WO2018040555A1 - 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器 - Google Patents

一种基于单波长窄带滤光组件选频的窄线宽半导体激光器 Download PDF

Info

Publication number
WO2018040555A1
WO2018040555A1 PCT/CN2017/078720 CN2017078720W WO2018040555A1 WO 2018040555 A1 WO2018040555 A1 WO 2018040555A1 CN 2017078720 W CN2017078720 W CN 2017078720W WO 2018040555 A1 WO2018040555 A1 WO 2018040555A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
filter
optical amplifier
amplifier chip
Prior art date
Application number
PCT/CN2017/078720
Other languages
English (en)
French (fr)
Inventor
唐毅
翟羽佳
柯威
陈义宗
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US16/329,088 priority Critical patent/US10826273B2/en
Publication of WO2018040555A1 publication Critical patent/WO2018040555A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • H01S3/08036Single-mode emission using intracavity dispersive, polarising or birefringent elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5054Amplifier structures not provided for in groups H01S5/02 - H01S5/30 in which the wavelength is transformed by non-linear properties of the active medium, e.g. four wave mixing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity

Definitions

  • the present invention relates to a laser component, and more particularly to a principle and structure of a narrow linewidth semiconductor laser based on frequency selection of a single wavelength narrowband filter assembly, and more particularly to a comb filter and a band pass filter.
  • the structure and operation principle of a narrow linewidth semiconductor external cavity laser of a frequency selective component, the narrow linewidth semiconductor laser can be used in a coherent optical communication and optical fiber sensing system, and the invention belongs to the field of communication and sensing.
  • Narrow-linewidth semiconductor lasers are widely used in fiber-optic communications, fiber-optic sensing, fiber-optic remote sensing, and materials technology for their narrow linewidth and low noise.
  • the wavelength selective device can be used to determine and adjust its wavelength, limit the longitudinal modulus of the oscillating in the gain spectrum, and allow a laser of a few frequencies that meet certain conditions to oscillate, thereby narrowing the line width; if only one is allowed
  • the longitudinal mode oscillates to form a single-frequency laser, and the output light has extremely high temporal coherence and high practical value.
  • narrow-linewidth semiconductor lasers mostly use an external cavity frequency selection scheme, and the narrow-bandwidth single-frequency output of the laser is realized by narrow-band filter frequency selection and long-cavity long-voltage narrow linewidth.
  • the specific implementation has the following cases:
  • Bragg waveguide grating As a wavelength selective device, for example, US Patent No. 008885677B1 "Semiconductor external cavity laser with integrated planar waveguide bragg grating and wide-bandwidth frequency modulation", but this method has high process difficulty and large coupling insertion loss.
  • the other is to use a Bragg fiber grating as a wavelength selective element, for example, US Patent No. 8018982B2 "Sliced fiber bragg grating used as external cavity for semiconductor Laser and solid state laser", but this laser structure puts high requirements on the packaging method of Bragg fiber grating, and the grating is easily affected by environmental factors, which is not conducive to the stable operation of the laser.
  • the object of the present invention is to overcome the problems of the prior art, and a combined filter of a comb filter and a band pass filter is used as a frequency selecting component, and a semiconductor outer cavity structure is used to realize a narrow linewidth laser with stable laser output.
  • the invention provides a narrow linewidth external cavity semiconductor laser, comprising a semiconductor optical amplifier chip, a single wavelength narrowband filter assembly, a mirror and a collimated beam coupled output assembly;
  • the semiconductor optical amplifier chip provides sufficient gain as a gain medium to achieve laser output
  • the mirror and one end surface of the semiconductor optical amplifier chip form two cavity mirrors of a laser cavity
  • the single wavelength narrow band filter assembly is disposed between the two mirrors such that the laser is single mode lased while other modes are effectively suppressed.
  • the single wavelength narrow band filter assembly includes a comb filter and a band pass filter.
  • the collimated beam coupled output assembly includes an isolator, a coupling lens, and an output fiber.
  • the comb filter is an etalon, a micro ring or other component capable of generating a comb filter effect
  • the band pass filter is a DWDM filter or an AWG or the like to generate a band pass. Filter for filter effect.
  • the mirror is a partial mirror
  • the single-wavelength narrow-band filter assembly, the partial mirror and the collimated beam-coupled output assembly are located on the same side of the semiconductor optical amplifier chip, and are sequentially connected.
  • the front end surface of the semiconductor optical amplifier chip is coated with an anti-reflection film, and the rear end surface is plated with a high reflective film; the output optical signal of the semiconductor optical amplifier chip is collimated and enters the comb filter.
  • the partial mirror transmits an output through which the output laser is formed by the isolator, the coupling lens and the output fiber.
  • the mirror is a total reflection mirror, and the single-wavelength narrow-band filter assembly and the total reflection mirror and the collimated beam-coupled output assembly are respectively located on different sides of the semiconductor optical amplifier chip.
  • the rear end surface of the semiconductor optical amplifier chip is plated with an anti-reflection film, and the front end surface is plated with a partial reflection film; the output optical signal of the semiconductor optical amplifier chip is collimated and enters the comb filter. Forming a comb filter spectrum, and then selecting a desired wavelength through the band pass filter, and then being reflected by the total reflection mirror back to the semiconductor optical amplifier to form a laser feedback resonance, and another portion of the light from the semiconductor light
  • the front end face of the amplifier chip transmits the output and is collimated into the isolator, the coupling lens and the output fiber to form an output laser.
  • the semiconductor optical amplifier chip, the single-wavelength narrow-band filter assembly, the mirror, and the collimated beam-coupled output assembly are carried on a rigid flat plate, and the rigid flat plate further has a temperature control system.
  • the temperature of the laser is adjusted by the temperature control system to control the longitudinal mode throughout
  • the relative position in the filter band is controlled to control the output wavelength and power of the laser, so that the laser is in an optimal working state.
  • the invention adopts a free-space optical optical path, and has the advantages of convenient coupling and simple structure.
  • the present invention adopts a comb filter as a frequency selection component, and is easy to realize a narrow line width output.
  • the invention adopts a commercial band pass filter as a wavelength rough selecting component, which improves the wavelength flexibility of the device and reduces the cost.
  • FIG. 1 is a schematic diagram of an optical path of a narrow linewidth laser based on etalon frequency selection according to the present invention
  • Figure 3 is a relative relationship between the transmission spectrum of the etalon and the transmission spectrum of the band pass filter
  • Figure 9 Schematic diagram of the optical path of the second embodiment of the structure of the present invention.
  • the invention provides a narrow-width-wide external cavity semiconductor laser structure based on a bulk Bragg grating, which adopts a combination of a comb filter and a band pass filter as a narrow-band frequency selective component, and adopts a structure of a semiconductor external cavity laser.
  • the band-pass filter can be a DWDM filter or an AWG type.
  • the function of the present invention is exemplified below by taking an etalon and a DWDM filter as an example.
  • the present invention provides a narrow linewidth external cavity semiconductor laser structure based on a single wavelength narrowband filter assembly, one embodiment of which is shown in FIG. 1.
  • the semiconductor laser includes a semiconductor optical amplifier chip 1, a collimating lens 2, and an etalon 3
  • the DWDM filter 4, the partial mirror 5, the isolator 6, the coupling lens 7, and the output fiber 8 are sequentially arranged.
  • the front end surface 1B of the semiconductor optical amplifier chip 1 is coated with an anti-reflection film, the rear end surface 1A is plated with a high reflective film, and both end faces of the etalon 3 are plated with a partial reflection film.
  • DWDM filter 4 generally adopts DWDM filter of communication band, which increases the flexibility of laser output wavelength.
  • the reflectivity of partial mirror 5 can be differently selected.
  • the isolator 6 generally adopts two-stage isolator, which can effectively prevent reflected light. Entering the laser cavity, the coupling lens 7 and the output fiber 8 form the coupled output system of the entire laser.
  • the output optical signal of the semiconductor optical amplifier chip 1 is collimated by the collimator lens 2, enters the etalon 3, forms a comb filter spectrum, and then passes through the band pass filter 4 to select a desired wavelength, and then is partially reflected by the partial mirror 5.
  • the semiconductor optical amplifier 1 forms a laser feedback resonance, and another portion of the light is transmitted from the partial mirror 5, and the output laser is formed through the isolator 6, the coupling lens 7, and the output fiber 8.
  • the isolator 6, the coupling lens 7, and the output fiber 8 function as a collimated beam coupling output.
  • the entire optical system can be packaged in a 14PIN standard butterfly package or a smaller TOSA package.
  • the optical system will be carried by an entire rigid plate.
  • This rigid plate should have good thermal conductivity and Low coefficient of thermal expansion, such as copper or ceramic plates.
  • a semiconductor cooler (TEC) is mounted under the rigid plate carrying the optical system.
  • a thermistor is placed on the rigid plate to form a temperature control system together with the TEC, so as to ensure stable operation of the laser.
  • the semiconductor optical amplifier chip 1 serves as a gain medium to provide sufficient gain to the laser to achieve laser output.
  • the rear end face 1A is plated with a high reverse mode, which can be used as a back reflection surface of the laser cavity, and the front end face 1B is coated with an anti-reflection film, which can minimize the FP effect of the die itself.
  • the semiconductor optical amplifier chip 1 is designed to have a low dispersion gain to control the laser side mode to achieve the purpose of reducing noise in the cavity.
  • the semiconductor optical amplifier chip 1 is designed to have a P-polarized state and a high extinction ratio to emit light to ensure that the laser mode is pure.
  • the etalon 3 and the DWDM filter 4 are combined to form a single-wavelength narrow-band filter assembly, wherein the etalon 3 has two end faces plated with a partial reflection film, and in the case of normal incidence, according to the etalon transmission formula 1-1 and 1-2.
  • the free spectral range ⁇ is related to the material refractive index n and the thickness d of the etalon 3, and the bandwidth ⁇ of the transmission peak is related to the reflectance of the two end surface partial reflection films, and the higher the reflectance, the narrower the transmission peak bandwidth, and The higher the contrast ratio, the narrower the bandwidth and the higher the contrast, which helps to suppress the side mode and reduce the noise inside the cavity. Therefore, when the etalon 3 is designed, the reflectance of the two end faces is generally higher.
  • the transmission spectrum of the etalon 3 is shown in FIG.
  • a narrow linewidth output is more easily obtained at a position where the relative group delay is large, because the effective optical path at this time is large, and the group delay curve of the etalon 3 is shown in Fig. 2.
  • the transmission spectrum of the DWDM filter 4 of the present invention may be selected from a Gaussian type or a flat top type, but the transmission peak thereof is aligned with the selected transmission peak of the etalon 3, and the 20 dB bandwidth of the DWDM filter 4 is selected.
  • Other transmission peaks of the etalon 3 cannot occur within the range, which requires a reasonable selection of the free spectral range of the etalon 3 and the 20 dB bandwidth of the band pass filter 4.
  • the flat top type DWDM filter 4 is generally selected.
  • the filter band relationship of the two components can be seen in Figure 3.
  • the etalon 3 is designed with appropriate bandwidth and free spectral range.
  • the DWDM filter 4 is designed as a flat-top or Gaussian filter strip shape, which combine to form a single-channel narrow-band filter assembly with a sufficient bandwidth to make the laser single-mode. The lasing, while other modes are effectively suppressed.
  • the partial mirror 5 and the rear end face 1A of the semiconductor optical amplifier chip 1 form two cavity mirrors of the laser cavity, and the optical distance between the two faces determines the longitudinal mode interval of the entire laser, and the longer the optical distance between the two faces The shorter the longitudinal mode interval, the narrower the line width of a single longitudinal mode, so design a narrow linewidth laser It is necessary to increase the distance between the two reflecting surfaces as appropriate.
  • the etalon 3 should contain as few longitudinal dies as possible, which helps to suppress the laser side mode and reduce the laser noise.
  • the cavity length of the laser ie, the optical distance between the partial reflection mirror 5 and the two reflective surfaces of the rear end face 1A of the semiconductor optical amplifier chip 1
  • the bandwidth of the etalon 3 A balance needs to be achieved to keep the laser operating at its optimum.
  • the gain advantage can be lasing, thereby forming a laser output, while other adjacent longitudinal modes are suppressed due to mode competition and filter insertion loss.
  • the relative position of the laser lasing mode in the transmission spectrum of the etalon 3 can be controlled, thereby affecting the output characteristics of the laser, and also considering the transmission peak of the etalon 3 and the longitudinal mode of the laser when the temperature of the laser changes. Moving in the same direction, but the longitudinal mode of the laser moves faster.
  • the solid line in Fig. 4 indicates the relative position of the longitudinal mode initial wavelength ⁇ 1 and the etalon 3 transmission peak at the laser temperature T 1
  • the broken line indicates the longitudinal mode shift to ⁇ 2 and the etalon 3 transmission peak at the laser temperature T 2
  • the relative position of the laser can be seen to change the wavelength and insertion loss of the longitudinal mode that can be lasing at two temperatures, resulting in a change in the final laser output wavelength and power.
  • Figure 5 shows the wavelength variation law corresponding to the temperature rise process and the temperature drop process of the laser.
  • Figure 6 shows the change law of the output power corresponding to the temperature rise process and the temperature decrease process of the laser. It can be seen from the figure that the temperature rise and fall temperature curves are not completely coincident. It is caused by the mode lag hysteresis caused by the mode competition of the laser.
  • the relative position of the longitudinal mode in the entire filter band can be controlled to control the output wavelength and power of the laser so that the laser is in an optimal working state.
  • a free space outer cavity structure is adopted, and the effective cavity length of the laser is maximized as long as the device itself is required.
  • the frequency selective component etalon 3 and the DWDM filter 4 of the present invention two principles are followed, one is the insertion loss as small as possible, and the other is a suitably narrow bandwidth.
  • the small insertion loss helps to lower the threshold of the laser, thereby narrowing the line width.
  • narrowing the bandwidth can effectively suppress the vibration of the side and achieve the purpose of reducing noise.
  • the narrow linewidth laser linewidth test results designed in this case are shown in Figure 7, and the noise test results are shown in Figure 8.
  • FIG. 9 A second embodiment of the narrow linewidth external cavity semiconductor laser structure provided by the present invention is shown in FIG. 9.
  • the outer cavity portion and the coupling output portion are respectively placed on both sides of the semiconductor amplifier chip 1, and the rear end surface of the semiconductor optical amplifier chip 1 is provided.
  • (ie, the outer cavity end) 1A is coated with an anti-reflection film
  • the front end surface (ie, the output end) 1B is plated with a partial reflection film as an output cavity mirror.
  • the etalon 3 and the band pass filter 4 are placed as a frequency selective element after being placed in the external cavity collimator lens 7, and the total reflection mirror 5 is used as a cavity mirror.
  • the narrow linewidth laser output portion of the structure is composed of an output lens 2, an isolator 6, and a pigtail coupling system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种窄线宽外腔半导体激光器,包括半导体光放大器芯片(1)、梳状滤光器(3)、带通滤光器(4)、部分反射片(5)、准直光束耦合输出组件;其中,准直光束耦合输出组件由隔离器(6)、耦合透镜(7)、输出光纤(8)组成;部分反射片(5)和半导体光放大器芯片(1)后端面(1A)形成激光器谐振腔;梳状滤光器(3)和带通滤光器(4)形成一个单通道的窄带滤光组件,其带宽使得激光器单模激射,而其他模式受到有效抑制,通过调节激光器温度可以控制纵模在整个滤波带中的相对位置,从而控制激光器的输出波长和功率,使得激光器处于最佳工作状态;采用标准具作为梳状滤光器(3),容易实现窄线宽输出;采用商用DWDM滤光片作为带通滤光器(4),提高了器件的波长灵活性,降低了成本。

Description

一种基于单波长窄带滤光组件选频的窄线宽半导体激光器 技术领域
本发明涉及一种激光器元件,尤其涉及一种基于单波长窄带滤光组件选频的窄线宽半导体激光器原理及结构,具体地说涉及一种利用梳状滤光器及带通滤光器作为选频元件的窄线宽半导体外腔激光器的结构和工作原理,该窄线宽半导体激光器可用于相干光通信和光纤传感系统,本发明属于通信和传感领域。
背景技术
窄线宽半导体激光器以其窄线宽、低噪声等优点广泛应用于光纤通信、光纤传感、光纤遥感及材料技术等领域。波长选择器件可以用来确定和调整其波长,限制增益谱内起振的纵模数,让满足特定条件的少数几个频率的激光起振,起到压窄线宽的作用;如果只让一个纵模振荡,则构成单频激光器,输出光具有极高的时间相干性,实用价值很高。
一般来说窄线宽半导体激光器大多采用外腔选频方案,通过窄带滤波器选频,长腔长压窄线宽方式实现激光器的窄线宽单频输出。具体的实现方式已有如下几种案例:
一种是使用布拉格波导光栅作为波长选择器件,例如美国专利US008885677B1“Semiconductor external cavity laser with integrated planar waveguide bragg grating and wide-bandwidth frequency modulation”,但是这种方法工艺难度高,耦合插损较大。
另一种是使用布拉格光纤光栅作为波长选择元件,例如美国专利US8018982B2“Sliced fiber bragg grating used as external cavity for semiconductor  laser and solid state laser”,但是这种激光器结构对布拉格光纤光栅的封装方法提出了很高的要求,光栅容易受到环境因素的影响,不利于激光器的稳定工作。
还有一种就是使用体布拉格光栅作为激光器的外腔选频元件,具有耦合方便的优点,而且光栅材料比较坚固均匀,但是带宽很难做窄且价格昂贵,不宜生产。一个类似的例子如美国专利US9287681B2“Wavelength stabilized diode laser”,这篇专利描述了如何利用体布拉格光栅加标准具进行选频,实现单模输出。
发明内容
本发明的目的是克服现有技术问题,通过一种梳状滤光器加带通滤光器的组合滤波器作为选频元件,采用半导体外腔结构,实现激光器输出稳定的窄线宽激光。
本发明提供了一种窄线宽外腔半导体激光器,包括半导体光放大器芯片、单波长窄带滤光组件、反射镜和准直光束耦合输出组件;
所述半导体光放大器芯片作为增益介质提供足够的增益从而实现激光输出;
所述反射镜与所述半导体光放大器芯片的一个端面形成激光器谐振腔的两个腔镜;
所述单波长窄带滤光组件设置在所述两个腔镜之间,使得激光器单模激射,而其他模式受到有效抑制。
在上述技术方案中,所述单波长窄带滤光组件包括梳状滤光器和带通滤光器。
在上述技术方案中,所述准直光束耦合输出组件包括隔离器、耦合透镜和输出光纤。
在上述技术方案中,所述梳状滤光器是标准具、微环或其他可以产生梳状滤光效果的元件,所述带通滤光器是DWDM滤光片或AWG等可以产生带通滤光效果的滤光器。
在上述技术方案中,所述反射镜为部分反射镜,所述单波长窄带滤光组件、部分反射镜和准直光束耦合输出组件位于所述半导体光放大器芯片的同一侧,并依次连接。
在上述技术方案中,所述半导体光放大器芯片的前端面镀有增透膜,后端面镀有高反膜;所述半导体光放大器芯片输出光信号经过准直后进入所述梳状滤光器形成梳状滤光谱,再经过所述带通滤光器选择一个需要的波长,之后被所述部分反射镜反射一部分光回到所述半导体光放大器形成激光反馈谐振,而另一部分光从所述部分反射镜透射输出,经过所述隔离器、耦合透镜和输出光纤形成输出激光。
在上述技术方案中,所述反射镜为全反射镜,所述单波长窄带滤光组件和全反射镜以及所述准直光束耦合输出组件分别位于所述半导体光放大器芯片的不同侧。
在上述技术方案中,所述半导体光放大器芯片的后端面镀有增透膜,前端面镀有部分反射膜;所述半导体光放大器芯片输出光信号经过准直后进入所述梳状滤光器形成梳状滤光谱,再经过所述带通滤光片选择一个需要的波长,之后被所述全反射镜反射回到所述半导体光放大器形成激光反馈谐振,而另一部分光从所述半导体光放大器芯片的前端面透射输出,经过准直进入所述隔离器、耦合透镜和输出光纤形成输出激光。
在上述技术方案中,所述半导体光放大器芯片、单波长窄带滤光组件、反射镜和准直光束耦合输出组件被承载在一刚性平板上,所述刚性平板还具有包括控温系统。
在上述技术方案中,通过所述温控系统调节激光器温度以控制纵模在整个 滤波带中的相对位置,达到控制激光器的输出波长和功率,使得激光器处于最佳工作状态。
本发明取得了以下技术效果:
1、本发明采用自由空间光学光路,具有耦合方便结构简单的优点。
2、本发明采用梳状滤光器作为选频元件,容易实现窄线宽输出。
3、本发明采用商用带通滤光器作为波长粗选元件,提高了器件的波长灵活性,降低了成本。
附图说明
图1、本发明基于标准具选频的窄线宽激光器光路示意图;
图2、标准具透射谱与群延时曲线图;
图3、标准具透射谱与带通滤光片透射谱相对关系图;
图4、温度对标准具透射谱和激光器波长的影响;
图5、激光器波长随温度变化规律;
图6、激光器功率随温度变化规律;
图7、激光器线宽测试结果图;
图8、激光器频率噪声测试结果图;
图9、本发明结构的第二个实施例光路示意图。
图中标记:
1—半导体光放大器芯片;
1A—后端面;
1B—前端面;
2—准直透镜;
3—标准具;
4—带通滤光片;
5—部分反射镜;
6—隔离器;
7—耦合透镜;
8—输出光纤;
9—外腔准直器透镜;
10—全反射镜。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及具体实施方式对本发明作进一步的详细描述。
本发明提供了一种基于体布拉格光栅的窄线宽外腔半导体激光器结构,其采用了梳状滤光器和一个带通滤光片组合作为窄带选频元件,采用半导体外腔激光器的结构实现窄线宽单频输出,其中梳状滤光器可以是标准具、微环或其他可以产生梳状滤光效果的元件,带通滤光片可以是DWDM滤光片或AWG等类型可以产生带通滤光效果的元件,下面以标准具和DWDM滤光片为例阐述本发明的工作原理。
本发明提供的一种基于单波长窄带滤光组件的窄线宽外腔半导体激光器结构,其中一个实施例如图1所示,该半导体激光器包括半导体光放大器芯片1、准直透镜2、标准具3、DWDM滤光片4、部分反射镜5、隔离器6、耦合透镜7、输出光纤8,上述器件依次排列。其中半导体光放大器芯片1的前端面1B镀有增透膜,后端面1A镀有高反膜,标准具3的两个端面都镀有部分反射膜, DWDM滤光片4一般采用通信波段的DWDM滤光片,增加激光器输出波长的灵活性,部分反射镜5的反射率可以有不同选择,隔离器6一般采用双级隔离器,可以有效防止反射光进入激光器谐振腔,耦合透镜7和输出光纤8构成了整个激光器的耦合输出系统。半导体光放大器芯片1输出光信号经过准直透镜2准直,进入标准具3,形成梳状滤光谱,再经过带通滤光片4选择一个需要的波长,之后被部分反射镜5反射一部分光回到半导体光放大器1形成激光反馈谐振,而另一部分光从部分反射镜5透射输出,经过隔离器6、耦合透镜7和输出光纤8形成输出激光。隔离器6、耦合透镜7和输出光纤8起到准直光束耦合输出的作用。
上述整个光学系统可以封装到一个14PIN的标准蝶形封装里面,或者更小的TOSA封装里面,一般来说上述光学系统会由一整个刚性平板来承载,这个刚性平板应当具有良好的导热性和较低的热膨胀系数,比如铜板或陶瓷板等。一般来说承载光学系统的刚性平板下面还会安装一个半导体制冷器(TEC),刚性平板上面安放一个热敏电阻,与TEC一起形成一个控温系统,这样保证激光器稳定工作。
本发明上述实施例中核心组成部件的作用具体如下:
半导体光放大器芯片1作为增益介质为激光器提供足够的增益从而实现激光输出。后端面1A镀有高反模,可作为激光器谐振腔的后反射面,前端面1B镀有增透膜,可以尽量减小管芯自身的FP效应。半导体光放大器芯片1被设计为低的色散增益,以控制激光边模以达到降低谐振腔内噪声的目的。另外半导体光放大器芯片1被设计为P偏振态高消光比出光,以保证激光器模式纯净。
标准具3和DWDM滤光片4组合形成单波长窄带滤光组件,其中,标准具3两个端面镀有部分反射膜,在正入射情况下根据标准具的透射公式1-1和 1-2。
Figure PCTCN2017078720-appb-000001
Figure PCTCN2017078720-appb-000002
可以看到自由光谱范围δγ与材料折射率n和标准具3的厚度d相关,透射峰的带宽Δγ与两个端面部分反射膜的反射率相关,反射率越高,透射峰带宽越窄,且对比度越高,窄带宽和高对比度有助于抑制边模和降低腔内噪声,所以设计标准具3时一般会将两个端面的反射率做的比较高。
标准具3的透射谱如图2所示。在标准具3的透射峰内,相对群延时大的位置更容易得到窄线宽输出,这是因为此时的有效光程较大,标准具3的群延时曲线参见图2。
本发明中的DWDM滤光片4的透射谱可以选择高斯型也可以选择平顶型,但是其透射峰都要与标准具3被选择的透射峰对准,而且DWDM滤光片4的20dB带宽内不能出现标准具3的其他透射峰,这就需要合理选择标准具3的自由光谱范围和带通滤光片4的20dB带宽。另外考虑到标准具3的温度敏感性一般比DWDM滤光片4强,所以为了保证整个滤波系统的插损,一般选择平顶型的DWDM滤光片4。两个元件的滤波带关系可以参见图3。标准具3设计有适当的带宽与自由光谱范围,DWDM滤光片4设计为平顶或高斯型的滤波带形状,二者结合形成一个单通道的窄带滤光组件,其带宽足使得激光器单模激射,而其他模式受到有效抑制。
部分反射镜5与半导体光放大器芯片1的后端面1A形成激光器谐振腔的两个腔镜,这两个面之间的光学距离决定了整个激光器的纵模间隔,两个面的光学距离越长,纵模间隔越短,单个纵模的线宽就越窄,所以设计窄线宽激光器 要适当增加这两个反射面之间的距离。另外要实现激光器单纵模输出,那么标准具3的带宽内要含有尽量少的纵模数,这样有助于抑制激光器边模,降低激光器噪声,那么说明如果这两个反射面之间的距离太长反而不利于激光器边模的抑制,所以激光器的腔长(即部分反射镜5与半导体光放大器芯片1的后端面1A这两个反射面之间的光学距离)与标准具3的带宽之间需要达到平衡以使得激光器工作在最佳状态。
当标准具3的滤波带内一个纵模距离透射峰最近获得增益优势可以激射,从而形成激光输出,而其他相邻纵模则因为模式竞争以及滤波带插损而被抑制。通过改变激光器的工作温度可以控制激光激射模式在标准具3的透射谱中的相对位置,从而影响激光器的输出特性,另外也考虑到激光器温度变化时标准具3的透射峰与激光器纵模沿同方向移动,但是激光器纵模的移动速度较快。
图4中实线表示纵模初始波长λ1和标准具3透射峰在激光器温度为T1时的相对位置,虚线表示纵模移动至λ2和标准具3透射峰在激光器温度为T2时的相对位置,可以看到两个温度下能够激射的纵模所处的波长和插损都发生了变化,就会导致最终激光输出波长和功率的变化。图5为激光器温度升温过程和降温过程对应的波长变化规律,图6为激光器温度升温过程和降温过程对应的输出功率变化规律,从图中可以看到升温和降温曲线是不完全重合的,这是因为激光器的模式竞争导致的跳模迟滞效应导致的。
由此,通过调节激光器温度可以控制纵模在整个滤波带中的相对位置,达到控制激光器的输出波长和功率,以使得激光器处于最佳工作状态。
在本发明中采用了自由空间的外腔结构,在满足器件自身体积要求下尽量增长了激光器的有效腔长。另外在本发明中的选频元件标准具3和DWDM滤光片4设计方面遵循两个原则,一个是尽量小的插入损耗,一个是适当窄的带宽, 小的插入损耗,有助于降低激光器的阈值,从而压窄线宽,另一方面压窄带宽可以有效地抑制边摸起振,达到了降低噪声的目的。例如,本案中设计的窄线宽激光器线宽测试结果如图7所示,噪声测试结果如图8所示。
本发明提供的窄线宽外腔半导体激光器结构的第二个实施例如图9所示,将外腔部分和耦合输出部分别放在半导体放大器芯片1的两侧,半导体光放大器芯片1的后端面(即外腔端)1A镀有增透膜,前端面(即输出端)1B镀有部分反射膜作为输出腔镜。标准具3和带通滤光片4置于外腔准直透镜7后作为频率选择元件,全反射镜5作为腔镜使用。本结构的窄线宽激光器输出部分由输出端透镜2、隔离器6和尾纤耦合系统组成。
虽然本发明已经详细地示出并描述了相关的特定的实施例参考,但本领域的技术人员应该能够理解,在不背离本发明的精神和范围内可以在形式上和细节上作出各种改变。这些改变都将落入本发明的权利要求所要求的保护范围。

Claims (10)

  1. 一种窄线宽外腔半导体激光器,其特征在于:包括半导体光放大器芯片、单波长窄带滤光组件、反射镜和准直光束耦合输出组件;
    所述半导体光放大器芯片作为增益介质提供足够的增益从而实现激光输出;
    所述反射镜与所述半导体光放大器芯片的一个端面形成激光器谐振腔的两个腔镜;
    所述单波长窄带滤光组件设置在所述两个腔镜之间,使得激光器单模激射,而其他模式受到有效抑制。
  2. 如权利要求1所述的一种窄线宽外腔半导体激光器,其特征在于:所述单波长窄带滤光组件包括梳状滤光器和带通滤光器。
  3. 如权利要求2所述的一种窄线宽外腔半导体激光器,其特征在于:所述准直光束耦合输出组件包括隔离器、耦合透镜和输出光纤。
  4. 如权利要求2-3中任一项所述的一种窄线宽外腔半导体激光器,其特征在于:所述梳状滤光器是标准具、微环或其他可以产生梳状滤光效果的元件,所述带通滤光器是DWDM滤光片或AWG等可以产生带通滤光效果的滤光器。
  5. 如权利要求3-4中任一项所述的一种窄线宽外腔半导体激光器,其特征在于:所述反射镜为部分反射镜,所述单波长窄带滤光组件、部分反射镜和准直光束耦合输出组件位于所述半导体光放大器芯片的同一侧,并依次连接。
  6. 如权利要求5所述的一种窄线宽外腔半导体激光器,其特征在于:所述半导体光放大器芯片的前端面镀有增透膜,后端面镀有高反膜;所述半导体光放大器芯片输出光信号经过准直后进入所述梳状滤光器形成梳状滤光谱,再经过所述带通滤光器选择一个需要的波长,之后被所述部分反射镜反射一部分光回到所述半导体光放大器形成激光反馈谐振,而另一部分光从所述部分反射镜透射输出,经过所述隔离器、耦合透镜和输出光纤形成输出激光。
  7. 如权利要求3-4中任一项所述的一种窄线宽外腔半导体激光器,其特 征在于:所述反射镜为全反射镜,所述单波长窄带滤光组件和全反射镜以及所述准直光束耦合输出组件分别位于所述半导体光放大器芯片的不同侧。
  8. 如权利要求7所述的一种窄线宽外腔半导体激光器,其特征在于:所述半导体光放大器芯片的后端面镀有增透膜,前端面镀有部分反射膜;所述半导体光放大器芯片输出光信号经过准直后进入所述梳状滤光器形成梳状滤光谱,再经过所述带通滤光片选择一个需要的波长,之后被所述全反射镜反射回到所述半导体光放大器形成激光反馈谐振,而另一部分光从所述半导体光放大器芯片的前端面透射输出,经过准直进入所述隔离器、耦合透镜和输出光纤形成输出激光。
  9. 如权利要求1-8中任一项所述的一种窄线宽外腔半导体激光器,其特征在于:所述半导体光放大器芯片、单波长窄带滤光组件、反射镜和准直光束耦合输出组件被承载在一刚性平板上,所述刚性平板还具有包括控温系统。
  10. 如权利要求9所述的一种窄线宽外腔半导体激光器,其特征在于:通过所述温控系统调节激光器温度以控制纵模在整个滤波带中的相对位置,达到控制激光器的输出波长和功率,使得激光器处于最佳工作状态。
PCT/CN2017/078720 2016-08-29 2017-03-30 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器 WO2018040555A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,088 US10826273B2 (en) 2016-08-29 2017-03-30 Narrow linewidth semiconductor laser based on single-wavelength narrowband optical filtering assembly frequency selection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610754820.9A CN106207749A (zh) 2016-08-29 2016-08-29 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器
CN201610754820.9 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018040555A1 true WO2018040555A1 (zh) 2018-03-08

Family

ID=57527614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078720 WO2018040555A1 (zh) 2016-08-29 2017-03-30 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器

Country Status (3)

Country Link
US (1) US10826273B2 (zh)
CN (1) CN106207749A (zh)
WO (1) WO2018040555A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983531A (zh) * 2018-08-28 2018-12-11 中盾金卫激光科技(昆山)有限公司 一种全天候红外窄光谱成像透玻透膜摄像机
CN111509534A (zh) * 2019-01-31 2020-08-07 深圳大学 窄线宽单频激光光源

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207749A (zh) 2016-08-29 2016-12-07 武汉光迅科技股份有限公司 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器
CN107918173A (zh) * 2017-12-13 2018-04-17 武汉电信器件有限公司 一种温度敏感补偿器件
CN109067498B (zh) * 2018-07-16 2020-12-04 深圳大学 波分系统波长实时调整的方法及系统
CN109088307B (zh) * 2018-07-26 2019-10-25 华中科技大学 基于超表面窄带反射镜的窄线宽外腔激光器
CN110459956B (zh) * 2019-08-23 2021-03-02 中兴光电子技术有限公司 一种窄线宽可调谐激光器
CN113659429B (zh) * 2021-09-06 2023-03-14 中国科学院长春光学精密机械与物理研究所 线偏振窄线宽外腔型半导体激光器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526071B1 (en) * 1998-10-16 2003-02-25 New Focus, Inc. Tunable laser transmitter with internal wavelength grid generators
US20030179790A1 (en) * 2002-03-25 2003-09-25 Fujitsu Limited Wavelength-selectable laser capable of high-speed frequency control
CN1839523A (zh) * 2003-09-30 2006-09-27 皮雷利&C.有限公司 外腔可调谐激光器的波长控制
CN101295855A (zh) * 2004-05-21 2008-10-29 罗姆和哈斯电子材料有限责任公司 外谐振腔半导体激光器及其制造方法
CN201398012Y (zh) * 2009-04-20 2010-02-03 福州高意通讯有限公司 一种窄线宽波长锁定的半导体激光器
CN102709811A (zh) * 2012-06-19 2012-10-03 中国科学院半导体研究所 一种实现频率自锁定的分布反馈外腔窄线宽半导体激光器
CN102751656A (zh) * 2012-07-19 2012-10-24 武汉光迅科技股份有限公司 可调激光器边模抑制比及通道稳定性监控系统及监控方法
CN104508921A (zh) * 2012-07-30 2015-04-08 奥普林克通信公司 外腔式法布里-珀罗激光器
CN104821485A (zh) * 2014-02-05 2015-08-05 华为技术有限公司 激光设备和在该设备中生成激光模式的方法
CN106207749A (zh) * 2016-08-29 2016-12-07 武汉光迅科技股份有限公司 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2269597A (en) * 1996-02-13 1997-09-02 Optical Corporation Of America External cavity semiconductor laser with monolithic prism assembly
JP2000250083A (ja) * 1999-03-03 2000-09-14 Fuji Photo Film Co Ltd 光波長変換モジュール及び画像記録方法
WO2004088801A2 (en) * 2003-03-25 2004-10-14 Lnl Technologies, Inc External gain element with mode converter and high index contrast waveguide
US7130320B2 (en) * 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
CN1997924B (zh) * 2004-04-15 2016-05-04 英飞聂拉股份有限公司 用于wdm传输网络的无制冷且波长栅格漂移的集成光路(pic)
US7366210B2 (en) * 2005-11-18 2008-04-29 Jds Uniphase Corporation Single spatial mode output multi-mode interference laser diode with external cavity
US8416831B2 (en) * 2006-12-18 2013-04-09 Toptica Photonics Ag Laser light source
US8817827B2 (en) * 2011-08-17 2014-08-26 Veralas, Inc. Ultraviolet fiber laser system
CN104242051B (zh) * 2014-09-18 2017-05-10 武汉光迅科技股份有限公司 一种外腔可调谐激光器以及其腔模锁定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526071B1 (en) * 1998-10-16 2003-02-25 New Focus, Inc. Tunable laser transmitter with internal wavelength grid generators
US20030179790A1 (en) * 2002-03-25 2003-09-25 Fujitsu Limited Wavelength-selectable laser capable of high-speed frequency control
CN1839523A (zh) * 2003-09-30 2006-09-27 皮雷利&C.有限公司 外腔可调谐激光器的波长控制
CN101295855A (zh) * 2004-05-21 2008-10-29 罗姆和哈斯电子材料有限责任公司 外谐振腔半导体激光器及其制造方法
CN201398012Y (zh) * 2009-04-20 2010-02-03 福州高意通讯有限公司 一种窄线宽波长锁定的半导体激光器
CN102709811A (zh) * 2012-06-19 2012-10-03 中国科学院半导体研究所 一种实现频率自锁定的分布反馈外腔窄线宽半导体激光器
CN102751656A (zh) * 2012-07-19 2012-10-24 武汉光迅科技股份有限公司 可调激光器边模抑制比及通道稳定性监控系统及监控方法
CN104508921A (zh) * 2012-07-30 2015-04-08 奥普林克通信公司 外腔式法布里-珀罗激光器
CN104821485A (zh) * 2014-02-05 2015-08-05 华为技术有限公司 激光设备和在该设备中生成激光模式的方法
CN106207749A (zh) * 2016-08-29 2016-12-07 武汉光迅科技股份有限公司 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983531A (zh) * 2018-08-28 2018-12-11 中盾金卫激光科技(昆山)有限公司 一种全天候红外窄光谱成像透玻透膜摄像机
CN111509534A (zh) * 2019-01-31 2020-08-07 深圳大学 窄线宽单频激光光源

Also Published As

Publication number Publication date
US20190312409A1 (en) 2019-10-10
CN106207749A (zh) 2016-12-07
US10826273B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2018040555A1 (zh) 一种基于单波长窄带滤光组件选频的窄线宽半导体激光器
JP6125631B2 (ja) 外部共振器型発光装置
CN103733448A (zh) 半导体光元件
JP2004193545A (ja) スペクトル依存性空間フィルタリングによるレーザの同調方法およびレーザ
JP2000353856A (ja) 半導体レーザモジュ−ル
JPWO2015079939A1 (ja) 外部共振器型発光装置
EP1509980B1 (en) Resonator
US11817673B1 (en) Managing optical power in a laser
US8018982B2 (en) Sliced fiber bragg grating used as external cavity for semiconductor laser and solid state laser
JP5641631B1 (ja) 外部共振器型発光装置
SE469453B (sv) Optisk kopplingsanordning
JP6379090B2 (ja) 光実装デバイス
CN107611777A (zh) 一种灵活波长的窄线宽半导体外腔激光器及控制方法
JP2017168545A (ja) 光モジュール
JP2000208869A (ja) 発光素子モジュ―ル
US7215686B2 (en) Waveguide structure having improved reflective mirror features
CA2732912C (en) External cavity laser module comprising a multi-functional optical element
JP2004511914A (ja) 波長可変単一モードレーザ装置
JP2000058950A (ja) 自由スペ―スレ―ザ
JPH1117286A (ja) 波長可変レーザ装置
JP5880087B2 (ja) グレーティング素子及び光素子
US20230089696A1 (en) Optical filter and wavelength tunable laser element
US20060056465A1 (en) Laser with reflective etalon tuning element
WO2018042663A1 (ja) 光部品および光モジュール
JP2001144370A (ja) 外部共振器型半導体レーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844863

Country of ref document: EP

Kind code of ref document: A1