JP4022997B2 - 3−5族化合物半導体結晶へのZn拡散方法及び拡散装置 - Google Patents

3−5族化合物半導体結晶へのZn拡散方法及び拡散装置 Download PDF

Info

Publication number
JP4022997B2
JP4022997B2 JP21395498A JP21395498A JP4022997B2 JP 4022997 B2 JP4022997 B2 JP 4022997B2 JP 21395498 A JP21395498 A JP 21395498A JP 21395498 A JP21395498 A JP 21395498A JP 4022997 B2 JP4022997 B2 JP 4022997B2
Authority
JP
Japan
Prior art keywords
diffusion
wafer
group
chamber
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21395498A
Other languages
English (en)
Other versions
JP2000049105A (ja
Inventor
康博 猪口
宗介 岨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21395498A priority Critical patent/JP4022997B2/ja
Priority to TW088112317A priority patent/TW432495B/zh
Priority to EP99114607A priority patent/EP0977247A3/en
Priority to CA002278963A priority patent/CA2278963A1/en
Priority to KR1019990030956A priority patent/KR20000012049A/ko
Priority to US09/363,397 priority patent/US6214708B1/en
Publication of JP2000049105A publication Critical patent/JP2000049105A/ja
Priority to US09/773,545 priority patent/US6516743B2/en
Application granted granted Critical
Publication of JP4022997B2 publication Critical patent/JP4022997B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2233Diffusion into or out of AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、3−5族化合物半導体結晶にZnを拡散する方法とそのための治具に関する。3−5族化合物半導体というのは、3族のGa、In、Alと、5族のAs、P、Sbなどの組み合わせになる半導体である。基板が得やすいのはGa、InP、GaPなどである。ここではGaAs、InPなどの場合を例にして説明する。発光素子や受光素子、その他の半導体素子の基板にGaAsやInPが使われる。
【0002】
基板は多くの場合n型である。pn接合を作るため、p型不純物を含む薄膜層をエピタキシャル成長させるか、p型不純物をイオン注入するか、p型不純物を拡散する必要がある。マスクを使って局所的にp型領域を作る場合は、エピタキシャルは不適である。イオン注入は装置が大がかりであり工数も多くなり基板をアニールしなくてなならずコスト高である。多くの場合p型領域を作るために拡散が用いられる。GaAsやInPの中では、Znはp型不純物である。p型不純物としてMg、Cdなどもあるが最も頻用されるのはなんといってもZnである。だからZn拡散は発光素子、受光素子、その他の半導体素子を作る際に重要な技術である。拡散によって結晶中に局所的にp型領域を作るのがZn拡散の目的である。
【0003】
ここで結晶といっているのは基板結晶、基板の上にエピタキシャル層を設けた結晶などを含む。制御性に優れ有害な原料を使わず大口径の基板(ウエハ)にも適用できるZn拡散方法を提供するのが本発明の目的である。
【0004】
本発明は気相拡散法の新規な一種である。従来の気相拡散とは趣を異にする。その手法は液相エピタキシャルにむしろ近い。手法、装置などは液相エピタキシャルからの流用ともいえる。治具などは液相エピタキシャルに近似するものを利用する。しかし気相拡散である。治具には原料液体ではなくて、Znの気体が充満する。しかもエピタキシ−でなく拡散である。液相エピタキシャルからも截然と区別される。
【0005】
【従来の技術】
拡散には、不純物がどのような相(phase)から供給されるかによって気相拡散と固相拡散の別がある。液相拡散というのはない。固相拡散は、Znを含むInGaAsP薄膜をn型InP結晶の上に一旦エピタキシャル成長しその後熱拡散するものである。本発明者らが初めて提案したものである(特願平5−177233、特開平7−14791)。一旦結晶の表面にInGaAsP薄膜を付けるから加熱してもPが抜けないという利点がある。しかし固層拡散は工数多く時間がかかりいまだ実際的には使われていない。
【0006】
つまりZn拡散は専ら気相拡散によっている。これが現状である。気相拡散にも二つの手法がある。一つは閉管法(closed tube)である。今一つは開管法(open tube)である。この二つは良く知られている。が、製造業において盛んに実施されているのは閉管法だけである。開管法は研究段階で小規模に利用されるだけである。未だ数々の難点が克服されていないからである。
【0007】
[A.閉管法]
図14によって閉管法を説明する。石英管61の一方の端60にGaAsやInPのウエハ62を、反対側の端65にZn拡散源66を入れ真空にしてから酸水素炎バーナーによって密封する。拡散源66を入れる部分は細頚63にすることもある。Zn拡散源66はZnとAsの化合物、或いはZnとPの化合物であって気化しやすい材料である。ZnP、ZnAs等である。化合物であって昇華しやすい(固体から気化する)ものでしかも他の物質を含まないものという条件があるので先述のような化合物が選ばれる。このような状態で石英管60を真空に引き、酸水素炎によって封じる。
【0008】
密封した石英管を水平に炉67、68の中に入れる。全体を加熱する。Zn拡散源を入れた側65の温度を上げる。ウエハ62側の温度はそれより低くする。拡散源が蒸発する。拡散源の蒸気はGaAsやInPのウエハまで飛んでウエハに付着する。Znは熱によってさらに結晶の内部まで浸透してゆく。拡散深さは温度と時間で制御する。所定の拡散時間が経過すると、炉の温度を下げる。石英管を取り出してこれを割る。割ってGaAs、InPウエハを取り出す。
【0009】
図15は閉管法の一つの改良形である。石英管70の一方の端75に拡散源76を置く。他方の端72に半開管73とGaAs、InPウエハ−74を置く。そして真空に引いて石英管を封じる。ヒ−タ79を用いて拡散源76の辺りを最も高い温度に加熱する。中間部はヒ−タ80で最低温度に加熱し拡散源の一部が蒸着78するようにする。これをさらに加熱して拡散源を気化しウエハ−74の表面に飛んで行くようにする。このほかにも閉管法にはいくつもの改良形がある。
【0010】
閉管法は何故に管を閉じる必要があるか?それは5族蒸気圧制御のためである。密封した空間であるから5族元素蒸気圧は、拡散源の分解速度で決まりそれは温度Tによって決まる。拡散源の温度Tによって蒸気圧制御が容易なのである。ウエハ表面で5族の離脱と吸着が平衡するような状態に保って、Zn化合物をウエハ表面に気相で運び、ウエハ表面から内部にZnを拡散させてゆくのである。
【0011】
温度と時間によって拡散の深さと拡散濃度を制御する。現在産業的規模で利用されているのは閉管法だけである。閉管法は外界と遮断した環境でZn拡散するからウエハが汚染されない。大量のガスが不要である。また酸化されない。拡散が安定している。拡散深さが深い場合は再現性もよい。閉管法はすでに歴史があって熟している。そのままの技術を述べた文献は示しにくい。改良の提案を述べる。
【0012】
例えば▲1▼特開昭60−53018号「化合物半導体への不純物拡散方法」はInPへのZn気相拡散を述べている。従来は石英管にInPウエハと、ZnP、Znなどの拡散源だけを封入していたがそれでは拡散速度が速すぎる、という問題を指摘している。それで拡散源の他にPの固体を追加するという提案をしている。密封された石英管内にPを封入し温度を上げるのでPの蒸気圧が高くなる。逆にZn化合物気体の蒸気圧が減る。そのためウエハに到達するZn量が減少し拡散速度が遅くなる。
【0013】
ではどうして拡散速度を下げないといけないのか?拡散速度が速いとスループットも増えるはずで結構な事ではないか?それが違う。石英管は長く肉厚が厚いのでかなりの熱容量を持っている。炉に入れて所望の500℃〜600℃の温度までに昇温するには15分かかる。拡散深さによって時間は違うが、たとえば2μm程度の浅いp型領域を作るための拡散時間は10分である。そのあと炉の温度を下げるがこれにも数十分かかる。長く大きい石英管の全体を加熱冷却するから時間が掛かるのである。
【0014】
熱容量が大きいので温度は連続的に変化する。不連続変化しない。昇温の過程で既に不純物が蒸発し始め拡散が始まってしまう。また冷却の過程でも拡散はある程度持続する。つまり拡散時間外にも拡散は起こるのである。温度だけで制御するから、拡散を正確に開始し停止するという訳に行かない。昇温や冷却に拡散時間以上の時間が掛かるのでは精密に拡散深さを制御できない。さらに冷却時にZnがウエハの表面に付くので表面がZnによって汚染されるという問題もある。それで▲1▼はP固体を石英管に入れてP蒸気圧を上げZn化合物蒸気圧を下げる。拡散速度を落とし、昇温冷却時における余分な拡散を抑制しようとしているのである。
【0015】
[B.開管法]
両端に開口部を有する石英管にInP或いはGaAsウエハを入れ、これを適当な温度に加熱し、Znの有機金属化合物ガスと、AsやPを含む気体であるアルシン(AsH)、フォスフィン(PH)ガスとを石英管に通す。Znの有機金属というのは例えば、ジメチルZn(Zn(CH)など常温で液体になり得るものである。それだけだと気体にならないから水素でバブリングして気体として石英管に導く。混合気体はウエハの上にいたるが、ウエハが加熱されているからジメチルZnが熱分解する。Znがウエハの上に吸着される。温度が高く拡散係数が高くなっており、Zn濃度がウエハの内外で異なるから次第にZnが内部に入って行くのである。
【0016】
単にウエハを加熱するとウエハから5族元素が抜ける。これを抑えるためにアルシンやフォスフィンのようなガスを入れて5族蒸気圧を上げている。蒸気圧が高いので5族が抜けても同じだけの5族が表面に吸着され収支が平衡する。ガスを流しながらウエハを包み込むので動的な蒸気圧平衡であり、閉管法より不完全である。しかしながら開管法はより口径の大きいウエハを処理できる。石英管を封じきる必要がないからである。ウエハサイズ大型化可能というのが開管法の最大の利点である。また石英管を浪費しないという長所もある。ガスをバルブ操作で流したり止めたりできるので制御性が良いのではないかと考えられている。しかし産業規模で開管法は実施されていない。単に大学での研究に用いられている程度である。
【0017】
例えば▲2▼T.Tsuchiya, T.Taniwatari, T.Haga, T.Kawano,"High-quality Zn-diffused InP-related materials fabricated by the open-tube technique", 7th International conference of Indium Phosphide and Related Materials p664 (1995,Sapporo)は、MOCVD装置を使って、水素H、ジメチルZn、フォスフィンを原料としてInGaAsP/InPエピタキシャルウエハにZn拡散を行った。Zn拡散によってInGaAsPに転位や欠陥は発生しなかったとしている。これは開管法独特の装置を作ったのではなくて、MOCVD装置を転用しただけである。ガスを流し基板を加熱する装置があればいいからMOCVD装置を一次的に流用できる。大規模に行うのでないならそれでも差し支えない。しかしMOCVDはエピタキシャルの為の装置でこれを転用するのは無駄が多い。産業的規模では使えない手法である。
【0018】
▲3▼特開昭62−143421「不純物拡散方法および拡散装置」は開管法に属する提案である。閉管法は昇温の過程で一部で拡散が起こってしまう、ということを問題にしている。図16にこれを示す。石英管83のある箇所にInPウエハ84をおき、別の箇所にZn不純物(ZnP)88を置く。石英管83の中間部に接続する管85から不活性ガスを吹き込む。これによってウエハ84とZn不純物88の間のガス流通を不活性ガスによって遮断できるようにしている。昇温、冷却の間は不活性ガスを、ウエハとZn不純物の間に吹き込んで両者を離隔しておく。拡散の時は不活性ガス流入を停止し、Zn不純物88の側の管86から水素ガスを流してウエハ84を通過させるようにする。バルブ89、90から操作棒が延びており拡散源88とウエハ−84を平行移動できるようになっている。ガスの切り替えによって冷却時や昇温時には拡散が起こらないようにできる。拡散深さなどをより精密に制御できる、という。
【0019】
【発明が解決しようとする課題】
閉管法は5族ガスの圧力制御が容易であり、ガスを浪費しない。実績があり優れた方法である。現在大量生産規模で使用される唯一のZn拡散法である。しかし反面ウエハ−の大口径化が困難である。石英アンプルにウエハ−を入れるのであるから、ウエハ−の直径より大きい直径の石英アンプルを使わなければならない。透明石英管にウエハ−や、拡散源を入れて端を酸水素ガスバーナーによって封止するのは熟練作業者の手作業によっている。石英は耐熱性が高いので酸素と水素の混合ガスを用いる。炎によって石英管を軟化させる一方から真空に引いているから石英管の直径は減少してゆく。次第に溶融軟化した部分の直径が減少してついに相互に融着してしまう。そうなると試料が入っていない方の石英管を引っ張って分離させる。封止された石英管の尖った部分をさらに溶かして丸めて丸底にする。これらは手作業で行う。
【0020】
真空封止作業に要する技術は石英管の口径が大きくなるにしたがって困難になる。従来は1インチ径のInPウエハ−などを扱っていたが、スループットを上げるためより広い2インチ径のInPウエハ−を扱う必要がある。2インチ径のInPウエハ−を厚み3mmの石英管に封入する場合、外径は最小でも56mmとなる。そのような大径の石英管を真空封止するのは、不可能とは言えないが極めて難しい。高度の熟練を持った技術者の手練が要求される。
さらに、閉管法は石英管を割ってウエハ−を取り出す。高価な透明石英である。割った石英管は再利用できない。捨てるしかない。また割るので破片が飛び散る。ウエハ−にも破片がつくこともある。付くだけなら良いが破片によって傷つく可能性もある。
【0021】
閉管法には別の欠点がある。温度によってしか拡散を制御できないので制御性が悪いという事である。石英管温度を上げて行くのに時間が掛かるのでその間にもZn拡散が起こってしまう。また冷却するにも時間が掛かりその間にもZn拡散が起こる。昇温過程、冷却過程の温度プロフィルの時間変化を毎回同じにするのは難しい。温度プロフィルが毎回違うので拡散深さがばらつく。特に拡散深さが浅い場合は再現性に欠ける。また冷却過程において気化したZnがウエハ−表面に堆積してしまう。このように閉管法にはウエハ−が大口径化した場合の石英管封止の技術的困難と、制御性の乏しさという問題がある。より大口径のウエハ−をも処理できる拡散法が望まれる。より制御性優れた拡散法が必要である。
【0022】
開管法はウエハ−サイズの大型化には適している。反応管を大きくすれば良いのである。石英管封止という問題はない。しかし、5族ガス、Zn化合物ガスを石英管に流通させるので5族元素蒸気圧が不安定である。ウエハ−の一部から5族元素が抜けることもある。開管法にはもっと大きな欠点がある。5族ガスの蒸気圧を保つため5族ガスを常時大量に反応管に通さなければならない。それに使われるアルシン(AsH)、フォスフィン(PH)は極めて有毒である。そのために、大がかりな排ガス処理設備が必要である。産業用の製造装置とするには極めて大がかりな装置になってしまう。ために非常に高価な設備となる。このような理由もあって開管法は未だ生産装置としては利用されていない。
【0023】
大口径のウエハ−に対して簡単安価にZn拡散できる装置及び方法を提供する事が本発明の第1の目的である。高価な設備を用いる必要の無いZn拡散装置及び方法を提供する事が本発明の第2の目的である。昇温時や降温(冷却)時に余分な拡散が起こらないようにしたZn拡散装置及び方法を提供する事が本発明の第3の目的である。拡散の開始終了を温度以外の手段によって的確に制御できるZn拡散装置及び方法を提供することが本発明の第4の目的である。5族空孔密度を制御できるZn拡散方法及び装置を提供することが本発明の第5の目的である。有毒ガスを使わないZn拡散装置及び方法を提供することが本発明の第6の目的である。
【0024】
【課題を解決するための手段】
本発明のZn拡散方法は、排気穴が穿孔してありウエハ−収容凹部を設けた一方向に延びる平坦な基板ホルダ−のウエハ収納凹部に3−5族の試料ウエハを挿入し、(M−1)個の隔壁を持ち下面が開口したM個(M≧1)の離隔した室に分かれ各室に棚をもつ枠体と枠体の前端に固定した蓋用ノンドープウエハ−と枠体に対して着脱可能な蓋とよりなる拡散用治具の蓋をとり、前から順に各室の棚に、Znを含む拡散原料、5族元素(又はノンドープ蓋用ウエハ)、…を交互に戴置して蓋を閉じ、拡散用治具を前記基板ホルダ−の上におき、拡散用治具に操作棒を取付け、基板ホルダ−を真空に引くことのできる管に入れ、管を真空に引き、拡散用治具の各室を排気穴の直上に運んで各室を真空に引き、蓋用ノンドープウエハ−によって試料ウエハが覆われる位置へ拡散用治具を摺動させ、管をヒ−タに装填してヒ−タによって基板ホルダ−、ウエハ、拡散用治具を加熱し、拡散に適した温度に到達した時、拡散原料が収容された拡散室によって試料ウエハが覆われる位置へ拡散用治具を摺動させ、一定拡散温度でウエハに拡散原料を気相拡散させ、所望の時間が経過すると、5族元素(又は蓋用ウエハ)が存在する5族元素・蓋用ウエハ室がウエハの上になるように拡散用治具を摺動させ、その位置で次の拡散に適する温度まで温度変化させ、ついで拡散原料が収容されたつぎの拡散室がウエハを覆う位置に移動させて第2の拡散を行うというように拡散と温度変化を繰り返し、最後の拡散が終了したときは拡散用治具の拡散室からウエハから離隔させた状態で冷却するようにしたものである。
【0025】
本発明では拡散用治具という特別の治具を使う。拡散用治具は下方が開口したM個の離隔した室を持っている。それぞれの室は棚があり、棚に5族元素、拡散原料の固体が戴置される。加熱されるとそれぞれの室は拡散原料の蒸気、5族元素の蒸気で充たされる。拡散用治具だけでもよいが、拡散用治具の前端に蓋用ノンドープウエハ−を付けることもある。そのような拡散用治具を長い基板ホルダ−の上に置く。操作棒によって拡散用治具を基板ホルダ−の上でスライドさせる。
【0026】
基板ホルダ−には一部にウエハ収容凹部がありウエハ−がここに固定される。基板ホルダ−は石英管のような真空に引く事ができまた水素を導入できる管に入れる。一旦真空に引いてから水素を管に導入する。水素を入れるのは対流と熱伝導により加熱、冷却を迅速に行うためである。この管はヒ−タによってあらかじめ加熱された反応炉のなかに装填する。ヒ−タ熱によって管、基板ホルダ−、拡散用治具、5族元素、拡散原料などが加熱される。拡散用治具が前後に移動することによって、ウエハ−の上に拡散室、5族元素室などが交互に位置する。5族元素室によってウエハ−を覆った状態で昇温し、所定の拡散温度に達したとき拡散用治具をスライドさせ拡散室がウエハ−の上に来るようにする。
【0027】
拡散原料が蒸気になっているから気相拡散がなされる。拡散が終わると操作棒によって拡散用治具を動かし拡散室をウエハ−から離す。2種以上の拡散を行うときは5族元素室(又は蓋用ウエハ)によってウエハ−を覆い温度変化させ、所望の拡散温度になったとき拡散室をウエハ−上に動かして気相拡散を行う。5族元素室は蓋用ウエハによって下部開口を閉じるようにしてもよい。冷却は拡散用治具の拡散室からウエハ−を切り離した状態で行う。拡散用治具全体をウエハ−から離すか、或いは拡散用治具の後端に蓋用ウエハ−をつけておきこれでウエハ−を押さえた状態で冷却する。
【0028】
このように蓋用ウエハ−+拡散用治具或いは拡散用治具を、基板ホルダ−の上にスライドさせる。拡散用治具はM個の互いに離隔し下部の開放した室をもつ。前端に蓋用ウエハ−を付ける場合と付けない場合がある。
【0029】
蓋用ウエハ−がない場合はMは2以上(M≧2)である、拡散用治具の中に少なくとも一つの5族元素室と拡散室が必要だからである。K回の異なる拡散を行う場合は、K個の5族元素室とK個の拡散室が交互に設けられる。だからこの場合M=2Kである。しかし冷却のためにもう一つ5族元素室を設けてもよい。その場合はK+1個の5族元素室と、K個の拡散室を設けることになる。拡散用治具はM=2K+1個の室をもつことになる。
【0030】
前端に蓋用ウエハ−を付ける場合は、これが5族元素室の代わりをするから、拡散用治具の室数Mは1以上であればよい(M≧1)。K回の異なる拡散を行う場合は、K−1個の5族元素室とK個の拡散室を拡散原料に設ける。室数M=2K−1である。冷却のために拡散用治具にもう一つ5族元素室を設けると、拡散用治具の室数M=2Kとなる。また5族元素は蓋用ウエハによって代用することができる。
【0031】
冷却のために、拡散用治具の後端にノンドープウエハ−をつけ、これで冷却中試料ウエハ−を覆うようにしても良い。いろいろな場合がある。2K回の拡散を行うとして、つぎの6つの場合がありうる。
【0032】
1.蓋用ウエハ−+室数(2K−1)の拡散用治具
2. 室数2Kの拡散用治具
3.蓋用ウエハ−+室数2Kの拡散用治具
4. 室数(2K+1)の拡散用治具
5.蓋用ウエハ−+室数(2K−1)の拡散用治具+蓋用ウエハ−
6. 室数2Kの拡散用治具+蓋用ウエハ−
【0033】
1、3、5は昇温過程で蓋用ウエハ−によって、試料ウエハ−を囲むものである。2、4、6は拡散用治具の5族元素室によって試料ウエハ−を囲むものである。これらは昇温過程での違いである。
【0034】
3つのカテゴリ−は冷却過程の違いから生ずる。1と2は水素中で試料ウエハ−の冷却を行うことになる。拡散用治具をウエハ−から離してウエハ−冷却するからである。以下に述べる実施の形態はすべてこれである。1の場合、拡散用治具は、拡散室+5族元素室+…+拡散室となる。2の場合拡散用治具は、拡散室+5族元素室+…+5族元素室となる。
【0035】
3と4は拡散用治具の最終室中でウエハ−を冷却するものである。3の場合拡散用治具は拡散室+5族元素室+…+5族元素室となる。4の場合、拡散用治具は5族元素室+拡散室+…+5族元素室となる。
【0036】
5、6は蓋用ウエハ−で囲んだ状態でウエハ−冷却を行うものである。5の場合、拡散用治具は、拡散室+5族元素室+…+拡散室となる。6の場合、拡散用治具は、拡散室+5族元素室+…+5族元素室となる。
【0037】
基板ホルダ−は拡散用治具が滑らかに摺動し、しかも気体の漏れがないような平坦平滑な板である。これはカーボンなどで作る事ができる。カーボンは摺動特性に優れ耐熱性がある。カーボンだと屑が出るからアモルファスカーボンやSiCで被覆するとよい。また拡散用治具もカーボンとする。これもアモルファスカーボンなどの被覆をする。カーボンの蓋をカーボンのネジで拡散用治具に止めることは可能である。
【0038】
Zn拡散源は固体であって加熱して蒸発するものであることが必要である。
Zn、ZnP、Zn+P(赤燐)、ZnP+P(赤燐)などがZn拡散源として使う事ができる。5族元素は、試料ウエハ−の5族と同じものである。試料ウエハ−がInPであればPである。試料ウエハ−がGaAsであればAsである。
【0039】
【発明の実施の形態】
[第1の実施の形態:1室型:粗面化ウエハで蓋をするもの:1段階拡散]
昇温過程において試料ウエハから5族元素が抜けるのを防ぐため、粗面化ウエハによって蓋をしておく。拡散温度Tdまで昇温してから拡散用治具を試料ウエハの上にスライドさせドーパントの拡散を開始する。拡散が終わると直ちに拡散用治具を動かして試料ウエハからドーパント雰囲気を切り離す。
【0040】
図1、図2、図3によって本発明の第1の実施の形態を説明する。図1は本発明の工程を示す。図2、図3は治具の平面図を示す。これはウエハ1枚の処理装置であるが、2枚並べて処理するように横幅が2倍あるような治具を作ることもできる。治具面積内でm枚のウエハが隣接するようにしても良い。スループットを上げるために治具の広さは自在に決めれば良い。
【0041】
図1の全体は石英管のような反応容器(図5に現れる)に収められる。反応容器は全体を真空引きする事ができるようになっている。平坦平滑なカーボンの板である基板ホルダ−1は治具を摺動させるための長い台である。これは前記の石英管の内部に挿入される。カーボンであるのは耐熱性耐薬品性に優れ摺動特性が良いからである。カーボン地肌が露出していても良いが、摩擦によって粉が出ることもあるので適当な被覆をするのも良い。例えばSiC、a−C(アモルファスカーボン)などでコ−ティングする。耐熱性ある金属(タンタル、ステンレス)などによっても基板ホルダ−を作製できる。基板ホルダ−1の上にはウエハ収容凹部2が浅く穿たれる。これはウエハの形状寸法に合わせた凹部である。基板ホルダ−1にはさらに排気穴3を貫通して設ける。
【0042】
拡散用治具4が重要である。拡散用治具4は上面側面を持ち下面の開口した小さい容器である。図2は蓋を除いた平面図であり、図3は蓋をした平面図である。この例では拡散室10は幅30mm、奥行き30mm、高さ20mmで容積18cmの空間である。拡散用治具4は開口を下にして基板ホルダ−1の上を摺動する。前述の排気穴3の上にある時は拡散用治具内部を真空引きできる。拡散用治具4は長方形状の枠体5の上に蓋6を載せネジ7で固定したものである。
【0043】
枠体5の下には何もなくて直接に基板ホルダ−1面に接触し摺動する。枠体5の下面も平坦平滑であって基板ホルダ−1の上に置かれると接触面での漏れがない。矩形状の枠体5は例えばカーボンで作る。カーボンは数ミクロンの精度で加工できる。枠対の幅は10mm〜20mm程度である。その上に乗る蓋6もカーボンで作る事ができる。これらもカーボンのままでも良くSiC、アモルファスカーボンなどのコ−テイングをするのも良い。
【0044】
蓋6と枠体5の一部には止め孔8が穿ってありここに操作棒9の先端が差し込まれる。操作棒9によって拡散用治具4の全体を前後に摺動させることができる。治具を操作棒によって基板ホルダ−の上を移動させるのは液相エピタキシャルでは良く行われる事である。治具をカーボン製とするのも液相エピタキシャルからの類推といえよう。しかし治具、ネジはステンレスそのほかの金属によっても作る事ができる。
【0045】
枠体5と蓋6及び基板ホルダ−1によって拡散室10が形成される。これは狭い空間であるが前後に移動自在である。移動できることが本発明の優れた制御性の源泉になる。枠体5の内壁の途中には、拡散用原料11を収容する棚12が設けられる。InPウエハの場合、拡散用原料11はZnとPの化合物とする。Zn、ZnP等である。GaAsウエハの場合、拡散原料11はZnとAsの化合物である。例えば、ZnAs、ZnAs等である。一般にウエハの5族元素とZnの化合物であって加熱によって気化(昇華)する材料である。拡散用治具に形成された棚12は拡散原料を保持するものである。拡散用原料が加熱されるとその蒸気が拡散用密閉室10に充満する。拡散用治具4と基板ホルダ−1のすり合わせに隙間がないので蒸気は外部には出て行かない。
【0046】
拡散用原料11の装填は次のように行う。蓋6を取って、枠体5の棚12に拡散用原料11を置き、蓋6を枠体5に置いてネジ7で蓋6を固定する。さらに操作棒9を止め孔8に差し込む。
【0047】
拡散用治具4の前端面16には粗面化した蓋用ノンドープウエハ13が接着してある。蓋用ノンドープウエハ13は拡散用治具4と共に動く。蓋用ノンドープウエハ13はZn拡散の対象となるウエハと同じ材料のウエハである。対象がInPなら、InPウエハを、対象がGaAsならGaAsウエハを使う。これは対象となるウエハ14を加熱する間これを覆い、5族元素の離脱を防ぐものである。InP、GaAsいずれも5族元素の高温での蒸気圧が高く加熱する際は、5族蒸気圧によって抑えておく必要がある。ウエハ14を加熱すると同時に蓋用ノンドープウエハ13も加熱される。蓋用ノンドープウエハ13から5族元素が解離し狭い空間に5族の高い蒸気圧を与える。それによって目的となるウエハ14からの5族元素の脱離を防ぐ。これは消極的に5族の解離を抑制するものである。
【0048】
ノンドープであるのは不純物がこれから出て目的となるウエハ14にドープされてはならないからである。また蓋用ノンドープウエハ13はウエハ14に対向する面は研磨しない。ザラザラの粗面にしておく。粗面の方が実効的な面積が広くて蓋用ノンドープウエハ13の表面から出る5族元素の量が増える。だから蓋によって封じられた狭い空間での5族蒸気圧が大きくなる。基板ホルダ−1のウエハ収容凹部2の丁度下方になるところに熱電対15の先端を接触させておく。
【0049】
以上の構成において次のような操作を行う。図1には主な工程を示す。図4は各工程での温度変化プロフィルを示す。
【0050】
{準備工程}
(1)InPウエハ、GaAsウエハなど試料ウエハ14をウエハ収容凹部2に入れる。
(2)あらかじめ過熱された炉に、反応管を挿入する。
(3)基板ホルダ−の上で、拡散用治具4を後退させておき前端面16に蓋用ノンドープウエハ13を固定する。
(4)ネジ7を外し蓋6を開き、棚12に拡散用原料11を置く。ウエハがInPの場合は、ZnP、Znなどの固体である。ウエハがGaAsの場合はZnAs、ZnAsなどの固体である。
(5)蓋6を枠体5においてネジ7をしめる。操作棒9を止め孔8に差し込む。
(6)この状態で基板ホルダ−1の全体を反応管である石英管20(図5に現れる)に挿入する。
【0051】
{工程1(拡散室内真空排気)}
(7)拡散用治具4は図1(1)の状態にある。反応管全体を真空に引く。基板ホルダ−1の上方つまり拡散用治具4の外側は真空になる。基板ホルダ−1の排気穴3からも真空引きされるので拡散用治具4の内部も真空になる。結局拡散用治具4の内外が同じ真空になる。
【0052】
(8)適当な真空度になると、操作棒9を押して拡散用治具4を前進させ排気穴3から拡散用治具の内部空間をはずす。これで拡散用治具4の内外の空間が分離される。丁度蓋用ノンドープウエハ13がウエハ収容凹部2の上に来る。ウエハ14を上から覆う。真空排気の後、反応管に水素を導入する。水素は熱伝導や対流により加熱、冷却を迅速に行う。これが図1(2)の状態である。図4では室温のイロの部分である。
{工程2(昇温過程)}
(9)昇温工程において、ウエハ14、蓋用ノンドープウエハ13は加熱される。図4のロハの部分である。拡散温度Tdを目指して温度が上昇する。加熱昇温によって蓋用ノンドープウエハ13から5族原子が出るのでウエハ収容凹部2での5族蒸気圧が高くなる。ウエハ14からの5族解離を防ぐことができる。蓋用ノンドープウエハ13の役割は昇温過程での5族解離を防ぐことである。そのため蓋用ウエハは粗面化してある。しかし粗面化しても5族解離防止は完全ではない。積極的に5族ガスを充填しないからである。幾分の5族空格子が発生するであろう。
(10)拡散用治具4も同様に加熱される。拡散用原料11は昇華開始し、拡散用治具4内部に広がる。拡散室10のZn化合物の蒸気圧が上がって行く。しかしこの状態ではZn蒸気とウエハ14は離隔されているからZn拡散は起こらない。温度は熱電対によってモニタする。やがて所望の拡散温度Tdに到達する。
【0053】
{工程3(拡散工程)}
(11)T=Tdになると、操作棒9を押して拡散用治具4を前進させる。図1(3)の状態になる。拡散用治具4が丁度ウエハ収容凹部2の上に来る。図4のハの位置である。拡散用治具4の拡散室10は十分濃密なZn化合物蒸気によって充たされている。Zn化合物蒸気がウエハ14に接触する。直ちにZn拡散が始まる。狭い空間であってガスの巨視的流れがない。5族蒸気圧は安定している。拡散の時間tcは、希望の拡散深さから決める。
{工程4(冷却)}
(12)所定の拡散時間tcが経過すると、操作棒9を押して拡散用治具4をウエハ収容凹部2から切り離す。直ちに拡散は停止する。図4のニ点である。
(13)ウエハ14が拡散用治具4から切り離された位置で冷却する。図1(4)に冷却時の関係をしめす。
図5は図1の装置の周辺部をも示す概略断面図である。基板ホルダ−1や拡散用治具4、操作棒9などの全体が石英管20の内部に収納される。閉管ではなくて一方から真空引きできるようになっている。また操作棒9を外部から操作できるようになっている。石英管20の全体がヒ−タ21に差し込まれる。ヒ−タ21は抵抗線23を炉心にコイル状に巻き、炉材22によって固めたものである。抵抗線23に通電して抵抗加熱することができる。通常の電気炉である。
【0054】
[第2の実施の形態:2室型:5族元素室で蓋をするもの:1段階拡散]
第2実施形態は、昇温過程において試料ウエハから5族元素が抜けるのをより積極的に防ぐものである。拡散用治具に5族元素室を作る。5族元素室でウエハを覆い積極的に5族蒸気圧を上げ試料ウエハ表面からの5族の解離を防止する。拡散温度Tdに達するまで5族元素室でウエハを包囲しておく。拡散温度Tdまで昇温してから拡散用治具の拡散室を試料ウエハの上にスライドさせドーパントの拡散を開始する。拡散が終わると直ちに拡散用治具を動かして試料ウエハからドーパント雰囲気を切り離す。ウエハで蓋をするだけの第1の実施形態に比べてより完全に5族の抜けを防ぐ。5族空孔の発生を防止する上でより有効な方法である。
【0055】
図7は第2の実施形態の各工程をしめす。図8は蓋を取った状態の拡散用治具の平面図である。図9は蓋をした拡散用治具の平面図である。拡散用治具は2室よりなる。これが前例と異なる。前例のノンドープウエハ13の代わりに、5族元素室30を新たに拡散用治具内部に設けている。拡散用治具24は枠体25と蓋26とを組み合わせたものである。枠体25は摺動方向に伸びる直方体であり、中間に隔壁28がある。隔壁28によって拡散用治具24は2室に分けられる。後方の拡散室10はドーパントを拡散するものである。棚34が壁面に形成してある。ここに拡散源11の固体が置かれている。
【0056】
前方には5族元素室30がある。棚32が設けられここに5族元素固体31が戴置される。試料ウエハの5族元素と同じものを5族元素固体31とする。InPウエハが対象の場合は、燐Pである。GaAsが対象の場合は砒素Asである。このような2室型の拡散用治具24は昇温過程で、5族元素室30によって試料ウエハ14を覆う。ために昇温過程で5族空孔が発生しない。図7の各工程を順に説明する。図10は工程ごとの熱電対15の温度変化を示す。
【0057】
{準備工程}
(1)InPウエハ或いはGaAsウエハなど試料ウエハ14をウエハ収容凹部2に入れる。
(2)反応管を加熱された電気炉に入れる。
(3)拡散用治具24を後退させ排気穴3の直上に5族元素室30が来るようにする。
(4)ネジ7を外し蓋26を開く。後方の拡散室10の棚34に拡散用原料11を置く。InPの場合はZnP、Znなど、GaAsの場合はZnAs、ZnAsなどの固体である。前方の5族元素室30の棚32には、5族元素固体31を置く。InPの場合は燐Pで、GaAsの場合は砒素Asである。以下の例ではInPウエハに対して、赤燐Pを使う場合を示す。
(5)蓋26を枠体25の上においてネジ27をしめる。操作棒29を止め孔33に差し込む。
(6)この状態で基板ホルダ−1の全体を反応管である石英管20(図5)に挿入する。
【0058】
{工程1(5族元素室内真空排気)}
(7)拡散用治具24は図7(1)の状態にある。反応管全体を真空に引く。基板ホルダ−1の上方つまり拡散用治具24の外側は真空になる。基板ホルダ−1の排気穴3の上には丁度5族元素室30がある。排気穴3から5族元素室30が真空引きされる。温度は図10のヘトの間であり常温である。
【0059】
{工程2(拡散室真空排気)}
(8)操作棒を押して拡散用治具24を前進させ、排気穴3の上に拡散室20が位置するようにする。図7(2)の状態である。図10ではトチの間で常温である。拡散室10の内部が真空に引かれる。5族元素室30の前壁は試料ウエハ14のウエハ収容凹部2の上にある。5族元素室30の外側もすでに真空であるから5族元素室30の真空は維持される。こうして、拡散室10、5族元素室30ともに真空になる。ついで反応管に水素ガスを導入する。拡散室の外は水素雰囲気になる。温度プロフィルは図10のトチの間で常温である。
【0060】
{工程3(昇温過程)}
(9)拡散室10が真空に引かれると操作棒29を押して拡散用治具24を前進させ試料ウエハ14の上に5族元素室30がスッポリと覆うようにする。図7(3)の状態になる。図10のチである。
(10)昇温過程(工程3)において、ウエハ14、拡散用治具24、5族元素31、拡散用原料11が加熱される。図10のチソの部分である。拡散室10ではドーパントが蒸発しドーパント濃度が高くなる。5族元素室30では5族元素31が蒸発し、5族蒸気圧が次第に高くなる。ウエハ14は5族元素室30の中にあるから、高い5族蒸気圧によって保護される。5族が表面から解離しない。温度がチからリへと上がるに従って、5族蒸気圧とドーパント蒸気圧が高まって行く。やがて拡散温度Tdに到達する。
【0061】
{工程4(拡散工程)}
(11)T=Tdになると、操作棒29を押して拡散用治具24を前進させる。図7(4)の状態になる。ウエハ14を拡散室10が覆う。ドーパントの蒸気圧がすでに高くなっているからドーパントがウエハ14に付着し高温で拡散が起こる。Znの蒸気がウエハに接触する。表面からZnがウエハの内部に拡散する。図10のリヌの拡散温度に対応する。拡散時間tcは目的に応じて適当に選ぶ。
【0062】
{工程5(冷却)}
(12)所定の拡散時間tcが経過すると、操作棒29を押して拡散用治具24をウエハ収容凹部2から切り離す。図7(5)のようになる。ウエハ14はドーパント蒸気から離れる。直ちに拡散は停止する。図10のヌ点である。
(13)ウエハ14が拡散用治具4から切り離された位置で冷却する。図10のヌルに対応する。
【0063】
[第3の実施の形態:3室型:2段階拡散]
第3の実施形態は、2回の拡散を行うものである。拡散用治具は3室を持つ。異なるドーパントによって2回異なる拡散を行う。或いは同一のドーパントを異なる温度で2回拡散を行うというような場合に利用できる。2種類の拡散に対応して2つの拡散室が拡散用治具に設けられる。その間には5族元素室を介在させる。だから3室からなる拡散用治具ということになる。昇温過程において試料ウエハを保護するのは、ノンドープウエハ13である。第1拡散から第2拡散の間に試料ウエハを包囲し5族蒸気圧を与えるのは5族元素室(ノンドープウエハの場合もある)である。5族元素の抜け防止のために異なる二つの手段を使うことができる。以上に述べたものは2種類の拡散を行うためのものである。
【0064】
本発明は一般に2種類といわず、3種類でも4種類のドーパントでも継時的に拡散することができる。M種のドーパントを拡散するには2M室、あるいは(2M−1)室の拡散用治具が必要である。
【0065】
図11は第3の実施形態に掛かる拡散用治具の断面図である。図12は同じものの蓋を除いた状態の平面図である。(図17は5族元素室に5族を置く代わりに蓋用ノンドープウエハで開口をふさいだ例である。5族元素は蓋用ウエハで置き換えることができる。)工程は容易にわかるので工程図は省いている。拡散用治具は3室よりなる。長方形枠体45の中に隔壁52、53がある。これによって拡散用治具内空間が3つに仕切られる。前端から、第1拡散室50、5族元素室30、第2拡散室10である。枠体45の上に蓋46をかぶせネジ47で固定する。下部が開口した3つの空間50、30、10は2段階の拡散をするための工夫である。最初の第1拡散室50には棚56があり、第1拡散用原料51が戴置される。2番目の5族元素室30には棚55があって、5族元素固体31が収容される。3番目の第2拡散室10にも棚54があって、第2拡散用原料11が載せられている。終端には止め孔48が穿孔される。ここに操作棒49が差し込まれており拡散用治具44の全体を前後に摺動するようになっている。
【0066】
最前端には蓋用ノンドープウエハ13が固定される。これは昇温過程においてウエハ14が嵌込まれたウエハ収容凹部2を閉ざしウエハ14の表面からの5族解離を抑える。これのかわりに5族元素室を増やして、拡散用治具を4室型としてもよい。
【0067】
図13に2段階拡散の温度プロフィルを示す。各工程を述べる。
【0068】
{準備工程}
(1)試料ウエハ14をウエハ収容凹部2に入れる。
(2)反応管を電気炉に入れる。
(3)拡散用治具44を後退させ排気穴3の直上に第1拡散室50が位置するよにする。
(4)ネジ47を外し蓋46を開く。後方の第2拡散室10の棚54に第2拡散用原料11を置く。中間の5族元素室30の棚55には、5族元素固体31を置く。InPの場合は燐Pで、GaAsの場合は砒素Asである。前方の第1拡散室50の棚56には第1拡散用原料51をおく。
(5)蓋46を枠体45の上においてネジ47をしめる。操作棒49を止め孔48に差し込む。
(6)の状態で基板ホルダ−1の全体を反応管である石英管20(図5)に挿入する。
{工程1(第1拡散室・5族元素室・第2拡散室内真空排気)}
(7)反応管全体を真空に引く。拡散用治具44の外側は真空になる。基板ホルダ−1の排気穴3の上には丁度第1拡散室50がある。排気穴3から第1拡散室50が真空引きされる。
(8)操作棒を押して拡散用治具44を前進させ、排気穴3の上に5族元素室30が位置するようにする。排気穴3から5族元素室30が真空に引かれる。
(9)操作棒49を押して拡散用治具44を前進させる。排気穴3の上に第2拡散室10が来た位置でとめる。排気穴3から第2拡散室10が真空に引かれる。これらの3室50、30、10が全て真空に引かれる。拡散室をずらせ、反応管と拡散室を切り離す。反応管に水素ガスを導入する。これは図13のヲワに対応する。
【0069】
{工程2(昇温過程)}
(10)操作棒49を押して拡散用治具44を前進させ試料ウエハ14の上をノンドープウエハ13が覆うようにする。図11はそのような状態を示している。全体を加熱し昇温する。図13のワカに当たる。同じ結晶の蓋をしているから5族元素の解離をある程度防ぐことができる。第1拡散温度Tdに到達するまで加熱する。
【0070】
{工程3(第1拡散工程)}
(11)T=Tdになると、操作棒49を押して拡散用治具44を前進させる。ウエハ14を第1拡散室50が覆う。第1拡散室50ではドーパントの蒸気圧がすでに高くなっている。ドーパントがウエハ14に付着し高温で拡散が起こる。表面からドーパントがウエハの内部に拡散する。図10のカヨに対応する。拡散時間tは目的に応じて適当に選ぶ。
【0071】
{工程4(過渡的な冷却)}
(12)所定の拡散時間tが経過すると、操作棒49を押して拡散用治具44を前進させ、5族元素室30がウエハ14を覆う位置で止める。そのままの状態でヒ−タパワーを落とし、第2拡散温度Tdに下げる。図13のヨタである。Td〜Tdの遷移において、ウエハ14は5族元素蒸気圧によって囲まれる。ウエハ表面からの5族抜けが防がれる。
【0072】
{工程5(第2拡散工程)}
(13)第2拡散温度Tdになると、操作棒49を押して、拡散用治具44を前進させ、ウエハ14の上に第2拡散室10が位置するようにする。第2拡散源の蒸気圧が高いのですぐに拡散が始まる。所定の拡散時間tが経過するまでその状態を続ける。
【0073】
{工程6(冷却工程)}
(14)操作棒49を押して拡散用治具44をウエハ収容凹部2から切り離す。直ちに拡散は停止する。徐々に炉の温度を下げる。図13のレソの線に対応する。
【0074】
【実施例】
図1、図2、図3にしめすようなM=1の拡散用治具によって本発明のZn拡散を行った。ただし、拡散用治具は幅30ミリ、奥行き30mm、高さ20mmで容積18cmである。前方に粗面ノンドープInPウエハ−をつけている。拡散用治具の棚にZnを4mgおいた。比較のため次の2枚のウエハ−を試料とした。
ウエハ−▲1▼…キャリヤ濃度1×1018cm−3のSnドープInP
ウエハ−▲2▼…キャリヤ濃度5×1015cm−3のノンドープInP
【0075】
試料ウエハ−をウエハ収容凹部2に入れて、拡散用治具の蓋を閉じ、拡散用治具を基板ホルダ−の上において、操作棒を後端に取り付けた。基板ホルダ−を石英管に入れた。石英管を1×10−6Torrの真空に引いた。拡散用治具4の拡散室10を排気穴3の上に持ってくる。これによって拡散室10の内部が真空になる。そのあと熱伝導率の良い、水素ガスを石英管に導入した。その状態で石英管を反応炉に差し入れた。
【0076】
炉のヒ−タに通電し、基板ホルダ−、拡散用治具、ウエハ−を加熱した、試料ウエハ−の温度は熱電対15によって測定している。熱電対が580℃で安定した時点で、操作棒9によって拡散用治具4を押し拡散室10を試料ウエハ−14の上に来るようにした。Znの蒸気にウエハ−が接触する。ウエハ−温度を580℃にしてZn拡散した。蒸気にウエハ−が接触している時間が拡散時間である。拡散を終了させるためには拡散用治具を押して、拡散室10をウエハ−から切り離せば良い。この点で閉管法より制御性が格段に優れる。拡散用治具がウエハ−から離隔した状態で冷却する。
【0077】
石英管から基板ホルダ−を抜き出す。基板ホルダ−から試料ウエハ−を外す。試料ウエハ−は、劈開して断面を出し、フェリシアン化カリウム+水酸化カリウム水溶液からなるエッチング液によってエッチングした。このエッチング液は、n型InPとp型InPではエッチング速度が違う。それでエッチングされた断面図を顕微鏡で観察することによって拡散深さが分かる。
【0078】
ここで拡散の深さと言うのはZn原子が、n−InP結晶にどこまで拡散していったかということである。ただし初めのn−InPの電子密度(nキャリヤ密度)が違うから、拡散の深さというものも違う。Zn密度は拡散のなだらかなカーブを描くのでここまでがZn拡散の境界であるという点を決めることができない。そこでpn接合であるp=nとなる深さまでを拡散深さとする。
【0079】
ウエハ−▲1▼は比較的高濃度のn型でn=1018cm−3であるから、Zn濃度が1018cm−3になる(n=p)となるところまでがp型領域である。これより深いn型の領域にもZnは存在する。
【0080】
ウエハ−▲2▼はノンドープでありキャリヤ数が少なくn=5×1015cm−3であるから、Zn濃度が5×1015cm−3になったところがpn接合でありこれが拡散深さということになる。
【0081】
拡散時間を様々に変えて拡散深さを測定した。その結果を図6に示す。横軸は時間そのものではなく、時間の平方根である。黒丸はノンドープInPウエハ−▲2▼の拡散時間と深さの関係をしめす。4分で5μm程度、10分で8μm程度、18分で10μm程度である。拡散深さが時間の平方根に大体比例する。黒三角はSnドープのウエハ−▲1▼の結果である。拡散深さが浅いのは、もとのn−InPのnキャリヤ密度が高いからである。5分で1.8μm、10分で2.3μm、28分で4.2μm程度である。これも深さが時間の平方根にほぼ比例している。つまり時間によって拡散を精密に制御できるということである。拡散開始時にウエハ−が初めて拡散原料蒸気に接触し、拡散が終わると同時に拡散原料蒸気からウエハ−が切り離されるから昇温、冷却時に余分な制御不能な拡散が起こらない。時間を増やせば任意の深さまで拡散させることができる。
【0082】
ここでは1インチ径のウエハ−を対象にしたが、拡散用治具の寸法を大きくすれば2インチウエハ−でも簡単にZn拡散することができる。
【0083】
【発明の効果】
本発明は大口径のウエハであっても容易にZn拡散することができる。ウエハ径が大きければ、拡散用治具の拡散室や5族元素室の面積を増やせば良い。2インチ径を越える大面積のウエハであってもp型ドーパントを熱拡散できる。この点で閉管法より優れたものである。また昇温過程、冷却過程では拡散が起こらない。だから拡散濃度プロフィルが所望のものになる。拡散深さの制御性が向上する。冷却中のウエハ表面へのドーパント堆積と言うことも起こらない。この点でも閉管法よりも優れる。
【0084】
5族元素の解離を防ぐための蒸気圧を与える空間が極めて狭いし閉じられているからガスを大量に消費しない。毒性の強いガスを大量に流す開管法よりも優れている。
【図面の簡単な説明】
【図1】1室型拡散用治具を使う本発明の第1の実施形態に掛かる拡散方法の工程図。(1)は拡散室真空排気工程、(2)は昇温工程、(3)は拡散工程、(4)は冷却工程を示す。
【図2】第1の実施形態において用いる1室からなる拡散用治具の蓋を除いた状態の平面図。
【図3】第1の実施形態において用いる拡散用治具の平面図。
【図4】第1の実施形態における温度の時間変化を示すグラフ。
【図5】拡散用治具を収容した石英管と、反応炉の全体を示す断面図。
【図6】580℃でのZn拡散の時間と、拡散深さの測定値を示すグラフ。横軸は時間の平方根、縦軸は拡散深さである。
【図7】2室型拡散用治具を使う本発明の第2の実施形態に掛かる拡散方法の工程図。(1)は赤リン室(5族元素室)真空排気工程、(2)は拡散室真空排気工程、(3)は昇温工程、(4)は拡散工程、(5)は冷却工程を示している。
【図8】第2実施形態で用いる2室拡散用治具の蓋を取り外した状態の平面図。
【図9】同じものの蓋をした状態の平面図。
【図10】第2の実施形態にかかる拡散方法の温度の時間変化を示すグラフ。
【図11】2回の拡散を行う第3の実施形態にかかる拡散方法のための3室型拡散用治具の断面図。
【図12】同じ拡散用治具の蓋を除いた状態の平面図。
【図13】2回の拡散を行う第3の実施形態における温度の時間変化を示すグラフ。
【図14】閉管法にかかる不純物拡散装置の一例の断面図。
【図15】閉管法にかかる不純物拡散装置であって、特公平2−24369号によって提案されている装置の断面図。
【図16】開管法に掛かる不純物拡散装置であって、特開昭62−143421号に提案されている装置の断面図。
【図17】2回の拡散を行う第3の実施形態にかかる拡散方法を行うための3室型拡散用治具であって5族元素の代わりに蓋用ノンドープウエハを使用したものの断面図。
【符号の説明】
1 基板ホルダ−
2 ウエハ収容凹部
3 排気穴
4 拡散用治具
5 枠体
6 蓋
7 ネジ
8 止め孔
9 操作棒
10 拡散室
11 拡散用原料
12 棚
13 蓋用ノンドープウエハ
14 ウエハ
15 熱電対
16 前端面
20 石英管
21 ヒ−タ
22 炉材
23 抵抗線
24 拡散用治具
25 枠体
26 蓋
27 ネジ
28 隔壁
29 操作棒
30 5族元素室
31 5族元素
32 棚
33 止め孔
34 棚
44 拡散用治具
45 枠体
46 蓋
47 ネジ
48 止め孔
49 操作棒
50 第1拡散室
51 拡散原料
52 隔壁
53 隔壁
54 棚
55 棚
56 棚
57 蓋用ノンドープウエハ

Claims (9)

  1. 排気穴が穿孔してありウエハ収容凹部を設けた一方向に延びる平坦な基板ホルダ−と、下面が開口したM個(M≧2)の離隔した室に分かれ各室に棚を持つ枠体と着脱可能な蓋を持ち基板ホルダ−の上を摺動する拡散用治具と、拡散用治具を基板ホルダ−の上で摺動させるための操作棒と、ウエハ収容凹部の近傍に設けた熱電対と、基板ホルダ−の全体を収容し真空に引くことのできる管と、管を加熱するヒータとよりなり、拡散用治具の各室は、試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハを底に置いたか或いは5族元素単体を棚に収容したか何れかである5族元素室と、棚にはZnを含む拡散原料を置いた拡散室の何れかとし、拡散用治具の各室は前端から5族元素室、拡散室が交替に並ぶようにしたことを特徴とする3−5族化合物半導体結晶へのZn拡散装置。
  2. 排気穴が穿孔してありウエハ収容凹部を設けた一方向に延びる平坦な基板ホルダ−と、下面が開口したM個(M≧1)の離隔した室に分かれ各室に棚を持つ枠体と着脱可能な蓋を持ち基板ホルダ−の上を摺動する拡散用治具と、拡散用治具の前端に固定した試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハと、拡散用治具を基板ホルダ−の上で摺動させるための操作棒と、ウエハ収容凹部の近傍に設けた熱電対と、基板ホルダ−の全体を収容し真空に引くことのできる管と、管を加熱するヒータとよりなり、拡散用治具の各室は、試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハを底に置いたか或いは5族元素単体を棚に収容したか何れかである5族元素室と、棚にZnを含む拡散原料を置いた拡散室の何れかとし、拡散用治具の各室は前端から拡散室、5族元素室が交替に並ぶようにしたことを特徴とする3−5族化合物半導体結晶へのZn拡散装置。
  3. 前記3−5族化合物半導体ノンドープ蓋用ウエハは粗い表面を持つことを特徴とする請求項2に記載の3−5族化合物半導体結晶へのZn拡散装置。
  4. 拡散用治具はカーボン製であって表面を非晶質カーボン或いはSiCによってコ−ティングしてあることを特徴とする請求項1〜3の何れかに記載の3−5族化合物半導体結晶へのZn拡散装置。
  5. 拡散用治具の後端に試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハを固定したことを特徴とする請求項1〜4の何れかに記載の3−5族化合物半導体結晶へのZn拡散装置。
  6. 排気穴が穿孔してありウエハ収容凹部を設けた一方向に延びる平坦な基板ホルダ−のウエハ収容凹部に3−5族化合物半導体の試料ウエハを挿入し、下面が開口したM個(M≧1)の離隔した室に分かれ各室に棚を持つ枠体と枠体の前端に固定した試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体よりなるノンドープ蓋用ウエハと枠体に対して着脱可能な蓋とよりなる拡散用治具の蓋をとり、一番前の室の棚にZnを含む原料を置き拡散室とし、二番目の室には5族元素単体を棚に置くか試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハを底に置き5族元素室とし、以下拡散室と5族元素室が交替するようにして、拡散用治具の蓋を閉じ、拡散用治具を前記基板ホルダ−の上に置き、拡散用治具に操作棒を取付け、基板ホルダ−を真空に引くことのできる管に入れ、管を真空に引き、拡散用治具の各室を排気穴の直上に運んで各室を真空に引き、前端に固定された3−5族化合物半導体ノンドープ蓋用ウエハによって試料ウエハが覆われる位置へ拡散用治具を摺動させ、管をヒータに装填して、ヒータによって基板ホルダ−、ウエハ、拡散用治具を加熱し、拡散に適した温度に到達した時、拡散原料が収容された拡散室によって試料ウエハが覆われる位置へ拡散用治具を摺動させ、一定拡散温度でウエハに拡散原料を気相拡散させ、所望の時間が経過すると、5族元素単体或いは3−5族化合物半導体ノンドープ蓋用ウエハが存在する5族元素室がウエハの上になるように拡散用治具を摺動させ、その位置で次の拡散に適する温度まで温度変化させ、ついで拡散原料が収容された次の拡散室がウエハを覆う位置に移動させて第2の拡散を行うというように拡散と温度変化を繰り返し、最後の拡散が終了した時は拡散用治具の拡散室からウエハを離隔させた状態で冷却するようにしたことを特徴とする3−5族化合物半導体結晶へのZn拡散方法。
  7. 排気穴が穿孔してありウエハ収容凹部を設けた一方向に延びる平坦な基板ホルダ−のウエハ収容凹部に3−5族化合物半導体の試料ウエハを挿入し、下面が開口したM個(M≧2)の離隔した室に分かれ各室に棚を持つ枠体と枠体に対して着脱可能な蓋とよりなる拡散用治具の蓋をとり、一番目の室には5族元素単体を棚に置くか試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハを底に置き5族元素室とし、二番目の室の棚にZnを含む原料を置き拡散室とし、以下5族元素室と拡散室が交替するようにして、拡散用治具の蓋を閉じ、拡散用治具を前記基板ホルダ−の上に置き、拡散用治具に操作棒を取付け、基板ホルダ−を真空に引くことのできる管に入れ、管を真空に引き、拡散用治具の各室を排気穴の直上に運んで各室を真空に引き、最初の5族元素単体或いは3−5族化合物半導体ノンドープ蓋用ウエハが存在する5族元素室によって試料ウエハが覆われる位置へ拡散用治具を摺動させ、管をヒータに装填して、ヒータによって基板ホルダ−、ウエハ、拡散用治具を加熱し、拡散に適した温度に到達した時、拡散原料が収容された拡散室によって試料ウエハが覆われる位置へ拡散用治具を摺動させ、一定拡散温度でウエハに拡散原料を気相拡散させ、所望の時間が経過すると、5族元素単体又は3−5族化合物半導体ノンドープ蓋用ウエハが存在する次の5族元素室がウエハの上になるように拡散用治具を摺動させ、その位置で次の拡散に適する温度まで温度変化させ、ついで拡散原料が収容された次の拡散室がウエハを覆う位置に移動させて第2の拡散を行うというように拡散と温度変化を繰り返し、最後の拡散が終了した時は拡散用治具の拡散室からウエハを離隔させた状態で冷却するようにしたことを特徴とする3−5族化合物半導体結晶へのZn拡散方法。
  8. 拡散用治具の後端には試料ウエハの表面半導体層を構成する5族元素を含む3−5族化合物半導体ノンドープ蓋用ウエハが固定され、最後の拡散が終了したときは、拡散用治具後端の3−5族化合物半導体ノンドープ蓋用ウエハによって試料ウエハを覆った状態で冷却するようにしたことを特徴とする請求項6又は7に記載の3−5族化合物半導体結晶へのZn拡散方法。
  9. 拡散原料がZn、ZnP、Zn+P(赤燐)、ZnP+P(赤燐)、ZnAs、ZnAs、ZnAs+As、ZnAs+Asの何れかであることを特徴とする請求項6、7、8の何れかに記載の3−5族化合物半導体結晶へのZn拡散方法。
JP21395498A 1998-07-29 1998-07-29 3−5族化合物半導体結晶へのZn拡散方法及び拡散装置 Expired - Fee Related JP4022997B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP21395498A JP4022997B2 (ja) 1998-07-29 1998-07-29 3−5族化合物半導体結晶へのZn拡散方法及び拡散装置
TW088112317A TW432495B (en) 1998-07-29 1999-07-20 Method and apparatus for diffusing zinc into groups III-V compound semiconductor crystals
EP99114607A EP0977247A3 (en) 1998-07-29 1999-07-26 Method and apparatus for diffusing zinc into groups III-V compound semiconductors crystals
CA002278963A CA2278963A1 (en) 1998-07-29 1999-07-27 Method and apparatus for diffusing zinc into groups iii-v compound semiconductor crystals
KR1019990030956A KR20000012049A (ko) 1998-07-29 1999-07-28 3-5족화합물반도체결정에의 Zn확산방법 및 확산장치
US09/363,397 US6214708B1 (en) 1998-07-29 1999-07-29 Method and apparatus for diffusing zinc into groups III-V compound semiconductor crystals
US09/773,545 US6516743B2 (en) 1998-07-29 2001-02-02 Method and apparatus diffusing zinc into groups III-V compound semiconductor crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21395498A JP4022997B2 (ja) 1998-07-29 1998-07-29 3−5族化合物半導体結晶へのZn拡散方法及び拡散装置

Publications (2)

Publication Number Publication Date
JP2000049105A JP2000049105A (ja) 2000-02-18
JP4022997B2 true JP4022997B2 (ja) 2007-12-19

Family

ID=16647815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21395498A Expired - Fee Related JP4022997B2 (ja) 1998-07-29 1998-07-29 3−5族化合物半導体結晶へのZn拡散方法及び拡散装置

Country Status (6)

Country Link
US (2) US6214708B1 (ja)
EP (1) EP0977247A3 (ja)
JP (1) JP4022997B2 (ja)
KR (1) KR20000012049A (ja)
CA (1) CA2278963A1 (ja)
TW (1) TW432495B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172184B2 (ja) * 2002-02-26 2008-10-29 住友電気工業株式会社 半導体基板への亜鉛拡散方法、半導体基板の加熱方法。
DE10301244B4 (de) * 2003-01-15 2005-03-17 Infineon Technologies Ag Verfahren zum Dotieren von Halbleiterkörpern
TW200528589A (en) * 2004-02-17 2005-09-01 Nikko Materials Co Ltd Vapor-phase deposition method
US7439609B2 (en) * 2004-03-29 2008-10-21 Cree, Inc. Doping of gallium nitride by solid source diffusion and resulting gallium nitride structures
EP1739213B1 (de) * 2005-07-01 2011-04-13 Freiberger Compound Materials GmbH Vorrichtung und Verfahren zum Tempern von III-V-Wafern sowie getemperte III-V-Halbleitereinkristallwafer
US20070084564A1 (en) * 2005-10-13 2007-04-19 Varian Semiconductor Equipment Associates, Inc. Conformal doping apparatus and method
CN104716027B (zh) * 2013-12-13 2017-08-01 山东华光光电子股份有限公司 一种半导体激光器Zn杂质源扩散的装置及其应用
RU2686523C1 (ru) * 2018-07-05 2019-04-29 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ легирования цинком подложек или слоев фосфида индия

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917846B2 (ja) 1977-12-23 1984-04-24 日本電気株式会社 3↓−5化合物半導体への不純物の拡散方法
NL7811683A (nl) * 1978-11-29 1980-06-02 Philips Nv Werkwijze voor het vervaardigen van een halfgeleiderin- richting en halfgeleiderinrichting vervaardigd volgens deze werkwijze.
JPS5593222A (en) * 1979-01-09 1980-07-15 Nec Corp Crystal growing method
JPS56155528A (en) * 1980-05-02 1981-12-01 Toshiba Corp Method of diffusing impurity into semiconductor substrate
JPS6053018A (ja) 1983-09-02 1985-03-26 Hitachi Ltd 化合物半導体への不純物拡散方法
DE3427056A1 (de) * 1984-07-23 1986-01-23 Standard Elektrik Lorenz Ag, 7000 Stuttgart Anlage zum herstellen von halbleiter-schichtstrukturen durch epitaktisches wachstum
JPS6140028A (ja) * 1984-07-31 1986-02-26 Toshiba Corp 拡散装置
JPS6199327A (ja) 1984-10-05 1986-05-17 Fujitsu Ltd InP系の化合物半導体へのZn拡散方法
US4592793A (en) * 1985-03-15 1986-06-03 International Business Machines Corporation Process for diffusing impurities into a semiconductor body vapor phase diffusion of III-V semiconductor substrates
JPS61294814A (ja) * 1985-06-24 1986-12-25 Toshiba Corp 化合物半導体基板への不純物拡散方法
JPS62143421A (ja) 1985-12-18 1987-06-26 Hitachi Ltd 不純物拡散方法および拡散装置
JPS62202073A (ja) * 1986-02-28 1987-09-05 Toshiba Corp 摺動部材
JPS62219514A (ja) * 1986-03-19 1987-09-26 Sanyo Electric Co Ltd 液相エピタキシヤル成長法及び装置
US4725565A (en) * 1986-06-26 1988-02-16 Gte Laboratories Incorporated Method of diffusing conductivity type imparting material into III-V compound semiconductor material
US4742022A (en) * 1986-06-26 1988-05-03 Gte Laboratories Incorporated Method of diffusing zinc into III-V compound semiconductor material
JPH01153592A (ja) * 1987-12-08 1989-06-15 Sumitomo Metal Ind Ltd エピタキシャル成長用ボート
JPH02148873A (ja) * 1988-11-30 1990-06-07 Fujitsu Ltd 半導体装置の製造方法
US5264190A (en) * 1990-04-19 1993-11-23 Mitsubishi Denki Kabushiki Kaisha Liquid phase epitaxial film growth apparatus
KR930008872B1 (ko) * 1991-02-18 1993-09-16 삼성전자 주식회사 Open-Tube형 불순물 확산장치
JPH0714791A (ja) 1993-06-23 1995-01-17 Sumitomo Electric Ind Ltd 半導体素子の製造方法と評価方法
JPH07201770A (ja) * 1993-12-30 1995-08-04 Sony Corp 固体ソース拡散装置
JPH08213336A (ja) * 1994-10-19 1996-08-20 Japan Energy Corp InP単結晶の製造方法
JPH0987847A (ja) * 1995-09-21 1997-03-31 Sumitomo Electric Ind Ltd 硬質炭素被膜の形成方法と耐摩耗性部品

Also Published As

Publication number Publication date
US20010034111A1 (en) 2001-10-25
EP0977247A3 (en) 2005-01-12
JP2000049105A (ja) 2000-02-18
US6516743B2 (en) 2003-02-11
EP0977247A2 (en) 2000-02-02
TW432495B (en) 2001-05-01
US6214708B1 (en) 2001-04-10
KR20000012049A (ko) 2000-02-25
CA2278963A1 (en) 2000-01-29

Similar Documents

Publication Publication Date Title
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
JP2004513525A (ja) 原子層ドーピング装置及び方法
US3839084A (en) Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds
JP4022997B2 (ja) 3−5族化合物半導体結晶へのZn拡散方法及び拡散装置
Yu et al. Photoluminescence in Mn‐implanted GaAs—An explanation on the∼ 1.40‐eV emission
US4939103A (en) Method of diffusing plurality of dopants simultaneously from vapor phase into semiconductor substrate
EP0578996A1 (en) Method of doping a semiconductor surface by gaseous diffusion
US5869398A (en) Etching of indium phosphide materials for microelectronics fabrication
US4135952A (en) Process for annealing semiconductor materials
US4742022A (en) Method of diffusing zinc into III-V compound semiconductor material
JP4172184B2 (ja) 半導体基板への亜鉛拡散方法、半導体基板の加熱方法。
JPS5917846B2 (ja) 3↓−5化合物半導体への不純物の拡散方法
KR100754404B1 (ko) 확산튜브와, 확산공정용 도펀트 소스 및 상기 확산튜브와도펀트 소스를 이용한 확산방법
JPH0132653B2 (ja)
JPS62122122A (ja) 不純物拡散方法
JPS6369219A (ja) 分子線源用セル
JPS6140028A (ja) 拡散装置
JPH0793277B2 (ja) InP基板中へのCd拡散方法
JPS6249618A (ja) 不純物拡散用容器
JPS6122453B2 (ja)
JPH0222199A (ja) 気相エピタキシャル成長方法
JP3214133B2 (ja) エピタキシャル成長装置とエピタキシャル成長方法
JPH0232240B2 (ja)
Sheibani Liquid phase electroepitaxial bulk growth of binary and ternary alloy semiconductors under external magnetic field
Martin The Growth of Unintentional-and Sulphur-Doped Indium Phosphide by Molecular Beam Epitaxy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees