JP4085953B2 - 半導体光素子 - Google Patents

半導体光素子 Download PDF

Info

Publication number
JP4085953B2
JP4085953B2 JP2003362171A JP2003362171A JP4085953B2 JP 4085953 B2 JP4085953 B2 JP 4085953B2 JP 2003362171 A JP2003362171 A JP 2003362171A JP 2003362171 A JP2003362171 A JP 2003362171A JP 4085953 B2 JP4085953 B2 JP 4085953B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
znse
semiconductor layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003362171A
Other languages
English (en)
Other versions
JP2005129650A (ja
Inventor
孝夫 中村
浩二 片山
大樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003362171A priority Critical patent/JP4085953B2/ja
Priority to US10/808,158 priority patent/US7042016B2/en
Priority to TW093110000A priority patent/TWI251946B/zh
Priority to EP04009420A priority patent/EP1526582A3/en
Priority to CNB2004100621770A priority patent/CN100347868C/zh
Priority to KR1020040082999A priority patent/KR100789078B1/ko
Publication of JP2005129650A publication Critical patent/JP2005129650A/ja
Application granted granted Critical
Publication of JP4085953B2 publication Critical patent/JP4085953B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system

Description

本発明は、半導体光素子、およびコンタクトを形成する方法に関する。
文献1には、発光ダイオードが記載されている。この発光ダイオードは、p型ZnTe/ZnSeのMQW層上に設けられたZnTe層を有しており、またこのZnTe層に電気的に接続する金(Au)電極を有している。
文献2には、半導体レーザダイオードが記載されている。この半導体レーザダイオードは、ZnTe層とZnSe層との間に設けられたp型ZnTe/ZnSeMQW層を有しており、この層は空乏化している。半導体レーザダイオードは、ZnTe層に接続される電極を有している。
特開平6―5820号公報 特開平6―310815号公報
該発光ダイオードおよび該半導体レーザダイオードでは、アノード電極がZnTe層に接合している。
発明者らの実験によれば、ZnTe層に接合するアノード電極を有する発光ダイオードといった面発光型発光素子において、出射面における発光強度が不均一になっていることを発見している。この原因を研究した結果、電極の金属とZnTe半導体との接合を有するコンタクトにおいてフォアード電圧Vfが増加していることを発見している。
そこで、本発明の目的は、電流分布の不均一を低減できるコンタクトを有する半導体光素子、および電流分布の不均一が低減されたコンタクトを形成する方法を提供することにある。
本発明の一側面によれば、面発光の半導体光素子は、発光ダイオードであり、また、(a)ZnSe/ZnTe量子井戸構造のII−VI半導体領域とZnSe半導体からなる第1のII−VI半導体の層とを有する超格子コンタクト半導体領域と、(b)前記超格子コンタクト半導体領域上に設けられた金属電極と、(c)ZnSe基板を含む支持基体と、(d)支持基体上に設けられたII−VI半導体の活性層とを備え、前記第1のII−VI半導体の層の厚さは、2ナノメートル以上20ナノメートル以下であると共に、前記第1のII−VI半導体の層は、ドーパントを供給せずに成長されてアンドープであり、前記ZnSe/ZnTe量子井戸構造は、ZnSe半導体からなる複数の第2のII−VI半導体の層とZnTe半導体からなる複数の第3のII−VI半導体の層とを有し、前記第3のII−VI半導体の層のうち前記第1のII−VI半導体の層に最も近い半導体層は、前記第2のII−VI半導体の層のうち前記第1のII−VI半導体の層に最も近い半導体層と前記第1のII−VI半導体の層との間にあり、前記第1のII−VI半導体の層は、前記II−VI半導体領域と前記金属電極との間に設けられており、前記金属電極は第1のII−VI半導体の層に電気的に接続されており、前記金属電極は金からなり、前記金属電極の厚さは、10ナノメートル以上30ナノメートル以下であり、前記活性層は前記ZnSe基板と前記超格子コンタクト半導体領域との間に設けられている。

超格子コンタクト半導体領域内のII−VI半導体領域と金属電極との間に第1のII−VI半導体の層が設けられているので、金属電極の原子が、II−VI半導体領域内の原子と反応することを防ぐことができる。また、第1のII−VI半導体の層は、亜鉛およびテルルを含む第3のII−VI半導体と金属電極の原子が反応することを防ぐことができる。
本発明の半導体光素子では、前記第1のII−VI半導体の層は、ドーパントを供給せずに成長されている
前記金属電極は、前記活性層からの光が放出される出射面を覆って設けられる
前記第1のII−VI半導体の層の厚さは、前記第2のII−VI半導体の層のうち前記第1のII−VI半導体の層に最も近い該半導体層の厚さより大きい。
第1のII−VI半導体の層は、亜鉛およびテルルを含む第3のII−VI半導体と電極の金属原子が反応することを防ぐことができる。また、第1のII−VI半導体の層に最も近い第2のII−VI半導体の厚さが第1のII−VI半導体の層の厚さより小さいので、超格子コンタクト半導体領域の抵抗の増加を全体として抑えることができる。
前記第2のII−VI半導体の層の厚さの総和は、前記第3のII−VI半導体の層の厚さの総和よりも大きい。
第1のII−VI半導体の層は、亜鉛およびテルルを含む第3のII−VI半導体と金属電極の原子が反応することを防ぐことができる。また、第3のII−VI半導体の層が薄いので、超格子コンタクト半導体領域の光透過率の低下を抑えることができる。
本発明の半導体光素子では、前記金属電極の厚さは、10ナノメートル以上30ナノメートル以下であることができる。
この範囲の膜厚であれば、半導体光素子において発生された光が金属電極を透過できる。
本発明の半導体光素子では、前記第1のII−VI半導体の層の厚さは、2ナノメートル以上である。
この厚さの第1のII−VI半導体の層によれば、金属電極の原子がII−VI半導体の領域の原子と反応することを防ぐことができる。
本発明の半導体光素子は、(c)支持基体上に設けられたII−VI半導体の活性層を備え、前記支持基体はZnSe基板を含み、前記II−VI半導体の活性層は前記ZnSe基板と前記超格子コンタクト半導体領域との間に設けられている。
本発明の別の側面によれば、II−VI族半導体光素子のためのコンタクトを形成する方法は、(a)亜鉛、セレンおよびテルルを含むII−VI半導体領域を基板上に形成する工程と、(b)亜鉛およびセレンを含む第1のII−VI半導体の層を前記領域上に形成する工程と、(c)前記第1のII−VI半導体の層上に金属電極を形成する工程とを備える。
金属電極を形成する工程に先立って、第1のII−VI半導体の層を形成するので、超格子コンタクト半導体領域内のII−VI半導体の領域と金属電極との間に第1のII−VI半導体の層が設けられる。これ故に、金属電極の原子が、II−VI半導体の領域の原子と反応することを防ぐことができる。
反応が防止された場合、コンタクトの電気的特性は、成長温度、VI/II比、ドーピング条件の関連により決まる結晶性とドーピング状態によって決定される。ここで成長温度については温度上昇により結晶性はあがるがドーピング量が減少する。同様にVI/II比については、高めに設定することで結晶性があがるがドーピング量が低下する。つまり、ドーピングに関しては成長温度、VI/II比が決定された状態で最適な条件が存在する。さらにこれらの条件によりコンタクト部の信頼性も決定される。この場合、初期特性が良好であっても条件が最適でなければ信頼性を確保することが困難となる。この信頼性はとくにドーピング状態により決定される。
本発明の方法では、II−VI半導体領域を支持基体上に形成する前記工程は、(a1)前記支持基体上に、亜鉛およびセレンを含む第2のII−VI半導体の層を分子線エピタキシ成長法で形成する工程と、(a2)前記第2のII−VI半導体の層上に、亜鉛およびテルルを含む第3のII−VI半導体の層を分子線エピタキシ成長法で形成する工程とを有しており、第2のII−VI半導体の層を形成する前記工程において、II族のフラックスFIIとVI族のフラックスFIVとの比(FIV/FII)は3以上であり、第3のII−VI半導体の層を形成する前記工程において、II族のフラックスFIIとVI族のフラックスFIVとの比(FIV/FII)は3以上である。
コンタクト特性は結晶性とドーピング状態によって決まる。これらのフラックス条件によれば、半導体光素子に、良好なコンタクト特性が提供されることができる。
II−VI半導体領域を支持基体上に形成する前記工程は、(a3)前記支持基体上に、亜鉛およびセレンを含む第2のII−VI半導体の層を形成する工程と、(a4)前記第2のII−VI半導体の層上に、亜鉛およびテルルを含む第3のII−VI半導体の層を形成する工程とを有しており、第2のII−VI半導体の層を形成する前記工程において、基板温度は摂氏250度以下であり、第3のII−VI半導体の層を形成する前記工程において、基板温度は摂氏250度以下である。
これらの基板温度の条件によれば、半導体光素子に、良好なコンタクト特性が提供されることができる。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
本発明によれば、電流分布の不均一が低減されたコンタクトを有する面発光型の半導体光素子が提供され、また電流分布の不均一を低減できるコンタクトを形成する方法が提供される。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の半導体光素子、およびコンタクトを形成する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本実施の形態の半導体発光素子を示す図面である。発光ダイオードといった半導体発光素子1は、超格子コンタクト半導体領域3と、金属電極5を有している。超格子コンタクト半導体領域3は、亜鉛、セレンおよびテルルを含むII−VI半導体から成っている。また、超格子コンタクト半導体領域3は、量子井戸構造のII−VI半導体領域7と、第1のII−VI半導体の層9とを有しており、例えば量子井戸構造を有することができる。第1のII−VI半導体の層9は、II−VI半導体領域7と金属電極5との間に設けられている。金属電極5は、超格子コンタクト半導体領域3上に設けられている。金属電極5は、第1のII−VI半導体の層9に電気的に接続されている。好適な実施例では、第1のII−VI半導体の層9は、金属電極5が接合するZnSe半導体層から成る。
超格子コンタクト半導体領域3内のII−VI半導体領域7と金属電極5との間に第1のII−VI半導体の層9が設けられているので、金属電極5の原子が、II−VI半導体領域7の原子と反応することを防ぐことができる。これ故に、この実施の形態によれば、第1のII−VI半導体の層9と金属電極5との間のコンタクトの均一性が増す。したがって、電流分布の不均一を縮小できるコンタクトを有する半導体発光素子が提供される。
図2(A)は、半導体発光素子を構成する半導体領域を示す図面である。この半導体発光素子1では、II−VI半導体領域7は、亜鉛およびセレンを含む第2のII−VI半導体の層11と亜鉛およびテルルを含む第3のII−VI半導体の層13とを有している。第3のII−VI半導体の層13は、第1のII−VI半導体の層9と第2のII−VI半導体の層11との間に設けられている。好適な実施例では、第2のII−VI半導体の層11はp型のZnSe半導体から成っており、第3のII−VI半導体の層13はp型のZnTe半導体から成ることができる。
第1のII−VI半導体の層9により、金属電極5内の原子が、亜鉛およびテルルを含む第3のII−VI半導体と反応することを防ぐことができる。
図1および図2(B)を参照すると、半導体発光素子1は、デバイス半導体領域15を有する。デバイス半導体領域15は、第4のII−VI半導体の層17と、II−VI半導体の活性層19と、第5のII−VI半導体の層21とを有している。超格子コンタクト半導体領域3はデバイス半導体領域15上に設けられている。図2(B)に示されるように、デバイス半導体領域15では、活性層19は、第4のII−VI半導体の層17上に設けられており、第5のII−VI半導体の層21は活性層19上に設けられており、また、第6のII−VI半導体の層29が第5のII−VI半導体の層21上に設けられている。好適な実施例では、第6のII−VI半導体の層29と超格子コンタクト半導体領域3との間には、高ドープのII−VI半導体層30が設けられている。
活性層19は、第4のII−VI半導体の層17と第5のII−VI半導体の層21との間に設けられている。第4のII−VI半導体の層17および第5のII−VI半導体の層21は、活性層19にキャリアを閉じ込めることができる。好適な実施例では、活性層19はZnCdSe半導体から成り、第4のII−VI半導体の層17はn型のZnMgSSe半導体から成り、また第5のII−VI半導体の層21はp型のZnMgSSe半導体から成ることができる。
一実施例では、活性層19は、第1のガイド層23と、量子構造層25と、第2のガイド層27とを有している。量子構造層25は、第1のガイド層23と第2のガイド層27との間に設けられている。好適な実施例では、第1および第2のガイド層23、27はi型のZnSe半導体から成ることができる。量子構造層25は、例えば、SQW構造またはMQW構造を有する。
量子構造層25は、複数の量子井戸層25aおよび一または複数の量子障壁層25bを含むことができる。量子障壁層25bは量子井戸層25aの間に設けられている。好適な実施例では、量子井戸層25aは、i型のZnCdSe半導体から成り、量子障壁層25bはi型のZnSe半導体から成ることができる。
再び図1を参照すると、半導体発光素子1は支持基体31を備える。支持基体31の一方の面31a上には、デバイス半導体領域15が設けられている。好適な実施例では、支持基体31は、ZnSe半導体基板33と、ZnSe半導体基板33上に設けられたZnSeバッファ層35とを含むことができる。必要な場合には、支持基体31の他方の面31b上には電極37が設けられている。好適な実施例では、電極5はアノード電極として使用されており、電極37はカソード電極として使用される。支持基体31としてZnSe半導体基板を用いると、ZnSe半導体基板は活性層からの光によって励起状態にされる。励起されたZnSe半導体基板は、別の波長の光を発生する。
好適な実施例に示すと、
基板33:(100)面を有するn型ZnSe半導体基板
バッファ層35:厚さ0.9マイクロメートル、n型ZnSe半導体層
II−VI半導体層17:
厚さ0.5マイクロメートル、n型ZnMgSSe半導体層
第1のガイド層23:厚さ0.03マイクロメートル、i型ZnSe半導体層
量子構造層25:ZnCdSe/ZnSeのMQW
第2のガイド層27:厚さ0.03マイクロメートル、i型ZnSe半導体層
II−VI半導体層21:
厚さ0.5マイクロメートル、p型ZnMgSSe半導体層
II−VI半導体層29:
厚さ0.15マイクロメートル、p型ZnSe半導体層
II−VI半導体層30:
厚さ200ナノメートル、p+型ZnSe半導体層
量子井戸II−VI半導体領域7:
厚さ40ナノメートル、ZnSe/ZnTe量子井戸構造
第1のII−VI半導体のp型層9:厚さ3ナノメートル、ZnSe半導体層
金属電極5:Au層
金属電極37:インジウム層
である。
この実施例では、バッファ層がZnSe半導体基板上にホモエピタキシャル成長されており、ZnSe半導体基板上に形成される半導体層は、ZnSe半導体に格子整合している。ZnSe半導体基板上に形成されたII−VI半導体の結晶品質は、ZnSe基板以外の基板上に成長されたII−VI半導体に比べて良好である。
図3(A)および図3(B)は、超格子コンタクト半導体領域の構造を示す図面である。図3(A)を参照すると、超格子コンタクト半導体領域3aが示されている。超格子コンタクト半導体領域3aは、II−VI半導体領域7aおよび第1のII−VI半導体の層9を含む。量子井戸構造のII−VI半導体領域7aは、井戸層39a、39b、39c、39d、39eと障壁層41a、41b、41c、41dとを有している。好適な実施例では、井戸層39a〜39eはZnTe半導体から成り、障壁層41a〜41dはZnSe半導体から成る。
5個のZnTe半導体層を含む量子井戸構造のII−VI半導体領域の例として、
第1のII−VI半導体の層9:3ナノメートル
ZnTe半導体層39a:0.6ナノメートル 、窒素ドープ
ZnSe半導体層41a:1.8ナノメートル 、窒素ドープ
ZnTe半導体層39b:0.5ナノメートル 、窒素ドープ
ZnSe半導体層41b:1.8ナノメートル 、窒素ドープ
ZnTe半導体層39c:0.37ナノメートル 、窒素ドープ
ZnSe半導体層41c:1.8ナノメートル 、窒素ドープ
ZnTe半導体層39d:0.25ナノメートル 、窒素ドープ
ZnSe半導体層41d: 1.8ナノメートル、窒素ドープ
ZnTe半導体層39e:0.12ナノメートル 、窒素ドープ
が示される。
図3(B)を参照すると、超格子コンタクト半導体領域3bが示されている。超格子コンタクト半導体領域3bは、II−VI半導体領域7bおよび第1のII−VI半導体の層9を含む。量子井戸構造のII−VI半導体領域7bは、井戸層43a、43b、43c、43d、43e、43fと障壁層45a、45b、45c、45d、45eとを有している。好適な実施例では、井戸層43a〜43fはZnTe半導体から成り、障壁層45a〜45eはZnSe半導体から成る。
16個のZnTe半導体層を含む量子井戸構造のII−VI半導体領域の例として、
第1のII−VI半導体の層9:3ナノメートル
ZnTe半導体層43a:2.0ナノメートル 、窒素ドープ
ZnSe半導体層45a:0.113ナノメートル 、窒素ドープ
ZnTe半導体層43b:1.85ナノメートル 、窒素ドープ
ZnSe半導体層45b:0.225ナノメートル 、窒素ドープ
ZnTe半導体層43c:1.72ナノメートル 、窒素ドープ
ZnSe半導体層45c:0.338ナノメートル 、窒素ドープ
ZnTe半導体層43d:0.37ナノメートル 、窒素ドープ
ZnSe半導体層45d:1.575ナノメートル、窒素ドープ
ZnTe半導体層43e:0.25ナノメートル 、窒素ドープ
ZnSe半導体層45e:1.68ナノメートル、窒素ドープ
ZnTe半導体層43f:0.12ナノメートル 、窒素ドープ
が示される。
超格子コンタクト半導体領域3において、ZnSe半導体層の数は、例えば4個以上であり、ZnTe半導体層の数は、例えば5個以上である。これにより、好適なコンタクト抵抗が実現されることができる。
これらの実施例において、超格子コンタクト半導体領域3a、3bにおいて、例えば前者の例では、ZnTe層39a〜39eおよびZnSe層41a〜41dは、支持基体31から金属電極5への方向に伸びる軸に沿って交互に配列されている。ZnTe層39a〜39eのうちの任意の一層(例えば、層39e)と、該ZnTe層(この例では層39e)の次に位置する別のZnTe層(この例では、層39d)との間には、ZnSe層41a〜41dのうちのいずれかの層(この例では、層41d)が設けられている。該ZnTe層および該ZnSe層から成るそれぞれの領域において、ZnTeの平均モル分率([ZnTe]/([ZnSe]+[ZnTe]))が規定される。これらの平均モル分率は半導体領域7において該軸に沿って増加している。平均モル分率のうちの最大値は、金属電極5に接合するZnSe層(この例では、層9)と、この層に最も近いZnTe層(この例は層39a)とから成る領域におけるZnTeの平均モル分率より大きい。
図3(A)および図3(B)に示されるように、半導体発光素子1の好適な実施例では、第2のII−VI半導体の層41a〜41d(45a〜45d)の各々の厚さは、第1のII−VI半導体の層9の厚さ以下である。
第1のII−VI半導体の層9により、金属電極5の原子が、第3のII−VI半導体(亜鉛およびテルルを含む)の層39aと反応することを防ぐことができることに加えて、第2のII−VI半導体の層41a〜41dの各々が第1のII−VI半導体の層9より薄ければ、量子井戸コンタクト半導体領域の抵抗の増加を抑えることができる。
半導体発光素子1の好適な実施例では、第3のII−VI半導体の層39a〜39eの厚さの総和は、第2のII−VI半導体の層41a〜41dの厚さの総和よりも小さい。これ故に、超格子コンタクト半導体領域3の光透過率の低下を抑えることができる。
好適な実施例では、金属電極5としては、その厚さは10ナノメートル以上である。また、金属電極5の厚さは30ナノメートル以下である。この膜厚であれば、半導体発光素子1において発生された光が金属電極5を透過できる。
第1のII−VI半導体の層9の厚さは、2ナノメートル以上であることが好ましい。この範囲の厚さの第1のII−VI半導体の層9によれば、金属電極5との原子がZnTe半導体の領域39a内の原子と反応することを防ぐことができる。また、第1のII−VI半導体の層9の厚さは、20ナノメートル以下であることが好ましい。この範囲の厚さの第1のII−VI半導体の層9を用いれば、この層9に起因する抵抗値の増加分は十分に小さい。
図4(A)に示されるように、本実施の形態に係る半導体発光素子1は、支持基体31上に設けられたII−VI半導体の活性層19を備えており、好適な実施例では、支持基体31は、ZnSe基板といった基板33を含んでいる。活性層19は、該ZnSe基板と超格子コンタクト半導体領域3との間に設けられている。
図5は、半導体発光素子を示す平面図である。超格子コンタクト半導体領域3上には、金属電極5が設けられている。半導体発光素子が、例えば、面発光型発光ダイオードであれば、半導体発光素子によって発生された光は、半導体発光素子の出射面を覆って設けられた金属電極5を通して放出される。
超格子コンタクト半導体領域3内の半導体層は特定の周期的に配置されていなので、半導体発光素子1に係わる光は、超格子コンタクト半導体領域3において干渉すること無く、超格子コンタクト半導体領域3を通過する。
半導体発光素子1の好適な実施例では、図4(B)に示されるように、第3のII−VI半導体(亜鉛およびテルルを含む)の層39a〜39eのうち第1のII−VI半導体の層9に最も近い半導体層39aは、第2のII−VI半導体(亜鉛およびセレンを含む)の層41a〜41dのうち第1のII−VI半導体の層9に最も近い半導体層41aと第1のII−VI半導体の層9との間にある。第1のII−VI半導体の層9の厚さD1は、第2のII−VI半導体の層41aの厚さD2より大きい。故に、半導体層39aと第1のII−VI半導体の層9とから成る領域の平均モル分率は、半導体層39aと半導体層41aとから成る領域の平均モル分率よりも大きくなる。したがって、第1のII−VI半導体の層9により、第3のII−VI半導体(亜鉛およびテルルを含む)の層39aと金属電極5の原子が反応することを防ぐことができる。また、ZnSe層41a〜41dのいずれの層も、第1のII−VI半導体の層9より薄ければ、超格子コンタクト半導体領域3の抵抗の増加を全体として抑えることができる。
以上説明したように、本実施の形態によれば、電流分布の不均一を縮小できるコンタクトを有する半導体発光素子が提供される。
図6(A)および図6(B)は、II−VI半導体発光ダイオードの性能を示すグラフである。これらのグラフでは、横軸は経過時間を示し、左縦軸は相対発光強度を示し、右縦軸は順方向電圧(Vf)を示している。相対発光強度は、所定の時間経過後における発光強度Pと初期発光強度P0との比(P/P0)である。これらの実験では、摂氏40度において、発光ダイオードに電流20ミリアンペアが流されている。
第1のII−VI半導体の層9を持っていないII−VI半導体発光素子(以下、発光ダイオードAと参照される)の実験結果は図6(A)に示されており、第1のII−VI半導体の層9を持っているII−VI半導体発光素子(以下、発光ダイオードBと参照される)の実験結果は図6(B)に示されている。これらのグラフは、第1のII−VI半導体の層9がVfの大きな分布を小さくすると共に、半導体発光素子の寿命を伸ばすために有効であることを示している。
発光ダイオードBは、摂氏40度で20ミリアンペアの電流を100時間流した後においても、発光にむらが生じない。一方、発光ダイオードAは、摂氏40度で20ミリアンペアの電流を100時間流した後に、図7に示されるように、発光にむらが生じた。発光むらをさらに研究するために、正常部および異常部をマイクロXPSで測定している。
測定結果を示すと、
異常部 正常部
炭素(C) 51.1 57.9
酸素(O) 24.6 19.5
金(Au) 6.4 12.2
亜鉛(Zn) 5.3 3.8
テルル(Te) 12.3 6.6
である。
これらの結果によれば、金およびテルルの量に差がみられる。異常部におけるテルルの量は、正常部におけるテルルの量の約2倍である。これは、テルルが金属電極内に拡散していることを示している。また、異常部における金の量は、正常部における金の量の約半分である。これは、金がコンタクト半導体領域内に拡散していることを示している。第1のII−VI半導体の層9は、これらの拡散を防ぐように働く。
以上説明したように、本実施の形態によれば、電流分布の不均一を縮小できるコンタクトを有する半導体発光素子が提供される。
(第2の実施の形態)
ついで、II−VI族半導体発光素子を製造する方法を説明する。図8(A)に示されるように、基板を準備する。引き続く説明では、該基板としてZnSe基板を使用する発光ダイオードといった半導体発光素子を製造する方法を説明する。
引き続いて例示的に説明される方法では、エピタキシャル装置として分子線エピタキシー成長(MBE)装置を用いる。このMBE装置は、亜鉛(Zn)、マグネシウム(Mg)、カドミウム(Cd)、テルル(Te)および塩化亜鉛(ZnCl)用のKnusenセル、並びにイオウ(S)およびセレン(Se)用のバルブセル、をチャンバ内に備えている。
ZnSe基板51をMBE装置53に配置する。ZnSe基板51をクリーニングするために、ZnSe基板51の温度を上昇する。クリーニング温度は、例えば、摂氏390度である。クリーニングガス、例えばHガスをチャンバに供給して、所定の時間、例えば30分間、プラズマ放電55を生成する。基板温度が所定の温度であることをパイロメータが示した後に、MBE装置53のHシャッタおよびメインシャッタを開いてHラジカル55を用いるクリーニングを開始する。クリーニング条件を例示すれば:
H2ガス流量:1.0sccm
RFガンのパワー:450ワット
である。
RHEEDパターンが明瞭なc(2×2)パターンを示しているならば、Hシャッタおよびメインシャッタを閉じると共にRFガンを停止する。クリーニングの後に、ZnSe基板51の温度を、例えば摂氏325度に下げる。
図8(B)に示されるように、バッファ層をZnSe基板51上に形成する。MBE装置53のセル(Zn、Se、ZnCl)を開いて、Znフラックス59a、Seフラックス59b、ZnClフラックス59cをZnSe基板51に供給し、n型ZnSe半導体のバッファ層57をエピタキシャル成長する。バッファ層57の膜厚は、例えば600ナノメートルである。
図8(C)に示されるように、クラッド層63がバッファ層57上に形成される。セル(Zn、Mg、S、Se、ZnCl)を開き、Znフラックス61a、Mgフラックス61b、Sフラックス61c、Seフラックス61d、ZnClフラックス61eをZnSe基板51に供給し、n型ZnMgSSe半導体のクラッド層63をn型ZnSe層57上にエピタキシャル成長する。クラッド層63の膜厚は、例えば500ナノメートルである。
図9(A)に示されるように、活性層がクラッド層63上に形成される。本実施例では、活性層は、ガイド層67、量子構造層65およびガイド層73を含む。量子構造層65は、一または複数の量子井戸層69および複数の量子障壁層71を含む。
まず、セル(Zn、Se)を開き、Znフラックス、SeフラックスをZnSe基板51に供給して、i型ZnSe半導体のガイド層67をn型ZnMgSSe層61上にエピタキシャル成長する。ガイド層67の膜厚は、例えば40ナノメートルである。
ついで、セル(Zn、Cd、Se)を開き、Znフラックス、Cdフラックス、SeフラックスをZnSe基板51に供給し、i型ZnCdSe半導体の井戸層69aをガイド層67上にエピタキシャル成長する。井戸層69aの膜厚は、例えば3ナノメートルである。
続いて、セル(Zn、Se)を開き、Znフラックス、SeフラックスをZnSe基板51に供給し、i型ZnSe半導体の障壁層71aを井戸層69a上にエピタキシャル成長する。量子障壁層71aの膜厚は、例えば10ナノメートルである。
この後に、セル(Zn、Cd、Se)を開き、Znフラックス、Cdフラックス、SeフラックスをZnSe基板51に供給し、i型ZnCdSe半導体の井戸層69bを障壁層71a上にエピタキシャル成長する。井戸層69bの膜厚は、例えば3ナノメートルである。
この後に、障壁層および井戸層の成長を所定の回数だけ繰り返すようにしてもよい。一実施例では、引き続き、障壁層71b、井戸層69cを形成することができる。
最終の量子井戸層の形成の後に、セル(Zn、Se)を開き、Znフラックス、SeフラックスをZnSe基板51に供給して、i型ZnSe半導体のガイド層73を井戸層69c上にエピタキシャル成長する。ガイド層73の膜厚は、例えば40ナノメートルである。
図9(B)に示されるように、クラッド層77がガイド層73上に形成される。p型ドーパントをドーピングするために、窒素ガスをチャンバ内に導入して、窒素プラズマ放電を開始する。セル(Zn、Mg、S、Se)を開き、Znフラックス75a、Mgフラックス75b、Sフラックス75c、Seフラックス75dをZnSe基板51に供給し、p型ZnSe半導体のクラッド層77をガイド層73上にエピタキシャル成長する。クラッド層77の膜厚は、例えば50ナノメートルである。
クラッド層を成長した後に、MBE装置の全セルのシャッタを閉じる。成長温度を摂氏250度に設定する。
図9(C)に示されるように、p+型ZeSe層79がクラッド層77上に形成される。p型ドーパントをドーピングするために、窒素ガスをチャンバ内に導入して、窒素プラズマ放電を開始する。セル(Zn、Se)を開き、Znフラックス81a、Seフラックス81bをZnSe基板51に供給し、p+型ZnSe層79をp型クラッド層77上にエピタキシャル成長する。p+型ZnSe層79の膜厚は、例えば200ナノメートルである。好適な実施例では、基板温度は、例えば、摂氏250度である。また、RFパワーは、例えば、85ワットである。
引き続いて、II−VI族半導体発光素子のための超格子コンタクト領域83を形成する方法を説明する。図10(A)に示されるように、この方法では、亜鉛、セレンおよびテルルを含むII−VI半導体の領域85が、既に形成されたデバイス半導体領域上に形成される。II−VI半導体の領域85は、量子井戸構造を有している。この領域85上に、亜鉛およびセレンを含む第1のII−VI半導体の層87を形成する。図10(B)に示されるように、この方法では、第1のII−VI半導体の層87上には、例えば、金から成る金属電極89が形成される。
金属電極89を形成する工程に先立って、第1のII−VI半導体の層87を形成するので、量子井戸構造コンタクト領域83内のII−VI半導体の領域85と金属電極89との間に第1のII−VI半導体の層87が設けられる。これ故に、金属電極89の原子が、II−VI半導体領域85内の原子と反応することを防ぐことができる。
II−VI半導体の領域85を形成する工程を詳述する。図11(A)に示されるように、亜鉛およびセレンを含む第2のII−VI半導体の層91を形成する。Znソース、Teソース、Nソースのためのシャッタを開き、Znフラックス93a、Teフラックス93bおよびNフラックス93cをZnSe基板51に供給して、第2のII−VI半導体の層91をp+型ZnSe層79上にエピタキシャル成長する。好適な実施例では、第2のII−VI半導体の層91は窒素ドープのZeTe層である。一実施例では、基板温度は摂氏250度である。また、RFパワーは100ワット程度である。シャッタを開く期間は、例えば1秒程度であり、第2のII−VI半導体の層91の膜厚は、例えば0.12ナノメートルである。
ついで、Teソースのためのシャッタを閉じると共に、Seソースのためのシャッタを開く。図11(B)に示されるように、亜鉛およびセレンを含む第3のII−VI半導体の層95を形成する。Znフラックス97aおよびSeフラックス97bがZnSe基板51に供給されると、第3のII−VI半導体の層95が第2のII−VI半導体の層91上にエピタキシャル成長される。一実施例では、セルを開く時間は、例えば16秒程度であり、第3のII−VI半導体の層95の膜厚は、例えば1.8ナノメートルである。基板温度は、例えば、摂氏250度である。また、RFパワーは、例えば、85ワットである。好適な実施例では、第3のII−VI半導体の層95はアンドープZnSe層である。
続いて、RFパワーは、100ワットより大きいパワー、例えば、400ワット程度へ変更した後に、以下の手順で、残りの半導体層を順に成長する。Znソース、Teソース、Nソースのためのシャッタを2秒程度開く。Znソース、Seソース、Nソースのためのシャッタを16秒程度開く。Znソース、Teソース、Nソースのためのシャッタを3秒程度開く。Znソース、Seソース、Nソースのためのシャッタを16秒程度開く。Znソース、Teソース、Nソースのためのシャッタを4秒程度開く。Znソース、Seソース、Nソースのためのシャッタを16秒程度開く。Znソース、Teソース、Nソースのためのシャッタを5秒程度開く。
この手順の後に、図10(A)に示されるように、II−VI半導体の領域85がZnSe基板51上に形成される。この後に、Znソース、Seソースのためのシャッタを26秒程度開いて、II−VI半導体の領域85上に第1のII−VI半導体の層87を形成する。好適な実施例では、成膜温度は、摂氏235度以上であることが好ましい。この温度範囲では、結晶性の低下を防ぐという利点がある。また、摂氏250度以下であることが好ましい。この温度範囲では、ドーパントの拡散を抑制できるという利点がある。
これらの工程により、発光ダイオードといった半導体発光素子が形成される。この方法によれば、金属電極89を形成する工程に先立って、第1のII−VI半導体の層87を成形するので、量子井戸コンタクト半導体領域83内のII−VI半導体の領域85と金属電極89との間に第1のII−VI半導体の層87が設けられる。これ故に、金属電極89の原子が、II−VI半導体の領域87の原子と反応することを防ぐことができる。したがって、実施の形態によれば、電流分布の不均一を縮小できるコンタクトを有する半導体発光素子を製造する方法が提供される。
コンタクト層のためのフラックス比(FIV/FII)2.5、3.0、3.5、4.0、4.5の条件で作製した発光ダイオードを評価している。
該フラックス比3.0、3.5、4.0で作製された発光ダイオードの初期コンタクト電圧は、他の条件に比べて大きい。図12は、いくつかのフラックス条件において形成された発光ダイオードの特性を示すグラフである。図12を参照すると、特性線C1、C2、C3は、それぞれ、フラックス条件(FIV/FII)=2.5、3.5、4.5で形成された半導体層87を有する発光ダイオードのコンタクト特性を示す。2.5を超えるフラックス比では初期コンタクト電圧を低くでき、好適なフラックス比の範囲は3以上である。また、4.5以下のフラックス比では初期コンタクト電圧を低くでき、好適なフラックス比の範囲は4以下である。
図13は、ZnSe層87を形成するためのフラックス条件(FIV/FII)を用いて作製された発光ダイオードの特性を示すグラフである。実験水準A〜Eは、それぞれ、該フラックス比2.5、3.0、3.5、4.0、4.5を示す。経過時間は、平方センチメートル当たり電流密度500ミリアンペア(mA/cm)において、発光ダイオードの両端の電圧が5ボルトになるまでの時間を示している。該フラックス比3.0、3.5、4.0で作製された発光ダイオードでは、経過時間は他の条件に比べて長い。経過時間は2.5を超えるフラックス比で長くなり、好適なフラックス比は3以上である。また、経過時間は4.5以下のフラックス比で長くなり、好適なフラックス比は4以下である。これらのフラックスの範囲では、発光ダイオードは良好なコンタクト特性を示す。
フラックス比2.5においては、RHEEDパターンc(2×2)が現れる。フラックス比3.0においては、RHEEDパターンc(2×2)がRHEEDパターン2×1よりも強い。フラックス比3.5においては、c(2×2)および2×1がほぼ等しく混在したRHEEDパターンが現れる。フラックス比4.0においては、RHEEDパターン2×1がRHEEDパターンc(2×2)よりも強い。フラックス比4.5において、RHEEDパターン2×1が現れる。したがって、好適な成膜条件では、c(2×2)および2×1が混在したRHEEDパターンが現れる。
以上説明したように、実施の形態によれば、電流分布の不均一を縮小できるコンタクトを有する半導体発光素子を製造する方法が提供される。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
図1は、本実施の形態の半導体発光素子を示す図面である。 図2(A)は、半導体発光素子のコンタクト構造を示す図面である。図2(B)は、光を発生する半導体領域を示す図面である。 図3(A)は、5個のZnTe半導体層を含む量子井戸構造のII−VI半導体領域の構造を示す図面である。図3(B)は、16個のZnTe半導体層を含む量子井戸構造のII−VI半導体領域の構造を示す図面である。 図4(A)は、半導体発光素子の半導体層を示す図面である。図4(B)は、コンタクト領域を示す図面である。 図5は、金属電極を示す平面図である。 図6(A)および図6(B)は、II−VI半導体発光ダイオードの特性を示すグラフである。 図7は、II−VI半導体発光ダイオードの発光の不均一を示す図面である。 図8(A)、図8(B)および図8(C)は、半導体発光素子を製造する工程を示す図面である。 図9(A)、図9(B)および図9(C)は、半導体発光素子を製造する工程を示す図面である。 図10(A)および図10(B)は、半導体発光素子を製造する工程を示す図面である。 図11(A)および図11(B)は、II−VI族半導体光素子のためのコンタクトを形成する方法を示す図面である。 図12は、いくつかのフラックス条件(FIV/FII)において形成された発光ダイオードの特性を示すグラフである。 図13は、いくつかのフラックス条件(FIV/FII)において形成された発光ダイオードの特性を示すグラフである。
符号の説明
1…半導体発光素子、3、3a、3b…超格子コンタクト半導体領域、5…金属電極、7、7a、7b…II−VI半導体領域、9…第1のII−VI半導体の層、11…第2のII−VI半導体の層、13…第3のII−VI半導体の層、15…デバイス半導体領域、17…第4のII−VI半導体の層、19…II−VI半導体の活性層、21…第5のII−VI半導体の層、23…第1のガイド層、25…量子構造層、27…第2のガイド層、29…第6のII−VI半導体の層、25a…量子井戸層、25b…量子障壁層、31…支持基体、33…ZnSe半導体基板、35…ZnSeバッファ層、37…金属電極、39a、39b、39c、39d、39e…井戸層、41a、41b、41c、41d…障壁層、43a、43b、43c、43d、43e、43f…井戸層、45a、45b、45c、45d、45e…障壁層、51…ZnSe基板、53…MBE装置、55…プラズマ放電、57…バッファ層、61…クラッド層、65…活性層、67…ガイド層、69…量子井戸層、71…量子障壁層、73…ガイド層、77…クラッド層、83…超格子コンタクト領域、85…II−VI半導体の領域、87…第1のII−VI半導体の層、89…金属電極、91…第2のII−VI半導体の層、95…第3のII−VI半導体の層

Claims (4)

  1. 面発光型の半導体光素子であって、
    ZnSe/ZnTe量子井戸構造のII−VI半導体領域と、ZnSe半導体からなる第1のII−VI半導体の層とを有する超格子コンタクト半導体領域と、
    前記超格子コンタクト半導体領域上に設けられた金属電極と、
    ZnSe基板を含む支持基体と、
    前記支持基体上に設けられたII−VI半導体の活性層と
    を備え、
    当該半導体光素子は発光ダイオードであり、
    前記第1のII−VI半導体の層の厚さは、2ナノメートル以上20ナノメートル以下であると共に、前記第1のII−VI半導体の層は、ドーパントを供給せずに成長されてアンドープであり、
    前記ZnSe/ZnTe量子井戸構造は、ZnSe半導体からなる複数の第2のII−VI半導体の層とZnTe半導体からなる複数の第3のII−VI半導体の層とを有し、
    前記第3のII−VI半導体の層のうち前記第1のII−VI半導体の層に最も近い半導体層は、前記第2のII−VI半導体の層のうち前記第1のII−VI半導体の層に最も近い半導体層と前記第1のII−VI半導体の層との間にあり、
    前記第1のII−VI半導体の層は、前記II−VI半導体領域と前記金属電極との間に設けられており、
    前記金属電極は前記第1のII−VI半導体の層に電気的に接続されており、
    前記金属電極は金からなり、
    前記金属電極の厚さは、10ナノメートル以上30ナノメートル以下であり、
    前記活性層は前記ZnSe基板と前記超格子コンタクト半導体領域との間に設けられている、半導体光素子。
  2. 前記第1のII−VI半導体の層の厚さは、前記第2のII−VI半導体の層のうち前記第1のII−VI半導体の層に最も近い該半導体層の厚さより大きい、請求項1に記載された半導体光素子。
  3. 前記第2のII−VI半導体の層の厚さの総和は、前記第3のII−VI半導体の層の厚さの総和よりも大きい、請求項1に記載された半導体光素子。
  4. 前記金属電極は、前記活性層からの光が放出される出射面を覆って設けられる、請求項1〜請求項のいずれか一項に記載された半導体光素子。
JP2003362171A 2003-10-22 2003-10-22 半導体光素子 Expired - Fee Related JP4085953B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003362171A JP4085953B2 (ja) 2003-10-22 2003-10-22 半導体光素子
US10/808,158 US7042016B2 (en) 2003-10-22 2004-03-23 Semiconductor optical device, method of forming contact in semiconductor optical device
TW093110000A TWI251946B (en) 2003-10-22 2004-04-09 Semiconductor optical device and method for forming contact
EP04009420A EP1526582A3 (en) 2003-10-22 2004-04-21 Semiconductor optical device, method of forming superlattice contact in semiconductor optical device
CNB2004100621770A CN100347868C (zh) 2003-10-22 2004-07-02 半导体光学装置,在半导体光学装置中形成接触的方法
KR1020040082999A KR100789078B1 (ko) 2003-10-22 2004-10-18 반도체 광소자, 및 콘택트를 형성하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362171A JP4085953B2 (ja) 2003-10-22 2003-10-22 半導体光素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006307044A Division JP2007036300A (ja) 2006-11-13 2006-11-13 半導体光素子、およびコンタクトを形成する方法

Publications (2)

Publication Number Publication Date
JP2005129650A JP2005129650A (ja) 2005-05-19
JP4085953B2 true JP4085953B2 (ja) 2008-05-14

Family

ID=34386507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362171A Expired - Fee Related JP4085953B2 (ja) 2003-10-22 2003-10-22 半導体光素子

Country Status (6)

Country Link
US (1) US7042016B2 (ja)
EP (1) EP1526582A3 (ja)
JP (1) JP4085953B2 (ja)
KR (1) KR100789078B1 (ja)
CN (1) CN100347868C (ja)
TW (1) TWI251946B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691445B1 (ko) * 2005-11-21 2007-03-09 삼성전기주식회사 질화물 반도체 발광소자

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106986A (ja) * 1990-08-27 1992-04-08 Hitachi Ltd n型半導体膜、その製造方法及び半導体装置
BR9205993A (pt) * 1991-05-15 1994-08-02 Minnesota Mining & Mfg Diodo laser semicondutor, processo para produzir um contato ôhmico com um corpo semicondutor e contato ôhmico
US5396103A (en) * 1991-05-15 1995-03-07 Minnesota Mining And Manufacturing Company Graded composition ohmic contact for P-type II-VI semiconductors
JP3196418B2 (ja) 1993-04-21 2001-08-06 ソニー株式会社 半導体装置
JP3221073B2 (ja) 1992-06-19 2001-10-22 ソニー株式会社 発光素子
WO1994015369A1 (en) * 1992-12-22 1994-07-07 Research Corporation Technologies, Inc. Group ii-vi compound semiconductor light emitting devices and an ohmic contact therefor
US5665977A (en) * 1994-02-16 1997-09-09 Sony Corporation Semiconductor light emitting device with defect decomposing and blocking layers
JPH07263751A (ja) * 1994-03-24 1995-10-13 Sharp Corp Ii−vi族化合物半導体装置及びその製造方法
JP3457468B2 (ja) * 1995-09-12 2003-10-20 株式会社東芝 多層構造半導体装置
JP3785660B2 (ja) * 1995-10-17 2006-06-14 ソニー株式会社 半導体発光素子
JPH10326941A (ja) * 1997-03-27 1998-12-08 Sony Corp 半導体発光素子およびその製造方法ならびに光装置
JPH11274564A (ja) * 1998-03-19 1999-10-08 Sumitomo Electric Ind Ltd 半導体装置の製造方法
JPH11284282A (ja) * 1998-03-31 1999-10-15 Fuji Photo Film Co Ltd 短波長発光素子
JP2001028459A (ja) * 1999-05-13 2001-01-30 Sumitomo Electric Ind Ltd 発光装置およびその製造方法
TW497277B (en) * 2000-03-10 2002-08-01 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
US7042016B2 (en) 2006-05-09
US20050087869A1 (en) 2005-04-28
EP1526582A3 (en) 2010-01-13
KR100789078B1 (ko) 2007-12-26
EP1526582A2 (en) 2005-04-27
CN1610136A (zh) 2005-04-27
JP2005129650A (ja) 2005-05-19
TWI251946B (en) 2006-03-21
CN100347868C (zh) 2007-11-07
TW200515624A (en) 2005-05-01
KR20050039567A (ko) 2005-04-29

Similar Documents

Publication Publication Date Title
US6067309A (en) Compound semiconductor light-emitting device of gallium nitride series
JP3304787B2 (ja) 半導体発光素子及びその製造方法
US8692228B2 (en) Semiconductor light emitting device and wafer
JP4903643B2 (ja) 半導体発光素子
JP5315899B2 (ja) 発光素子
JP2008109092A (ja) 半導体発光素子
JP5407359B2 (ja) 発光ダイオード
US20040023426A1 (en) Method of fabricating a light emitting device, and light emitting device
JP4085953B2 (ja) 半導体光素子
US20020098607A1 (en) Nitride semiconductor and a method thereof, a nitride semiconductor device and a method thereof
JP5236847B2 (ja) Ii−vi族化合物半導体結晶および光電変換機能素子
US5657336A (en) Semiconductor light-emitting device
US5548127A (en) Semiconductor light emitting device and its manufacturing method
JP2007036300A (ja) 半導体光素子、およびコンタクトを形成する方法
US6206962B1 (en) Semiconductor light emitting device and method of manufacturing same
JP2009038408A (ja) 半導体発光素子
JP3288480B2 (ja) 半導体発光装置の製造方法
JP3288479B2 (ja) 半導体発光装置の製造方法
KR100389738B1 (ko) 단파장 산화아연 발광소자 및 그 제조방법
JP4704421B2 (ja) Iii族窒化物半導体の製造方法および半導体装置
JP3196418B2 (ja) 半導体装置
JP3548654B2 (ja) 半導体発光素子
JP3288481B2 (ja) 半導体発光装置の製造方法
JPH09321340A (ja) 半導体発光素子
JPH0786697A (ja) 発光素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4085953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees