JP4060040B2 - 情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体 - Google Patents

情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体 Download PDF

Info

Publication number
JP4060040B2
JP4060040B2 JP2001046312A JP2001046312A JP4060040B2 JP 4060040 B2 JP4060040 B2 JP 4060040B2 JP 2001046312 A JP2001046312 A JP 2001046312A JP 2001046312 A JP2001046312 A JP 2001046312A JP 4060040 B2 JP4060040 B2 JP 4060040B2
Authority
JP
Japan
Prior art keywords
time interval
information input
zero
cross point
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001046312A
Other languages
English (en)
Other versions
JP2002032189A (ja
Inventor
克之 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001046312A priority Critical patent/JP4060040B2/ja
Publication of JP2002032189A publication Critical patent/JP2002032189A/ja
Application granted granted Critical
Publication of JP4060040B2 publication Critical patent/JP4060040B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体に関する。
【0002】
【従来の技術】
従来、この種の座標入力/検出装置としては、ペンで座標入力面を押さえた時、或いはペンが座標入力面に接近した時に、静電又は電磁誘導によって電気的な変化を検出するものがある。
【0003】
また、他の方式として、特開昭61−239322号公報等に示されるような超音波方式のタッチパネル座標入力/検出装置がある。これは簡単にいうと、パネル上に送出された表面弾性波をパネルに触れることにより減衰させ、その位置を検出するものである。
【0004】
しかし、静電又は電磁誘導によって座標位置を検出するものでは、座標入力面に電気的なスイッチ機能を必要とするため製造コストが高く、また、ペンと本体とをつなぐケーブルが必要であるため操作性に難点がある。
【0005】
また、超音波方式のものでは、指入力を前提としているため、パネル上で吸収を伴うような材質(柔らかく弾力性を伴う材質)でペン入力を行わせ直線を描いた場合、押した時点では安定な減衰が得られるが、ペンを移動するとき十分な接触が得られず、直線が切れてしまう。かといって、十分な接触を得るために、ペンを必要以上の力で押し付けてしまうと、ペンの移動に伴い、ペンの持つ弾力性のため応力を受け歪を生じ、移動中に復帰させる力が働く。そのため、一旦、ペン入力時に曲線を描こうとすると、ペンを抑える力が弱くなり歪を元へ戻す力が優るため復帰して安定な減衰が得られず、入力が途絶えたと判断されてしまう。このためにペン入力としては信頼性が確保できないという問題を有する。
【0006】
しかしながら、このような従来技術が有する問題点については、特開平5−173699号公報や特開平9−319501号公報に開示されているもの等に代表される光学式の座標入力/検出装置によって解消され、比較的簡単な構成により、タッチパネル型の座標入力/検出装置が実現できる。
【0007】
【発明が解決しようとする課題】
近年、このような光学的な座標入力/検出装置は、パーソナルコンピュータ等の普及に伴い、情報の入力や選択をするための有力なツールとして位置付けられ、上述の出願で提案されたものや公開公報に開示されたもの以外にもさらに検討されているが、まだ、完全とはいえず、本格的な実用化に向けていまだ解決されねばならない課題が多々存在する。
【0008】
例えば、これらの光学的なタッチパネル型座標入力/検出装置の場合、超音波方式等による場合と異なり、座標入力/検出領域面(タッチパネル)自体が検出機能を有さず、座標入力/検出領域面から表面側に少し離れた位置に光学的な検出領域が設定されているため、座標入力/検出領域面上における指などによる実際の描画動作(文字の筆記等)とその描画座標位置の検出動作との間に空間的なずれを生じてしまい、描画する人の意図した描画画像に対してディスプレイ等を通じて再現される描画画像上に尾引き等の不具合が生じてしまう。即ち、「尾引き」とは、光学的なタッチパネルの特徴として、タッチパネルから指などが離れた瞬間にデタッチ(非挿入)が検出されるのではなく、タッチパネルから或る距離以上に離れる時点で検出されるため、この時点までの間は、指などをタッチパネルから離し所望の文字等の描画を終えているにもかかわらず、依然として、タッチパネルに触れていると見倣され(タッチ=挿入状態と見倣され)、再現画像において意図しない部分に線分が描画される現象をいう。
【0009】
例えば、図37に示すように、表面側に検出光による座標入力/検出領域200が設定されたタッチパネル201面に沿って指202などにより描画するとき、P点でその描画が終わり、指202をタッチパネル201面から離そうとする場合、座標入力/検出領域200を抜け出るP′点までは指202が検出光により検出され、指202がタッチパネル201に触れていると見倣され、P′点で初めてデタッチとされる。これによりディスプレイを通じてタッチパネル201面に表示される描画線203はP点で終わらず、P′点まで伸び、このP〜P′点部分が尾引き204として表示されてしまう。この結果、現実的な描画を考えた場合、例えば、図38(a)に示すような漢字「二」の描画において、▲1▼〜▲2▼と描画し、▲2▼部分で指を離し、▲3▼〜▲4▼と描画し、▲4▼で指を離すこととなるが、漢字「二」の「止め」部分205で指を離す際に、上記の尾引き現象が生じ、再現描画像には図38(b)に示すようなひげ状の尾引き204が生じてしまい、見にくくなる。これにより、描画後に消しゴムツールなどを用いてこの尾引き204部分を消す等の面倒な操作が必要となる。
【0010】
さらに、面倒なことに、日本語における漢字やひらがなには、例えば図38(c)に示す漢字「寸」のような「跳ね」部分206や図38(e)に示すひらがな「つ」のような「はらい」部分207が存在し、これらの「はらい」や「跳ね」は必要な描画であるため、「止め」部分205における尾引きとは区別する必要がある。なお、図38(d)、図38(f)は漢字「寸」、ひらがな「つ」の描画に基づく再現描画像の例を示し、「止め」部分205に尾引き204が現れているとともに、「跳ね」部分206や「はらい」部分207の先端にも尾引き204が現れていることを示している。
【0011】
結局、指などの指示手段の指示状態、特に、挿入/非挿入(タッチ/デタッチ)の判断ないしは認識が現実の指示状態に対してずれがあり、必ずしも適正に行われていないものである。
【0012】
本発明の目的は、描画位置を指示する物体の情報入力領域における指示状態をより正確に認識でき、より適正な情報入力処理が可能で、再現画像における尾引き等を軽減し得る情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体を提供することである。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に基づき所定の成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と、前記連続的な情報入力動作の端部との時間間隔が、所定の閾値よりも大きい場合に、前記ゼロクロス点と前記連続的な情報入力動作の端部とを結ぶ入力情報を有効にする。
【0014】
したがって、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズを確実に抑制することが可能になる。
【0015】
請求項2記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出手段と、前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記屈曲後持続時間検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記屈曲後持続時間検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点とディップが消滅した位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0016】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0017】
請求項3記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出手段と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0018】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0019】
請求項4記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出手段と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0020】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0021】
請求項5記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出手段と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0022】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0023】
請求項6記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出手段と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0024】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0025】
請求項7記載の発明は、請求項3ないし6のいずれか一記載の情報入力装置において、前記受光手段を複数備え、前記ハネ/トメ判別手段は、全ての前記受光手段により検出される光強度分布に基づいて前記時間間隔検出手段により検出された時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にする。
【0026】
したがって、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズをこれらの発生方向によらず、確実に抑制することが可能になる。
【0027】
請求項8記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出手段と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0028】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0029】
請求項9記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、所定の入力情報として出力する情報入力装置において、前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出手段と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、を備える。
【0030】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0031】
請求項10記載の発明は、請求項8または9記載の情報入力装置において、前記ハネ/トメ判別手段は、二次元位置座標を構成する全ての座標成分に基づいて前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にする。
【0032】
したがって、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズをこれらの発生方向によらず、確実に抑制することが可能になる。
【0033】
請求項11記載の発明は、請求項1ないし10のいずれか一記載の情報入力装置において、前記情報入力領域は、光源から出射された光を板状に成形して投光することにより形成される。
【0034】
したがって、物体の挿入を受け付ける二次元の情報入力領域が確実に形成され、無視差、完全透明、高い描画感を実現する情報入力装置の提供が可能になる。
【0035】
請求項12記載の発明は、請求項1ないし10のいずれか一記載の情報入力装置において、前記情報入力領域は、光源から出射されたビーム光を順次走査して投光することにより形成される。
【0036】
したがって、物体の挿入を受け付ける二次元の情報入力領域が確実に形成され、無視差、完全透明、高い描画感を実現する情報入力装置の提供が可能になる。
【0037】
請求項13記載の発明は、請求項1,5,6,7,8,9,10のいずれか一記載の情報入力装置において、前記情報入力領域は、撮像手段による撮像範囲である。
【0038】
したがって、物体の挿入を受け付ける二次元の情報入力領域が確実に形成され、無視差、完全透明、高い描画感を実現する情報入力装置の提供が可能になる。
【0039】
請求項14記載の発明は、請求項1,2,3,4,7,8,9,10のいずれか一記載の情報入力装置において、前記情報入力領域は、前記受光手段とこの受光手段に相対して設けられる発光手段とによる光路をマトリックス状に配することにより形成される。
【0040】
したがって、物体の挿入を受け付ける二次元の情報入力領域が確実に形成され、無視差、完全透明、高い描画感を実現する情報入力装置の提供が可能になる。
【0041】
請求項15記載の発明の情報入力システムは、表示装置と、この表示装置の表示面に前記情報入力領域を一致させて配設される請求項1ないし14のいずれか一記載の情報入力装置と、前記情報入力装置からの入力に基づいて前記表示装置の表示制御を行う制御装置と、を備える。
【0042】
したがって、座標入力面(タッチパネル面)のような物理的な面を有さず、表示装置の表示面に装着して使用した場合であっても視認性に優れる情報入力システムを安価で提供することが可能になる。
【0043】
請求項16記載の発明の情報入力システムは、筆記を受け付けるライティングボードと、このライティングボードの書き込み面に前記情報入力領域を一致させて配設される請求項1ないし14のいずれか一記載の情報入力装置と、前記情報入力装置からの入力に基づいて前記ライティングボードに筆記された情報の制御を行う制御装置と、を備える。
【0044】
したがって、座標入力面(タッチパネル面)のような物理的な面を有さず、表示装置の表示面に装着して使用した場合であっても視認性に優れる情報入力システムを安価で提供することが可能になる。
【0045】
請求項17記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点とディップが消滅した位置との時間間隔を検出し、前記時間間隔と所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点とディップが消滅した位置とを結ぶ入力情報を有効にする。
【0046】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0047】
請求項18記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出し、前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする。
【0048】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0049】
請求項19記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出し、前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする。
【0050】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0051】
請求項20記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出し、前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする。
【0052】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0053】
請求項21記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出し、前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする。
【0054】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0055】
請求項22記載の発明は、請求項18ないし21のいずれか一記載の入力情報識別方法において、全ての前記受光手段により検出される光強度分布に基づいて検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にする。
【0056】
したがって、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズをこれらの発生方向によらず、確実に抑制することが可能になる。
【0057】
請求項23記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出し、前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする。
【0058】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0059】
請求項24記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出し、前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値とを比較し、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする。
【0060】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0061】
請求項25記載の発明は、請求項23または24記載の入力情報識別方法において、二次元位置座標を構成する全ての座標成分に基づいて検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にする。
【0062】
したがって、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズをこれらの発生方向によらず、確実に抑制することが可能になる。
【0063】
請求項26記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出機能と、前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点とディップが消滅した位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0064】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0065】
請求項27記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0066】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0067】
請求項28記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0068】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0069】
請求項29記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0070】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0071】
請求項30記載の発明は、二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0072】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0073】
請求項31記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0074】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0075】
請求項32記載の発明は、二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、前記コンピュータに、前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出機能と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする入力情報判別機能と、を実行させる。
【0076】
したがって、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0077】
請求項33記載の発明の座標入力/検出装置は、平面若しくはほぼ平面をなす二次元の座標入力/検出領域を指示した指示手段の二次元位置座標を受光手段により検出される光強度分布のディップに基づいて検出し、描画情報として出力する座標入力/検出装置において、前記座標入力/検出領域における前記指示手段による連続的な指示に基づく描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、このゼロクロス点検出手段で検出された前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出手段と、前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、前記屈曲後持続時間検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、前記屈曲後持続時間検出手段により検出された時間間隔が所定の閾値よりも大きい場合にのみ、前記ゼロクロス点とディップが消滅した位置とを結ぶ描画情報を有効にするハネ/トメ判別手段と、を備える。
【0078】
したがって、指などの指示手段による連続的な指示に基づく描画の「跳ね」部分や「止め」部分での指示手段の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0079】
請求項34記載の発明のハネ/トメ識別方法は、平面若しくはほぼ平面をなす二次元の座標入力/検出領域を指示した指示手段の二次元位置座標を受光手段により検出される光強度分布のディップに基づいて検出し、描画情報として出力する座標入力/検出装置における前記指示手段による連続的な指示に基づく描画の「跳ね」と「止め」とを識別するハネ/トメ識別方法であって、前記座標入力/検出領域における前記指示手段による描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出工程と、前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出工程と、前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較工程と、前記時間間隔が所定の閾値よりも大きい場合にのみ、前記ゼロクロス点とディップが消滅した位置とを結ぶ描画情報を有効にするハネ/トメ判別工程と、を含む。
【0080】
したがって、指などの指示手段による連続的な指示に基づく描画の「跳ね」部分や「止め」部分での指示手段の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0081】
請求項35記載の発明の記憶媒体は、平面若しくはほぼ平面をなす二次元の座標入力/検出領域を指示した指示手段の二次元位置座標を受光手段により検出される光強度分布のディップに基づいて検出し、描画情報として出力する座標入力/検出装置に用いられ、前記指示手段による連続的な指示に基づく描画の「跳ね」と「止め」との識別をコンピュータに実行させるコンピュータに読み取り可能なプログラムを記憶している記憶媒体であって、前記プログラムは、前記座標入力/検出領域における前記指示手段による描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出機能と、前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、前記時間間隔が所定の閾値よりも大きい場合にのみ、前記ゼロクロス点とディップが消滅した位置とを結ぶ描画情報を有効にするハネ/トメ判別機能と、を前記コンピュータに実行させる。
【0082】
したがって、指などの指示手段による連続的な指示に基づく描画の「跳ね」部分や「止め」部分での指示手段の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0083】
【発明の実施の形態】
本発明の第一の実施の形態を図1ないし図14に基づいて説明する。ここで、図1は電子黒板システム101を概略的に示す外観斜視図である。図1に示すように、情報入力システムである電子黒板システム101は、表示装置であるプラズマディスプレイパネル(PDP:Plasma Display Panel)102及び情報入力装置である座標入力/検出装置1で構成される電子黒板部104と、機器収納部103とを主体に構成されている。機器収納部103には、制御装置であるパーソナルコンピュータ等のコンピュータ105・原稿の画像を読み取るためのスキャナ106,画像データを記録紙に出力するプリンタ107,ビデオプレイヤー108(いずれも図2参照)が収納されている。なお、PDP102としては、電子黒板として利用可能な大画面タイプのものが用いられている。また、座標入力/検出装置1には、詳細は後述するが、扇形状に投光される光束膜によって形成される情報入力領域である座標入力/検出領域3を有し、この座標入力/検出領域3に操作者の指先やペン、指示棒など光遮断手段として機能する指示手段4(図4参照)を挿入することで座標入力/検出領域3内の光束を遮ることにより、CCD(Charge Coupled Device)等の受光素子13(図5参照)における結像位置に基づいてその指示位置を検出し、文字等の入力を可能にする光学式の座標入力/検出装置が適用されている。
【0084】
PDP102及び座標入力/検出装置1は、PDP102のディスプレイ面20側に座標入力/検出装置1が位置するようにして一体化され、PDP102のディスプレイ面20に座標入力/検出装置1の座標入力/検出領域3が略一致するようにして電子黒板部104を形成している。このように、電子黒板部104はPDP102及び座標入力/検出装置1を収納して、電子黒板システム101の表示面(PDP102のディスプレイ面20)及び書き込み面(座標入力/検出領域3)を構成している。
【0085】
さらに、図示することは省略するが、PDP102にはビデオ入力端子やスピーカーが設けられており、ビデオプレイヤー108をはじめ、その他レーザディスクプレイヤー、DVDプレイヤー、ビデオカメラ等の各種情報機器やAV機器を接続し、PDP102を大画面モニタとして利用することが可能な構成になっている。また、PDP102には、PDP102の表示位置、幅、高さ、歪等についての調整を行うための調整手段(図示せず)も設けられている。
【0086】
次に、電子黒板システム101に内蔵される各部の電気的接続について図2を参照して説明する。図2に示すように、電子黒板システム101は、コンピュータ105にPDP102、スキャナ106、プリンタ107、ビデオプレイヤー108をそれぞれ接続し、コンピュータ105によってシステム全体を制御するようにしている。また、コンピュータ105には、指示手段4で指示された座標入力/検出領域3内の位置座標の演算等を行う座標入力/検出装置1に設けられるコントローラ110が接続されており、このコントローラ110を介して座標入力/検出装置1もコンピュータ105に接続されている。また、コンピュータ105を介して電子黒板システム101をネットワーク111に接続することができ、ネットワーク111上に接続された他のコンピュータで作成したデータをPDP102に表示したり、電子黒板システム101で作成したデータを他のコンピュータに転送することも可能になっている。
【0087】
次に、コンピュータ105について説明する。ここで、図3はコンピュータ105に内蔵される各部の電気的接続を示すブロック図である。図3に示すように、コンピュータ105は、システム全体を制御するCPU112(Central Processing Unit)と、起動プログラム等を記憶したROM(Read Only Memory)113と、CPU112のワークエリアとして使用されるRAM(Random Access Memory)114と、文字・数値・各種指示等の入力を行うためのキーボード115と、カーソルの移動や範囲選択等を行うためのマウス116と、ハードディスク117と、PDP102に接続されておりそのPDP102に対する画像の表示を制御するグラフィックス・ボード118と、ネットワーク111に接続するためのネットワーク・カード(またはモデムでも良い)119と、コントローラ110、スキャナ106、プリンタ107等を接続するためのインタフェース(I/F)120と、上記各部を接続するためのバス121とを備えている。
【0088】
ハードディスク117には、オペレーティング・システム(OS:Operating System)122、コントローラ110を介してコンピュータ105上で座標入力/検出装置1を動作させるためのデバイスドライバ123、描画ソフト・ワードプロセッサソフト・表計算ソフト・プレゼンテーションソフト等の各種アプリケーションプログラム124等が格納されている。
【0089】
また、コンピュータ105には、OS122、デバイスドライバ123や各種アプリケーションプログラム124等の各種のプログラムコード(制御プログラム)を記憶した記憶媒体126、すなわち、フロッピーディスク、ハードディスク、光ディスク(CD−ROM,CD−R,CD−R/W,DVD−ROM,DVD−RAMなど)、光磁気ディスク(MO)、メモリカードなどに記憶されているプログラムコードを読み取る装置であるフロッピーディスクドライブ装置、CD−ROMドライブ装置、MOドライブ装置等のプログラム読取装置125が搭載されている。
【0090】
各種アプリケーションプログラム124は、コンピュータ105への電源の投入に応じて起動するOS122による制御の下、CPU112によって実行される。例えば、キーボード115やマウス116の所定の操作によって描画ソフトを起動した場合には、PDP102にグラフィックス・ボード118を介して描画ソフトに基づく所定の画像が表示される。また、デバイスドライバ123もOS122とともに起動され、コントローラ110を介した座標入力/検出装置1からのデータ入力が可能な状態になる。このように描画ソフトを起動した状態で座標入力/検出装置1の座標入力/検出領域3にユーザが指示手段4を挿入して文字や図形を描いた場合、座標情報が指示手段4の記述に基づく画像データとしてコンピュータ105に入力され、例えばPDP102に表示されている画面上の画像に対して上書き画像として重ねて表示される。より詳細には、コンピュータ105のCPU112は、入力された画像データに基づいて線や文字を描画するための描画情報を生成し、入力された座標情報に基づく位置座標に併せてグラフィックス・ボード118に設けられるビデオメモリ(図示せず)に書き込んでいく。その後、グラフィックス・ボード118が、ビデオメモリに書き込まれた描画情報を画像信号としてPDP102に送信することにより、ユーザが書いた文字と同一の文字が、PDP102に表示されることになる。つまり、コンピュータ105は座標入力/検出装置1をマウス116のようなポインティングデバイスとして認識しているため、コンピュータ105では、描画ソフト上でマウス116を用いて文字を書いた場合と同様な処理が行われることになる。
【0091】
次に、座標入力/検出装置1について詳細に説明する。まず、その原理について正面概略構成を示す図4を参照して説明する。四角形状の筐体構造の座標入力/検出部材2の内部空間である本実施の形態の座標入力/検出領域3は、平面(若しくは、ほぼ平面)をなす二次元形状をなして電子的に画像を表示する前述したPDP102のディスプレイ面20である。この座標入力/検出領域3上を光学的に不透明な材質からなる操作者の指先やペン、指示棒など光遮断手段として機能する物体である指示手段4で触った場合を考える。このときの指示手段4の座標を検出することが、この座標入力/検出装置1の目的である。
【0092】
座標入力/検出領域3の上方両端(又は、下方両端)に受発光手段5が装着されている。受発光手段5からは座標入力/検出領域3に向けて、L1,L2,L3,…,Lnの光ビームの束(プローブ光)が照射されている。実際には点光源6から広がる座標入力面に平行な面に沿って進行する扇形板状の光波(光束膜)である。
【0093】
座標入力/検出領域3の周辺部分には、再帰性反射部材(再帰性反射手段)7が再帰反射面を座標入力/検出領域3の中央に向けて装着されている。
【0094】
再帰性反射部材7は入射した光を、入射角度に依らずに同じ方向に反射する特性をもった部材である。例えば、受発光手段5から発した扇形板状の光波のうちある一つのプローブ光8に注目すると、プローブ光8は再帰性反射部材7によって反射されて再び同じ光路を再帰反射光9として受発光手段5に向かって戻るように進行する。受発光手段5には、後述する受光手段が設置されており、プローブ光L1〜Lnの各々に対して、その再帰光が受光手段に再帰したかどうかを判断することができる。
【0095】
いま、操作者が指(指示手段4)で位置Pを触った場合を考える。このときプローブ光10は位置Pで指に遮られて再帰性反射部材7には到達しない。従って、プローブ光10の再帰光は受発光手段5には到達せず、プローブ光10に対応する再帰光が受光されないことを検出することによって、プローブ光10の延長線(直線L)上に指示手段4が挿入されたことを検出することができる。同様に、図4の右上方に設置された受発光手段5からもプローブ光11を照射し、プローブ光11に対応する再帰光が受光されないことを検出することによって、プローブ光11の延長線(直線R)上に指示手段4が挿入されたことを検出することができる。直線L及び直線Rを求めることができれば、このP点の交点座標を三角測量の原理に基づいた演算により算出することにより、指示手段4が挿入された座標を得ることができる。
【0096】
次に、受発光手段5の構成とプローブ光L1からLnのうち、どのプローブ光が遮断されたかを検出する機構について説明する。受発光手段5の内部の構造の概略を図5に示す。図5は図4の座標入力面に取り付けられた受発光手段5を、座標入力/検出領域3に垂直な方向から見た図である。ここでは、簡単のため、座標入力/検出領域3に平行な二次元平面で説明を行う。
【0097】
概略構成としては、点光源6、集光レンズ12及びCCD(Charge Coupled Device)であって受光手段として機能する受光素子13から構成される。点光源6は発光手段である光源21(図9参照)から見て受光素子13と反対の方向に扇形に光を射出するものとする。点光源6から射出された扇形の光は矢印14,15、その他の方向に進行するプローブ光の集合であると考える。矢印14方向に進行したプローブ光は再帰性反射部材7で矢印16方向に反射されて、集光レンズ12を通り、受光素子13上の位置17に到達する。また、矢印15方向に進行したプローブ光は再帰性反射部材7で矢印18方向に反射されて、集光レンズ12を通り、受光素子13上の位置19に到達する。このように点光源6から発し、再帰性反射部材7で反射され同じ経路を戻ってきた光は、集光レンズ12の作用によって、各々受光素子13上の各々異なる位置に到達する。従って、座標入力/検出領域3中の或る位置に指示手段4が挿入されてあるプローブ光が遮断されると、そのプローブ光に対応する受光素子13上の点に光が到達しなくなる。よって、受光素子13上の光強度分布を調べることによって、どのプローブ光が遮られたかを知ることができる。
【0098】
図6で前述の動作を詳しく説明する。図6で受光素子13は集光レンズ12の焦点面(焦点距離f)に設置されているものとする。点光源6から図6の右側に向けて発した光は再帰性反射部材7によって反射され同じ経路を戻ってくる。従って、点光源6の位置に再び集光する。集光レンズ12中心は点光源位置と一致するように設置する。再帰性反射部材7から戻った再帰光は集光レンズ12の中心を通るので、レンズ後方(受光素子側)に対称の経路で進行する。
【0099】
このとき受光素子13上の光強度分布を考える。指示手段4が挿入されていなければ、受光素子13上の光強度分布はほぼ一定であるが、図6に示すように位置Pに光を遮る指示手段4が挿入された場合、ここを通過するプローブ光は遮られ、受光素子13上では位置Dnの位置に光強度が弱い領域が生じ、受光素子13からの光の強度分布の形状にはディップが出現する。このディップが出現する位置Dnは遮られたプローブ光の出射/入射角θnと対応しており、Dnを検出することによりθnを知ることができる。即ち、θnはDnの関数として、
θn=arctan (Dn/f) ………………………………(1)
と表すことができる。ここで、図4左上方の受発光手段5におけるθnをθnL、DnをDnLと置き換える。
【0100】
さらに、図7において、受発光手段5と座標入力/検出領域3との幾何学的な相対位置関係の変換係数gにより、指示手段4と座標入力/検出領域3とのなす角θLは、(1)式で求められるDnLの関数として、
θL=g(θnL) ………………………………(2)
ただし、θnL=arctan(DnL/f)
と表すことができる。
【0101】
同様に、図4右上方の受発光手段5についても、上述の(1)(2)式中の記号Lを記号Rに置き換えて、右側の受発光手段5と座標入力/検出領域3との幾何学的な相対位置関係の変換係数hにより、
θR=h(θnR) ………………………………(3)
ただし、θnR=arctan(DnR/f)
と表すことができる。
【0102】
ここで、座標入力/検出領域3上の受発光手段5の取付間隔を図7に示すwとし、原点座標を図7に示すようにとれば、座標入力/検出領域3上の指示手段4で指示した点Pの二次元座標(x,y)は、
x=w・tanθnR/(tanθnL+tanθnR) ………………(4)
y=w・tanθnL・tanθnR/(tanθL+tanθnR) ……(5)
このように、x,yは、DnL,DnRの関数として表すことができる。即ち、左右の受発光手段5上の受光素子13上の暗点の位置DnL,DnRを検出し、受発光手段5の幾何学的配置を考慮することにより、指示手段4で指示した点Pの二次元座標を検出することができる。
【0103】
次に座標入力/検出領域3、例えば、ディスプレイの表面などに前で説明した光学系を設置する例を示す。図8は、図4、図5で述べた左右の受発光手段5のうち一方を、PDP102のディスプレイ面20へ設置した場合の例である。
【0104】
図8中の20はディスプレイ面の断面を示しており、図5で示したy軸の負から正に向かう方向に見たものである。即ち、図8はx−z方向を主体に示しているが、二点鎖線で囲んだ部分は同一物を別方向(x−y方向、y−z方向)から見た構成を併せて示している。
【0105】
受発光手段5のうち発光手段について説明する。発光手段である光源21としてLD(Laser Diode:半導体レーザ)などスポットをある程度絞ることが可能な光源を用いる。
【0106】
光源21からディスプレイ面20に垂直に発した光は集光レンズ22によってx方向にのみコリメートされる。このコリメートは、後でハーフミラー23で折り返された後、ディスプレイ面20と垂直な方向には平行光として配光するためである。集光レンズ22を出た後、この集光レンズ22とは曲率の分布が直交する2枚の集光レンズ24,25で同図y方向に対して集光される。
【0107】
これらの集光レンズ群(レンズ21,24,25)の作用により、線状に集光した領域が集光レンズ25の後方に形成される。ここに、y方向に狭くx方向に細長いスリット26を挿入する。即ち、スリット位置に線状の二次光源6を形成する。二次光源6から発した光はハーフミラー23で折り返され、ディスプレイ面20の垂直方向には広がらず平行光で、ディスプレイ面20と平行方向には二次光源6を中心に扇形状に広がりながら、ディスプレイ面20に沿って進行する。進行した光はディスプレイ周辺端に設置してある再帰性反射部材7で反射されて、同様の経路でハーフミラー23方向(矢印C)に戻る。ハーフミラー23を透過した光は、ディスプレイ面20に平行に進み集光レンズ12を通り受光素子13に入射する。
【0108】
このとき、二次光源6と集光レンズ12はハーフミラー23に対して共に距離Dの位置に配設され共役な位置関係にある。従って、二次光源6は図6の点光源6に対応し、集光レンズ12は図5のレンズ12に対応する。
【0109】
図9に、光源21及び受光素子13の制御回路の構成ブロック図を示す。この制御回路は光源21の発光制御と、受光素子13からの出力の演算を行うものである。同図に示すように、制御回路は、CPU(Central Processing Unit)31を中心として、プログラム及びデータを記憶するROM(Read Only Memory)32、RAM(Random Access Memory)33、コンピュータに接続するためのインタフェースドライバ34、A/D(Analog/Digital)コンバータ35、LEDドライバ36及び各種のプログラムコード(制御プログラム)を格納するハードディスク37がバス接続された構成からなる。ここに、CPU31、ROM32及びRAM33によりコンピュータとしてのマイクロコンピュータが構成されている。
【0110】
また、このようなマイクロコンピュータには、各種のプログラムコード(制御プログラム)を記憶した記憶媒体39、すなわち、フロッピーディスク、ハードディスク、光ディスク(CD−ROM,CD−R,CD−R/W,DVD−ROM,DVD−RAMなど)、光磁気ディスク(MO)、メモリカードなどに記憶されているプログラムコードを読み取る装置であるフロッピーディスクドライブ装置、CD−ROMドライブ装置、MOドライブ装置等のプログラム読取装置40が接続されている。
【0111】
受光素子13からの出力を演算する回路として、受光素子13の出力端子に、アナログ処理回路41が図のように接続される。受光素子13に入射した反射光は、受光素子13内で光の強度に応じた電圧値を持つアナログの画像データに変換され、アナログ信号として出力される。このアナログ信号は、アナログ処理回路41で処理された後、A/D(Analog/Digital)コンバータ35によってデジタル信号に変換されてCPU31に渡される。この後、CPU31によって指示手段4の二次元座標の演算が行われる。
【0112】
なお、この制御回路は、一方の受発光手段5と同一筺体に組み込んでもよく、また、別筺体として座標入力/検出領域3を形成するディスプレイの一部分に組み込んでもよい。また、インタフェースドライバ34を介してコンピュータ等に演算された座標データを出力するために出力端子を設けることが好ましい。
【0113】
ハードディスク37に格納された各種のプログラムコード(制御プログラム)または記憶媒体39に記憶された各種のプログラムコード(制御プログラム)は、座標入力/検出装置1への電源の投入に応じてRAM33に書き込まれ、各種のプログラムコード(制御プログラム)が実行されることになる。
【0114】
続いて、制御プログラムに基づいてCPU31によって実行される特徴的な機能について説明する。ここで、図10は座標入力/検出装置1を機能的に示すブロック図である。図10に示すように、座標入力/検出領域3の表面近傍に指などの指示手段4が挿入されたときに(タッチされたときに)、受発光手段5の受光素子13に入射した反射光に応じてA/Dコンバータ35で生成されるデジタル信号は、指示手段4の座標入力/検出領域3上での二次元座標を検出する座標検出手段42と、ハネ/トメ識別手段43とに対してそれぞれ出力される。
【0115】
座標検出手段42は、前述したように、座標入力/検出領域3の表面近傍に指などの指示手段4が挿入されたときに、指示手段4の座標入力/検出領域3上での二次元座標を検出する。
【0116】
一方、ハネ/トメ識別手段43は、座標入力/検出領域3の表面近傍に指などの指示手段4による連続的な情報入力動作に応じた日本語における漢字やひらがな等の文字を描画において、その文字に係る「跳ね」や「止め」を検出するものである。ここで、ハネ/トメ識別手段43を実現するCPU31によって実行されるハネ/トメ識別処理について図11を参照して以下に説明する。
【0117】
図11に示すように、ステップS1においては、微分処理が実行される。描画の際における「跳ね」や「止め」はその描画軌跡において屈曲点を生じることから、座標の時間変化を微分することにより、この屈曲点を検出し、「跳ね」や「止め」の動作を検出することが可能になっている。以下において、「止め」部分を含む漢字「三」の描画及び漢字「三」の各ストローク端部に「跳ね」部分を意図的に設けたものの描画を例にして、「止め」や「跳ね」の動作検出についてより詳細に説明する。
【0118】
ここで、図12(a)は漢字「三」を描画した際の受光素子におけるディップ深さ及びディップ位置の時間変化を示すグラフ、(b)は漢字「三」の各ストローク端部に「跳ね」部分を設けたものを描画した際の受光素子におけるディップ深さ及びディップ位置の時間変化を示すグラフである。図12(a)及び(b)に示すA点は漢字「三」の描画及び漢字「三」の各ストローク端部に「跳ね」部分を設けたものの描画における第二ストロークの始点であり、B点は第二ストロークの終点である。つまり、B点は、漢字「三」の描画においては「止め」部分であって、漢字「三」の各ストローク端部に「跳ね」部分を設けたものの描画においては「跳ね」部分である。ここで、漢字「三」の描画及び漢字「三」の各ストローク端部に「跳ね」部分を設けたものの描画におけるB点を拡大してみると、図13に示すように、「止め」部分と「跳ね」部分とでは各動作にかかわらず描画の最後に急激にディップ深さが変化し、その消滅時間も「止め」部分と「跳ね」部分とでは差異は生じていない。一方、図13に示すように、「止め」部分と「跳ね」部分とでは、そのディップ位置変化に差異が生じていることがわかる。そこで、ディップ深さ及びディップ位置の時間変化を微分して単位時間当たりの変化量として捉えると、図14に示すグラフのようになる。ここで、図14(a)及び(b)に示すC点はディップ位置変化微分のゼロクロス点であり、D点はディップ深さ変化微分のピーク値である。つまり、ゼロクロス点とは、図14(a)及び(b)に示すように微分カーブの符号が変わる点(つまり、変化の傾きがゼロになる点)であり、「跳ね」や「止め」の動作に基づく屈曲点である。また、ディップ深さ変化微分のピーク値であるD点は、描画の際にはディップ深さは一定であることから、座標入力/検出領域3から指示手段4が離間してディップが消滅した位置である。
【0119】
なお、上述したような屈曲点は、座標入力/検出領域3の上方両端(又は、下方両端)に装着されている受発光手段5の少なくともいずれか一方で検出されれば良い。このように受発光手段5の少なくともいずれか一方で屈曲点が検出されれば良いものとしたのは、以下の理由による。意図しない「跳ね」などの描画ノイズは、座標入力/検出領域3内であらゆる方向に出る可能性があるため、一方の受発光手段5の受光素子13のディップ位置だけでは、全ての意図しない「跳ね」を削除することができない場合があるからである。例えば、ストロークの「跳ね」が一方の受発光手段5の受光素子13の光軸に平行あるいは平行に近い場合には、その受発光手段5の受光素子13上ではディップ位置は移動しない。しかしながら、他方の受発光手段5の受光素子13は、一方の受発光手段5の受光素子13と光軸が略直交しているので、ディップ位置の変化が必ず起こるからである。つまり、両方の受発光手段5の受光素子13を観察し、少なくとも一方の受発光手段5の受光素子13においてディップ位置の変化によりゼロクロス点が発生した場合に、「跳ね」を評価するようにすることで、評価の取りこぼしをすることはなく、確実に意図しない「跳ね」の抑制を行うことができる。
【0120】
そして、微分処理(ステップS1)は、ゼロクロス点が検出されたと判断されるまで(ステップS2のY)、繰り返される。したがって、ステップS1〜S2において、ゼロクロス点検出手段の機能が実行される。
【0121】
ゼロクロス点が検出されたと判断された場合には(ステップS2のY)、ステップS3に進み、屈曲後持続時間Tを検出する屈曲後持続時間検出処理が実行される。ここで、屈曲後持続時間Tとは、ディップ位置変化微分のゼロクロス点であるC点と、ディップ深さ変化微分のピーク値であるD点との屈曲後持続時間に対応するものである(図14参照)。ステップS3においてこのような屈曲後持続時間Tを検出するのは、図14からも解かるように、「跳ね」動作による描画形状は「止め」の動作時に生じる擬似的な「跳ね」の描画形状に比べて形状が長いことから、その持続時間も長くなっているので、この屈曲後持続時間Tを検出することにより「跳ね」動作なのか「止め」動作なのかを判断することが可能になるからである。ここに、屈曲後持続時間検出手段の機能が実行される。
【0122】
なお、図14(b)に示すように、漢字「三」の各ストローク端部に「跳ね」部分を設けたものの「跳ね」を描画する際には、「タメ」の動作が生じる。この「タメ」の動作は、ゼロクロス点であるC点で示した部分のディップ位置の微分曲線が“0”となる領域が点にはならずに、20msec程度の“0”の時間が持続している線として検出される。これは、「跳ね」部分を描画する際に、指等の指示手段4がC点で一瞬止まるからである。この持続部分が、いわゆる「タメ」である。そのため、このような「タメ」の動作が検出される場合には、ゼロクロス点であるC点は、“0”の時間が持続している範囲で任意とされる。
【0123】
続くステップS4においては、ステップS3で検出した屈曲後持続時間Tと閾値Tとを比較する。ここに、比較手段の機能が実行される。なお、閾値Tは、「跳ね」動作による平均的な屈曲後持続時間と、「止め」動作による平均的な屈曲後持続時間との中間的な値とされており、例えばROM32に記憶されている。つまり、ROM32が、閾値記憶手段として機能することになる。
【0124】
屈曲後持続時間Tが閾値Tよりも大きい場合、つまり、“T>T”であった場合には(ステップS4のY)、ステップS5に進み、座標検出手段42において検出された二次元座標をプロットするか否かの判断基準となるプロットフラグPをON(P=1)にして、処理を終了する。一方、屈曲後持続時間Tが閾値Tよりも小さい場合、つまり、“T≦T”であった場合には(ステップS4のN)、ステップS6に進み、プロットフラグPをOFF(P=0)にして、処理を終了する。したがって、ステップS5〜S6において、ハネ/トメ判別手段の機能が実行される。
【0125】
そして、図10に示すように、座標検出手段42およびハネ/トメ識別手段43の後段には描画制御手段44が設けられている。この描画制御手段44は、座標検出手段42において検出された二次元座標をプロットフラグPに基づいてコンピュータに出力するか否かを判断するものである。つまり、プロットフラグPがON(P=1)の場合にのみ、座標検出手段42において検出された二次元座標をコンピュータに描画情報(入力情報)として出力することになるので、「止め」の動作時に生じる尾引きである擬似的な「跳ね」に係る二次元座標が描画情報としてコンピュータに出力されることはない。
【0126】
ここに、指などの指示手段4による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での指示手段4の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域3から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段4による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0127】
本発明の第二の実施の形態を図15ないし図19に基づいて説明する。なお、第一の実施の形態において説明した部分と同一部分については同一符号を用い、説明も省略する。本実施の形態の座標入力/検出装置1は、指示手段4による連続的な指示に基づいて描画された文字に係る「跳ね」や「止め」の検出方法のみが第一の実施の形態とは異なるものである。
【0128】
図15は、座標入力/検出装置1を機能的に示すブロック図である。図15に示すように、座標入力/検出領域3の表面近傍に指などの指示手段4が挿入されたときに(タッチされたときに)、受発光手段5の受光素子13に入射した反射光に応じてA/Dコンバータ35で生成されるデジタル信号は、指示手段4の座標入力/検出領域3上での二次元座標を検出する座標検出手段42と、ハネ/トメ識別手段43とに対してそれぞれ出力される。
【0129】
座標検出手段42は、前述したように、座標入力/検出領域3の表面近傍に指などの指示手段4が挿入されたときに、指示手段4の座標入力/検出領域3上での二次元座標を検出する。
【0130】
一方、ハネ/トメ識別手段43は、座標入力/検出領域3の表面近傍に指などの指示手段4による連続的な情報入力動作に応じた日本語における漢字やひらがな等の文字を描画において、その文字に係る「跳ね」や「止め」を検出するものである。なお、図15に示すように、ハネ/トメ識別手段43は、各受発光手段5毎に独立した第1ハネ/トメ識別手段43aと第2ハネ/トメ識別手段43bとで構成されている。
【0131】
ここで、ハネ/トメ識別手段43を実現するCPU31によって実行されるハネ/トメ識別処理について図16を参照して以下に説明する。図16に示すように、まず、A/Dコンバータ35で生成されるデジタル信号に基づいてディップ位置の時系列データが逐次取得される(ステップS31)。なお、以下の説明では、処理を各受発光手段5に分けて表記せず、一方の受発光手段5に対しての第1ハネ/トメ識別手段43aにおける処理について説明する。
【0132】
続くステップS32においては、微分処理が実行される。描画の際における「跳ね」や「止め」はその描画軌跡において屈曲点を生じることから、座標の時間変化を微分することにより、この屈曲点を検出し、「跳ね」や「止め」の動作を検出することが可能になっている。以下において、「止め」部分を含む漢字「三」の描画ストロークを例にして、「止め」や「跳ね」の動作検出についてより詳細に説明する。
【0133】
ここで、図17(a)は漢字「三」を描画した際に取得された座標データを示すグラフ、図17(b)は(a)の実線部分に相当するディップ位置の時間変化を示すグラフである。図17(a)及び図17(b)に示すA点及びB点はいわゆる「跳ね」部分である。取得されたディップ位置の時間変化を微分して単位時間当たりの変化量として捉えると、図17(c)に示すグラフのようになる。なお、微分処理には、単純差分や平滑化微分が用いられる。微分処理された波形は、図17(c)に示すように、A点及びB点で座標変化の向きが変わっている。つまり、図17(c)に示すように、A点及びB点に相当する位置が、微分カーブの符号が変わる点(つまり、変化の傾きがゼロになる点)になっている。この符号が変わる位置を図17(b)において、白丸(○)で示した。この部分が、ゼロクロス点である。
【0134】
以上のような微分処理(ステップS32)は、ゼロクロス点が検出されたと判断されるまで(ステップS33のY)、繰り返される。したがって、ステップS31〜S33において、ゼロクロス点検出手段の機能が実行される。
【0135】
ゼロクロス点が検出されたと判断された場合には(ステップS33のY)、そのゼロクロス点が1ストローク中において最初に現われたゼロクロス点なのか、1ストローク中において最後に現われたゼロクロス点なのかをステップS34及びステップS35において判断する。
【0136】
検出されたゼロクロス点が1ストローク中において最初に現われたゼロクロス点である場合には(ステップS34のY)、ストローク始点とゼロクロス点との間の時間間隔T1が検出される(ステップS36)。ここで、ストローク始点とゼロクロス点との間の時間間隔T1を検出するのは、「跳ね」動作による描画形状は「止め」の動作時に生じる擬似的な「跳ね」の描画形状に比べて形状が長いことから、ストローク始点とゼロクロス点との時間間隔も長くなっているので、この時間間隔を検出することにより「跳ね」動作なのか「止め」動作なのかを判断することが可能になるからである。ここに、時間間隔検出手段の機能が実行される。
【0137】
続くステップS37においては、ステップS36で検出した時間間隔T1と閾値TH1とを比較する。ここに、比較手段の機能が実行される。なお、閾値TH1は、例えばROM32に記憶されている。つまり、ROM32が、閾値記憶手段として機能することになる。
【0138】
時間間隔T1が閾値TH1よりも大きい場合、つまり、“T1>TH1”であった場合には(ステップS37のY)、ステップS38に進み、座標検出手段42において検出された二次元座標をプロットするか否かの判断基準となるプロットフラグPをON(P=1)にした後、ステップS31に戻る。一方、時間間隔T1が閾値TH1よりも小さい場合、つまり、“T1≦TH1”であった場合には(ステップS37のN)、ステップS39に進み、プロットフラグPをOFF(P=0)にした後、ステップS31に戻る。つまり、時間間隔T1が閾値TH1よりも小さい場合には、ストローク始点から最初のゼロクロス点に至る部分は描画されないか、または、ストロークデータとしては破棄されることになる。
【0139】
また、検出されたゼロクロス点が1ストローク中において最後に現われたゼロクロス点である場合には(ステップS35のY)、ストローク終点とゼロクロス点との間の時間間隔T2が検出される(ステップS40)。ここでも、ストローク始点とゼロクロス点との間の時間間隔T1を検出するのは、「跳ね」動作による描画形状は「止め」の動作時に生じる擬似的な「跳ね」の描画形状に比べて形状が長いことから、ストローク始点とゼロクロス点との時間間隔も長くなっているので、この時間間隔を検出することにより「跳ね」動作なのか「止め」動作なのかを判断することが可能になるからである。ここに、時間間隔検出手段の機能が実行される。
【0140】
続くステップS21においては、ステップS40で検出した時間間隔T2と閾値TH2とを比較する。ここに、比較手段の機能が実行される。なお、閾値TH2は、例えばROM32に記憶されている。つまり、ROM32が、閾値記憶手段として機能することになる。
【0141】
時間間隔T2が閾値TH2よりも大きい場合、つまり、“T2>TH2”であった場合には(ステップS41のY)、ステップS42に進み、座標検出手段42において検出された二次元座標をプロットするか否かの判断基準となるプロットフラグPをON(P=1)にして、処理を終了する。一方、時間間隔T2が閾値TH2よりも小さい場合、つまり、“T2≦TH2”であった場合には(ステップS41のN)、ステップS43に進み、プロットフラグPをOFF(P=0)にしして、処理を終了する。つまり、時間間隔T2が閾値TH2よりも小さい場合には、最後のゼロクロス点からストローク終点に至る部分は描画されないか、または、ストロークデータとしては破棄されることになる。
【0142】
なお、意図した「跳ね」を描画する際には、人間の筆記動作として「タメ」の動作が生じることがある。この「タメ」の動作は、ゼロクロス点である部分の微分曲線が“0”となる領域が点にはならずに、“0”の時間が持続している線として検出される。これは、「跳ね」部分を描画する際に、指等の指示手段4がゼロクロス点で一瞬止まるからである。この持続部分が、いわゆる「タメ」である。そのため、このような「タメ」の動作が検出される場合には、ゼロクロス点は、“0”の時間が持続している範囲で任意とされる。処理上は、この“0”が持続する期間の最終端をゼロクロス点として用いる方が意図した「跳ね」と意図しない「跳ね」の動作間での差が明確になるが、持続部分の中点や始点を選ぶこともできる。
【0143】
ここで、ストローク始点および終点でのハネ抑制アルゴリズムについて図18を参照しつつ補足説明する。図18は、ストローク描画時における受光素子13上のディップ位置と時間との関係を示したものである。図18中、S,S,・・Sで示された白丸(○)は、各時刻における受光素子13上のディップ位置を表している。つまり、これらのS,S,・・Sで示された列が、連続する1ストロークである。この1ストロークにおいて等間隔で受光素子13上のディップ位置をサンプリングすると仮定し、S,S,・・Sの時間間隔は等間隔であるものとする。なお、1ストローク中において読み込まれるサンプリング数は、Nとする。また、Sはストロークの始点であり、S,S,・・Sとストロークが進んでゆく。ここで、n番目のディップ位置Sにおける微分dは、以下に示す式(6)のように定義される。
【0144】
【数1】
Figure 0004060040
【0145】
また、n番目のディップ位置がゼロクロス点かどうかを表すパラメータをZとする。Zは以下に示す式(7)のような論理値をとるものとする。なお、初期状態では、Zはすべて“false”とする。
【0146】
【数2】
Figure 0004060040
【0147】
さらに、n番目のサンプリング点をストロークとして有効な点(描画すべき点)とするか否かを表すパラメータpを以下に示す式(8)のように定義する。なお、初期状態ではpはすべて“false”である。
【0148】
【数3】
Figure 0004060040
【0149】
さらにまた、上述したように、ストローク始点に関する意図しない「跳ね」検出の閾値をT1とし、ストローク終点に関する意図しない「跳ね」検出の閾値をT2とする。加えて、ストロークの最初に現われたゼロクロス点を記憶するパラメータを“ztop”、ストローク最後に現われたゼロクロス点を記憶するパラメータを“ztail”とする。なお、“ztop”及び“ztail”の初期値は、
“ztop”=“ztail”=0
とする。
【0150】
次に動作について説明する。まず、ストローク描画の進行にしたがって逐次読み込まれるS(n=1,2,・・・,N)に基づき、d(n=2,3,・・・,N)およびZn−1(n=3,4,・・・,N)が算出される。以下、場合分けして説明する。
1. n−1<T1,かつ,ストロークが継続している場合
「n−1=r」で「Zn−1=“true”」となった場合であって、「“ztop”=0」ならば、ストロークの最初に現われたゼロクロス点であるとみなし、
“ztop”=r
とする。
2. n−1<T1,かつ,ストロークが終了している場合
〜pn−1を“true”とする。
3. n−1=T1の場合
「“ztop”=0」ならば、p〜pn−1を“true”とする。また、「“ztop”=0」でなければ、pztop〜pn−1を“true”とする。
4. T1<n−1≦T1+T2,かつ,ストロークが継続している場合
「n−1=s」で「Zn−1=“true”」となった場合、“ztail”の値を「Zn−1=“true”」となった時点の“n−1”で更新する。
5. T1<n−1≦T1+T2,かつ,ストロークが終了している場合
処理を終了する。
6. T1+T2<n−1,かつ,ストロークが継続している場合
「n−1=s」で「Zn−1=“true”」となった場合、“ztail”の値を「Zn−1=“true”」となった時点の“n−1”で更新する。また、pn−1−T2を“true”とする。
7. T1+T2<n−1,かつ,ストロークが終了した場合
「“ztail”=0」ならば、pn−1−T2〜pを“true”とする。また、「“ztop”=0」でなければ、pn−1−T2〜pztailを“true”とする。
以上により、ストローク始点および終点でのハネ抑制が実行される。
【0151】
そして、図15に示すように、座標検出手段42およびハネ/トメ識別手段43の後段には描画制御手段44が設けられている。この描画制御手段44は、座標検出手段42において検出された二次元座標をプロットフラグPに基づいてコンピュータに出力するか否かを判断するものである。つまり、プロットフラグPがON(P=1)の場合にのみ、座標検出手段51において検出された二次元座標をコンピュータに描画情報として出力することになるので、「止め」の動作時に生じる尾引きである擬似的な「跳ね」に係る二次元座標が描画情報としてコンピュータに出力されることはない。図19は、始点および終点とゼロクロス点との間の描画データが「無効」と判断され、A点及びB点に生じていた意図しない「跳ね」が削除された例である。
【0152】
上述したように各受発光手段5毎に独立してハネ/トメ識別処理を行うようにしたのは、以下の理由による。意図しない「跳ね」などの描画ノイズは、座標入力/検出領域3内であらゆる方向に出る可能性があるため、一方の受発光手段5のディップ位置のみを微分しただけでは、全ての意図しない「跳ね」を削除することができない場合があるからである。例えば、ストロークの「跳ね」が一方の受発光手段5の受光素子13の光軸に平行あるいは平行に近い場合であった場合、その受光素子13上ではディップ位置は移動しない。これでは、意図しない「跳ね」が発生しているにもかかわらず、上述したゼロクロス点を見つけることができないため、「跳ね」を評価することすらできず、「跳ね」の抑制を取りこぼしてしまう。しかしながら、この場合には、他方の受発光手段5の受光素子13は、一方の受発光手段5の受光素子13と光軸が略直交しているので、ディップ位置の変化が必ず起こる。つまり、各受発光手段5毎に独立してハネ/トメ識別処理を行うようにして、各受発光手段5のうち少なくとも一方にゼロクロス点が発生した場合に、「跳ね」を評価するようにすることで、評価の取りこぼしをすることはなく、確実に意図しない「跳ね」の抑制を行うことができる。
【0153】
ここに、指などの指示手段4による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での指示手段4の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域3面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0154】
また、描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段4による描画が指などの指示手段4の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0155】
本発明の第三の実施の形態を図20ないし図24に基づいて説明する。なお、第一の実施の形態において説明した部分と同一部分については同一符号を用い、説明も省略する。本実施の形態の座標入力/検出装置50は、指示手段4による連続的な指示に基づいて描画された文字に係る「跳ね」や「止め」の検出方法のみが第一の実施の形態の座標入力/検出装置1とは異なるものである。
【0156】
図20は、座標入力/検出装置50を機能的に示すブロック図である。図20に示すように、座標入力/検出領域3の表面近傍に指などの指示手段4が挿入されたときに(タッチされたときに)、受発光手段5の受光素子13に入射した反射光に応じてA/Dコンバータ35で生成されるデジタル信号は、指示手段4の座標入力/検出領域3上での二次元座標を検出する座標検出手段51に対して出力される。
【0157】
座標検出手段51は、前述した座標入力/検出装置1の座標検出手段42と同様に、座標入力/検出領域3の表面近傍に指などの指示手段4が挿入されたときに、指示手段4の座標入力/検出領域3上での二次元座標を検出する。そして、座標検出手段51によって検出された二次元座標データの時系列データは、ハネ/トメ識別手段52へと出力される。このような二次元座標データの時系列データは、一般には直交座標系の成分として、例えば(x1,y1),(x2,y2),・・・のように、x座標,y座標の各成分の組である。
【0158】
ハネ/トメ識別手段52は、座標入力/検出領域3の表面近傍に指などの指示手段4による連続的な情報入力動作に応じた日本語における漢字やひらがな等の文字を描画において、その文字に係る「跳ね」や「止め」を検出するものである。なお、図20に示すように、ハネ/トメ識別手段52は、二次元座標データのx成分及びy成分のそれぞれについて独立したx座標ハネ/トメ識別手段52aとy座標ハネ/トメ識別手段52bとで構成されている。
【0159】
ここで、ハネ/トメ識別手段52を実現するCPU31によって実行されるハネ/トメ識別処理について図21を参照して以下に説明する。図21に示すように、まず、座標検出手段51によって検出された二次元座標データの時系列データが逐次取得される(ステップS11)。なお、以下の説明では、処理をxおよびyの成分に分けて表記せず、一方の成分、例えばx成分に対してのx座標ハネ/トメ識別手段52aにおける処理について説明する。
【0160】
続くステップS12においては、微分処理が実行される。描画の際における「跳ね」や「止め」はその描画軌跡において屈曲点を生じることから、座標の時間変化を微分することにより、この屈曲点を検出し、「跳ね」や「止め」の動作を検出することが可能になっている。以下において、「止め」部分を含む漢字「三」の描画ストロークを例にして、「止め」や「跳ね」の動作検出についてより詳細に説明する。
【0161】
ここで、図22(a)は漢字「三」を描画した際に取得された座標データを示すグラフ、図22(b)は(a)の実線部分に相当するx座標の時間変化を示すグラフである。図22(a)及び図22(b)に示すA点及びB点はいわゆる「跳ね」部分である。取得された座標のx成分の時間変化を微分して単位時間当たりの変化量として捉えると、図22(c)に示すグラフのようになる。なお、微分処理には、単純差分や平滑化微分が用いられる。微分処理された波形は、図22(c)に示すように、A点及びB点で座標変化の向きが変わっている。つまり、図22(c)に示すように、A点及びB点に相当する位置が、微分カーブの符号が変わる点(つまり、変化の傾きがゼロになる点)になっている。この符号が変わる位置を図22(b)において、白丸(○)で示した。この部分が、ゼロクロス点である。
【0162】
以上のような微分処理(ステップS12)は、ゼロクロス点が検出されたと判断されるまで(ステップS13のY)、繰り返される。したがって、ステップS11〜S13において、ゼロクロス点検出手段の機能が実行される。
【0163】
ゼロクロス点が検出されたと判断された場合には(ステップS13のY)、そのゼロクロス点が1ストローク中において最初に現われたゼロクロス点なのか、1ストローク中において最後に現われたゼロクロス点なのかをステップS14及びステップS15において判断する。
【0164】
検出されたゼロクロス点が1ストローク中において最初に現われたゼロクロス点である場合には(ステップS14のY)、ストローク始点とゼロクロス点との間の時間間隔T1が検出される(ステップS16)。ここで、ストローク始点とゼロクロス点との間の時間間隔T1を検出するのは、「跳ね」動作による描画形状は「止め」の動作時に生じる擬似的な「跳ね」の描画形状に比べて形状が長いことから、ストローク始点とゼロクロス点との時間間隔も長くなっているので、この時間間隔を検出することにより「跳ね」動作なのか「止め」動作なのかを判断することが可能になるからである。ここに、時間間隔検出手段の機能が実行される。
【0165】
続くステップS17においては、ステップS16で検出した時間間隔T1と閾値TH1とを比較する。ここに、比較手段の機能が実行される。なお、閾値TH1は、例えばROM32に記憶されている。つまり、ROM32が、閾値記憶手段として機能することになる。
【0166】
時間間隔T1が閾値TH1よりも大きい場合、つまり、“T1>TH1”であった場合には(ステップS17のY)、ステップS18に進み、座標検出手段51において検出された二次元座標をプロットするか否かの判断基準となるプロットフラグPをON(P=1)にした後、ステップS11に戻る。一方、時間間隔T1が閾値TH1よりも小さい場合、つまり、“T1≦TH1”であった場合には(ステップS17のN)、ステップS19に進み、プロットフラグPをOFF(P=0)にした後、ステップS11に戻る。つまり、時間間隔T1が閾値TH1よりも小さい場合には、ストローク始点から最初のゼロクロス点に至る部分は描画されないか、または、ストロークデータとしては破棄されることになる。
【0167】
また、検出されたゼロクロス点が1ストローク中において最後に現われたゼロクロス点である場合には(ステップS15のY)、ストローク終点とゼロクロス点との間の時間間隔T2が検出される(ステップS20)。ここでも、ストローク始点とゼロクロス点との間の時間間隔T1を検出するのは、「跳ね」動作による描画形状は「止め」の動作時に生じる擬似的な「跳ね」の描画形状に比べて形状が長いことから、ストローク始点とゼロクロス点との時間間隔も長くなっているので、この時間間隔を検出することにより「跳ね」動作なのか「止め」動作なのかを判断することが可能になるからである。ここに、時間間隔検出手段の機能が実行される。
【0168】
続くステップS21においては、ステップS20で検出した時間間隔T2と閾値TH2とを比較する。ここに、比較手段の機能が実行される。なお、閾値TH2は、例えばROM32に記憶されている。つまり、ROM32が、閾値記憶手段として機能することになる。
【0169】
時間間隔T2が閾値TH2よりも大きい場合、つまり、“T2>TH2”であった場合には(ステップS21のY)、ステップS22に進み、座標検出手段51において検出された二次元座標をプロットするか否かの判断基準となるプロットフラグPをON(P=1)にして、処理を終了する。一方、時間間隔T2が閾値TH2よりも小さい場合、つまり、“T2≦TH2”であった場合には(ステップS21のN)、ステップS23に進み、プロットフラグPをOFF(P=0)にしして、処理を終了する。つまり、時間間隔T2が閾値TH2よりも小さい場合には、最後のゼロクロス点からストローク終点に至る部分は描画されないか、または、ストロークデータとしては破棄されることになる。
【0170】
なお、意図した「跳ね」を描画する際には、人間の筆記動作として「タメ」の動作が生じることがある。この「タメ」の動作は、ゼロクロス点である部分の微分曲線が“0”となる領域が点にはならずに、“0”の時間が持続している線として検出される。これは、「跳ね」部分を描画する際に、指等の指示手段4がゼロクロス点で一瞬止まるからである。この持続部分が、いわゆる「タメ」である。そのため、このような「タメ」の動作が検出される場合には、ゼロクロス点は、“0”の時間が持続している範囲で任意とされる。処理上は、この“0”が持続する期間の最終端をゼロクロス点として用いる方が意図した「跳ね」と意図しない「跳ね」の動作間での差が明確になるが、持続部分の中点や始点を選ぶこともできる。
【0171】
ここで、ストローク始点および終点でのハネ抑制アルゴリズムについて図23を参照しつつ補足説明する。図23は、ストローク描画時における座標位置と時間との関係を示したものである。図23中、S,S,・・Sで示された白丸(○)は、各時刻における座標位置を表している。つまり、これらのS,S,・・Sで示された列が、連続する1ストロークである。この1ストロークにおいて等間隔で座標位置をサンプリングすると仮定し、S,S,・・Sの時間間隔は等間隔であるものとする。なお、1ストローク中において読み込まれるサンプリング数は、Nとする。また、Sはストロークの始点であり、S,S,・・Sとストロークが進んでゆく。ここで、n番目の座標位置Sにおける微分dは、以下に示す式(6)のように定義される。
【0172】
【数4】
Figure 0004060040
【0173】
また、n番目の座標位置がゼロクロス点かどうかを表すパラメータをZとする。Zは以下に示す式(7)のような論理値をとるものとする。なお、初期状態では、Zはすべて“false”とする。
【0174】
【数5】
Figure 0004060040
【0175】
さらに、n番目のサンプリング点をストロークとして有効な点(描画すべき点)とするか否かを表すパラメータpを以下に示す式(8)のように定義する。なお、初期状態ではpはすべて“false”である。
【0176】
【数6】
Figure 0004060040
【0177】
さらにまた、上述したように、ストローク始点に関する意図しない「跳ね」検出の閾値をT1とし、ストローク終点に関する意図しない「跳ね」検出の閾値をT2とする。加えて、ストロークの最初に現われたゼロクロス点を記憶するパラメータを“ztop”、ストローク最後に現われたゼロクロス点を記憶するパラメータを“ztail”とする。なお、“ztop”及び“ztail”の初期値は、
“ztop”=“ztail”=0
とする。
【0178】
次に動作について説明する。まず、ストローク描画の進行にしたがって逐次読み込まれるS(n=1,2,・・・,N)に基づき、d(n=2,3,・・・,N)およびZn−1(n=3,4,・・・,N)が算出される。以下、場合分けして説明する。
1. n−1<T1,かつ,ストロークが継続している場合
「n−1=r」で「Zn−1=“true”」となった場合であって、「“ztop”=0」ならば、ストロークの最初に現われたゼロクロス点であるとみなし、
“ztop”=r
とする。
2. n−1<T1,かつ,ストロークが終了している場合
〜pn−1を“true”とする。
3. n−1=T1の場合
「“ztop”=0」ならば、p〜pn−1を“true”とする。また、「“ztop”=0」でなければ、pztop〜pn−1を“true”とする。
4. T1<n−1≦T1+T2,かつ,ストロークが継続している場合
「n−1=s」で「Zn−1=“true”」となった場合、“ztail”の値を「Zn−1=“true”」となった時点の“n−1”で更新する。
5. T1<n−1≦T1+T2,かつ,ストロークが終了している場合
処理を終了する。
6. T1+T2<n−1,かつ,ストロークが継続している場合
「n−1=s」で「Zn−1=“true”」となった場合、“ztail”の値を「Zn−1=“true”」となった時点の“n−1”で更新する。また、pn−1−T2を“true”とする。
7. T1+T2<n−1,かつ,ストロークが終了した場合
「“ztail”=0」ならば、pn−1−T2〜pを“true”とする。また、「“ztop”=0」でなければ、pn−1−T2〜pztailを“true”とする。
以上により、ストローク始点および終点でのハネ抑制が実行される。
【0179】
そして、図20に示すように、ハネ/トメ識別手段52の後段には描画制御手段53が設けられている。この描画制御手段53は、座標検出手段51において検出された二次元座標をプロットフラグPに基づいてコンピュータに出力するか否かを判断するものである。つまり、プロットフラグPがON(P=1)の場合にのみ、座標検出手段51において検出された二次元座標をコンピュータに描画情報として出力することになるので、「止め」の動作時に生じる尾引きである擬似的な「跳ね」に係る二次元座標が描画情報としてコンピュータに出力されることはない。図24は、始点および終点とゼロクロス点との間の描画データが「無効」と判断され、A点及びB点に生じていた意図しない「跳ね」が削除された例である。
【0180】
上述したように二次元座標データのx成分及びy成分についてそれぞれ独立してハネ/トメ識別処理を行うようにしたのは、以下の理由による。意図しない「跳ね」などの描画ノイズは、座標入力/検出領域3内であらゆる方向に出る可能性があるため、一方の成分のみを微分しただけでは、全ての意図しない「跳ね」を削除することができない場合があるからである。例えば、右方向にx座標、上方向にy座標をとった場合、左上から右下に向かって描画する際にその終端で右上から左下に「跳ね」が発生した場合には、y成分の微分ではこれが不連続に変化する場合があっても符号は変わらない。これでは、意図しない「跳ね」が発生しているにもかかわらず、上述したゼロクロス点を見つけることができないため、「跳ね」を評価することすらできず、「跳ね」の抑制を取りこぼしてしまう。しかしながら、この場合には、x成分の微分はプラスからマイナスに変化するので、x成分及びy成分のうち少なくとも一方にゼロクロス点が発生した場合に、「跳ね」を評価するようにすることで、評価の取りこぼしをすることはなく、確実に意図しない「跳ね」の抑制を行うことができる。
【0181】
ここに、指などの指示手段4による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での指示手段4の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域3面から離れる点で共通するが、「跳ね」部分では描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段4による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0182】
また、描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段4による描画が指などの指示手段4の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0183】
本発明の第四の実施の形態を図25ないし図27に基づいて説明する。なお、第一の実施の形態ないし第三の実施の形態において説明した部分と同一部分については同一符号を用い、説明も省略する。本実施の形態は、座標入力/検出装置の方式の変形例である。詳細には、第一の実施の形態ないし第三の実施の形態で用いた座標入力/検出装置1,50は光遮蔽式であったが、本実施の形態の座標入力/検出装置60においては、光反射式としたものである。
【0184】
ここで、図25は座標入力/検出装置60に用いられる指示手段61を示す斜視図である。また、図26は座標入力/検出装置60の座標入力/検出領域63内の一点を指示手段61で指し示した一例を示す正面図である。図25に示すように、座標入力/検出装置60の座標入力/検出領域63内の一点を指し示すために用いられる指示手段61の先端近傍には、再帰性反射部材62が設けられている。この再帰性反射部材62は、例えば円錐形状のコーナーキューブを多数配列して形成されており、入射した光をその入射角度によらずに所定の位置に向けて反射する特性を有している。例えば、左側の受発光手段5から投光されたプローブ光Lは、図26に示すように、再帰性反射部材62によって反射され、再び同一光路を辿る再帰反射光L´として左側の受発光手段5により受光されることになる。そのため、図26に示すように、本実施の形態の座標入力/検出装置60においては、第一の実施の形態ないし第三の実施の形態で用いた座標入力/検出装置1,50のように座標入力/検出領域63に再帰性反射部材7を設ける必要はない。なお、指示手段61はペン状の形状をしており、光沢のある金属製よりゴムやプラスチックなどの材質が望ましい。
【0185】
したがって、このような指示手段61の再帰性反射部材62を備えた先端近傍を座標入力/検出装置60の座標入力/検出領域63の適当な位置(x,y)に挿入し、例えば左側の受発光手段5から投光された扇形状の光束膜の中のプローブ光Lが指示手段61の再帰性反射部材62によって反射された場合、その再帰反射光L´は受発光手段5の受光素子13によって受光される。このようにして受光素子13が再帰反射光L´を受光した場合には、再帰反射光L´に対応する受光素子13上の所定の位置Dnが光強度の強い領域(明点)となる。つまり、図27に示すように、受光素子13上では位置Dnの位置に光強度が強い領域が生じ、受光素子13からの光の強度分布の形状にはピークが出現する。このピークが出現する位置Dnは反射されたプローブ光の出射/入射角θnと対応しており、Dnを検出することによりθnを知ることができる。つまり、このような光反射式の座標入力/検出装置60の場合も、前述した座標入力/検出装置1等と同様に、光強度の波形に出現するピークに基づく三角測量の手法により指示手段61の位置座標が算出されることになる。
【0186】
したがって、このような光反射式の座標入力/検出装置60においても、第一の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するピークに基づいて実行することができ、また、第二の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するピークに基づいて基づいて実行することができ、さらに、第三の実施の形態で用いた座標入力/検出装置50において実行されるハネ/トメ識別処理を光強度の波形に出現するピークに基づいて検出される座標位置に基づいて実行することができる。
【0187】
本発明の第五の実施の形態を図28ないし図32に基づいて説明する。なお、第一の実施の形態ないし第四の実施の形態において説明した部分と同一部分については同一符号を用い、説明も省略する。本実施の形態は、受発光手段の変形例である。詳細には、第一の実施の形態ないし第四の実施の形態で用いた受発光手段5においては扇形状の光束膜を投光して座標入力/検出領域を形成したが、本実施の形態では、ポリゴンミラー等の回転走査系を有し、その回転走査系によって光源から出射された光ビームを放射状に投光して座標入力/検出領域を形成する受発光手段70を用いるものである。
【0188】
ここで、図28は受発光手段70を概略的に示す平面図である。図28に示すように、受発光手段70は、駆動回路(図示せず)を有してレーザ光を出射する光源であるLD(Laser Diode:半導体レーザ)71とハーフミラー72とポリゴンミラー73と集光レンズ74とで構成される投光手段70aと、受光素子75とが備えられている。受光素子75は、集光レンズ74から距離f(fは集光レンズ74の焦点距離)の間隔で設けられたPD(Photo Diode)で構成されている。このような受発光手段70は、LD71から出射したレーザ光をハーフミラー72で折り返した後、パルスモータ(図示せず)により所定の角速度ωtで回転駆動されるポリゴンミラー73によって放射状に順次反射する。したがって、受発光手段70は、ビーム光を放射状に繰り返し投光することになる。つまり、2つの受発光手段70から放射状に投光されるビーム光によって座標入力/検出領域(図示せず)が形成されることになる。一方、反射されて受発光手段70に入射したビーム光は、ポリゴンミラー73によって反射され、ハーフミラー72に到達する。ハーフミラー72に到達した反射ビーム光は、ハーフミラー72を透過して受光素子75に到達し、電気信号に変換される。
【0189】
まず、このような受発光手段70を受発光手段5に代えて座標入力/検出装置1,50に適用した場合について考える。図29に示すように、座標入力/検出領域3中の或る位置に指示手段4が挿入されてあるビーム光が遮断されると、そのビーム光は再帰性反射部材7で反射されることはないことから、受光素子75に到達することはない。このように座標入力/検出領域3中の或る位置に指示手段4が挿入されてあるビーム光が遮断された場合、受光素子75からの光の強度分布の形状にはディップが出現する。
【0190】
各部の電気的接続等については技術的に公知であるため詳細な説明は省略するが、図30に示すように、座標入力/検出領域3に指示手段4が挿入されていない場合には光強度は“I=I”を示すが、座標入力/検出領域3に指示手段4が挿入されて受光素子75に再帰光が戻らない場合には光強度は“I=I”を示すことになる。このように光強度が“I=I”である部分が、ディップである。なお、図25中、時間t=tは、ポリゴンミラー73の回転の基準位置であって、回転走査されるビーム光が所定の角度に達した時点である。
【0191】
したがって、光強度が“I=I”となった時間tをtであるとすれば、座標入力/検出領域3に挿入された指示手段4により遮断されたビーム光の出射角度θは、
θ=ω(t−t)=ω△t
として算出される。つまり、左右それぞれに設けられた受発光手段70において座標入力/検出領域3に挿入された指示手段4により遮断されたビーム光の出射角度θ(θnL,θnR)が算出され、それらの出射角度θ(θnL,θnR)に基づく三角測量の手法によって指示手段4を挿入した位置座標が検出されることになる。
【0192】
次に、このような受発光手段70を受発光手段5に代えて座標入力/検出装置60に適用した場合について考える。図31に示すように、座標入力/検出領域63中の或る位置に指示手段61が挿入された場合、所定のビーム光が指示手段61の再帰性反射部材62において再帰反射され、そのビーム光は受光素子75に到達する。このように座標入力/検出領域63中の或る位置に指示手段61が挿入されてあるビーム光が再帰反射された場合、受光素子75からの光の強度分布の形状にはピークが出現する。
【0193】
各部の電気的接続等については技術的に公知であるため詳細な説明は省略するが、図32に示すように、座標入力/検出領域63に指示手段61が挿入されていない場合には光強度は“I=I”を示すが、座標入力/検出領域63に指示手段61が挿入されて受光素子75に再帰光が到達した場合には光強度は“I=I”を示すことになる。このように光強度が“I=I”である部分が、ピークである。なお、図27中、時間t=tは、ポリゴンミラー73の回転の基準位置であって、回転走査されるビーム光が所定の角度に達した時点である。
【0194】
したがって、光強度が“I=I”となった時間tをtであるとすれば、座標入力/検出領域63に挿入された指示手段61により再帰反射されたビーム光の出射角度θは、
θ=ω(t−t)=ω△t
として算出される。つまり、左右それぞれに設けられた受発光手段70において座標入力/検出領域63に挿入された指示手段61により再帰反射されたビーム光の出射角度θ(θnL,θnR)が算出され、それらの出射角度θ(θnL,θnR)に基づく三角測量の手法によって指示手段61を挿入した位置座標が検出されることになる。
【0195】
したがって、このような受発光手段70を受発光手段5に代えて用いた場合においても、第一の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するディップまたはピークに基づいて実行することができ、また、第二の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するディップまたはピークに基づいて実行することができ、さらに、第三の実施の形態で用いた座標入力/検出装置50において実行されるハネ/トメ識別処理を光強度の波形に出現するディップまたはピークに基づいて検出される座標位置に基づいて実行することができる。
【0196】
本発明の第六の実施の形態を図33ないし図34に基づいて説明する。なお、第一の実施の形態ないし第三の実施の形態において説明した部分と同一部分については同一符号を用い、説明も省略する。本実施の形態は、座標入力/検出装置の方式の変形例であって、座標入力/検出領域内の画像情報を撮像カメラにより取り込んで、その取り込まれた画像情報の内の一部に基づいて位置座標を検出するいわゆるカメラ撮像方式の座標入力/検出装置を適用した一例である。
【0197】
ここで、図33は座標入力/検出装置80の構成を概略的に示す正面図である。座標入力/検出装置80の座標入力/検出領域81の上方両端部には、撮像手段である撮像カメラ82が距離wを隔てて設けられている。撮像カメラ82には、CCD(Charge Coupled Device)である受光素子83と結像光学レンズ84とが、距離fを隔てて設けられている。これらの撮像カメラ82の撮像画角は約90度であり、座標入力/検出領域81を撮影範囲とするようにそれぞれ設置されている。また、撮像カメラ82は座標入力面を形成するPDP102のディスプレイ面20から所定の距離となるように設置されており、その光軸はPDP102のディスプレイ面20に平行である。
【0198】
加えて、座標入力/検出領域81の上部を除く周縁部であって撮像カメラ82の撮像画角を妨げずに撮影視野全体を覆う位置には、背景板85が設けられている。この背景板85は、座標入力/検出領域81の中央にその面を向け、PDP102のディスプレイ面20に対して略垂直に設けられる。この背景板85は、例えば一様な黒色とされている。
【0199】
撮像カメラ82の信号と指示手段86との関係を図34に示す。図34に示すように、指示手段86が座標入力/検出領域81に挿入された場合、その指示手段86は撮像カメラ82に撮影され、指示手段86の像が撮像カメラ82の受光素子83上に形成される。本実施の形態の座標入力/検出装置80のように背景板85が黒色であって、指を指示手段86として用いるような場合には、指示手段86は背景板85に比べて高い反射率を有することになるので、受光素子83の指示手段86に相当する部分は、光強度の強い領域(明点)となる。
【0200】
各部の電気的接続等については技術的に公知であるため詳細な説明は省略するが、図34に示すように、座標入力/検出領域81に指示手段86が挿入された場合には、受光素子83からの光の強度分布の形状にはピークが出現する。このピークが出現する位置Dnは、結像光学レンズ84の主点からの指示手段86の見かけの角度θnに対応しており、θnはDnの関数として、
θn=arctan (Dn/f)
と表すことができる。つまり、このようなカメラ撮像方式の座標入力/検出装置80の場合も、前述した座標入力/検出装置1等と同様に、光強度の波形に出現するピークに基づく三角測量の手法により指示手段86の位置座標が算出されることになる。
【0201】
したがって、このようなカメラ撮像方式の座標入力/検出装置80においても、第一の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するピークに基づいて実行することができ、また、第二の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するピークに基づいて実行することができ、さらに、第三の実施の形態で用いた座標入力/検出装置50において実行されるハネ/トメ識別処理を光強度の波形に出現するピークに基づいて検出される座標位置に基づいて実行することができる。
【0202】
なお、指示手段86としては、自身が発光する発光素子付きの専用ペン等も適用することができる。
【0203】
本発明の第七の実施の形態を図35ないし図36に基づいて説明する。なお、第一の実施の形態ないし第三の実施の形態において説明した部分と同一部分については同一符号を用い、説明も省略する。本実施の形態は、座標入力/検出装置の方式の変形例であって、前述したような三角測量によって座標を検出するものではなく、直交する2軸の座標を直接検出するいわゆるLEDアレイ方式の座標入力/検出装置を適用した一例である。
【0204】
ここで、図35は座標入力/検出装置90の構成を概略的に示す正面図である。図35に示すように、座標入力/検出装置90は、Xm個の発光手段である発光ダイオード(LED:Light Emitting Diode)91を水平方向に一定間隔で配置した発光素子列92と、これに1対1に対応したXm個の受光手段であるフォトトランジスタ93を一定間隔で対向配置した受光素子列94と、Yn個のLED91を垂直方向に一定間隔で配置した発光素子列95と、これに1対1に対応したYn個のフォトトランジスタ93を一定間隔で対向配置した受光素子列96とを備えている。そして、これらの発光素子列92と、受光素子列94と、発光素子列95と、受光素子列96とにより囲まれた空間部分が、座標入力/検出領域97とされている。つまり、座標入力/検出領域97内には、水平方向に形成されるm個の光路と垂直方向に形成されるn個の光路とがマトリクス状に交差可能となっている。なお、座標入力/検出領域97は、PDP102のディスプレイ面20のサイズに対応したサイズであって横長の四角形状に形成されており、手書きにより文字や図形等の入力を可能にする領域である。
【0205】
そして、この座標入力/検出領域97の或る位置に指等の指示手段98が挿入された場合には、指示手段98により所定の光路が遮られるため、その遮断光路にある受光素子列94のフォトトランジスタ93及び受光素子列96のフォトトランジスタ93の受光光量がそれぞれ低下することになる。
【0206】
各部の電気的接続等については技術的に公知であるため詳細な説明は省略するが、図36に示すように、座標入力/検出領域97に指示手段98が挿入されていない場合には各フォトトランジスタ93の光強度は“I=i”を示すが、座標入力/検出領域97に指示手段98が挿入されて光路が遮られた場合には、その遮断光路にあるフォトトランジスタ93の光強度は“I=i”を示すことになる。このように光強度が“I=i”である部分をディップという。なお、図36中、横軸はフォトトランジスタ93の位置に相当し、実際にはフォトトランジスタ93の光出力を逐次読みとる走査時間である。
【0207】
そして、受光光量が低下した受光光量が低下した受光素子列94のフォトトランジスタ93及び受光素子列96のフォトトランジスタ93の位置に相当するディップ位置を検出し、指示手段98により指示された座標位置を算出する。実際には、基準位置t=tからのディップ位置が検出されるまでの時間tや、図36で示した波形をメモリに取り込み、メモリ内のデータに対してディップ位置に相当するメモリ番地としてディップの位置を検出することになる。
【0208】
したがって、このようなLEDアレイ方式の座標入力/検出装置90においても、第一の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するディップに基づいて実行することができ、また、第二の実施の形態で用いた座標入力/検出装置1において実行されるハネ/トメ識別処理を光強度の波形に出現するディップに基づいて実行することができ、さらに、第三の実施の形態で用いた座標入力/検出装置50において実行されるハネ/トメ識別処理を光強度の波形に出現するディップに基づいて検出される座標位置に基づいて実行することができる。
【0209】
なお、各実施の形態においては、座標入力/検出装置を表示装置であるプラズマディスプレイパネル(PDP:Plasma Display Panel)102に備えたが、これに限るものではなく、CRT(Cathode Ray Tube)、LCD(Liquid Crystal Display)、前面投影型プロジェクター、背面投影型プロジェクター等を表示装置として適用しても良い。さらに、これらの表示装置に限るものではなく、特に図示しないが、ライティングボードとして機能する黒板やホワイトボード等に備えるようにしても良い。
【0210】
また、各実施の形態においては、各種のプログラムコード(制御プログラム)を記憶した記憶媒体39としてフロッピーディスク、ハードディスク、光ディスク(CD−ROM,CD−R,CD−R/W,DVD−ROM,DVD−RAMなど)、光磁気ディスク(MO)、メモリカード等を適用したが、これに限るものではなく、記憶媒体には、コンピュータと独立した媒体に限らず、LANやインターネット等により伝送されたプログラムをダウンロードして記憶または一時記憶した記憶媒体も含まれる。
【0211】
【発明の効果】
請求項1記載の発明によれば、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズを確実に抑制することができる。
【0212】
請求項2,17,26記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0213】
請求項3,18,27記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0214】
請求項4,19,28記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0215】
請求項5,20,29記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0216】
請求項6,21,30記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じたピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0217】
請求項7,22記載の発明によれば、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズをこれらの発生方向によらず、確実に抑制することができる。
【0218】
請求項8,23,32記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に情報入力領域面から離れる点で共通するが、「跳ね」部分では描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の終端位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点と描画の終端位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、意図しない「跳ね」である「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【0219】
請求項9,24,32記載の発明によれば、指などの物体による連続的な情報入力動作に応じた描画の「跳ね」部分や「止め」部分での物体の自然かつ異なる動きに着目し、描画に応じて検出された二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と描画の開始位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて物体による描画が指などの物体の着地の仕方によって描画ストロークの開始位置で発生するひげ状の描画ノイズなのか否かを識別することで、より適正に入力状態を認識でき、描画ストロークの開始位置で発生するひげ状の描画ノイズを低減させた再現画像処理が可能となる。
【0220】
請求項10,25記載の発明によれば、描画ストロークの終端位置で発生する止めたにもかかわらず跳ねてしまう意図しない「跳ね」である「止め」部分に対する尾引きや描画ストロークの開始位置で発生するひげ状の描画ノイズをこれらの発生方向によらず、確実に抑制することができる。
【0221】
請求項11記載の発明によれば、請求項1ないし10のいずれか一記載の情報入力装置において、前記情報入力領域は、光源から出射された光を板状に成形して投光することにより形成されることにより、物体の挿入を受け付ける二次元の情報入力領域を確実に形成することができ、無視差、完全透明、高い描画感を実現する情報入力装置を提供することができる。
【0222】
請求項12記載の発明によれば、請求項1ないし10のいずれか一記載の情報入力装置において、前記情報入力領域は、光源から出射されたビーム光を順次走査して投光することにより形成されることにより、物体の挿入を受け付ける二次元の情報入力領域を確実に形成することができ、無視差、完全透明、高い描画感を実現する情報入力装置を提供することができる。
【0223】
請求項13記載の発明によれば、請求項1,5,6,7,8,9,10のいずれか一記載の情報入力装置において、前記情報入力領域は、撮像手段による撮像範囲であることにより、物体の挿入を受け付ける二次元の情報入力領域を確実に形成することができ、無視差、完全透明、高い描画感を実現する情報入力装置を提供することができる。
【0224】
請求項14記載の発明によれば、請求項1,2,3,4,7,8,9,10のいずれか一記載の情報入力装置において、前記情報入力領域は、前記受光手段とこの受光手段に相対して設けられる発光手段とによる光路をマトリックス状に配することにより形成されることにより、物体の挿入を受け付ける二次元の情報入力領域を確実に形成することができ、無視差、完全透明、高い描画感を実現する情報入力装置を提供することができる。
【0225】
請求項15記載の発明の情報入力システムによれば、表示装置と、この表示装置の表示面に前記情報入力領域を一致させて配設される請求項1ないし14のいずれか一記載の情報入力装置と、前記情報入力装置からの入力に基づいて前記表示装置の表示制御を行う制御装置と、を備えることにより、座標入力面(タッチパネル面)のような物理的な面を有さず、表示装置の表示面に装着して使用した場合であっても視認性に優れる情報入力システムを安価で提供することができる。
【0226】
請求項16記載の発明の情報入力システムによれば、筆記を受け付けるライティングボードと、このライティングボードの書き込み面に前記情報入力領域を一致させて配設される請求項1ないし14のいずれか一記載の情報入力装置と、前記情報入力装置からの入力に基づいて前記ライティングボードに筆記された情報の制御を行う制御装置と、を備えることにより、座標入力面(タッチパネル面)のような物理的な面を有さず、表示装置の表示面に装着して使用した場合であっても視認性に優れる情報入力システムを安価で提供することができる。
【0227】
請求項33,34,35記載の発明によれば、指などの指示手段による連続的な指示に基づく描画の「跳ね」部分や「止め」部分での指示手段の自然かつ異なる動き(「跳ね」部分及び「止め」部分は急峻に座標入力/検出領域面から離れる点で共通するが、「跳ね」部分では描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点とディップが消滅した位置との時間間隔が「止め」部分に比べて長くなる)に着目し、ゼロクロス点とディップが消滅した位置との時間間隔と、予め設定された所定の閾値とを比較し、その大小に応じて指示手段による描画が「跳ね」なのか「止め」なのかを識別することで、より適正に入力状態を認識でき、「止め」部分に対する尾引き等を低減させた再現画像処理が可能となる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態の電子黒板システムを概略的に示す外観斜視図である。
【図2】電子黒板システムに内蔵される各部の電気的接続を示すブロック図である。
【図3】コンピュータに内蔵される各部の電気的接続を示すブロック図である。
【図4】座標入力/検出装置を示す概略正面図である。
【図5】その受発光手段の内部構造の構成例を示す概略正面図である。
【図6】その検出動作を説明するための概略正面図である。
【図7】受発光手段の取付間隔等を示す概略正面図である。
【図8】ディスプレイ前面等への設置例を示す断面図である。
【図9】その制御系の構成例を示すブロック図である。
【図10】座標入力/検出装置を機能的に示すブロック図である。
【図11】ハネ/トメ識別処理の流れを概略的に示すフローチャートである。
【図12】(a)は漢字「三」を描画した際の受光素子におけるディップ深さ及びディップ位置の時間変化を示すグラフ、(b)は漢字「三」の各ストローク端部に「跳ね」部分を設けたものを描画した際の受光素子におけるディップ深さ及びディップ位置の時間変化を示すグラフである。
【図13】(a)は漢字「三」を描画した際の受光素子におけるディップ深さ及びディップ位置の時間変化を部分的に拡大して示すグラフ、(b)は漢字「三」の各ストローク端部に「跳ね」部分を設けたものを描画した際の受光素子におけるディップ深さ及びディップ位置の時間変化を部分的に拡大して示すグラフである。
【図14】その微分グラフである。
【図15】本発明の第二の実施の形態の座標入力/検出装置を機能的に示すブロック図である。
【図16】ハネ/トメ識別処理の流れを概略的に示すフローチャートである。
【図17】(a)は漢字「三」を描画した際に取得された座標データを示すグラフ、(b)は(a)の実線部分に相当するディップ位置の時間変化を示すグラフ、(c)は(a)の実線部分に相当するディップ位置の単位時間当たりの変化を示すグラフである。
【図18】ストローク描画時における受光素子上のディップ位置と時間との関係を示すグラフである。
【図19】(a)は漢字「三」を描画した際に取得された座標データにハネ/トメ識別処理を施した状態を示すグラフ、(b)は(a)の実線部分に相当するディップ位置の時間変化を示すグラフ、(c)は(a)の実線部分に相当するディップ位置の単位時間当たりの変化を示すグラフである。
【図20】本発明の第三の実施の形態の座標入力/検出装置を機能的に示すブロック図である。
【図21】ハネ/トメ識別処理の流れを概略的に示すフローチャートである。
【図22】(a)は漢字「三」を描画した際に取得された座標データを示すグラフ、(b)は(a)の実線部分に相当するx座標の時間変化を示すグラフ、(c)は(a)の実線部分に相当するx座標の単位時間当たりの変化を示すグラフである。
【図23】ストローク描画時における座標位置と時間との関係を示すグラフである。
【図24】(a)は漢字「三」を描画した際に取得された座標データにハネ/トメ識別処理を施した状態を示すグラフ、(b)は(a)の実線部分に相当するx座標の時間変化を示すグラフ、(c)は(a)の実線部分に相当するx座標の単位時間当たりの変化を示すグラフである。
【図25】本発明の第四の実施の形態の座標入力/検出装置に用いられる指示手段を示す斜視図である。
【図26】座標入力/検出装置の座標入力/検出領域内の一点を指示手段で指し示した一例を示す正面図である。
【図27】その検出動作を説明するための概略正面図である。
【図28】本発明の第五の実施の形態の受発光手段を概略的に示す平面図である。
【図29】座標検出動作を説明するための概略正面図である。
【図30】光強度と時間との関係を示すグラフである。
【図31】座標検出動作を説明するための概略正面図である。
【図32】光強度と時間との関係を示すグラフである。
【図33】本発明の第六の実施の形態の座標入力/検出装置の構成を概略的に示す正面図である。
【図34】その検出動作を説明するための概略正面図である。
【図35】本発明の第七の実施の形態の座標入力/検出装置の構成を概略的に示す正面図である。
【図36】光強度と時間との関係を示すグラフである。
【図37】指等による描画動作を示す説明図である。
【図38】特徴的な文字の構成例及びその筆記に伴う描画例を誇張して示す説明図である。
【符号の説明】
1,50,60,80,90 座標入力/検出装置、情報入力装置
3,63,81,97 座標入力/検出領域、情報入力領域
4 指示手段、物体
13,75,83,94 受光手段
32 閾値記憶手段
39 記憶媒体
82 撮像手段
91 発光手段
101 情報入力システム
102 表示装置
105 制御装置

Claims (35)

  1. 二次元の情報入力領域を指示した所定物体を検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に基づき所定の成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点と、前記連続的な情報入力動作の端部との時間間隔が、所定の閾値よりも大きい場合に、前記ゼロクロス点と前記連続的な情報入力動作の端部とを結ぶ入力情報を有効にすることを特徴とする情報入力装置。
  2. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出手段と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記屈曲後持続時間検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記屈曲後持続時間検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点とディップが消滅した位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  3. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出手段と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  4. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出手段と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  5. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出手段と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  6. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出手段と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  7. 前記受光手段を複数備え、前記ハネ/トメ判別手段は、全ての前記受光手段により検出される光強度分布に基づいて前記時間間隔検出手段により検出された時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にすることを特徴とする請求項3ないし6のいずれか一記載の情報入力装置。
  8. 二次元の情報入力領域を指示した所定物体を検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出手段と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  9. 二次元の情報入力領域を指示した所定物体を検出し、所定の入力情報として出力する情報入力装置において、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    前記ゼロクロス点検出手段で検出された前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出手段と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記時間間隔検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする情報入力装置。
  10. 前記ハネ/トメ判別手段は、二次元位置座標を構成する全ての座標成分に基づいて前記時間間隔検出手段により検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にすることを特徴とする請求項8または9記載の情報入力装置。
  11. 前記情報入力領域は、光源から出射された光を板状に成形して投光することにより形成されることを特徴とする請求項1ないし10のいずれか一記載の情報入力装置。
  12. 前記情報入力領域は、光源から出射されたビーム光を順次走査して投光することにより形成されることを特徴とする請求項1ないし10のいずれか一記載の情報入力装置。
  13. 前記情報入力領域は、撮像手段による撮像範囲であることを特徴とする請求項1,5,6,7,8,9,10のいずれか一記載の情報入力装置。
  14. 前記情報入力領域は、前記受光手段とこの受光手段に相対して設けられる発光手段とによる光路をマトリックス状に配することにより形成されることを特徴とする請求項1,2,3,4,7,8,9,10のいずれか一記載の情報入力装置。
  15. 表示装置と、
    この表示装置の表示面に前記情報入力領域を一致させて配設される請求項1ないし14のいずれか一記載の情報入力装置と、
    前記情報入力装置からの入力に基づいて前記表示装置の表示制御を行う制御装置と、
    を備えることを特徴とする情報入力システム。
  16. 筆記を受け付けるライティングボードと、
    このライティングボードの書き込み面に前記情報入力領域を一致させて配設される請求項1ないし14のいずれか一記載の情報入力装置と、
    前記情報入力装置からの入力に基づいて前記ライティングボードに筆記された情報の制御を行う制御装置と、
    を備えることを特徴とする情報入力システム。
  17. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点とディップが消滅した位置との時間間隔を検出し、
    前記時間間隔と所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点とディップが消滅した位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  18. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出し、
    前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  19. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出し、
    前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  20. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出し、
    前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  21. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出し、
    前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  22. 全ての前記受光手段により検出される光強度分布に基づいて検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にすることを特徴とする請求項18ないし21のいずれか一記載の入力情報識別方法。
  23. 二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出し、
    前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  24. 二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報を識別する入力情報識別方法であって、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出し、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出し、
    前記時間間隔と、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値とを比較し、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にすることを特徴とする入力情報識別方法。
  25. 二次元位置座標を構成する全ての座標成分に基づいて検出された前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置または終端位置とを結ぶ入力情報を有効にすることを特徴とする請求項23または24記載の入力情報識別方法。
  26. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出機能と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点とディップが消滅した位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  27. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  28. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  29. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  30. 二次元の情報入力領域を指示した所定物体を受光手段で検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた前記受光手段の検出信号のピーク位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  31. 二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔を検出する時間間隔検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の終端位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  32. 二次元の情報入力領域を指示した所定物体を検出し、前記物体の動作に対応する入力情報の識別をコンピュータに実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって、
    前記コンピュータに、
    前記情報入力領域における前記物体による連続的な情報入力動作に応じた二次元位置座標成分の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔を検出する時間間隔検出機能と、
    前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合に、前記ゼロクロス点と前記物体による連続的な情報入力動作の開始位置とを結ぶ入力情報を有効にする入力情報判別機能と、
    を実行させるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
  33. 平面若しくはほぼ平面をなす二次元の座標入力/検出領域を指示した指示手段の二次元位置座標を受光手段により検出される光強度分布のディップに基づいて検出し、描画情報として出力する座標入力/検出装置において、
    前記座標入力/検出領域における前記指示手段による連続的な指示に基づく描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出手段と、
    このゼロクロス点検出手段で検出された前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出手段と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値を記憶する閾値記憶手段と、
    前記屈曲後持続時間検出手段により検出された前記時間間隔と前記閾値記憶手段に記憶された所定の閾値とを比較する比較手段と、
    前記屈曲後持続時間検出手段により検出された時間間隔が所定の閾値よりも大きい場合にのみ、前記ゼロクロス点とディップが消滅した位置とを結ぶ描画情報を有効にするハネ/トメ判別手段と、
    を備えることを特徴とする座標入力/検出装置。
  34. 平面若しくはほぼ平面をなす二次元の座標入力/検出領域を指示した指示手段の二次元位置座標を受光手段により検出される光強度分布のディップに基づいて検出し、描画情報として出力する座標入力/検出装置における前記指示手段による連続的な指示に基づく描画の「跳ね」と「止め」とを識別するハネ/トメ識別方法であって、
    前記座標入力/検出領域における前記指示手段による描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出工程と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出工程と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較工程と、
    前記時間間隔が所定の閾値よりも大きい場合にのみ、前記ゼロクロス点とディップが消滅した位置とを結ぶ描画情報を有効にするハネ/トメ判別工程と、
    を含むことを特徴とするハネ/トメ識別方法。
  35. 平面若しくはほぼ平面をなす二次元の座標入力/検出領域を指示した指示手段の二次元位置座標を受光手段により検出される光強度分布のディップに基づいて検出し、描画情報として出力する座標入力/検出装置に用いられ、前記指示手段による連続的な指示に基づく描画の「跳ね」と「止め」との識別をコンピュータに実行させるコンピュータに読み取り可能なプログラムを記憶している記憶媒体であって、
    前記プログラムは、
    前記座標入力/検出領域における前記指示手段による描画に応じたディップ位置の単位時間当たりの変化の傾きがゼロになるゼロクロス点を検出するゼロクロス点検出機能と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔を検出する屈曲後持続時間検出機能と、
    前記ゼロクロス点とディップが消滅した位置との時間間隔に関する所定の閾値と、検出された前記時間間隔とを比較する比較機能と、
    前記時間間隔が所定の閾値よりも大きい場合にのみ、前記ゼロクロス点とディップが消滅した位置とを結ぶ描画情報を有効にするハネ/トメ判別機能と、
    を前記コンピュータに実行させることを特徴とする記憶媒体。
JP2001046312A 2000-05-10 2001-02-22 情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体 Expired - Fee Related JP4060040B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046312A JP4060040B2 (ja) 2000-05-10 2001-02-22 情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-136763 2000-05-10
JP2000136763 2000-05-10
JP2001046312A JP4060040B2 (ja) 2000-05-10 2001-02-22 情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2002032189A JP2002032189A (ja) 2002-01-31
JP4060040B2 true JP4060040B2 (ja) 2008-03-12

Family

ID=26591590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046312A Expired - Fee Related JP4060040B2 (ja) 2000-05-10 2001-02-22 情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体

Country Status (1)

Country Link
JP (1) JP4060040B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272855B2 (ja) * 2002-07-23 2009-06-03 株式会社 ニューコム ショーウィンドウ・インタラクティブ表示装置
JP4429083B2 (ja) 2004-06-03 2010-03-10 キヤノン株式会社 遮光型座標入力装置及びその座標入力方法
JP2010277122A (ja) * 2009-05-26 2010-12-09 Xiroku:Kk 光学式位置検出装置
US9405397B2 (en) * 2012-10-15 2016-08-02 Sharp Kabushiki Kaisha Touch panel-equipped display device and non-transitory computer-readable storage medium

Also Published As

Publication number Publication date
JP2002032189A (ja) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3905670B2 (ja) 座標入力検出装置、情報記憶媒体及び座標入力検出方法
JP4094794B2 (ja) 座標検出装置、情報記憶媒体および座標検出方法
US7015894B2 (en) Information input and output system, method, storage medium, and carrier wave
US6791531B1 (en) Device and method for cursor motion control calibration and object selection
JP4627781B2 (ja) 座標入力/検出装置および電子黒板システム
JP2001249762A (ja) 座標入力/検出装置、電子黒板システム、受光素子の位置ズレ補正方法及び記憶媒体
US20020145595A1 (en) Information input/output apparatus, information input/output control method, and computer product
JP4060040B2 (ja) 情報入力装置、情報入力システム、入力情報識別方法、座標入力/検出装置、ハネ/トメ識別方法及び記憶媒体
JP4335468B2 (ja) 情報入出力システム、情報制御方法、プログラムおよび記録媒体
JP2003186616A (ja) 情報入力装置、情報入出力システム、位置座標出力方法、プログラム及び記録媒体
JP2002342015A (ja) 情報入力装置及び情報入出力システム
JP4560224B2 (ja) 情報入力装置、情報入出力システム、プログラム及び記憶媒体
JP4414106B2 (ja) 情報入力装置、情報入出力システム、プログラム及び記憶媒体
JP4080647B2 (ja) 座標入力/検出装置、情報記憶媒体及び座標入力/検出方法
JP4615178B2 (ja) 情報入出力システム、プログラムおよび記憶媒体
JP4414075B2 (ja) 座標入力/検出装置、座標検出方法及び記憶媒体
JP4603183B2 (ja) 情報入出力システム、表示制御方法、記憶媒体およびプログラム
JP4256555B2 (ja) 座標入力/検出装置、電子黒板システム、座標位置検出方法及び記憶媒体
JP4001705B2 (ja) 座標入力/検出装置及び電子黒板システム
JP2008217819A (ja) 情報入力装置、情報入力方法、情報入力プログラム及び記憶媒体
JP4011260B2 (ja) 座標検出装置、電子黒板システム、座標位置検出方法及び記憶媒体
JP2000267798A (ja) 座標入力/検出装置
JP2001243015A (ja) 情報入力/表示システム
JP4080136B2 (ja) 座標入力/検出装置及び記憶媒体
JP2004287671A (ja) 手書き文字認識装置、情報入出力システム、プログラム及び記憶媒体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050406

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees