WO2018042663A1 - 光部品および光モジュール - Google Patents

光部品および光モジュール Download PDF

Info

Publication number
WO2018042663A1
WO2018042663A1 PCT/JP2016/076015 JP2016076015W WO2018042663A1 WO 2018042663 A1 WO2018042663 A1 WO 2018042663A1 JP 2016076015 W JP2016076015 W JP 2016076015W WO 2018042663 A1 WO2018042663 A1 WO 2018042663A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
waveguide
demultiplexer
component according
Prior art date
Application number
PCT/JP2016/076015
Other languages
English (en)
French (fr)
Inventor
義也 佐藤
敬太 望月
瑞基 白尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/076015 priority Critical patent/WO2018042663A1/ja
Publication of WO2018042663A1 publication Critical patent/WO2018042663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means

Definitions

  • the present invention relates to an optical component and an optical module used for an optical communication device using a wavelength division multiplexing system.
  • An arrayed waveguide grating is an optical multiplexer that multiplexes multiple optical signals with different wavelength bands, or an optical demultiplexer that divides multiplexed optical signals according to the difference in wavelength bands.
  • One of the functional optical components In a conventional AWG that is simply configured, when the relationship between wavelength and transmittance is represented by a transmission spectrum, transmission wavelength characteristics are set such that the transmission spectrum for each wavelength band has a Gaussian function shape. In this case, when an optical signal having a wavelength slightly deviated from the peak wavelength in the transmission spectrum is input, the intensity of the optical signal output from the AWG may change. In order to reduce the influence of such a wavelength shift of an optical signal, a technique for expanding a transmission wavelength band by providing a flattened peak in a transmission spectrum has been proposed.
  • Patent Document 1 discloses an optical wavelength division multiplexing signal monitoring apparatus including an AWG, which is intended to expand a transmission wavelength band by providing a tapered waveguide that excites secondary mode light.
  • Patent Document 2 discloses that a transmission wavelength band is expanded by arranging a Mach-Zehnder interference circuit in an AWG output waveguide.
  • JP 2010-117566 A Japanese Patent Laying-Open No. 2015-1626
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an optical component that can reduce fluctuations in the intensity of an optical signal due to a wavelength shift with a simple configuration.
  • the present invention includes an arrayed waveguide grating and an optical element.
  • the arrayed waveguide diffraction grating includes a first waveguide having a plurality of waveguides through which a plurality of optical signals having different wavelength bands propagate individually, and a first wavelength through which a multiplexed wavelength signal that is a plurality of multiplexed optical signals propagates.
  • Two waveguides and an arrayed waveguide disposed in the optical signal path between the first end of the first waveguide and the first end of the second waveguide, the first including a plurality of transmittance peaks Provides transmission wavelength characteristics.
  • the optical element is disposed in the optical signal path coupled to the second end of the first waveguide or in the optical signal path coupled to the second end of the second waveguide, and has a wavelength at the peak of the first transmission wavelength characteristic.
  • the second transmission wavelength characteristic in which the transmittance becomes a minimum value at a wavelength that coincides with.
  • the optical component according to the present invention has an effect that the fluctuation of the intensity of the optical signal due to the shift in wavelength can be reduced with a simple configuration.
  • FIG. 1 is a schematic diagram of an optical multiplexer / demultiplexer that is an optical component according to a first embodiment of the present invention.
  • the figure which shows the 1st example of the FP filter shown in FIG. The figure which shows the 2nd example of FP filter
  • Schematic diagram of an optical multiplexer / demultiplexer that is an optical component according to a fourth embodiment of the present invention Schematic diagram of an optical multiplexer / demultiplexer that is an optical component according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an optical multiplexer / demultiplexer 10 that is an optical component according to a first embodiment of the present invention.
  • the optical multiplexer / demultiplexer 10 is a light that can function as both an optical multiplexer that multiplexes a plurality of optical signals having different wavelength bands and an optical demultiplexer that divides the multiplexed optical signal according to the difference in wavelength bands. It is a part.
  • a case where the optical multiplexer / demultiplexer 10 is an optical multiplexer is taken as an example.
  • the input and output of the optical signal in the optical demultiplexer is opposite to the input and output of the optical signal in the optical multiplexer.
  • the optical multiplexer / demultiplexer 10 includes an arrayed waveguide diffraction grating (AWG) chip 1, a Fabry-Perot (FP) filter 2 that is a first optical element, and a collimator lens 3 that is a second optical element.
  • the AWG chip 1 has an arrayed waveguide diffraction grating.
  • the AWG chip 1, the collimating lens 3, and the FP filter 2 may be bonded to each other.
  • the AWG chip 1 multiplexes a plurality of optical signals having different wavelength bands, and outputs a multiplexed wavelength signal obtained by multiplexing.
  • that the wavelength bands are different from each other means that the wavelengths are different from each other when the intensity reaches a peak.
  • the AWG chip 1 includes a first waveguide 11, a slab waveguide 12, an arrayed waveguide 13, a slab waveguide 14, and a second waveguide 15.
  • the first waveguide 11 is an input waveguide
  • the second waveguide 15 is an output waveguide.
  • the first waveguide 11 includes a plurality of waveguides through which a plurality of optical signals having different wavelength bands propagate individually.
  • the first end 18 of each waveguide of the first waveguide 11 is connected to the slab waveguide 12.
  • the second end 19 of each waveguide of the first waveguide 11 is connected to the first port 16 of the AWG chip 1.
  • the AWG chip 1 is provided with the same number of first ports 16 as the waveguides of the first waveguide 11.
  • the optical multiplexer / demultiplexer 10 that is an optical multiplexer, a plurality of optical signals are individually input from the first ports 16 that are input ports.
  • the slab waveguide 12 diverges the light wave incident from the first waveguide 11 toward the incident end of the arrayed waveguide 13.
  • FIG. 1 shows four waveguides provided in the first waveguide 11, the number of waveguides may be other than four.
  • a multiple wavelength signal that is a plurality of multiplexed optical signals propagates.
  • the first end 28 of the second waveguide 15 is connected to the slab waveguide 14.
  • the second end 29 of the second waveguide 15 is connected to the second port 17 of the AWG chip 1.
  • the arrayed waveguide 13 is connected between the slab waveguide 12 and the slab waveguide 14.
  • the arrayed waveguide 13 includes a plurality of waveguides having different lengths.
  • the optical signal propagating through the arrayed waveguide 13 is given a phase difference corresponding to the difference in length of each waveguide.
  • the slab waveguide 14 converges the light wave incident from the arrayed waveguide 13 toward the first end 28 of the second waveguide 15.
  • Each waveguide of the AWG chip 1 is formed on a substrate.
  • the substrate may be any of a glass substrate, a silicon substrate, a semiconductor substrate containing a Group 3-5 compound semiconductor or other compound semiconductor, and a resin thin film containing polyimide or other resin material.
  • the total transmission spectrum of the AWG chip 1 from the first port 16 to the second port 17 includes a plurality of transmittance peaks.
  • the wavelength at which the transmittance reaches a peak appears at a certain wavelength.
  • Each peak in the transmission spectrum has a Gaussian function shape.
  • the collimating lens 3 and the FP filter 2 are disposed in the optical signal path 4 connected to the second port 17.
  • the collimating lens 3 converts light emitted from the second port 17 into collimated light.
  • the collimating lens 3 converges the light incident from the FP filter 2 to the second port 17.
  • the FP filter 2 is an optical element that transmits light according to a transmission wavelength characteristic that is a light transmittance distribution with respect to a wavelength.
  • the FP filter 2 includes two opposing partial reflection mirrors.
  • the partial reflection mirror is a reflection surface that reflects light in a specific wavelength band.
  • the two partial reflection mirrors are arranged in parallel to each other.
  • the FP filter 2 has a transmission wavelength characteristic due to interference of multiple reflected light.
  • the wavelength at which the transmittance reaches a peak appears at a certain wavelength, and the same transmittance change is repeated at every certain wavelength.
  • the transmittance of the FP filter 2 is maximized at a wavelength satisfying the expression (1) that is the standing wave conditional expression.
  • k is the optical wave number propagating in the medium between the two partially reflective mirror
  • D is the distance between two partial reflection mirror
  • theta R is the reflection phase.
  • m is an integer.
  • FIG. 2 is a diagram illustrating a first example of the FP filter 2.
  • a first example of the FP filter 2 is an etalon 21 made of flat glass that is a transparent member.
  • the etalon 21 includes two polishing surfaces 22 that function as partial reflection mirrors.
  • the polished surface 22 is formed by polishing the front surface and the back surface of the flat glass.
  • the polishing surface 22 reflects part of the incident light by Fresnel reflection.
  • the thickness between the front surface and the back surface of the flat glass is the distance D between the two polishing surfaces 22.
  • n is the refractive index of the glass material of the etalon 21.
  • the reflectance R at the polishing surface 22 is determined depending on the refractive index of the glass material.
  • the FP filter 2 may have a reflectivity adjusted by adding a partial reflection film to the etalon 21.
  • FIG. 3 is a diagram illustrating a second example of the FP filter 2.
  • the etalon 23 as a second example of the FP filter 2 includes a partial Bragg reflector (DBR) having two partial reflection films 24 and 25.
  • the partial reflection films 24 and 25 are reflection films that reflect light in a specific wavelength band, and serve as a partial reflection mirror.
  • the partial reflection films 24 and 25 are thin films made of a metal material or other reflective material.
  • One partial reflection film 24 is sandwiched between two flat glass plates.
  • Another partial reflection film 25 is coated on the surface of the etalon 23.
  • An antireflection film 26 is coated on the incident surface on the back surface of the etalon 23 where collimated light is incident.
  • the etalon 23 can set the interval D between the two partial reflection films 24 and 25 to an arbitrary length regardless of the thickness between the front surface and the back surface of the etalon 23.
  • the optical multiplexer / demultiplexer 10 can increase the wavelength interval at which the transmittance reaches a peak for each optical signal as the interval D is reduced.
  • FIG. 4 is a diagram showing transmission spectra of the AWG chip 1, the FP filter 2, and the optical multiplexer / demultiplexer 10.
  • the upper part of FIG. 4 shows a transmission spectrum representing the first transmission wavelength characteristic which is the transmission wavelength characteristic of the AWG chip 1.
  • the middle part of FIG. 4 shows a transmission spectrum representing the second transmission wavelength characteristic which is the transmission wavelength characteristic of the FP filter 2.
  • the lower part of FIG. 4 shows a transmission spectrum representing the transmission wavelength characteristic of the optical multiplexer / demultiplexer 10 obtained by combining the first transmission wavelength characteristic and the second transmission wavelength characteristic.
  • ⁇ 0 , ⁇ 1 , ⁇ 2, and ⁇ 3 are peak wavelengths that are wavelengths at the peak intensity of each optical signal input to the optical multiplexer / demultiplexer 10, and ⁇ 0 ⁇ 1 ⁇ 2 ⁇ 3 Suppose it holds.
  • the transmission spectrum of the AWG chip 1 has peaks at ⁇ 0 , ⁇ 1 , ⁇ 2 and ⁇ 3 that are wavelengths corresponding to the respective optical signals.
  • the transmission spectrum for each optical signal has an upwardly convex Gaussian function shape.
  • the intervals of ⁇ 0 , ⁇ 1 , ⁇ 2, and ⁇ 3 are constant wavelength intervals X.
  • the transmission spectrum of the AWG chip 1 satisfies the following formula (3).
  • m is an integer. Note that not all of the intervals coincide with the wavelength interval X, and any deviation from the wavelength interval X may occur in any of the intervals.
  • ⁇ m + 1 ⁇ m X (3)
  • the FP filter 2 is designed so that the period of transmittance change in the direction of the wavelength axis in the transmission spectrum matches the wavelength interval X. Further, the transmittance of the FP filter 2 shows a local minimum value that is a local bottom value in each of ⁇ 0 , ⁇ 1 , ⁇ 2, and ⁇ 3 .
  • the transmission spectrum of the FP filter 2 includes a minimum portion having a downward convex shape in each of ⁇ 0 , ⁇ 1 , ⁇ 2, and ⁇ 3 . As described above, in the second transmission wavelength characteristic of the FP filter 2, the transmittance becomes a minimum value at ⁇ 0 , ⁇ 1 , ⁇ 2, and ⁇ 3 which are the wavelengths that coincide with the peaks in the first transmission wavelength characteristic.
  • the transmission spectrum of the optical multiplexer / demultiplexer 10 Since the peak part of the transmission spectrum of the AWG chip 1 matches the minimum part of the transmission spectrum of the FP filter 2, the transmission spectrum of the optical multiplexer / demultiplexer 10 has a peak part compared to the case without the FP filter 2. Transmittance decreases. Thereby, in the transmission spectrum of the optical multiplexer / demultiplexer 10, peak portions flattened at ⁇ 0 , ⁇ 1 , ⁇ 2 and ⁇ 3 are generated. As described above, the optical multiplexer / demultiplexer 10 can expand the transmission wavelength band by combining the AWG chip 1 having the first transmission wavelength characteristic with the FP filter 2 having the second transmission wavelength characteristic.
  • the energy reflectance which is the reflectance due to Fresnel reflection at the partial reflection mirror, is R
  • the transmittance T of the etalon is expressed by the following equation (4). Note that the polarization dependence of the reflectance R is not considered here because it can be ignored if the incident angle is 10 degrees or less.
  • the reflectance R when the incident angle is 0 degree is expressed by the above-described formula (2).
  • the etalon When the period of the transmittance change in the transmission spectrum of the etalon is made equal to the wavelength interval X of each optical signal, the etalon is designed so that the interval D satisfies the following equation (7).
  • ⁇ 0 is one of the peak wavelengths of each optical signal.
  • N is an integer.
  • the wavelength interval X and the interval D satisfy the following equations (9) and (10), respectively.
  • the etalon is provided with a partial reflection mirror having a distance D that satisfies Equation (10).
  • Equation (9) the larger the integer N, the smaller the wavelength interval X.
  • the FP filter 2 that is a configuration for expanding the transmission wavelength band is provided outside the AWG chip 1.
  • the optical multiplexer / demultiplexer 10 can make the AWG chip 1 smaller and simpler than when the configuration for expanding the transmission band is mounted in the AWG chip 1.
  • the optical multiplexer / demultiplexer 10 according to the first embodiment can obtain good transmission characteristics relatively easily by adjusting the interval between the partial reflection mirrors in the flat plate-shaped FP filter 2.
  • the optical multiplexer / demultiplexer 10 can reduce the influence on transmission characteristics due to the creation error of the length and width of the waveguide, as compared with the case where a Mach-Zehnder interference circuit or a ring resonator is used.
  • the optical multiplexer / demultiplexer 10 according to the first embodiment includes a Mach-Zehnder interference circuit or ring resonator even when a large Mach-Zehnder interference circuit or ring resonator is installed in order to narrow the interval between peak wavelengths of optical signals.
  • the optical component according to the present invention has an effect that it is possible to reduce the fluctuation of the intensity of the optical signal due to the wavelength shift with a simple configuration.
  • FIG. 5 is a schematic diagram of an optical multiplexer / demultiplexer 20 that is an optical component according to a modification of the first embodiment.
  • the optical multiplexer / demultiplexer 20 of the modification includes an FP filter 27 including a plurality of etalons 21.
  • the plurality of etalons 21 are coupled through an air layer.
  • the optical multiplexer / demultiplexer 20 includes the FP filter 27 including a plurality of etalons 21, thereby realizing transmission wavelength characteristics corresponding to more optical signals having different wavelength bands.
  • the FP filter 27 may include a plurality of combinations of the two partial reflection films 24 and 25 in the second example instead of the etalon 21 in the first example.
  • the FP filter 27 has a laminated structure in which the plurality of etalons 23 of the second example are coupled without an air layer.
  • the FP filter 27 may have a structure in which a plurality of etalons 23 are coupled via an air layer.
  • the optical component has an effect that the fluctuation of the intensity of the optical signal due to the wavelength shift can be reduced with a simple configuration.
  • FIG. FIG. 6 is a schematic diagram of an optical multiplexer / demultiplexer 30 which is an optical component according to the second embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the optical multiplexer / demultiplexer 30 includes an AWG chip 31 and an FP filter 2 that is a first optical element.
  • the AWG chip 31 and the FP filter 2 may be bonded to each other.
  • the AWG chip 31 includes a spot size converter 32 as a second optical element in addition to the components of the AWG chip 1 shown in FIG.
  • the spot size converter 32 is connected to the second end 29 of the second waveguide 15 and the second port 17.
  • the spot size converter 32 reduces the divergence angle of the emitted light that is the multiple wavelength signal while increasing the spot size of the multiple wavelength signal at the second end 29 of the second waveguide 15.
  • the spot size converter 32 reduces the divergence angle of the light beam of the multi-wavelength signal directed to the FP filter 2 and brings the light beam incident on the FP filter 2 closer to the collimated light.
  • divergent light from the spot size converter 32 is incident on the FP filter 2.
  • the spot size converter 32 causes the convergent light from the FP filter 2 to enter the second end 29 of the second waveguide 15.
  • the optical multiplexer / demultiplexer 30 performs multiplexing using the spot size converter 32 in the AWG chip 31.
  • the collimating lens 3 of the first embodiment can be omitted.
  • the optical multiplexer / demultiplexer 30 according to the second embodiment can realize a small and simple configuration by reducing the number of parts outside the AWG chip 31.
  • FIG. 7 is a schematic diagram of an optical multiplexer / demultiplexer 40 that is an optical component according to the third embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the optical multiplexer / demultiplexer 40 includes an AWG chip 1, an FP filter 2 that is a first optical element, and a plurality of collimating lenses 41 that are second optical elements.
  • the AWG chip 1, the collimating lens 41, and the FP filter 2 may be bonded to each other.
  • the FP filter 2 and the collimating lens 41 are disposed in the optical signal path 5 connected to the first port 16.
  • the optical multiplexer / demultiplexer 40 which is an optical multiplexer, a plurality of optical signals having different wavelength bands are incident on the FP filter 2.
  • the FP filter 2 adjusts the light intensity distribution with respect to the wavelength for each optical signal by transmitting light according to the second transmission wavelength characteristic.
  • the collimating lens 41 is disposed in the optical signal path 5 between the FP filter 2 and the first port 16.
  • the collimating lens 41 converts the light emitted from the FP filter 2 into collimated light.
  • Each of the plurality of first ports 16 is input with an optical signal that is collimated light.
  • the optical multiplexer / demultiplexer 40 that is an optical demultiplexer, light from the first port 16 that is an output port is incident on each collimator lens 41. Light from the collimating lens 41 enters the FP filter 2.
  • the collimating lenses 41 may be movable independently of each other so that the incident angle of light in the FP filter 2 can be individually adjusted. As a result, the optical multiplexer / demultiplexer 40 can finely control the transmission wavelength characteristics of each optical signal in the FP filter 2.
  • the second optical element is not limited to the plurality of collimating lenses 41, and may be a lens array in which a plurality of lens elements are formed in an array.
  • the optical multiplexer / demultiplexer 40 In the optical multiplexer / demultiplexer 40 according to the third embodiment, a plurality of optical signals from the FP filter 2 having the second transmission wavelength characteristic are input to the AWG chip 1. Since the peak part of the transmission spectrum of the AWG chip 1 matches the minimum part of the transmission spectrum of the FP filter 2, the transmission spectrum of the optical multiplexer / demultiplexer 40 has a peak part compared to the case without the FP filter 2. Transmittance decreases. The transmission spectrum of the optical multiplexer / demultiplexer 40 has a flattened peak portion. Similar to the optical component of the first embodiment, the optical component according to the third embodiment has an effect that the wavelength band that can be transmitted can be expanded with a simple configuration.
  • FIG. 8 is a schematic diagram of an optical multiplexer / demultiplexer 50 that is an optical component according to the fourth embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the optical multiplexer / demultiplexer 50 includes an AWG chip 1, a condensing lens 52 as a second optical element, and an optical fiber 51.
  • the optical fiber 51 constitutes a part of the optical signal path 4 coupled to the second port 17.
  • the condenser lens 52 is disposed in the optical signal path 4 between the second port 17 and the optical fiber 51.
  • the AWG chip 1 and the condenser lens 52 may be bonded to each other.
  • the condensing lens 52 converges the light emitted from the second port 17 to the input end of the optical fiber 51.
  • the multiple wavelength signal from the condenser lens 52 propagates through the optical fiber 51.
  • the condenser lens 52 converges the light emitted from the optical fiber 51 to the second port 17.
  • the FBG 53 is a portion formed by giving a periodic refractive index change to the core of the optical fiber 51.
  • the two FBGs 53 reflect light in a specific wavelength band that satisfies the Bragg reflection condition, and serve as a partial reflection mirror.
  • the two FBGs 53 are arranged with a gap D.
  • the portion sandwiched between the two FBGs 53 of the optical fiber 51 shows the second transmission wavelength characteristic in which the minimum value of the transmittance appears at every constant wavelength, as in the FP filter 2 of the first embodiment.
  • the portion sandwiched between the two FBGs 53 and the two FBGs 53 functions as the first optical element.
  • the first optical element is disposed in the optical signal path 4 constituted by the optical fiber 51.
  • the optical multiplexer / demultiplexer 50 can realize transmission wavelength characteristics corresponding to more optical signals having different wavelength bands by providing the optical fiber 51 with a plurality of portions that function as the first optical element.
  • the transmission wavelength band can be flattened by combining the AWG chip 1 having the first transmission wavelength characteristic with the two FBGs 53 that realize the second transmission wavelength characteristic. It becomes possible.
  • the first optical element having the second transmission wavelength characteristic is disposed in the optical signal path 4 of the optical fiber 51.
  • the optical multiplexer / demultiplexer 50 can be reduced in size by reducing the number of parts outside the AWG chip 1 compared to the case where the first optical element is disposed between the AWG chip 1 and the optical fiber 51 in the optical signal path 4. In addition, a simple configuration can be realized.
  • FIG. 9 is a schematic diagram of an optical multiplexer / demultiplexer 55 which is an optical component according to the fifth embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the FP filter 2 includes two reflecting surfaces facing each other.
  • the FP filter 2 is disposed so as to be inclined so that the perpendicular NL of the two reflecting surfaces forms an angle ⁇ with the optical axis AX. ⁇ is 10 degrees or less.
  • the optical axis AX is the optical axis of the optical system in the optical multiplexer / demultiplexer 55 and coincides with the optical axis of the collimating lens 3.
  • the optical axis AX also coincides with the principal ray of the light beam propagating through the optical signal path 4 coupled to the second port 17.
  • the FP filter 2 is inclined with respect to the optical axis AX, so that a light ray having an inclination with respect to the perpendicular NL is incident on the FP filter 2.
  • the optical multiplexer / demultiplexer 55 is light that travels in the optical signal path 4 in the opposite direction due to reflection at the interface of the FP filter 2 as compared with the case where a light beam parallel to the perpendicular line NL is incident on the FP filter 2. Components can be reduced.
  • the optical multiplexer / demultiplexer 55 of the fifth embodiment makes the angle ⁇ smaller than the Brewster angle of light transmitted through the interface between the glass material and air by setting the angle ⁇ to 10 degrees or less. . Thereby, the optical multiplexer / demultiplexer 55 can reduce the influence of the difference in the reflection characteristics due to the polarization. In the optical multiplexer / demultiplexer 55 according to the fifth embodiment, it is possible to suppress a decrease in the intensity of the optical signal by reducing the light component reflected at the interface of the FP filter 2.
  • the FP filter 2 may be arranged with an inclination with respect to the optical axis AX.
  • FIG. 10 is a schematic diagram of a transmission module 60 that is an optical module according to a sixth embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the transmission module 60 multiplexes a plurality of optical signals and transmits a multiplexed wavelength signal.
  • the transmission module 60 includes a plurality of laser diodes (Laser Diodes, LDs) 61, which are light emitting elements, a plurality of collimating lenses 62, an optical multiplexer / demultiplexer 10, a condensing lens 63, and an optical fiber 64.
  • the optical multiplexer / demultiplexer 10 is an optical multiplexer.
  • the plurality of LDs 61 output optical signals having different wavelength bands. Each optical signal from the plurality of LDs 61 propagates through a different optical signal path.
  • the collimating lens 62 is disposed in each optical signal path. The collimating lens 62 converts the light emitted from the LD 61 into collimated light.
  • the collimating lenses 62 may be movable independently of each other so that the optical signal position shift due to the LD 61 installation shift can be individually corrected.
  • the transmission module 60 may be a lens array in which a plurality of lens elements are formed in an array instead of the plurality of collimating lenses 62.
  • the optical multiplexer / demultiplexer 10 receives optical signals from a plurality of LDs 61.
  • the AWG chip 1 multiplexes each optical signal input from the plurality of first ports 16.
  • the AWG chip 1 outputs a multiple wavelength signal from the second port 17.
  • the multi-wavelength signal is output from the optical multiplexer / demultiplexer 10 through the collimating lens 3 and the FP filter 2.
  • the condenser lens 63 is disposed in the optical signal path between the optical multiplexer / demultiplexer 10 and the optical fiber 64.
  • the light from the FP filter 2 is converged to the input end of the optical fiber 64.
  • the optical fiber 64 constitutes an optical signal path coupled to the optical multiplexer / demultiplexer 10.
  • the transmission module 60 outputs an optical signal propagated through the optical fiber 64.
  • the transmission module 60 can output an optical signal from the optical fiber 64, thereby providing an optical signal suitable for handling in devices subsequent to the transmission module 60.
  • the transmission module 60 can reduce fluctuations in the intensity of the optical signal due to a wavelength shift in the LD 61 with a simple configuration.
  • FIG. 11 is a schematic diagram of a receiving module 70 that is an optical module according to a sixth embodiment of the present invention.
  • the reception module 70 receives the multiple wavelength signal and divides the multiple wavelength signal according to the difference in wavelength band.
  • the receiving module 70 includes a photodiode (Photodiode, PD) 65 that is a light receiving element instead of the LD 61 of the transmitting module 60.
  • the optical multiplexer / demultiplexer 10 in the receiving module 70 is an optical demultiplexer.
  • the optical multiplexer / demultiplexer 10 receives a multiple wavelength signal that has passed through the optical fiber 64 and the condenser lens 63.
  • the multi-wavelength signal includes a plurality of multiplexed optical signals.
  • the AWG chip 1 divides the multiplexed wavelength signal input from the second port 17 into optical signals for each wavelength band.
  • the AWG chip 1 outputs optical signals from the plurality of first ports 16.
  • the optical signals output from the optical multiplexer / demultiplexer 10 enter the PD 65, respectively.
  • Each of the plurality of PDs 65 detects an optical signal divided from the multiple wavelength signal.
  • the transmission module 60 and the reception module 70 which are optical modules according to the sixth embodiment are not limited to those including the optical multiplexer / demultiplexer 10 according to the first embodiment, and the optical multiplexer / demultiplexer 20 according to the modification of the first embodiment and Any one of optical multiplexers / demultiplexers 30, 40, 50, and 55 according to the second to fifth embodiments may be included.
  • the transmission module 60 and the reception module 70 include any one of the optical multiplexers / demultiplexers 10, 20, 30, 40, 50, and 55 according to the first to fifth embodiments, so that the intensity of the optical signal varies with a simple configuration. There is an effect that can be reduced.
  • Each of the optical multiplexer / demultiplexers 10, 20, 30, 40, 50, 55 of the first to fifth embodiments and the transmission module 60 and the reception module 70 of the sixth embodiment may be sealed in a casing.
  • the housing may be configured to include any of ceramics, resin materials, and metal materials.
  • the optical multiplexers / demultiplexers 10, 20, 30, 40, 50, 55, the transmission module 60, and the reception module 70 are sealed in a casing, so that airtightness, impact resistance, and ease of incorporation into a communication device are achieved. An advantageous configuration can be obtained.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光部品(10)は、アレイ導波路回折格子(1)および光学素子(2)を備える。アレイ導波路回折格子は、互いに波長帯域が異なる複数の光信号が個別に伝搬する複数の導波路を備える第1導波路(11)と、多重化された複数の光信号である多重波長信号が伝搬する第2導波路(15)と、第1導波路の第1端(18)および第2導波路の第1端(28)の間の光信号経路内に配置されたアレイ導波路(13)とを含み、複数の透過率のピークを含む第1透過波長特性を備える。光学素子は、第1導波路の第2端(19)に結合された光信号経路内または第2導波路の第2端(29)に結合された光信号経路(4)内に配置され、第1透過波長特性のピークにおける波長と一致する波長にて透過率が極小値となる第2透過波長特性を備える。

Description

光部品および光モジュール
 本発明は、波長分割多重方式を利用した光通信機器に使用される光部品および光モジュールに関する。
 アレイ導波路回折格子(Arrayed Waveguide Grating,AWG)は、波長帯域の異なる複数の光信号を多重化させる光合波器、あるいは多重化された光信号を波長帯域の違いにより分割する光分波器の機能を持つ光部品の一つである。簡易に構成された従来のAWGでは、波長と透過率との関係を透過スペクトルにより表した場合に波長帯域ごとの透過スペクトルがいずれもガウス関数形状となる透過波長特性が設定される。この場合において、透過スペクトルにおけるピークの波長からわずかにずれた波長の光信号が入力された場合に、AWGから出力される光信号の強度に変化が生じることがある。このような光信号の波長のずれによる影響を低減させることを目的として、平坦化されたピークを透過スペクトルに持たせることで透過波長帯域を拡大させる技術が提案されている。
 特許文献1には、AWGを備える光波長多重信号監視装置に関し、二次モード光を励起させるテーパ導波路を設けることで透過波長帯域の拡大を図ることが開示されている。特許文献2には、AWGの出力導波路にマッハツェンダ干渉回路を配置することで透過波長帯域の拡大を図ることが開示されている。
特開2010-117566号公報 特開2015-1626号公報
 特許文献1の技術の場合、多重化された光信号を送信する送信モジュールにAWGが適用される場合にはマルチモードファイバを使用することとなるため、長距離通信での利用に不向きとなる。特許文献2の技術の場合、導波路の作成誤差に起因してマッハツェンダ干渉回路の透過スペクトルにおけるピークがシフトした場合に、透過特性に影響が及ぶことがあり得る。また、光部品は、透過波長帯域の拡大のための構成がAWGのチップ内に搭載されることで構造が複雑化することとなる。光部品は、簡易な構成により、波長のずれによる光信号の強度の変動を低減させることが望まれている。
 本発明は、上記に鑑みてなされたものであって、簡易な構成により、波長のずれによる光信号の強度の変動を低減可能とする光部品を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、アレイ導波路回折格子および光学素子を備える。アレイ導波路回折格子は、互いに波長帯域が異なる複数の光信号が個別に伝搬する複数の導波路を備える第1導波路と、多重化された複数の光信号である多重波長信号が伝搬する第2導波路と、第1導波路の第1端および第2導波路の第1端の間の光信号経路内に配置されたアレイ導波路とを含み、複数の透過率のピークを含む第1透過波長特性を備える。光学素子は、第1導波路の第2端に結合された光信号経路内または第2導波路の第2端に結合された光信号経路内に配置され、第1透過波長特性のピークにおける波長と一致する波長にて透過率が極小値となる第2透過波長特性を備える。
 本発明にかかる光部品は、簡易な構成により、波長のずれによる光信号の強度の変動を低減できるという効果を奏する。
本発明の実施の形態1にかかる光部品である光合分波器の模式図 図1に示すFPフィルタの第1例を示す図 FPフィルタの第2例を示す図 図1に示すAWGチップ、FPフィルタおよび光合分波器の透過スペクトルを示す図 実施の形態1の変形例にかかる光部品である光合分波器の模式図 本発明の実施の形態2にかかる光部品である光合分波器の模式図 本発明の実施の形態3にかかる光部品である光合分波器の模式図 本発明の実施の形態4にかかる光部品である光合分波器の模式図 本発明の実施の形態5にかかる光部品である光合分波器の模式図 本発明の実施の形態6にかかる光モジュールである送信モジュールの模式図 本発明の実施の形態6にかかる光モジュールである受信モジュールの模式図
 以下に、本発明の実施の形態にかかる光部品および光モジュールを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる光部品である光合分波器10の模式図である。光合分波器10は、波長帯域の異なる複数の光信号を多重化させる光合波器、および多重化された光信号を波長帯域の違いにより分割する光分波器のいずれとしても機能し得る光部品である。実施の形態では、光合分波器10が光合波器である場合を例とする。光分波器における光信号の入力および出力は、光合波器における光信号の入力および出力とは逆となる。
 光合分波器10は、アレイ導波路回折格子(AWG)チップ1、第1光学素子であるファブリ・ペロー(FP)フィルタ2、および第2光学素子であるコリメートレンズ3を備える。AWGチップ1は、アレイ導波路回折格子を有する。AWGチップ1、コリメートレンズ3およびFPフィルタ2は、互いに接着されていても良い。
 AWGチップ1は、互いに波長帯域が異なる複数の光信号を多重化させ、多重化により得られた多重波長信号を出力する。実施の形態において、互いに波長帯域が異なるとは、強度がピークとなるときの波長が互いに異なることを指すものとする。
 AWGチップ1は、第1導波路11、スラブ導波路12、アレイ導波路13、スラブ導波路14、および第2導波路15を備える。光合波器である光合分波器10において、第1導波路11は入力導波路、第2導波路15は出力導波路である。
 第1導波路11は、互いに波長帯域が異なる複数の光信号が個別に伝搬する複数の導波路を備える。第1導波路11の各導波路の第1端18は、スラブ導波路12に接続されている。第1導波路11の各導波路の第2端19は、AWGチップ1の第1ポート16に接続されている。
 AWGチップ1には、第1導波路11の導波路と同じ数の第1ポート16が設けられている。光合波器である光合分波器10において、複数の光信号は、入力ポートである各第1ポート16から個別に入力される。スラブ導波路12は、第1導波路11から入射された光波を、アレイ導波路13の入射端へ向けて発散させる。なお、図1には、第1導波路11に備えられた4つの導波路を示しているが、導波路の数は4つ以外の数であっても良い。
 第2導波路15では、多重化された複数の光信号である多重波長信号が伝搬する。第2導波路15の第1端28は、スラブ導波路14に接続されている。第2導波路15の第2端29は、AWGチップ1の第2ポート17に接続されている。
 アレイ導波路13は、スラブ導波路12およびスラブ導波路14の間に接続されている。アレイ導波路13は、長さが互いに異なる複数の導波路を備える。アレイ導波路13を伝搬する光信号には、各導波路の長さの差に応じた位相差が与えられる。スラブ導波路14は、アレイ導波路13から入射された光波を、第2導波路15の第1端28へ向けて収束させる。
 AWGチップ1の各導波路は、基板上に形成されている。基板は、ガラス基板、シリコン基板、3-5族化合物半導体あるいはその他の化合物半導体を含む半導体基板、およびポリイミドあるいはその他の樹脂材料を含む樹脂薄膜のいずれであっても良い。
 第1ポート16から第2ポート17までにおけるAWGチップ1のトータルの透過スペクトルには、複数の透過率のピークが含まれる。透過率がピークとなる波長は、一定の波長おきに現れる。透過スペクトルにおける各ピークは、いずれもガウス関数形状となる。
 コリメートレンズ3およびFPフィルタ2は、第2ポート17に接続された光信号経路4内に配置されている。コリメートレンズ3は、第2ポート17から出射された光をコリメート光へ変換する。なお、光分波器である光合分波器10において、コリメートレンズ3は、FPフィルタ2から入射した光を第2ポート17へ収束させる。
 光合波器である光合分波器10において、FPフィルタ2には、コリメートレンズ3からのコリメート光が入射する。FPフィルタ2は、波長に対する光の透過率分布である透過波長特性に応じて光を透過させる光学素子である。FPフィルタ2は、2つの対向する部分反射ミラーを備える。部分反射ミラーは、特定の波長帯域の光を反射する反射面である。2つの部分反射ミラーは、互いに平行に配置されている。FPフィルタ2は、多重に反射された光の干渉による透過波長特性を持つ。
 FPフィルタ2の透過スペクトルには、透過率がピークとなる波長が一定の波長おきに現れ、一定の波長おきに同様の透過率変化が繰り返される。コリメートレンズ3からのコリメート光がFPフィルタ2へ入射すると、定在波条件式である式(1)を満たす波長でFPフィルタ2の透過率が最大となる。式(1)において、kは2つの部分反射ミラーの間の媒質中を伝搬する光の波数、Dは2つの部分反射ミラーの間隔、θは反射位相である。mは整数とする。波数kは、波長の逆数である。
2kD+2θ=2πm  ・・(1)
 図2は、FPフィルタ2の第1例を示す図である。FPフィルタ2の第1例は、透明部材である平板ガラスで構成されたエタロン21である。エタロン21は、部分反射ミラーの機能を担う2つの研磨面22を備える。研磨面22は、平板ガラスの表面および裏面をそれぞれ研磨することにより形成される。研磨面22は、フレネル反射により、入射した光の一部を反射させる。平板ガラスの表面および裏面の間の厚みが、2つの研磨面22の間隔Dとされている。
 フレネル反射による反射率は、入射角度および偏波によって変化する。研磨面22へ垂直に光が入射する場合における反射率Rは、次の式(2)で表される。式(2)において、nはエタロン21のガラス材料の屈折率である。
Figure JPOXMLDOC01-appb-M000001
 エタロン21では、研磨面22での反射率Rがガラス材料の屈折率に依存して決定される。FPフィルタ2は、かかるエタロン21に部分反射膜が追加されることにより反射率が調整されたものとしても良い。
 図3は、FPフィルタ2の第2例を示す図である。FPフィルタ2の第2例であるエタロン23は、2つの部分反射膜24,25を有する部分ブラッグ反射器(Distributed Bragg Reflector,DBR)を備える。部分反射膜24,25は、特定の波長帯域の光を反射する反射膜であって、部分反射ミラーの機能を担う。部分反射膜24,25は、金属材料あるいはその他の反射性を備える材料からなる薄膜である。
 1つの部分反射膜24は、2つの平板ガラスに挟み込まれている。もう1つの部分反射膜25は、エタロン23の表面にコーティングされている。エタロン23の裏面であってコリメート光が入射する入射面には、反射防止膜26がコーティングされている。
 エタロン23は、エタロン23の表面および裏面の間の厚みに関わらず、2つの部分反射膜24,25の間隔Dを任意の長さとすることができる。光合分波器10は、間隔Dを小さくするほど、光信号ごとにつき透過率がピークとなる波長の間隔を拡大させることができる。各光信号のピーク強度における波長であるピーク波長同士の間隔が20nm、ガラス材料の屈折率が1.5である場合に、エタロン23は、間隔D=177μmの部分反射膜24,25を備える設計とされる。エタロン23は、間隔Dに関わらず、反りを抑制可能とする厚みを確保できる。
 図4は、AWGチップ1、FPフィルタ2および光合分波器10の透過スペクトルを示す図である。図4の上段は、AWGチップ1の透過波長特性である第1透過波長特性を表した透過スペクトルを示している。図4の中段は、FPフィルタ2の透過波長特性である第2透過波長特性を表した透過スペクトルを示している。図4の下段は、第1透過波長特性および第2透過波長特性を合わせて得られる光合分波器10の透過波長特性を表した透過スペクトルを示している。
 λ,λ,λおよびλは、光合分波器10へ入力される各光信号のピーク強度における波長であるピーク波長であって、λ<λ<λ<λが成り立つとする。AWGチップ1の透過スペクトルは、各光信号に対応する波長であるλ,λ,λおよびλにおいてピークとなる。光信号ごとの透過スペクトルは、いずれも上に凸のガウス関数形状となる。
 λ,λ,λおよびλの各間隔は、一定の波長間隔Xであるものとする。AWGチップ1の透過スペクトルは次の式(3)を満足する。式(3)において、mは整数とする。なお、各間隔のいずれもが波長間隔Xと一致している場合に限られず、各間隔のいずれかに波長間隔Xとのずれが生じていても良い。
λm+1-λ=X  ・・(3)
 FPフィルタ2は、透過スペクトルにおける波長軸の方向における透過率変化の周期を、波長間隔Xに一致させて設計されている。また、FPフィルタ2の透過率は、λ,λ,λおよびλのそれぞれにおいて、局所的な底値である極小値を示す。FPフィルタ2の透過スペクトルは、λ,λ,λおよびλのそれぞれにおいて、下に凸の形状となる極小部分を含む。このように、FPフィルタ2の第2透過波長特性では、第1透過波長特性におけるピークと一致する波長であるλ,λ,λおよびλにて透過率が極小値となる。
 AWGチップ1の透過スペクトルのピーク部分が、FPフィルタ2の透過スペクトルにおける極小部分と一致することで、光合分波器10の透過スペクトルでは、FPフィルタ2がない場合と比較して、ピーク部分における透過率が減少する。これにより、光合分波器10の透過スペクトルには、λ,λ,λおよびλのそれぞれに平坦化されたピーク部分が生じる。このように、光合分波器10は、第1透過波長特性を持つAWGチップ1に第2透過波長特性を持つFPフィルタ2が組み合わせられることで、透過波長帯域を拡大させることが可能となる。
 次に、FPフィルタ2の一例であるエタロンの具体的な設計例を説明する。部分反射ミラーでのフレネル反射による反射率であるエネルギー反射率をRとして、エタロンの透過率Tは次の式(4)で表される。なお、反射率Rの偏波依存性は、入射角度が10度以下であれば無視可能であることから、ここでは考慮しないものとする。入射角度が0度であるときの反射率Rは、上述の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 エタロンにおける部分反射ミラーの間隔をD、空気層からエタロンへの入射角度をα、エタロンを構成する透明部材の屈折率をn、光の波長をλとすると、式(4)におけるθおよびβは、それぞれ式(5)および(6)のように定義される。式(5)において、mは整数とする。
Figure JPOXMLDOC01-appb-M000003
 エタロンの透過スペクトルにおける透過率変化の周期を、各光信号の波長間隔Xに等しくする場合、エタロンは、間隔Dが次の式(7)を満足するように設計される。式(7)において、λは各光信号のピーク波長の1つである。
Figure JPOXMLDOC01-appb-M000004
 また、各光信号のピーク波長と、エタロンの透過率が極小値となるときの波長とが一致する場合、次の式(8)が成立する。式(8)において、Nは整数とする。
Figure JPOXMLDOC01-appb-M000005
 上述の式(7)および(8)により、波長間隔Xおよび間隔Dは、それぞれ次の式(9)および(10)を満足する。
Figure JPOXMLDOC01-appb-M000006
 エタロンには、式(10)を満足する間隔Dの部分反射ミラーが備えられる。式(9)によると、整数Nが大きい値であるほど、波長間隔Xが小さい値となる。より小さい波長間隔Xに合わせて間隔Dが設定されることで、エタロンは、波長帯域が互いに異なるより多くの光信号に対応する透過波長特性を実現できる。
 実施の形態1の光合分波器10では、透過波長帯域の拡大のための構成であるFPフィルタ2がAWGチップ1の外に設けられている。光合分波器10は、透過帯域の拡大のための構成がAWGチップ1内に搭載される場合に比べて、AWGチップ1を小型かつ簡易な構成にできる。
 また、実施の形態1の光合分波器10は、平板形状のFPフィルタ2における部分反射ミラーの間隔を調整することで、良好な透過特性を比較的容易に得ることができる。光合分波器10は、マッハツェンダ干渉回路あるいはリング共振器が使用される場合と比較して、導波路の長さおよび幅の作成誤差による透過特性への影響を低減可能とする。実施の形態1の光合分波器10は、光信号のピーク波長同士の間隔を狭くするためにサイズの大きいマッハツェンダ干渉回路あるいはリング共振器が設置される場合でも、マッハツェンダ干渉回路あるいはリング共振器を構成する導波路の長さおよび幅の誤差による影響を低減できる。以上により、本発明にかかる光部品は、簡易な構成により、波長のずれによる光信号の強度の変動を低減できるという効果を奏する。
 図5は、実施の形態1の変形例にかかる光部品である光合分波器20の模式図である。変形例の光合分波器20は、複数のエタロン21を含むFPフィルタ27を備える。複数のエタロン21は、空気層を介して結合されている。光合分波器20は、複数のエタロン21を含むFPフィルタ27を備えることで、波長帯域が互いに異なるより多くの光信号に対応する透過波長特性を実現できる。
 FPフィルタ27は、上述の第1例のエタロン21に代えて、第2例における2つの部分反射膜24,25の組み合わせを複数含むものとしても良い。FPフィルタ27は、第2例の複数のエタロン23が空気層を介さず結合された積層構造を備える。FPフィルタ27は、複数のエタロン23が空気層を介して結合された構造を備えていても良い。本変形例においても、光部品は、簡易な構成により、波長のずれによる光信号の強度の変動を低減できるという効果を奏する。
実施の形態2.
 図6は、本発明の実施の形態2にかかる光部品である光合分波器30の模式図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
 光合分波器30は、AWGチップ31、および第1光学素子であるFPフィルタ2を備える。AWGチップ31およびFPフィルタ2は、互いに接着されていても良い。AWGチップ31は、図1に示すAWGチップ1の各構成に加えて、第2光学素子であるスポットサイズ変換器32を備える。
 スポットサイズ変換器32は、第2導波路15の第2端29と第2ポート17とに接続されている。スポットサイズ変換器32は、第2導波路15の第2端29における多重波長信号のスポットサイズを拡大させつつ、多重波長信号である出射光の発散角を縮小させる。スポットサイズ変換器32は、FPフィルタ2へ向かう多重波長信号の光線束の発散角を小さくさせて、FPフィルタ2へ入射させる光線束をコリメート光へ近づける。実施の形態2の光合分波器30において、FPフィルタ2には、スポットサイズ変換器32からの発散光が入射する。なお、光分波器である光合分波器30において、スポットサイズ変換器32は、FPフィルタ2からの収束光を第2導波路15の第2端29へ入射させる。
 FPフィルタ2へ入射する光は発散角が一定の範囲内であればコリメート光でなくても良いことから、光合分波器30は、AWGチップ31内のスポットサイズ変換器32を利用して多重波長信号の光線束を発散させる構成とすることで、実施の形態1のコリメートレンズ3を省略可能とする。実施の形態2の光合分波器30は、AWGチップ31外における部品点数を減らせることで、小型かつ簡易な構成を実現できる。
実施の形態3.
 図7は、本発明の実施の形態3にかかる光部品である光合分波器40の模式図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
 光合分波器40は、AWGチップ1、第1光学素子であるFPフィルタ2、および第2光学素子である複数のコリメートレンズ41を備える。AWGチップ1、コリメートレンズ41およびFPフィルタ2は、互いに接着されていても良い。
 FPフィルタ2およびコリメートレンズ41は、第1ポート16に接続された光信号経路5内に配置されている。光合波器である光合分波器40において、FPフィルタ2には、互いに波長帯域が異なる複数の光信号が入射する。FPフィルタ2は、第2透過波長特性に応じて光を透過させることで、波長に対する光の強度分布を光信号ごとに調整する。
 コリメートレンズ41は、FPフィルタ2および第1ポート16の間の光信号経路5内に配置されている。コリメートレンズ41は、FPフィルタ2から出射された光をコリメート光へ変換する。複数の第1ポート16には、それぞれコリメート光とされた光信号が入力される。なお、光分波器である光合分波器40において、各コリメートレンズ41には、出力ポートである第1ポート16からの光が入射する。FPフィルタ2には、コリメートレンズ41からの光が入射する。
 各コリメートレンズ41は、互いに独立して可動とされることで、FPフィルタ2における光の入射角度を個別に調整できることとしても良い。これにより、光合分波器40は、FPフィルタ2における各光信号の透過波長特性を細かく制御可能とする。なお、第2光学素子は、複数のコリメートレンズ41に限られず、複数のレンズ素子がアレイ状に形成されたレンズアレイであっても良い。
 実施の形態3の光合分波器40では、第2透過波長特性のFPフィルタ2からの複数の光信号がAWGチップ1へ入力される。AWGチップ1の透過スペクトルのピーク部分が、FPフィルタ2の透過スペクトルにおける極小部分と一致することで、光合分波器40の透過スペクトルでは、FPフィルタ2がない場合と比較して、ピーク部分における透過率が減少する。光合分波器40の透過スペクトルには、平坦化されたピーク部分が生じる。実施の形態3にかかる光部品は、実施の形態1の光部品と同様に、簡易な構成により、透過可能とする波長帯域を拡大できるという効果を奏する。
実施の形態4.
 図8は、本発明の実施の形態4にかかる光部品である光合分波器50の模式図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
 光合分波器50は、AWGチップ1、第2光学素子である集光レンズ52、および光ファイバ51を備える。光ファイバ51は、第2ポート17に結合された光信号経路4の一部を構成する。集光レンズ52は、第2ポート17および光ファイバ51の間の光信号経路4内に配置されている。AWGチップ1および集光レンズ52は、互いに接着されていても良い。
 集光レンズ52は、第2ポート17から発散された光を光ファイバ51の入力端へ収束させる。集光レンズ52からの多重波長信号は、光ファイバ51を伝搬する。なお、光分波器として機能する光合分波器50において、集光レンズ52は、光ファイバ51から発散された光を第2ポート17へ収束させる。
 光ファイバ51内には、2つのファイバブラッグ回折格子(Fiber Bragg Grating,FBG)53が設けられている。FBG53は、光ファイバ51のコアに周期的な屈折率変化を持たせて形成された部分である。2つのFBG53は、ブラッグ反射条件を満たす特定の波長帯域の光を反射し、部分反射ミラーの機能を担う。2つのFBG53は、間隔Dを設けて配置されている。
 光ファイバ51のうち2つのFBG53で挟まれた部分は、実施の形態1のFPフィルタ2と同様に、一定の波長おきに透過率の極小値が現れる第2透過波長特性を示す。光ファイバ51のうち、2つのFBG53と、2つのFBG53で挟まれた部分は、第1光学素子の機能を担う。第1光学素子は、光ファイバ51で構成された光信号経路4内に配置されている。
 光ファイバ51には、3つ以上のFBG53がさまざまな間隔を設けて配置されていても良い。光合分波器50は、第1光学素子の機能を担う複数の部分が光ファイバ51に設けられることで、波長帯域が互いに異なるより多くの光信号に対応する透過波長特性を実現できる。
 実施の形態4の光合分波器50では、第1透過波長特性を持つAWGチップ1に、第2透過波長特性を実現させる2つのFBG53が組み合わせられることで、透過波長帯域を平坦化させることが可能となる。光合分波器50は、第2透過波長特性を持たせた第1光学素子が、光ファイバ51の光信号経路4内に配置される。光合分波器50は、光信号経路4のうちAWGチップ1および光ファイバ51の間に第1光学素子が配置される場合に比べて、AWGチップ1外における部品点数を減らせることで、小型かつ簡易な構成を実現できる。
実施の形態5.
 図9は、本発明の実施の形態5にかかる光部品である光合分波器55の模式図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。
 FPフィルタ2は、互いに対向する2つの反射面を備える。FPフィルタ2は、2つの反射面の垂線NLが光軸AXと角度θをなすように傾けられて配置されている。θは10度以下とする。
 光軸AXは、光合分波器55内の光学系の光軸であって、コリメートレンズ3の光軸と一致するものとする。光軸AXは、第2ポート17に結合された光信号経路4を伝搬する光束の主光線とも一致する。
 光合分波器55では、光軸AXに対しFPフィルタ2に傾きを持たせることで、FPフィルタ2には、垂線NLに対し傾きを持つ光線が入射する。光合分波器55は、垂線NLに平行な光線をFPフィルタ2へ入射させる場合と比較して、FPフィルタ2の界面での反射によって光信号経路4をそれまでとは逆方向へ進行する光成分を低減できる。
 なお、角度θがブリュスター角に近い角度であるほど、フレネル反射におけるs波とp波との反射率差が生じ易くなる。実施の形態5の光合分波器55は、角度θを10度以下とすることで、ガラス材料と空気との間の界面を透過する光のブリュスター角に比べて角度θを小さい角度とする。これにより、光合分波器55は、偏波による反射特性の差の影響を低減させることができる。実施の形態5の光合分波器55では、FPフィルタ2の界面で反射する光成分を低減させることで、光信号の強度の低下を抑えることができる。
 実施の形態2または3の光合分波器30,40でも、FPフィルタ2は、光軸AXに対し傾きを持たせて配置されたものとしても良い。
実施の形態6.
 図10は、本発明の実施の形態6にかかる光モジュールである送信モジュール60の模式図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を省略する。送信モジュール60は、複数の光信号を多重化し、多重波長信号を送信する。
 送信モジュール60は、発光素子である複数のレーザダイオード(Laser Diode,LD)61、複数のコリメートレンズ62、光合分波器10、集光レンズ63および光ファイバ64を備える。光合分波器10は、光合波器である。
 複数のLD61は、互いに波長帯域が異なる光信号を出力する。複数のLD61からの各光信号は、それぞれ異なる光信号経路を伝搬する。コリメートレンズ62は、各光信号経路内に配置されている。コリメートレンズ62は、LD61から出射された光をコリメート光へ変換する。
 各コリメートレンズ62は、互いに独立して可動とされることで、LD61の設置ずれによる光信号の位置ずれを個別に補正できることとしても良い。なお、送信モジュール60は、複数のコリメートレンズ62に代えて、複数のレンズ素子がアレイ状に形成されたレンズアレイであっても良い。光合分波器10には、複数のLD61からの光信号が入力される。
 AWGチップ1は、複数の第1ポート16から入力された各光信号を多重化させる。AWGチップ1は、多重波長信号を第2ポート17から出力する。多重波長信号は、コリメートレンズ3およびFPフィルタ2を経て光合分波器10から出力される。
 集光レンズ63は、光合分波器10および光ファイバ64の間の光信号経路内に配置されている。FPフィルタ2からの光を光ファイバ64の入力端へ収束させる。光ファイバ64は、光合分波器10に結合された光信号経路を構成する。送信モジュール60は、光ファイバ64を伝搬させた光信号を出力する。送信モジュール60は、光ファイバ64から光信号を出力することで、送信モジュール60以降の装置における扱いに適した光信号を提供できる。送信モジュール60は、実施の形態1にかかる光合分波器10を含むことで、簡易な構成により、LD61での波長のずれによる光信号の強度の変動を低減できる。
 図11は、本発明の実施の形態6にかかる光モジュールである受信モジュール70の模式図である。受信モジュール70は、多重波長信号を受信し、多重波長信号を波長帯域の違いにより分割する。
 受信モジュール70は、送信モジュール60のLD61に代えて、受光素子であるフォトダイオード(Photodiode,PD)65を備える。受信モジュール70における光合分波器10は、光分波器である。光合分波器10には、光ファイバ64および集光レンズ63を経た多重波長信号が入力される。多重波長信号は、多重化された複数の光信号を含む。
 AWGチップ1は、第2ポート17から入力された多重波長信号を波長帯域ごとの光信号へ分割する。AWGチップ1は、複数の第1ポート16から光信号を出力する。光合分波器10から出力された光信号は、それぞれPD65へ入射する。複数のPD65は、それぞれ多重波長信号から分割された光信号を検出する。受信モジュール70は、実施の形態1にかかる光合分波器10を含むことで、簡易な構成により、多重波長信号での波長のずれによる光信号の強度の変動を低減できる。
 実施の形態6の光モジュールである送信モジュール60および受信モジュール70は、実施の形態1にかかる光合分波器10を含むものに限られず、実施の形態1の変形例の光合分波器20および実施の形態2から5の光合分波器30,40,50,55のいずれかを含むものであっても良い。送信モジュール60および受信モジュール70は、実施の形態1から5の光合分波器10,20,30,40,50,55のいずれかを含むことで、簡易な構成により、光信号の強度の変動を低減できるという効果を奏する。
 実施の形態1から5の光合分波器10,20,30,40,50,55および実施の形態6の送信モジュール60および受信モジュール70のそれぞれは、筐体に封入されたものとしても良い。筐体は、セラミックス、樹脂材料および金属材料のいずれを含めて構成されたものであっても良い。光合分波器10,20,30,40,50,55および送信モジュール60および受信モジュール70は、筐体に封入されることで、気密性、耐衝撃性、および通信装置への組み込み易さにおいて有利な構成にできる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,31 AWGチップ、2,27 FPフィルタ、3,41 コリメートレンズ、4,5 光信号経路、10,20,30,40,50,55 光合分波器、11 第1導波路、13 アレイ導波路、15 第2導波路、18,28 第1端、19,29 第2端、21,23 エタロン、22 研磨面、24,25 部分反射膜、32 スポットサイズ変換器、52 集光レンズ、53 FBG、60 送信モジュール、61 LD、65 PD、70 受信モジュール。

Claims (13)

  1.  互いに波長帯域が異なる複数の光信号が個別に伝搬する複数の導波路を備える第1導波路と、多重化された前記複数の光信号である多重波長信号が伝搬する第2導波路と、前記第1導波路の第1端および前記第2導波路の第1端の間の光信号経路内に配置されたアレイ導波路とを含み、複数の透過率のピークを含む第1透過波長特性を備えるアレイ導波路回折格子と、
     前記第1導波路の第2端に結合された光信号経路内または前記第2導波路の第2端に結合された光信号経路内に配置され、前記第1透過波長特性の前記ピークにおける波長と一致する波長で透過率が極小値となる第2透過波長特性を備える光学素子と、
     を備えることを特徴とする光部品。
  2.  前記第1透過波長特性における前記ピークの間の波長の間隔と、前記第2透過波長特性における前記極小値の間の波長の間隔とがいずれも一致していることを特徴とする請求項1に記載の光部品。
  3.  前記光学素子は、互いに対向する反射面を備えることを特徴とする請求項1または2に記載の光部品。
  4.  前記光学素子は、平板形状の透明部材を備えることを特徴とする請求項1から3のいずれか1つに記載の光部品。
  5.  前記光学素子は、互いに結合された複数の透明部材を備えることを特徴とする請求項4に記載の光部品。
  6.  前記光学素子は、複数の前記反射面を備えることを特徴とする請求項3に記載の光部品。
  7.  前記光学素子は、前記光部品の光軸に対し前記反射面の垂線が角度をなして配置されていることを特徴とする請求項3に記載の光部品。
  8.  前記光学素子は、前記第2導波路の前記第2端に接続された光信号経路を構成する光ファイバ内にて間隔を設けて配置された2つのファイバブラッグ回折格子を含むことを特徴とする請求項1または2に記載の光部品。
  9.  前記アレイ導波路回折格子と、前記光学素子である第1光学素子との間の光信号経路内に配置された第2光学素子を備えることを特徴とする請求項1から8のいずれか1つに記載の光部品。
  10.  前記第2光学素子は、コリメートレンズであることを特徴とする請求項9に記載の光部品。
  11.  前記第2光学素子は、前記多重波長信号のスポットサイズを変換するスポットサイズ変換器であることを特徴とする請求項9に記載の光部品。
  12.  互いに波長帯域が異なる光信号を出力する複数の発光素子と、
     前記複数の発光素子からの前記光信号が入力される請求項1から11のいずれか1つに記載の光部品と、
     を備えることを特徴とする光モジュール。
  13.  多重化された複数の光信号である多重波長信号が入力される請求項1から11のいずれか1つに記載の光部品と、
     前記多重波長信号から分割された光信号を検出する受光素子と、
     を備えることを特徴とする光モジュール。
PCT/JP2016/076015 2016-09-05 2016-09-05 光部品および光モジュール WO2018042663A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076015 WO2018042663A1 (ja) 2016-09-05 2016-09-05 光部品および光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076015 WO2018042663A1 (ja) 2016-09-05 2016-09-05 光部品および光モジュール

Publications (1)

Publication Number Publication Date
WO2018042663A1 true WO2018042663A1 (ja) 2018-03-08

Family

ID=61301835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076015 WO2018042663A1 (ja) 2016-09-05 2016-09-05 光部品および光モジュール

Country Status (1)

Country Link
WO (1) WO2018042663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927870A (zh) * 2019-12-26 2020-03-27 葛大江 一种列阵波导光栅及其制备方法、应用和应用产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180641A (ja) * 1998-12-11 2000-06-30 Furukawa Electric Co Ltd:The 光波長合分波装置
JP2000292633A (ja) * 1999-04-05 2000-10-20 Furukawa Electric Co Ltd:The 光波長多重通信モジュール
JP2005010734A (ja) * 2003-05-28 2005-01-13 Kogaku Giken:Kk 複合型エタロン素子及び該複合型エタロン素子を用いたレーザ装置
JP2009169429A (ja) * 2009-04-17 2009-07-30 Nec Corp 光モジュール
JP2015138926A (ja) * 2014-01-24 2015-07-30 カナレ電気株式会社 半導体レーザ及び半導体光増幅器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180641A (ja) * 1998-12-11 2000-06-30 Furukawa Electric Co Ltd:The 光波長合分波装置
JP2000292633A (ja) * 1999-04-05 2000-10-20 Furukawa Electric Co Ltd:The 光波長多重通信モジュール
JP2005010734A (ja) * 2003-05-28 2005-01-13 Kogaku Giken:Kk 複合型エタロン素子及び該複合型エタロン素子を用いたレーザ装置
JP2009169429A (ja) * 2009-04-17 2009-07-30 Nec Corp 光モジュール
JP2015138926A (ja) * 2014-01-24 2015-07-30 カナレ電気株式会社 半導体レーザ及び半導体光増幅器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927870A (zh) * 2019-12-26 2020-03-27 葛大江 一种列阵波导光栅及其制备方法、应用和应用产品
CN110927870B (zh) * 2019-12-26 2021-06-04 葛大江 一种列阵波导光栅及其制备方法、应用和应用产品

Similar Documents

Publication Publication Date Title
US20190020178A1 (en) Laser apparatus
US9042731B2 (en) Optical module having a plurality of optical sources
US6751373B2 (en) Wavelength division multiplexing with narrow band reflective filters
US8456741B2 (en) Optical module having three or more optically transparent layers
US9482862B2 (en) Adjustable grid tracking transmitters and receivers
JPH01502619A (ja) 光学波長分割多重化装置
JP6452900B2 (ja) 光部品および光モジュール
JP2002267998A (ja) 波長分散補償モジュール、光受信回路、及び光通信システム
US7215885B2 (en) Wavelength division element and optical module
US20230010259A1 (en) Wavelength multiplexing/demultiplexing device
US10162116B2 (en) Optical slab
US7580599B2 (en) Optical switch and MEMS package
WO2017138091A1 (ja) 光合波器
WO2018042663A1 (ja) 光部品および光モジュール
JP2011257476A (ja) 光受信器
JP6708299B2 (ja) 波長多重光送信モジュールおよびその製造方法
US20050128591A1 (en) Optical component, optical device and optical communications system
JP5218243B2 (ja) 光モジュール
CN115407434A (zh) 光次组件模组中使用的抛物面透镜装置
US20040175186A1 (en) Optical transmission module
US6577398B1 (en) Resonant optical cavity
WO2011051723A1 (en) Optical arrangements, retro-reflectors and/or methods for filtering an optical source
WO2018074010A1 (ja) 光送信モジュール
JP3536031B2 (ja) 可変群遅延ユニット及び可変群遅延モジュール
WO2018235200A1 (ja) 光導波路、光回路および半導体レーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16915218

Country of ref document: EP

Kind code of ref document: A1