために車体が直立していると判断できる。この状態を利用して、後述するような角速度センサ22から得られる角速度ωとロール角θiの誤差補正動作を実行することができるのである。
なお、前記舵角速度制御ループ▲3▼は、直接アクチュエータを働かせるものだから常に作動させる。前記角度制御ループ▲1▼は、直進中に0点調整するときは、積分手段34から出力されるロール角をリセットもしくは徐々にリセットするので、直進状態の保持にはあまり寄与できない。そこで舵角制御ループ▲4▼が直立・直進状態の保持に寄与する。ただし、そのためには、角速度制御ループ▲2▼も作動して動的安定性を保持しておく必要があるが、角速度の0点調整はゆっくり行われて動的安定性に必要な反応の速い成分はほぼ通常どおり出力されるので支障はない。
舵角制御ループ▲4▼はロール中は不要で、むしろ制御誤差を発生するので、例えば目標値判定手段で判断して直進中以外は働かなくしてもよい。
前述したロール角制御動作によって、本来、ロール角が0°の場合には直進することが保証されるべきものであるが、舵角センサを用いた制御によって、操舵軸4におけるキャスタ効果を電気的に制御できるので、車体の直進性を電気的な制御で補助することが可能になったのである。
このようにして、従来の技術では簡単には実現できなかった直進中、ロール中にそれぞれ適したセンサ・制御システムを使い分けることが可能になったので、相互の欠点を補うことができるようになり以下の種々の利点が派生した。
(1)舵角制御ループ▲4▼を直進中だけに働かせるときには、キャスタ効果制御手段の利得を上げたり、積分要素を加えたりして強力・正確に直進性を向上させることができる。
(2)逆に車体側の前輪まわりのアライメントはロール中に最適となるように設計することが許されるので、前輪回りの設計の自由度が増すという利点が得られる。
従来であれば、直進性の優れたアメリカンタイプのバイクは、運動性が劣り、運動性が優れたバイクは、直進性が劣るというように、直進性と運動性を機械的対応だけで両立させることが難しかったが、本発明によれば、それらの両立が高いレベルで可能となる。
(3)車体固有の機械的な自律安定性が不要になったので、舵角速度を舵角速度目標値に比例させるしくみも付加でき、小石等のように操舵部に直接働く外乱に対して強くなるとともに、車速・路面抵抗の変化により機械的キャスタ効果の強さが変ることによる影響もおさえられる。
また、操舵部の舵角速度目標値に対する反応が良くなるので運動性が向上する。
4 )機械的キャスタ効果のようにアライメントと重力の作用に頼らないので、重心位置が左右に少しずれても直進性は影響されない。なお、中立点の調節は、センサ位置やソフトウエア上で簡単に行える。
フローチャートの説明
次いで、図7のフローチャートに沿って、ロール角制御装置21の動作を詳細に説明する。
ラジコン送信機(不図示)及びラジコン受信機3に電源を投入する(又は電源リセットを行なう)と、先ずステップS1でデータ等の初期化が行なわれる。
ステップS2では、ラジコン送信機(この時点では各操作スティックが中立位置にある)から送信される信号を受信したラジコン受信機3が、ロール角0°を指示するロール角目標値をPWM信号27として出力するとともに、マイクロコンピュータ29が、前記出力されたPWM信号27のパルス幅(ロール角目標値が0°である場合のパルス幅:以下「中立パルス幅」という)を当該マイクロコンピュータ29内のタイマで読み取り、メモリに記憶する。
中立パルス幅がメモリに記憶された後、操縦者はラジコン送信機の各操作スティックを操作して、ラジコン模型二輪車1の操縦を開始する。同時に、角速度センサ22の出力が直流アンプ28を経由してマイクロコンピュータ29に入力され始める。マイクロコンピュータ29では、直流アンプ28からのアナログ入力を例えば1/500秒といった一定周期ごとにAD変換する。同様に、舵角センサ50の出力もAD変換する。
ステップS3では、直流アンプ28を経て入力された角速度センサ22の出力、および舵角センサ50の出力がAD変換済みであるか否かを判定する。そして、まだAD変換が済んでいなければステップS3に留まり、AD変換済みであればステップS4へ進む。
ステップS4では、車体2のロール軸回りの回転角速度ωを算出する。具体的には、直流アンプ28を経て入力された角速度センサ22出力のAD変換値から補正値(マイクロコンピュータ29内のメモリに記憶されている)を減じて得た値を角速度ω(検出値)とする。なお、ここでAD変換値から補正値を減算するのは、実際に車体2の角速度がゼロである場合でも、角速度センサ22の出力電圧はゼロではなくて、常にある程度の出力(オフセット)を有しており、このオフセット相当分を取り除く必要があるからである。
また、舵角センサ50出力のAD変換値を微分処理して舵角速度を求める。
さらに、算出(検出)された角速度ωを積分して、車体2のロール角θiを算出する(積分動作)。また、このステップS5で得られたロール角θi(積分手段34の積分値)を、マイクロコンピュータ29内のメモリに記憶する。
続くステップS5では、その時点でラジコン受信機3から出力されているロール角目標値に係るPWM信号27のパルス幅を読み取り、これが前記ステップS2で記憶した中立パルス幅と等しいか否か(すなわち、ラジコン受信機3が受信しているロール角目標値が0°であるか否か)を判定する(目標値判定動作)。
そして、パルス幅が中立パルス幅と相違していると判定された場合はステップS6へ進み、中立パルス幅と等しいと判定された場合はステップS7へ進む。
なお、本明細書において、パルス幅が中立パルス幅と等しいとは、パルス幅が、中立パルス幅より僅かに狭い所定のパルス幅以上であって、中立パルス幅より僅かに広い所定のパルス幅以下の所定の範囲に含まれていることを示し、パルス幅が中立パルス幅と等しくない、もしくは相違しているとは、パルス幅が前記所定の範囲に含まれていないことを示している。同様に、ロール角目標値が0°であるとは、ロール角目標値が0°を含む所定の範囲に含まれていることを示している。
ロール操作でステップS6へ分岐すると、キャスタ効果加算量d2を0にして(キャスタ効果制御手段の働きを止めて)ステップS9へ進む。
ステップS9では、前記ステップS4で得たロール角θiとラジコン受信機3からのロール角目標値との偏差に基づき操舵用モータ13に対する操作量を算出する。
続くステップS10では、前記ステップS9で算出された操作量に対応した信号を操舵用アンプ30へ出力して、ステップS3へ戻る。
誤差補正の説明
ところで、角速度センサ22が、その出力にドリフト誤差を生じず、オフセットが常に一定であるという理想的な出力特性を有するものであれば、角速度センサ22の出力に基づいて検出(算出)されるロール角θiは実際の車体2のロール角θr(図4参照)とほぼ等しくなるので、ロール角θi(検出値)を実際のロール角θrと見なした閉ループ制御が問題なく行なえる。しかしながら、一般に角速度センサは温度変化等に伴うドリフト誤差を有しており、特に、この実施形態で角速度センサ22として用いている振動ジャイロではドリフトによってオフセットが大きく変化するので、前記ステップS4における補正値が一定であると、同ステップで得られる角速度ω(検出値)が次第に誤差を含むようになる。また、その角速度ωを積分するステップS5で得られるロール角θi(検出値)は、角速度ωに含まれている誤差が積算される結果、より大きな誤差を含むものとなる。こうしてロール角θiが実際のロール角θrから次第に離れてゆき、やがて操縦不能に陥るおそれがある。
そのため、この制御では、目標値判定手段がロール角目標値が 0 °と判定しているとき にはラジコン模型二輪車1が平均的には直進(直立)走行中であると推定されるので、この状態を基準としステップS8に示す補正値及びロール角θ i 誤差補正動作を実行することにより、前記ドリフト誤差に起因する弊害が生じることを防止している。
さらに、図7では図示を省略したが、ステップS8でソフトウェア上での誤差補正動作が行なわれるのと同時に、図5に符号43で示した、マイクロコンピュータ29から直流アンプ28へのドリフト・オフセット補正出力が、ハードウェア上で行なわれる。この動作は、マイクロコンピュータ29が有するアナログ出力機能と、直流アンプ28が有するゼロ点補正機能とにより実現されるもので、直流アンプ28の出力に含まれるバイアス成分を低減して、マイクロコンピュータ29側の入力飽和を防ぐ目的で行なわれる、精度の粗い補正動作である。
ステップS8で、前記のようにして補正値及びロール角θiを変更した後は、ステップS9に進み、前記ステップS5からステップS6を経由してステップS9へ進んだ場合と同様に操作量の算出を行ない、さらにステップS10を経てステップS3へ戻る。
この実施形態のラジコン模型二輪車1に搭載されたロール角制御装置21は、以上のように、前輪6の舵角ではなく車体2のロール角を制御量とし、これを目標値に近付ける制御を行なうものであるため、前記した比例定数A1,A2,A3に適切な値が設定されてさえいれば、ラジコン模型二輪車1を安定的に制御することが可能である。
すなわち、例えば直進走行状態にあるラジコン模型二輪車1を左旋回させる場合には、操縦者がラジコン送信機のロール角調節用の操作スティックを所望の角度だけ左に倒せば、操舵用モータ13から操舵軸4に、先ず前輪6を右へ向けて車体2を左へ倒す向きのトルクが印加され、また、車体2がロール角目標値を超えて左へ倒れようとしたときには前輪6を左へ向けて車体2が倒れる動きを止める向きのトルクが印加され、最終的には車体2のロール角θiがロール角目標値と一致した角度に収束するように制御される。これにより、車体2は図4に示したようにロール角θr(≒θi)で左(正面側から見れば右)にロールし、このロール角θrと車速とから自動的に決まる旋回半径で左に旋回走行することになる。
一方、例えば前記した左旋回状態からラジコン送信機のロール角調節用の操作スティックを中立位置に戻した場合には、ロール角目標値が0°となって車体2のロール角θiとの間に角度偏差が生じる。このため、操舵用モータ13から操舵軸4に、先ず前輪6を左へ向けて車体2を起こす向きのトルクが印加され、また、車体2が直立状態を超えて右へ倒れようとしたときには前輪6を右へ向けて車体2が倒れる動きを止める向きのトルクが印加され、最終的には車体2のロール角がほぼ0°の直進走行状態に収束するように制御される。
また、この実施形態のロール角制御装置21は角度制御ループ▲1▼に加えて角速度制御ループ▲2▼も備えており、この角速度制御ループ▲2▼によりフィードバックされた角速度ω(検出値)を用いて算出した角速度偏差に応じた操作量を操舵用モータ13へ出力するので、角度偏差の大きさに応じて車体2のロール角速度ωを適切に増減させる動的安定性が得られる。そして、この作用と、前輪6が有するジャイロ効果とにより、車体2のロール軸回りの発振(ハンチング)が防止される。
なお、車速域によって発振する場合は、車速を検知・勘案して姿勢制御してもよい。
さらに、ロール角目標値が0°の状態では、車体2は舵角制御ループ▲4▼の働きにより原則としてロール角θrがほぼ0°の直立状態を保とうとするので、これを利用して前記図7のステップS8で説明した誤差補正動作が自動的に実行される。これにより、ラジコン模型二輪車1を停止させることなく、走行させながら角速度センサ22のドリフト誤差に起因する弊害を防止できる。そのため、ラジコン模型二輪車1を長時間連続して走行させることが可能になる。
その他の態様
また、前記では操舵用アクチュエータとして操舵用モータ13を用いたが、モータ以外の操舵用アクチュエータを採用しても、もちろん構わない。
さらに、操舵用アクチュエータの力を操舵軸4又はフロントフォーク5に伝達する機構も前記したものに限られず、フロントフォーク5の回動を妨げないという条件さえ満たしていれば、どのような機構を採用しても構わない。
また、リモコン操作を行う手段としては、電波を用いたラジコン操作に限るものではない。
なお、本発明のロール角制御装置は、模型の二輪車に限らず実際に乗車可能な二輪車にも採用することができる。この場合、ロール角制御装置へ入力される信号を、ラジコン受信機を介することなく直接入力するように構成する。このような構成によって、ロール角を精度よく認識できない人間の代わりに、ロール角制御装置に二輪車を制御させることができるので、操縦性と安全性が向上する。
また、ロール角制御装置へ入力される信号は、PWM信号だけに限られるものではなく、PCM信号等の種々のデジタル信号や、アナログ電圧信号等のアナログ信号を採用することも可能である。
特徴
次に、本発明によるロール角制御装置の特徴をまとめる。
そもそも、リモコン二輪車の制御のためには、まず、直進中の二輪車の姿勢制御のために、また、ロールするときのロール角の基準を決めるために傾斜計(重力センサ)のように重力加速度の方向を認識する機能が求められるが、重錘や加速度計を利用した傾斜計では、水平方向の加速度が働くと誤差を生じるし、これを排除しようといろいろ対策すると応答性(周波数特性)が悪くなるので、走行中の二輪車のような動的な制御には適さない。
一方、ロール中の二輪車の姿勢制御のためには、車体の姿勢の変化を高速で認識するために、各種ジャイロセンサのような反応が速い(周波数特性が良い)角度・角速度検出機能が求められるが、ジャイロは温度変化によるドリフト誤差や地球の自転等による誤差等を免れないので、誤差を補正する必要があり、誤差を補正するためには、基準となる状態、例えば車体が直立している状態を提供する手段が必要となる。
そこで、本発明では、簡単な舵角検出手段とジャイロを用いたロール角制御手段を用いて、「直進」の操作をしたときにはロール角制御装置がこれを自動的に認識し、車体の直進性を電気的に補助する制御モードへ移行して、直進中には車体が直立している状態を従来より高い精度で維持することを可能にしたのである。
本発明のロール角制御手段によって維持される直進状態では、舵角は平均的には中立であって直進しているから、水平方向の加速度は発生せず、重力加速度のみが作用した状態となっており、前後の車輪の2点だけで接地している二輪車においては、この重力加速度と平衡を保つために車体が直立している状態を維持していると判断できる。
即ち、センサ単体によらず、精度の高い姿勢制御によって直立状態を実現でき、また、ロール中は周波数特性の良いジャイロで直立状態からの姿勢変化を認識できるということは、実質的に、動的に使用可能な周波数特性のよい傾斜認識手段が実現できたことにほかならない。本発明では、二輪車固有の特性を利用しつつ、また、2種類のセンサで特徴づけられる二重の制御システムを合理的に協調動作させることにより、この実質的に周波数特性のよい傾斜認識手段によってロール角制御を行っていることが特徴になっている。
また、直進中の制御モードとロール中の制御モードにおいて、角速度制御ループ等の部分的な制御ループ等を共用しているので、相互に完全に独立した制御システムと異なり、全体的な構成にムダが無く合理的であるとともに、操縦者が意識しない程スムーズに相互のモードへ移行できるようになって、極めて優れた操縦性が得られるのである。
【産業上の利用可能性】
以上説明したように、本発明に係るロール角制御装置によれば、リモコン二輪車のロール角を検出し、このロール角の検出値をロール角目標値に近付ける制御が行なわれるので、リモコン操縦者の操縦操作を容易にすることができ、しかも低速から高速までの広い速度域でリモコン二輪車の姿勢を安定させることが可能となる。
また、少なくとも中立点を境にして舵角が左右の何れに切れているかを検出して、舵角が右切れ方向の場合には右回転トルクを付加し、左切れ方向の場合には左回転トルクを付加するように電気的なキャスタ効果制御手段を構成したので、リモコン二輪車の直進性を電気的に補助することができ、安定した走行が可能となる。
【図面の簡単な説明】
図1は、本発明の一実施形態に係るロール角制御装置を備えたラジコン模型二輪車の側面図である。
図2は、主に前輪操舵部を示すラジコン模型二輪車の要部拡大概略平面図である。
図3は、ボールリンクの構造を示す要部斜視図である。
図4は、旋回走行状態を示すラジコン模型二輪車の正面図である。
図5は、ラジコン模型二輪車の走行制御に係るハードウェアの概略構成図である。
図6は、ロール角制御装置による制御動作の概略を説明するブロック線図である。
図7は、ロール角制御装置の動作を示すフローチャート図である。
図8は、2値センサの構成例の平面図である。
図9は、舵角センサの特性図である。
図10は、2値センサの特性図である。

Claims (1)

  1. 車体本体と、この車体本体の前部に所定のキャスタ角で支持された操舵軸と、前輪を支持するとともに前記操舵軸を中心として左右に回動するフロントフォークと、前記操舵軸または前記フロントフォークに左右何れの方向の回転トルクをも付加し得る操舵用アクチュエータと、少なくとも中立点を境にして前記前輪の舵角が左右の何れに切れているかを検出する舵角検出手段と、前記車体本体の後部側に設けられ原動機により回転駆動される後輪と、前記車体本体に搭載されたリモコン受信機とを備えたリモコン二輪車におけるロール角制御装置であって、
    前記車体本体のロール角を検出するロール角検出手段と、
    このロール角検出手段から検出されたロール角検出値と前記リモコン受信機からのロール角目標値とに基づき前記操舵用アクチュエータに対する操作量を出力して前記ロール角検出値を前記ロール角目標値に近づけるように制御するロール角制御手段と、
    前記リモコン受信機が受信したロール角目標値が 0 °か否かを判定する目標値判定手段と、
    前記舵角検出手段によって検出した舵角が右切れ方向の場合には、前記操舵用アクチュエータを介して前記操舵軸または前記フロントフォークに右回転トルクを付加するような信号を生成し、また前記舵角検出手段によって検出した舵角が左切れ方向の場合には、前記操舵用アクチュエータを介して前記操舵軸または前記フロントフォークに左回転トルクを付加するような信号を生成するキャスタ効果制御手段とを備えるとともに、
    少なくとも前記目標値判定手段がロール角目標値は 0 °と判定しているときに、前記キャスタ効果制御手段からの信号が前記操舵用アクチュエータに対して出力される操作量に加算されるように構成したことを特徴とするリモコン二輪車のロール角制御装置。
JP2004560593A 2002-12-18 2003-06-16 リモコン二輪車のロール角制御装置 Expired - Fee Related JP4121504B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP02/13267 2002-12-18
PCT/JP2002/013267 WO2004054677A1 (ja) 2002-12-18 2002-12-18 リモコン走行体のロール角制御装置、及びリモコン二輪車のロール角制御装置
PCT/JP2003/007644 WO2004054678A1 (ja) 2002-12-18 2003-06-16 リモコン二輪車のロール角制御装置

Publications (2)

Publication Number Publication Date
JPWO2004054678A1 JPWO2004054678A1 (ja) 2006-04-20
JP4121504B2 true JP4121504B2 (ja) 2008-07-23

Family

ID=32587973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004560593A Expired - Fee Related JP4121504B2 (ja) 2002-12-18 2003-06-16 リモコン二輪車のロール角制御装置

Country Status (5)

Country Link
US (1) US7610131B2 (ja)
JP (1) JP4121504B2 (ja)
AU (2) AU2002354225A1 (ja)
GB (1) GB2412331B (ja)
WO (2) WO2004054677A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002354225A1 (en) * 2002-12-18 2004-07-09 Satoru Kojima Roll angle controller for remote-controlled traveling body, and roll angle controller for remote-controlled motor cycle
JP4410051B2 (ja) * 2004-07-22 2010-02-03 本田技研工業株式会社 角速度計測装置および脚式移動ロボット
JP4441909B2 (ja) * 2004-10-25 2010-03-31 株式会社デンソー 車両制御装置
KR100651549B1 (ko) * 2005-05-13 2007-02-28 삼성전자주식회사 이동체의 속력 측정 장치 및 방법
JP2007004705A (ja) * 2005-06-27 2007-01-11 Mitsumi Electric Co Ltd ジョイスティック装置
KR100958531B1 (ko) * 2005-12-01 2010-05-19 가부시키가이샤 무라타 세이사쿠쇼 전도방지 제어장치
JP4743212B2 (ja) * 2006-01-27 2011-08-10 株式会社村田製作所 二輪車の転倒防止制御装置
JP2007238057A (ja) * 2006-03-13 2007-09-20 Kubota Corp 作業車の姿勢制御装置
CN101405171B (zh) * 2006-03-21 2013-03-27 皇家飞利浦电子股份有限公司 用于确定摩托车的侧倾角的器械和方法
JP5078306B2 (ja) * 2006-09-21 2012-11-21 本田技研工業株式会社 自動二輪車の変速制御装置
DE102006061929A1 (de) * 2006-12-20 2008-06-26 Takata-Petri Ag Optischer Lenkwinkelsensor zur Bestimmung des Absolutwertes des Lenkwinkels
JP2008185187A (ja) * 2007-01-31 2008-08-14 Yamaha Motor Co Ltd 変速装置、それを備えた車両、並びに変速機構の制御装置およびその制御方法
US8019514B2 (en) * 2007-02-28 2011-09-13 Caterpillar Inc. Automated rollover prevention system
WO2008150448A1 (en) * 2007-05-31 2008-12-11 Twill Tech., Inc. Dynamically balanced in-line wheel vehicle
JP4697254B2 (ja) * 2008-04-02 2011-06-08 トヨタ自動車株式会社 車両挙動制御装置
US8565979B2 (en) * 2008-08-28 2013-10-22 Technion Research & Development Foundation Limited System and method for stabilizing a single-track vehicle
EP2263510B1 (en) * 2009-06-19 2017-09-13 Samsung Electronics Co., Ltd. Robot cleaner and method of its travel control
US9586471B2 (en) * 2013-04-26 2017-03-07 Carla R. Gillett Robotic omniwheel
TW201125626A (en) * 2010-01-22 2011-08-01 Anderson Model Co Ltd Remotely controlled two-wheel vehicle
US10120391B2 (en) * 2010-05-06 2018-11-06 Dong Li Self-balancing enclosed motorcycle
US8615356B2 (en) * 2010-09-22 2013-12-24 International Business Machines Corporation Electromechanical stabilization of in-line wheeled vehicles
DE202010015911U1 (de) * 2010-11-26 2011-02-10 Stadlbauer Marketing + Vertrieb Gmbh Aktor zum Umsetzen eines Steuersignals in eine mechanische Bewegung
DE102011082413A1 (de) * 2011-09-09 2013-03-14 Robert Bosch Gmbh Lenkunterstützungssystem für ein Zweirad sowie Steuerung für ein solches Lenkunterstützungssystem
US20130309939A1 (en) * 2012-05-18 2013-11-21 Randy Cheng Remote control with gyro-balancer control
JP5840108B2 (ja) * 2012-11-01 2016-01-06 本田技研工業株式会社 移動体
JP5892922B2 (ja) * 2012-12-27 2016-03-23 本田技研工業株式会社 移動体
US9320977B2 (en) 2013-10-02 2016-04-26 Horizon Hobby, LLC Dynamic stabilization system and methods for a RC vehicle
US9360868B2 (en) 2013-10-28 2016-06-07 Traxxas Lp Ground vehicle-like control for remote control aircraft
US9283825B2 (en) 2014-02-25 2016-03-15 Isam Mousa System, method, and apparatus to prevent commercial vehicle rollover
US20150245593A1 (en) * 2014-03-03 2015-09-03 Jason E. O'mara Autonomous motion device, system, and method
WO2016168859A1 (en) 2015-04-17 2016-10-20 Traxxas Lp Steering stabilizing system with automatic parameter download for a model vehicle
CN107690350B (zh) 2015-04-17 2020-11-06 特拉克赛卡斯公司 用于模型车辆的转向稳定装置
US10059446B2 (en) 2016-06-06 2018-08-28 Traxxas Lp Ground vehicle-like control for remote control aircraft
US10179607B2 (en) * 2016-08-03 2019-01-15 Aptiv Technologies Limited Lane keeping system for autonomous vehicle in wind conditions using vehicle roll
KR101961910B1 (ko) * 2017-08-23 2019-03-25 박경기 각도조절기능을 갖는 자전거 라이트용 틸팅장치
GB2568912B (en) * 2017-11-30 2022-09-21 Moss Nicholas Remote control vehicle
EP3850306A4 (en) * 2018-09-13 2022-09-21 Snap-On Incorporated AUTOMOTIVE ALIGNMENT DEVICE WITH ENHANCED ACCURACY AND CONTINUOUS POSITIONING USING DRIVE DIRECTION CALCULATION
US11656081B2 (en) * 2019-10-18 2023-05-23 Anello Photonics, Inc. Integrated photonics optical gyroscopes optimized for autonomous terrestrial and aerial vehicles
CN213192496U (zh) * 2020-06-29 2021-05-14 奥飞娱乐股份有限公司 漂移摩托车

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224078Y2 (ja) * 1972-10-13 1977-06-01
GB1420630A (en) 1972-10-20 1976-01-07 Atomic Energy Authority Uk Production of nuclear fuel
US4267663A (en) * 1979-10-25 1981-05-19 Sin Nagahara Radio-controlled steering device for toy motorcycles
US4290228A (en) * 1980-02-13 1981-09-22 Adolph E. Goldfarb Toy vehicles with automatic banking
US4342175A (en) * 1980-07-21 1982-08-03 Entex Industries, Inc. Radio controlled motorcycle
JPS5876380A (ja) * 1981-10-29 1983-05-09 本田技研工業株式会社 車両の前輪懸架装置
JPH0539749Y2 (ja) * 1988-02-12 1993-10-08
JPH0649346Y2 (ja) * 1989-02-01 1994-12-14 株式会社グリーン 無線操縦式二輪車玩具
JPH04133811A (ja) * 1990-09-27 1992-05-07 Fuji Heavy Ind Ltd 自動車用アクテイブサスペンションの制御方法
JP2577593Y2 (ja) 1991-06-25 1998-07-30 田屋エンジニアリング株式会社 無人自走2輪車
JPH0763548B2 (ja) * 1992-12-25 1995-07-12 サコム株式会社 ホビー用ラジコンヘリコプタの姿勢制御装置
JP2990405B2 (ja) * 1994-01-31 1999-12-13 本田技研工業株式会社 自動二輪車
JPH0838746A (ja) * 1994-07-27 1996-02-13 Taiyo Kogyo Kk 無線操縦二輪車玩具の方向制御装置
US5742925A (en) * 1995-05-08 1998-04-21 Pioneer Electronic Corporation Automotive navigation system
US5820439A (en) * 1997-01-28 1998-10-13 Shoot The Moon Products, Inc. Gyro stabilized remote controlled toy motorcycle
JPH11281672A (ja) * 1998-03-31 1999-10-15 Toyota Motor Corp 車両用加速度センサの出力補正装置
US6237710B1 (en) * 1998-10-26 2001-05-29 Yamaha Hatsudoki Kabushiki Kaisha Locking arrangement for motorcycle
US6438463B1 (en) * 1999-09-06 2002-08-20 Honda Giken Kogyo Kabushiki Kaisha Process for determining lateral overturning of vehicle, and system for detecting inclination angle of vehicle body
JP4354607B2 (ja) * 2000-03-29 2009-10-28 株式会社データ・テック ドリフト除去装置及びドリフト除去方法、移動体の挙動検出センサ。
US7006901B2 (en) * 2002-11-18 2006-02-28 Wang Everett X Computerized automated dynamic control system for single-track vehicles
JP3999110B2 (ja) * 2002-11-22 2007-10-31 大陽工業株式会社 無線操縦二輪車玩具
AU2002354225A1 (en) * 2002-12-18 2004-07-09 Satoru Kojima Roll angle controller for remote-controlled traveling body, and roll angle controller for remote-controlled motor cycle
WO2004056436A1 (ja) * 2002-12-20 2004-07-08 Nikko Co., Ltd. 無線操縦式二輪車玩具
EP1718517A4 (en) * 2004-02-07 2013-02-27 Robert Bryant ON-LINE TWO-WHEELED VEHICLE WITH TORQUE GENERATOR
EP1623856B1 (en) * 2004-08-06 2012-02-22 Honda Motor Co., Ltd. Suspension control system
JP5078306B2 (ja) * 2006-09-21 2012-11-21 本田技研工業株式会社 自動二輪車の変速制御装置
JP5089972B2 (ja) * 2006-12-11 2012-12-05 ヤマハ発動機株式会社 エンジン制御装置、及び鞍乗型車両
WO2008150448A1 (en) * 2007-05-31 2008-12-11 Twill Tech., Inc. Dynamically balanced in-line wheel vehicle

Also Published As

Publication number Publication date
GB2412331A (en) 2005-09-28
AU2002354225A1 (en) 2004-07-09
AU2003241702A1 (en) 2004-07-09
WO2004054677A1 (ja) 2004-07-01
WO2004054678A1 (ja) 2004-07-01
GB2412331B (en) 2006-05-10
JPWO2004054678A1 (ja) 2006-04-20
GB0513789D0 (en) 2005-08-10
US20060085111A1 (en) 2006-04-20
US7610131B2 (en) 2009-10-27

Similar Documents

Publication Publication Date Title
JP4121504B2 (ja) リモコン二輪車のロール角制御装置
JP4743212B2 (ja) 二輪車の転倒防止制御装置
US8825254B2 (en) Inverted pendulum type vehicle, and control method of inverted pendulum type vehicle
JP4605227B2 (ja) 転倒防止制御装置
US20180057050A1 (en) Vehicle
US8751110B2 (en) Inverted pendulum type vehicle
KR101915887B1 (ko) 주행 장치, 주행 장치의 제어 방법, 및 주행 장치의 제어 프로그램
WO2018181750A1 (ja) 車両
JP2006020652A (ja) ラジコン模型のロール角制御装置及びラジコン模型二輪車
US8678124B2 (en) Inverted pendulum type vehicle
JP2004338507A (ja) 自動二輪車
JP4936480B2 (ja) 姿勢制御付き無人二輪車
US8985249B2 (en) Inverted pendulum type vehicle
JP2577593Y2 (ja) 無人自走2輪車
JP4888451B2 (ja) 同軸二輪車及びその制御方法
JP2005271815A (ja) 自律走行型二輪車および自律制御方法
JP2005263392A (ja) フォークリフト
US8874319B2 (en) Inverted pendulum type vehicle
US20240335758A1 (en) Systems and methods for controlling a radio-controlled two-wheeled vehicle
JP3366685B2 (ja) 後輪操舵装置の制御方法
JP2006044528A (ja) 後輪操舵装置およびそれを備える自動二輪車

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4121504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees