JP4066738B2 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
JP4066738B2
JP4066738B2 JP2002220643A JP2002220643A JP4066738B2 JP 4066738 B2 JP4066738 B2 JP 4066738B2 JP 2002220643 A JP2002220643 A JP 2002220643A JP 2002220643 A JP2002220643 A JP 2002220643A JP 4066738 B2 JP4066738 B2 JP 4066738B2
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
laser
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220643A
Other languages
English (en)
Other versions
JP2004063828A (ja
Inventor
公資 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002220643A priority Critical patent/JP4066738B2/ja
Publication of JP2004063828A publication Critical patent/JP2004063828A/ja
Application granted granted Critical
Publication of JP4066738B2 publication Critical patent/JP4066738B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電流を注入することにより光を発生及び増幅する機能を備えた半導体光増幅素子と、所定波長の光のみ反射するグレーティングが内部に形成された光ファイバとを組み合わせ、光ファイバを通じてグレーティングで定まる所定の単一波長のレーザ光を出力するようにしたレーザ装置、特に、波長可変機能を備え、レーザ出力波長を可変できるようにしたレーザ装置に関する。
【0002】
【従来技術】
この種レーザ装置は、例えば、特許第3120828号公報に示されているように、光反射面と光出射面を有し電流を注入することにより光を発生及び増幅する機能を備えた半導体光増幅素子としての半導体発光素子の光出射面側に、内部に所定波長の光のみ反射するグレーティングが形成され光ファイバ(光ファイバグレーティング)を配置し、半導体発光素子に電流を注入することにより該素子内で発生した誘導放出光が、光反射面とグレーティングとで構成されるファブリベロー型の共振器内で往復を繰り返し増幅された後、グレーティングで定まる所定の単一波長のレーザ光が光ファイバを通じて出力されるように構成したものである。
なお、同特許は、レーザ光の注入電流−光出力特性におけるキンクの発生を効果的に防止することを課題としており、そのために、半導体発光素子を1.48μm帯用レーザダイオードチップとし、グレーティングの反射帯域幅を半導体発光素子の光反射面と光出射面にて共振する光の縦モードの波長間隔より大きい2〜5nmに設定したものである。
【0003】
また、内部にグレーティングを形成(内臓)した光ファイバの反射ピーク中心波長が、温度上昇により長波長側へズレる温度依存性を有することは知られている。(平成11年7月、古河電工時報、第104号第63〜68頁)。
したがって、特許第3120828号に示されている半導体光増幅素子とそれの光出射面側に光ファイバグレーティングを配置してなるレーザ装置で、出力されるレーザ光の波長を可変する機能を持たせるには、例えば、光ファイバグレーティングのグレーティング部に温度調節機能を設けて温度を可変にしてグレーティングの反射ピーク波長を可変にする構成が考えられる。
【0004】
【発明が解決しようとする課題】
しかしながら、温度調節機能(機構)を設けてグレーティング部の温度を可変することで光ファイバグレーティングの反射ピーク波長を可変にする構成では、次の問題がある。
すなわち、半導体光増幅素子とそれの光出射面側に光ファイバグレーティングを配置してなるレーザ装置における半導体光増幅素子の光反射面とグレーティングで構成される光共振器では、実効共振器長をL、発振波長をλとしたときに波長間隔Δλは、Δλ=λ/(2L)で表されるので、波長間隔Δλをもつある固定された値の波長でのみレーザ発振が可能である。
したがって、この種レーザ装置では、出力レーザ光の波長(レーザ発振波長)は、Δλの間隔で飛び飛びのステップ状にしか変化させることができず、レーザ発振波長(出力レーザ光の波長)を連続的に可変することは不可能である。
【0005】
そこで本発明は、以上のような問題を解決するために創案されたものであって、出力レーザ光の波長を連続的に変更(可変)できるレーザ装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係るレーザ装置は、光反射面と光出射面とこれらの面で挟まれた領域に電流を注入することにより光を発生及び増幅する機能を備える半導体光増幅素子と、その光出射面方向に配置され所定波長のみを反射するグレーティングを内部に形成した光ファイバを備え、前記光反射面とグレーティングで構成された光共振器により半導体光増幅素子で発生した光をレーザ発振させて光共振器の外部にレーザ光を出力するレーザ装置であって、光ファイバと半導体光増幅素子の間に設けられ半導体増幅素子で発生した光に対して透明で正の屈折率温度係数を有する光学素子と、前記光ファイバと光学素子の温度を変更制御する温度制御手段とを備えたことを特徴とする。
【0007】
なお、前記光ファイバと光学素子が単一のベース、または、それぞれのベースに保持されており、前記温度制御が前記ベースの温度を制御するものであることが好ましく、また、前記温度制御手段がペルチェ素子等の温度制御素子であることが好ましい。
【0008】
このような発明によれば、温度制御素子によりベースの温度を変更して光ファイバの温度を変更することでグレーティングの反射ピーク波長を変化させるのと同時に、ベース上に設置された正の屈折率温度係数を有する光学素子の温度が変更されることにより実効共振器長が変化するため縦モードの波長が変化する。
しかも、光学素子の屈折率温度係数が正であるために、たとえば、光ファイバーの温度が上昇して反射ピーク波長が長波長側に変化した場合には、光学素子の温度が同じく上昇して光学素子の屈折率が上昇するために実効共振器長が長くなりレーザの波長も長波長側に変化するという様に変化するので、レーザの波長を連続的に変更することが可能になる。
【0009】
また本発明は、半導体光増幅素子が900nm以上のある波長帯域で作用するものであり、半導体光増幅素子の光反射面とグレーティングの半導体光増幅装置に近い側の端部との距離が20mm以下であり、グレーティングの反射帯域幅が1.5nm以下であり、シングルモードのレーザ光を出力するものであることを特徴とする。
【0010】
このような発明によれば、発振波長と、半導体光増幅素子の光反射面とグレーティングで構成される光共振器の実効共振器長とから決定されるレーザ光の縦モードの波長間隔は約0.02nm以上となる。
また、グレーティングの反射帯域幅を1.5nm以下とすることにより、グレーティングの反射ピーク波長から0.02nmだけ離れた波長における反射率は反射ピーク波長における反射率に比べて2%以上低くなり、反射ピーク波長に合致した縦モードのみを選択的に発振させることが可能になり、出力されるレーザ光をシングルモードにすることができる。シングルモードのレーザ光は、分光分析等への応用に有用である。
【0011】
さらに、本発明は、半導体光増幅素子が、900〜1100nmの間のある波長帯域で作用するものであり,光学素子の屈折率温度係数がその波長帯域において9×10−6/℃以上であることを特徴とする。
このような発明によれば、前記光学素子の光軸方向の長さを半導体増幅素子と光ファイバとの間の空間の光軸方向長さよりも短くすることができるため、光学素子の設置が容易になり、さらに前記ベースの温度を変更した時に、グレーティングの反射ピーク波長の変化量と縦モードの波長の変化量を一致させることができる。
【0012】
また、本発明は、前記光学素子の端面が凸に形成されていることを特徴とする。
このような発明によれば、凸に形成された光学素子の端面が凸レンズとして機能する。したがって、光学素子が光ファイバとの光結合を行うレンズを兼ねるので、構造が単純になることでより安定なレーザ装置を提供できる。
【0013】
また,本発明は、光ファイバが、偏波保持光ファイバであることを特徴とする。
このような発明によれば、出力されるレーザ光を直線偏光にすることができる。
【0014】
また、本発明は、光ファイバの半導体光増幅素子に近い側の端面に半導体光増幅素子で発生した光に対して無反射コートを施したことを特徴とする。
このような発明によれば、光ファイバの端面と半導体光増幅器の光反射面とで構成される光共振器によって発生するレーザ光を抑制することが可能になり、より安定なレーザ装置を提供できる。
【0015】
また、本発明は、光ファイバの半導体光増幅装置に近い側の端面が半導体光増幅素子で発生した光に対してブリュースタ角になるようにカットされたことを特徴とする。
このような発明によれば、光ファイバの端面と半導体光増幅器の光反射面とで構成される光共振器によって発生するレーザ光を抑制することが可能になり、より安定なレーザ装置を提供できる。
【0016】
【発明の実施の形態】
以下、本発明の波長可変機能を有するレーザ装置の実施の態様を、図面を参照しながら説明する。
図1は、実施例の波長可変レーザ装置の概略図である。実施例に係る装置は、半導体光増幅素子1、第一レンズ2、正の屈折率温度係数を有する光学素子3、第二レンズ4、グレーティング16を内部に形成した光ファイバ(以下、適宜光ファイバグレーティングという)5、ベース6、温度制御手段としてのペルチェ素子7から構成されている。
【0017】
半導体光増幅素子1は、電流を注入することにより光を発生及び増幅する機能を備える半導体素子であって、光反射面11と光出射面12を備える。光反射面11はレーザの発振波長に対して反射率が極力高くなるような高反射コーティングが施された面であり、光出射面12はレーザの発振波長に対して反射率が極力低くなるような無反射コーティングが施された面である。
半導体光増幅素子1の内部で発生した光は光出射面12から出射され、また、半導体光増幅素子1の外部から光出射面12を通って内部に入射した光は、半導体光増幅素子1の内部を通過し光反射面11で反射されて再び光出射面12から出射されるまでの間に増幅される。この半導体光増幅器1の光反射面11は、グレーティング16と共に光共振器17を構成している。
第一レンズ2は、半導体光増幅素子1から出射された光をコリメートするためのレンズであり、レンズ表面からの反射光が半導体光増幅素子1に戻るのを避けるために、表面には無反射コーティングが施されている。
第二レンズ4は、半導体光増幅素子1から出射され第一レンズ2でコリメートされた光を光ファイバ5に結合するためのレンズで、レンズ表面からの反射光が半導体光増幅素子1に戻るのを避けるために、表面には無反射コーティングが施されている。
【0018】
光ファイバ5は、それの半導体光増幅素子1に近い端部のコアの部分に特定の波長を反射するためのグレーティング16が形成されている。このグレーティング16は、光ファイバのコアの屈折率を周期的に変化させることにより形成されたものであり、その反射ピーク波長すなわち反射率が最高になる波長λは、次式(1)で表される。
λ=2・n・Λ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(1)
n:グレーティングの実効屈折率
Λ:グレーティングの周期(m)
式(1)におけるnとΛは温度上昇と共に増加するので反射ピーク波長λも温度と共に増加し、その値は約0.0095nm/℃である。
但し、この値は、反射ピーク波長が900〜1100nm程度の場合の値である。このグレーティング16は半導体光増幅器1の光反射面11と共に光共振器17を構成している。
【0019】
また、グレーティングの長さや屈折率変化量の大きさを変更することで、グレーティング16の反射率や帯域幅を任意に変更することができる。
なお、ここで帯域幅とは、反射率が反射ピーク波長の反射率に対して半分以上である波長領域のことである。この帯域幅は次のように決められる。
すなわち、グレーティング16の反射ピーク波長から、半導体光増幅素子1の光反射面11とグレーティング16で構成される光共振器17の実効共振器長で決定されるレーザ光の縦モードの波長間隔だけ離れた波長における反射率が、反射ピーク波長における反射率に比べて2%以上低くなるようにグレーティング16の帯域幅を決定する。
【0020】
こうすることにより反射ピーク波長に合致した縦モードのみを選択的に発振させることが可能になり、出力されるレーザ光をシングルモードにすることができる。
具体的には、レーザ光の波長が900nm以上で半導体光増幅器1の光反射面11とグレーティング16の半導体光増幅器1に近い側の端部との距離を20mm以下とするとレーザ光の縦モードの波長間隔は約0.02nm以上となり、反射ピーク波長から0.02nm以上離れた波長における反射率が、反射ピーク波長における反射率に比べて2%以上低くなるようにするには、グレーティング16の反射帯域幅を1.5nm以下とすればよい。
【0021】
なお、ここで、半導体光増幅素子1の光反射面11とグレーティング16で構成される光共振器17の実効共振器長Lは次式(2)で表される。
L=n・l+n・l+n・l+n・l+nair・lair‥‥‥(2)
:半導体光増幅器1の屈折率
:半導体光増幅器1の光軸方向の長さ(m)
:第一レンズ2の屈折率
:第一レンズ2の光軸方向の長さ(m)
:光学素子3の屈折率
:光学素子3の光軸方向の長さ(m)
:第二レンズの屈折率
:第二レンズの光軸方向の長さ(m)
air:空気の屈折率
air:光共振器17内部の空気部分の光軸方向の長さの総和(m)
【0022】
正の屈折率温度係数を有する光学素子3は、温度が変化すると屈折率が変化する素子で、その材料には合成石英や、PBH21やPBH71やPBH72などの光学ガラスや、LiTaOやLiNbOやKNbOなどの単結晶を用いることができる。この光学素子3の表面は光学研磨され、無反射コーティングが施されている。
この光学素子3の光軸方向の長さlは式(3)で計算される。
l=L・(dλ/dT)/[λ・(dn/dT)] (m)‥‥‥‥(3)
L:光共振器17の実効共振器長L(m)
dλ/dT:グレーティング16の反射ピーク波長が温度で変化する量(m/℃)
λ:レーザ光の波長(m)
dn/dT:光学素子3の屈折率温度係数(1/℃)
具体的には、光学素子3の材料にLiTaOを用いるとレーザ光の波長が900〜1100nmである場合はdn/dT=6×10−5であり、またdλ/dT=0.0095nm/℃であるので、光学素子3の長さlは約0.15・Lと計算される。
【0023】
また、光学素子3の材料には、屈折率温度係数が9×10−6以下のものは使用しない。なぜなら屈折率温度係数が9×10−6以下の場合には、式(3)で計算される光学素子3の光軸方向の長さlが実効共振器長Lよりも大きくなる場合があるからである。
ベース6は、光学素子3と光ファイバ5および第二レンズ4を保持するためのもので、熱を伝えやすくするために光学素子3と光ファイバ5および第二レンズ4は、ベース6に対して熱抵抗が十分小さくなるように固定される。
ペルチェ素子7は、その上に設置されているベース6の温度を変更制御するためのものである。
【0024】
次に、図1に示す構成のレーザ装置の動作について説明する。
半導体光増幅素子1に電流が注入されることにより発生した光は、出射面12から出射され第一レンズ2でコリメートされた後、光学素子3の内部を通過して第二レンズ4で光ファイバ5のコア部の端面に集光される。コア部の端面に集光された光は、コア内部に導光されてグレーティング16で反射された後、逆の経路を経由して再び光出射面12を通って半導体光増幅素子1に戻され、半導体光増幅素子1の内部を通過し、光反射面11で反射されて再び光出射面12から出射されるまでの間に増幅を受ける。以上の動作が繰り返されることにより、光反射面11とグレーティング16との間でレーザ発振が引き起こされる。
【0025】
レーザ発振で生じたレーザ光は、その一部が光ファイバ5を導光して光共振器17外部へ出力される。半導体光増幅素子1は、900〜1100nmの間のある波長帯域で作用するものが用いられ、グレーティング16は、その反射ピーク波長が半導体増幅素子1の作用する帯域の範囲内にあるものが用いられるので、レーザ発振は、900〜1100nmの範囲内で生じる。
また、光反射面11とグレーティング16の端部との距離は、20mm以内に設定されるので、レーザ光の縦モードの波長間隔は約0.02nm以上となる。グレーティング16の反射帯域幅は、1.5nm以下に設定される。
このようにすることにより、レーザ光の縦モードの波長間隔だけ離れた波長における反射率が、反射ピーク波長における反射率に比べて2%以上低くなるので、反射ピーク波長に合致した縦モード以外は、反射ロスが生じて発振できなくなり、出力されるレーザ光はシングルモードになる。
【0026】
この様子を図4の特性図を用いて説明する。41は光共振器17の実効共振器長より決まるレーザ光の縦モードを表し、42はグレーティング16の反射率の波長特性を表す。
このようにグレーティング16の反射率は、反射ピーク波長を中心として対象にかつ滑らかに減少し、波長帯域幅が1.5nm以下であれば反射ピーク波長に合致した縦モード41aの隣の縦モード41bでは反射率が、ピーク値に比べて2%以上低くなるのでレーザ発振できず、縦モード41aのみが発振する。
【0027】
さて、ペルチェ素子7を駆動してグレーティング16の温度を上昇させると、図6に示すように反射ピーク波長42aは、長波長側(図中の矢印方向)に約0.0095nm/℃の割合で移動する。
ここで、光共振器17の実効共振器長が変化しないとすると縦モード41aの波長は変化しないので、レーザ発振は反射ピーク波長42aが縦モード41のいずれかのピークと合致するときのみ生じ、したがって、レーザ光の波長は縦モードの41と同じ飛び飛びの値でしか変更できない。
このような事態を避けるためには、図5に示すようにグレーティング16の反射ピーク波長42aが長波長側に移動するのと同時に、縦モード41aの波長が長波長側に移動するようにすればよい。
【0028】
すなわち、ベース6上に設置された正の屈折率温度係数を有する光学素子3の温度を上昇させることにより実効共振器長が長くなるために、縦モード41aの波長が長波長側に移動し、しかも、光学素子3の光軸方向の長さを式(3)で計算される値に設定することにより、その移動の割合が約0.0095nm/℃となるようにすればよい。
このようにすることにより、ペルチェ素子7を駆動してグレーティング16の温度を上昇させることにより、図5に示すように反射ピーク波長42aは長波長側に約0.0095nm/℃の割合で移動するとともに、縦モード41aの波長も長波長側に約0.0095nm/℃の割合で移動するのでレーザ光の波長を連続的に変更することができる。
【0029】
次に、波長可変レーザ装置の具体的な構成を図2を用いて説明する。
ベース9上にはヒートシンク8に搭載された半導体光増幅素子1と第一レンズ2、サーミスタ19、フォトダイオード13が取り付けられている。ベース9はペルチェ素子10の上に取り付けられペルチェ素子10は筐体15に取り付けられている。ベース9はサーミスタ19で検出された温度が一定に保たれるようにペルチェ素子10が駆動される。半導体光増幅素子1の光反射面11は、レーザ光のごく一部を透過するようになっており、光反射面を透過したレーザ光の出力をフォトダイオード13で検出し、フォトダイオード13で検出されたレーザ光の出力が一定になるように半導体光増幅素子1へ注入する電流が制御される。
【0030】
ベース6上には、正の屈折率温度係数を有する光学素子3、第二レンズ4、光ファイバグレーティング5、サーミスタ18が取り付けられている。ベース6はペルチェ素子7の上に取り付けられ、ペルチェ素子7は筐体15に取り付けられている。ベース6は、サーミスタ18で検出された温度が指定した任意の温度と一致するようにペルチェ素子7が駆動される。筐体15は、外部より異物が進入しないように気密構造となっている。
【0031】
図2の実施例では正の屈折率温度係数を有する光学素子3の端面が平面のものを用いているが、図3に示すように光学素子3の端面形状を凸状に形成すると、光学素子3の端面が凸レンズとして機能するので、図2における第二レンズ4の機能を兼ねることができる。
また、光ファイバグレーティング5として偏波保持光ファイバを用いてもよい。
このようにすることにより、発振したレーザ光、すなわち、出力レーザ光が光ファイバ5を導光する間に生じる偏波面の乱れを無くすことができ、より安定なレーザ発振が可能となる。
【0032】
また、光ファイバ5の端面14にレーザ光に対して無反射コートを施してもよい。
このようにすることにより、光ファイバ5の端面14で反射して半導体光増幅素子1に戻る反射光を避けることができ、より安定なレーザ発振が可能となる。
さらに、光ファイバ5の光入射面側の端面14にレーザ光に対してブリュースタ角になるようにカットしてもよい。
このようにすることにより、発振したレーザ光が、光ファイバ5の端面14で反射して半導体光増幅素子1に戻るのを避けることができ、より安定なレーザ発振が可能となる。
【0033】
なお、実施例では、光学素子とグレーティングを形成した光ファイバを単一のベースに保持(取り付け)し、該ベースをペルチェ素子で温度制御するようにしたが、光学素子とグレーティングを形成した光ファイバを別々のベースに取り付けて独立の温度制御することも、また、光学素子と光ファイバを恒温槽内に収容し温度制御するようにすることも可能である。
しかしながら、実施例のように、単一のベースに光学素子とグレーティングを形成した光ファイバ保持するようにすれば、小型化でき、また、温度制御機構が簡単となる利点がある。
【0034】
【発明の効果】
本発明の波長可変レーザ装置は上記のように構成されており、光ファイバと半導体光増幅素子の間に設けられ半導体増幅素子で発生した光に対して透明で正の屈折率温度係数を有する光学素子と、光ファイバと光学素子の温度を制御する温度制御手段とを備えることにより、レーザの波長を連続的に変更することが可能になる。
【0035】
また、半導体光増幅素子が900nm以上のある波長帯域で作用すると共に、半導体光増幅素子の光反射面とグレーティングの半導体光増幅装置に近い側の端部との距離が20mm以下であり、グレーティングの反射帯域幅が1.5nm以下とされることにより、レーザ装置から出力されるレーザ光がシングルモードとすることができ、分光分析等への応用に有用なレーザを提供できる。
また、半導体光増幅素子が900〜1100nmの間のある波長帯域で作用し、さらに光学素子の屈折率温度係数がその波長帯域において9×10−6/℃以上とすることにより、変更した時に、グレーティングの反射ピーク波長の変化量と縦モードの波長の変化量を一致させることができる。
【0036】
また、光学素子の端面形状を凸状に形成することにより、光学素子が光ファイバとの光結合を行うレンズの機能を兼ねることができ、構造を単純になることでより安定なレーザ装置を提供できる。
また、光ファイバが偏波保持光ファイバとすることにより、出力されるレーザ光を直線偏光にすることができる。
また、光ファイバの半導体光増幅装置に近い側の端面に半導体光増幅素子で発生した光に対して無反射コートを施すことにより、光ファイバの端面と半導体光増幅器の光反射面とで構成される光共振器によって発生するレーザ光を抑制することが可能になり、より安定なレーザ光を発振できるレーザ装置を提供できる。
【0037】
また、光ファイバの半導体光増幅装置に近い側の端面が、半導体光増幅素子で発生した光に対してブリュースタ角になるようにカットすることにより、光ファイバの端面と半導体光増幅器の光反射面とで構成される光共振器によって発生するレーザ光を抑制することが可能になり、より安定なレーザ装置を提供できる。
また、光学素子と光ファイバを単一のベースに保持し、このベースをペルチェ素子で温度制御するようにすれば小型化が図れる。
【図面の簡単な説明】
【図1】 本発明の実施例に係るレーザ装置の概略図である。
【図2】 本発明のレーザ装置の一実施例の構成を示す断面図である。
【図3】 本発明のレーザ装置の他の実施例の構成を示す断面図である。
【図4】 本発明のレーザ装置のグレーティングの反射ピーク波長とレーザ光の縦モードの関係を示す特性図である。
【図5】 本発明の実施例に係るレーザ装置の波長可変特性を示す図である。
【図6】 従来技術における波長可変特性を示す図である。
【符号の説明】
1:半導体光増幅素子 2:第一レンズ
3:正の屈折率温度係数を有する光学素子
4:第二レンズ 5:光ファイバ
6、9:ベース 7、10:ペルチェ素子
11:光反射面 12:光出射面
14:光ファイバ5の端面(光入射) 15:筐体
16:グレーティング 17:光共振器
18、19:サーミスタ

Claims (10)

  1. 光反射面と光出射面とこれらの面で挟まれた領域に電流を注入することにより光を発生及び増幅する機能を備える半導体光増幅素子と、前記光出射面方向に配置され所定波長のみを反射するグレーティングを内部に形成した光ファイバを備え、前記光反射面と前記グレーティングで構成された光共振器により前記半導体光増幅素子で発生した光をレーザ発振させて前記光共振器の外部にレーザ光を出力するレーザ装置であって、
    前記光ファイバと半導体光増幅素子の間に設けられ前記半導体増幅素子で発生した光に対して透明で正の屈折率温度係数を有する光学素子と、
    前記光ファイバと光学素子の温度を制御する温度制御手段を備えた
    ことを特徴とするレーザ装置。
  2. 前記光ファイバと光学素子がベースに保持にされており、前記温度制御手段が前記ベースの温度を制御するものであることを特徴とする請求項1に記載のレーザ装置。
  3. 前記光ファイバと光学素子が単一のベースに保持にされており、前記温度制御手段が該ベースの温度を制御するものであることを特徴とする請求項1に記載のレーザ装置。
  4. 前記温度制御手段がペルチェ素子などの温度制御素子であることを特徴とする請求項1から請求項3のいずれかに記載のレーザ装置。
  5. 前記半導体光増幅素子が900nm以上のある波長帯域で作用するものであり,前記光反射面と前記グレーティングの前記半導体光増幅素子に近い側の端部との距離が20mm以下であり、前記グレーティングの反射帯域幅が1.5nm以下であり、シングルモードのレーザ光を出力するものであることを特徴とする請求項1から請求項4のいずれかに記載のレーザ装置。
  6. 前記半導体光増幅素子が900〜1100nmの間のある波長帯域で作用するものであり、前記光学素子の屈折率温度係数が前記波長帯域において9×10−6/℃以上であることを特徴とする請求項1から請求項5のいずれかに記載のレーザ装置。
  7. 前記光学素子の端面が凸状に形成されていることにより、前記光学素子が前記光ファイバとの光結合を行うレンズを兼ねることを特徴とする請求項1から請求項6のいずれかに記載のレーザ装置。
  8. 前記光ファイバが偏波保持光ファイバであることを特徴とする請求項1から請求項7のいずれかに記載のレーザ装置。
  9. 前記光ファイバの前記半導体光増幅素子に近い側の端面に半導体光増幅素子で発生した光に対して無反射コートが施されていることを特徴とする請求項1から請求項8のいずれかに記載のレーザ装置。
  10. 前記光ファイバの前記半導体光増幅素子に近い側の端面が半導体光増幅素子で発生した光に対してブリュースタ角になるようにカットされていることを特徴とする請求項1から請求項9のいずれかに記載のレーザ装置。
JP2002220643A 2002-07-30 2002-07-30 レーザ装置 Expired - Fee Related JP4066738B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220643A JP4066738B2 (ja) 2002-07-30 2002-07-30 レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220643A JP4066738B2 (ja) 2002-07-30 2002-07-30 レーザ装置

Publications (2)

Publication Number Publication Date
JP2004063828A JP2004063828A (ja) 2004-02-26
JP4066738B2 true JP4066738B2 (ja) 2008-03-26

Family

ID=31941172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220643A Expired - Fee Related JP4066738B2 (ja) 2002-07-30 2002-07-30 レーザ装置

Country Status (1)

Country Link
JP (1) JP4066738B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054621A (ja) * 2008-08-26 2010-03-11 Nippon Telegr & Teleph Corp <Ntt> 波長変換光源
KR101195596B1 (ko) * 2010-05-04 2012-10-30 (주)파이버프로 구조물 물리량 측정 시스템
CN105765802B (zh) * 2013-11-27 2020-01-07 日本碍子株式会社 外部谐振器型发光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163469A (ja) * 1997-11-28 1999-06-18 Sumitomo Electric Ind Ltd ファイバグレーティング外部共振器レーザ
JPH11233894A (ja) * 1998-02-18 1999-08-27 Furukawa Electric Co Ltd:The 波長可変外部共振器型レーザ
JPH11354890A (ja) * 1998-06-05 1999-12-24 Nec Corp 半導体レーザモジュール
JP2000082864A (ja) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> レーザ装置
JP2001042368A (ja) * 1999-07-28 2001-02-16 Sumitomo Electric Ind Ltd 波長変換器
JP2001085787A (ja) * 1999-09-14 2001-03-30 Hitachi Cable Ltd 波長可変型光送受信器

Also Published As

Publication number Publication date
JP2004063828A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
US5845030A (en) Semiconductor laser module and optical fiber amplifier
JP6125631B2 (ja) 外部共振器型発光装置
KR101038264B1 (ko) 외부공진형 파장가변 레이저 모듈
CN105765802B (zh) 外部谐振器型发光装置
US6839376B2 (en) Laser light source
KR20110101016A (ko) 파장 가변 레이저 장치
WO2018040555A1 (zh) 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器
WO2015107960A1 (ja) 外部共振器型発光装置
JP5641631B1 (ja) 外部共振器型発光装置
JP4629852B2 (ja) 半導体レーザモジュールとそれを用いた光増幅器
JP5936777B2 (ja) グレーティング素子および外部共振器型発光装置
US7760775B2 (en) Apparatus and method of generating laser beam
JP4066738B2 (ja) レーザ装置
JP2000183445A (ja) 半導体レ―ザモジュ―ル
KR101679660B1 (ko) To-can 패키징을 위한 외부 공진기형 파장가변 레이저 모듈
JPH1117286A (ja) 波長可変レーザ装置
JP4176860B2 (ja) 外部共振器型レーザ
JP2002118325A (ja) 半導体レーザモジュール、それを用いた励起光源装置
JP2016171219A (ja) 外部共振器型発光装置
JP2015039011A (ja) 外部共振器型発光装置
WO2016093187A1 (ja) 外部共振器型発光装置
WO2015190385A1 (ja) 外部共振器型発光装置
JPH11326709A (ja) レーザダイオードモジュール
WO2015108197A1 (ja) 外部共振器型発光装置
JP2002329925A (ja) 半導体レーザモジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees