JP4012830B2 - 燃料電池セル及び燃料電池 - Google Patents

燃料電池セル及び燃料電池 Download PDF

Info

Publication number
JP4012830B2
JP4012830B2 JP2003020874A JP2003020874A JP4012830B2 JP 4012830 B2 JP4012830 B2 JP 4012830B2 JP 2003020874 A JP2003020874 A JP 2003020874A JP 2003020874 A JP2003020874 A JP 2003020874A JP 4012830 B2 JP4012830 B2 JP 4012830B2
Authority
JP
Japan
Prior art keywords
support
fuel
side electrode
fuel cell
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020874A
Other languages
English (en)
Other versions
JP2004234970A (ja
Inventor
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003020874A priority Critical patent/JP4012830B2/ja
Publication of JP2004234970A publication Critical patent/JP2004234970A/ja
Application granted granted Critical
Publication of JP4012830B2 publication Critical patent/JP4012830B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信頼性の高い燃料電池セル及び燃料電池に関するものである。
【0002】
【従来技術】
近年、次世代エネルギーとして、燃料電池セルのスタックを収納容器内に収容した燃料電池が種々提案されている。
【0003】
燃料電池セルは固体電解質を酸素側電極、燃料側電極で挟持して構成されており、酸素側電極に酸素含有ガスを供給し、燃料側電極に燃料ガスを供給することにより、固体電解質を挟んで対峙する両電極間に電位差が発生し、発電するものである。
【0004】
また、燃料電池は燃料電池セル当たりの発電量が小さいため、複数の燃料電池セルを電気的に接続して構成されている。
【0005】
図2は、従来の燃料電池セル1の構造を示したもので、内部にガス流路3を有する円筒柱状の多孔質の支持体を兼ねる燃料側電極1aの表面に、緻密質の固体電解質1b、多孔質の酸素側電極1cが順次積層されている。支持体を兼ねる燃料側電極1aの表面には、固体電解質1bと酸素側電極1cが形成されていない部分があり、ここには、燃料電池セル1と他の燃料電池セルとを電気的に接続するインターコネクタ1dが形成されている。この燃料電池セル1のガス流路3に燃料を流し、燃料電池セル1の外部に酸素含有ガスを流すことで、固体電解質1bを介して支持体を兼ねる燃料側電極1a、酸素側電極1c間に電位差が生じ、発電が行われる。燃料電池はこのような燃料電池セル1を収納容器内に複数収納して構成されている。
【0006】
このような燃料電池では、支持体を兼ねる燃料側電極1aが、例えば、Niと、Y23を含有するZ2とから構成されているが、支持体を兼ねる燃料側電極1a及び、固体電解質1b、酸素側電極1cの焼成は酸化性雰囲気で行われるため、支持体を兼ねる燃料側電極1aのNiは酸化され一旦、NiOとなる。支持体を兼ねる燃料側電極1aは、導電性を有する必要があるため、還元処理を行い、NiOをNiへと還元する必要がある。ところが、この還元の際には、NiOがNiに変化し、支持体を兼ねる燃料側電極1aの体積変化が起こり、支持体を兼ねる燃料側電極1aの表面に形成されている固体電解質1bにクラックが発生したり、固体電解質1bが支持体を兼ねる燃料側電極1aから剥離するという問題があった。
【0007】
そこで、近年においては、先にY23を固溶したZ2粉末で、支持体となる多孔質体を作製し、次いで燃料側電極として作用する金属を前記多孔質体の細孔内を含む全表面上に担持させることが提案されている。このような手法では、粉体のネットワークが形成された多孔体中に金属が分散するため、金属の状態変化に伴う支持体を兼ねる燃料側電極1aの変形を抑制できる(例えば、特許文献1参照)。
【0008】
あるいは、支持体を兼ねる燃料側電極1aを作製した後、一旦、還元処理を先に行い、その後、この支持体を兼ねる燃料側電極1a表面に固体電解質1b、酸素側電極1cを形成する方法が提案されている。このような製造方法では、支持体を兼ねる燃料側電極1aの寸法変化がある程度小さくなる(例えば、特許文献2参照)。
【0009】
【特許文献1】
特開平8−55625号公報
【特許文献1】
特開平8−287926号公報
【0010】
【発明が解決しようとする課題】
しかしながら、例えば、多孔体に金属を担持させる方法では、支持体を兼ねる燃料側電極1aに含まれる金属の量が少なく、支持体を兼ねる燃料側電極1aの導電性が低いという問題がある。また、支持体を兼ねる燃料側電極1aが大きくなる場合には、金属を均一に担持することは困難となる。その結果、発電時に電流が不均一に流れ、発電性能が低下するという問題があった。
【0011】
また、支持体を兼ねる燃料側電極1aを一旦、還元処理した後に、固体電解質1b、酸素側電極1cを形成する手法では高価な還元処理プロセスが増加するために、製造コストが増大するという問題がある。また、このような手法を用いたとしても、金属の還元に伴う支持体を兼ねる燃料側電極1aの変形は十分に抑制することができず、信頼性が低いという問題があった。
【0012】
また、支持体を酸化還元しない、例えば、無機粉末から作製し、その表面に燃料側電極を形成する手法も提案されているが、支持体の導電性がなくなるため、発電性能が低下するという問題があった。
【0013】
本発明では、還元時の寸法変化が小さく、十分な導電性を有する支持体を提供し、固体電解質表面のクラック発生や、燃料側電極からの固体電解質の剥離がなく、性能低下を防止することができる燃料電池セル及び燃料電池を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の燃料電池セルは、Ni及び/又はNiOをNi換算で全量中42〜52体積%と、Y 2 3 及び/又はYb 2 3 を全量中48〜58体積%とからなる支持体表面に、燃料極側電極、固体電解質、酸素側電極を順次設けてなり、前記支持体の寸法をL1とし、該支持体を1000℃の還元雰囲気で熱処理した後の該支持体の寸法をL2とし、その変化量(ΔL)をΔL=L2−L1としたとき、ΔL/L1が−0.05〜0.05%であることを特徴とする。
【0015】
このような燃料電池セルでは、還元処理によってNiOがNiへ変化し、導電性を有する支持体となると同時に、金属成分を含まず導電性を有しない支持体と遜色ないほどに焼結後と還元後の寸法の変化を小さくすることができるため、還元処理を行っても支持体表面に形成された固体電解質に大きな応力の発生がなく、固体電解質のクラックや剥離を防止することができ、高い信頼性が得られる。また、支持体に導電性を付与することで、支持体も電極としての機能を発揮する。そのため、電極の抵抗を下げることができ、燃料電池セルの性能を向上させることができる。
【0017】
また 2 3 、Yb 2 3 は、焼成時や発電中にNi及び/又はNiOとの固溶、反応が殆どなく、また、支持体に混合するY 23は熱膨張係数が8.14×10-6/℃、Yb23はY23と殆ど同程度であり、希土類元素が固溶したZ2の熱膨張係数(約10.8×10-6/℃)よりも遥かに小さいため、Y23、Yb23などの含有比率を制御することにより、支持体の熱膨張係数を固体電解質の熱膨張係数に近づけることができる。
【0018】
また、支持体は、拡散しにくいNi及び/又はNiOとY23 及び/又はYb23 からなるため、支持体と固体電解質とを同時焼成したとしても 2 3 及び/又はYb 2 3 が固体電解質に拡散しにくく、固体電解質のイオン伝導度や酸素側電極の導電率等に悪影響を及ぼすことがなく、さらに 2 3 及び/又はYb 2 3 が仮に同時焼成時に拡散したとしても、固体電解質はそもそもY23、Yb23等の希土類元素が固溶したZ2から構成されているため、固体電解質への影響を最小限に抑制できる。また、Y23、Yb23などの希土類酸化物は、固体電解質の安定化材として用いられており、燃料電池セル中の元素種の増加を防止できる。
【0019】
さらに、本発明の燃料電池セルは、支持体は、Ni及び/又はNiOをNi換算で全量中42〜52体積%とY 2 3 及び/又はYb 2 3 を全量中48〜58体積%とからなるものである。これにより、支持体の熱膨張係数を固体電解質に近づけることができるとともに、支持体の導電率を高く維持できる。
鉄族金属及び/または鉄族金属酸化物のうちNi及びNiOは一般的に広く使用されている原料であるため比較的安価であり、また、供給も安定しているためコストを下げることができる。
また、希土類酸化物のうちY 2 3 及びYb 2 3 は一般的に広く使用されている原料であるため比較的安価であり、また、供給も安定しているためコストを下げることができる。
【0021】
また、支持体のNi及び/又はNiOの平均粒径をR1とし、支持体の 2 3 及び/又はYb 2 3 の平均粒径をR2としたとき、R2/R1の比が0.4以上であることを特徴とする。理由は明確ではないが、 2 3 及び/又はYb 2 3 が多い時は、相対的に平均粒径が大きな 2 3 及び/又はYb 2 3 が燃料極支持管の骨格構造を形成し、また、 2 3 及び/又はYb 2 3 が少ない時はNi及び/又はNiOの周りに、相対的に平均粒径が小さな 2 3 及び/又はYb 2 3 が分布することによって、還元時におけるNiONiに変化することにより起こる寸法変化を抑制するものと考えている。
【0022】
また、本発明の燃料電池セルは、支持体中のNi及び/又はNiOの支持体全量中におけるNi換算での体積比率(X)と、前記Ni及び/又はNiOの平均粒径R1と、 2 3 及び/又はYb 2 3 の平均粒径R2との関係が−0.05≦−0.069×ln(R2/R1)−0.0483X+2.495≦0.05を満足することを特徴とする。
【0023】
支持体の熱膨張係数は支持体の金属量と希土類酸化物量の比率に依存し、導電性は支持体中の金属量に依存している。導電性を有した任意の組成においても、支持体に含まれるNi及び/又はNiOの支持体全量中のNi換算での体積比率(X)と、Ni及び/又はNiOの平均粒径R1と 2 3 及び/又はYb 2 3 の平均粒径R2の比(R2/R1)を制御することによって、導電性と熱膨張係数、さらに還元処理によって生ずる支持体の寸法変化とを制御することができ、還元による電解質表面クラックや剥離を防止することができる。
【0026】
本発明の燃料電池は、上記した燃料電池セルを収納容器内に複数収容してなることを特徴とする。このような燃料電池では、燃料電池セルの破損を防止できるとともに、固体電解質性能低下を抑制できるため、発電性能を向上できる。
【0027】
【発明の実施の形態】
図1は、本発明の燃料電池セル33の横断面斜視図を示すもので、燃料電池セル33は断面が扁平状で、全体的に見て楕円柱状あるいは板状であり、その内部には複数のガス流路34が形成されている。
【0028】
この燃料電池セル33は、断面が扁平状で、全体的に見て楕円柱状の希土類酸化物とNi及び/又はNiOとを含有する支持体33aの外面に、多孔質な燃料側電極33b、緻密質な固体電解質33c、多孔質な導電性セラミックスからなる酸素側電極33dを順次積層し、酸素側電極33dと反対側の支持体33aの外面に中間膜33e、ランタン−クロム系酸化物材料からなるインターコネクタ33f、P型半導体材料からなる集電膜33gを形成して構成されている。
【0029】
即ち、燃料電池セル33は、断面形状が、幅方向両端に設けられた弧状部mと、これらの弧状部mを連結する一対の平坦部nとから構成されており、一対の平坦部nは平坦であり、ほぼ平行に形成されている。これらの燃料電池セル33の平坦部nの一方は、支持体33aに中間膜33e、インターコネクタ33f、集電膜33gを形成して構成され、他方の平坦部nは、支持体33aに燃料側電極33b、固体電解質33c、酸素側電極33dを形成して構成されている。
【0030】
この支持体33aは、導電性を付与するために少なくとも、Ni及び/又はNiO(以下、鉄族金属及び/又は鉄族金属の酸化物ということもある)を含有することが必要である
【0031】
また、燃料電池セル33の信頼性を確保するために、また、この支持体33aの還元処理前の寸法をL1とし、1000℃の還元雰囲気で熱処理した後の支持体の寸法をL2とし、その変化量(ΔL)をΔL=L2−L1とする時、ΔL/L1の値が−0.05〜0.05%の範囲となることが必要である。ΔL/L1を上記の範囲内とすることで、固体電解質1cクラックや剥離のない信頼性の高い燃料電池セル33を作製することができる。一方、ΔL/L1の値が−0.05〜0.05%の範囲外の燃料電池セル33では、燃料電池セル33の還元処理時や発電時に燃料電池セル33が破壊したり、あるいは長期的な信頼性が低いという問題が発生する。
【0032】
また、支持体33aは、Ni及び/又はNiOに加え、 2 3 及び/又はYb 2 3 (以下、希土類酸化物ということもある)を含有することが重要である
【0033】
2 3 及び/又はYb 2 3 の熱膨張係数は、固体電解質33cのY23を含有するZ2の熱膨張係数より熱膨張係数が小さく、Niとのサーメット材としての支持体33aの熱膨張係数を固体電解質33cの熱膨張係数に近づけることができ、固体電解質33cのクラックや、固体電解質33cの燃料側電極33bからの剥離を抑制できる
【0037】
支持体33a中の希土類酸化物は、固体電解質33bの熱膨張係数に近づけるとともに、支持体33aの導電率を高く維持するため、支持体33a全量中48〜58体積%とされている。一方、Ni及び/又はNiOは、支持体33a全量中42〜52体積%とされている
【0038】
また、支持体1aの希土類酸化物の平均粒径をR2とし、鉄族金属及び/又は鉄族金属の酸化物の平均粒径をR1としたとき、R2/R1の比を0.4以上とすることが重要である。また、さらに、支持体1aの鉄族金属及び/又は鉄族金属酸化物の支持体2a全量中の鉄族金属換算での体積%(X)と、前記鉄族金属及び/又は鉄族金属の酸化物粉末の平均粒径R1と希土類酸化物の平均粒径R2との関係が、−0.05≦−0.069Ln(R2/R1)−0.0483X+2.495≦0.05を満足することが望ましい。この関係を満足することで、支持体1aの熱膨張係数と還元処理前後の寸法変化を同時に制御することができる。
【0039】
支持体33aの長径寸法(弧状部m−m間の距離)は、15〜35mm、短径寸法(平坦部n−n間の距離)が2〜4mmであることが望ましい。
【0040】
支持体33aの外面に設けられた燃料側電極33bは、Niと希土類元素が固溶したZ2とから構成される。この燃料側電極33bの厚みは1〜30μmであることが望ましい。燃料側電極33bの厚みを1μm以上とすることで、燃料側電極33bとしての3層界面が十分に形成される。また、燃料側電極33bの厚みを30μm以下とすることで固体電解質33cとの熱膨張差による、界面剥離を防止できる。
【0041】
燃料側電極33bの外面には、Y23などが固溶したZ2などの固体電解質33cが設けられる。
【0042】
また、固体電解質33cの外面に設けられた酸素側電極33dは、遷移金属ペロブスカイト型酸化物のランタン−マンガン系酸化物、ランタン−鉄系酸化物、または、それらの複合酸化物の少なくとも一種の多孔質の導電性セラミックスから構成されている。酸素側電極33dは、800℃程度の中温域での電気伝導性が高いという点から(La,SR)(Fe,Co)O3が望ましい。酸素側電極33dの厚さは、集電性という点から30〜100μmであることが望ましい。
【0043】
そして、支持体33a外面の一部には、その軸長方向に燃料側電極33b、固体電解質33c及び酸素側電極33dが形成されていない部分を有しており、この固体電解質33c及び酸素側電極33dから露出した支持体33aの外面には、中間膜33e、ランタン−クロム系酸化物からなるインターコネクタ33f、集電膜33gが形成されている。
【0044】
中間膜33eは、Ni及び/またはNiOと希土類元素を含有するZ2を主成分とするものである。中間膜33e中のNi化合物のNi換算量は全量中35〜80体積%が望ましく、好ましくは50〜70体積%が望ましい。Niを35体積%以上とすることで、Niの導電パスが増加し、中間膜33eの伝導度が向上し、電圧降下が小さくなる。また、Niを80体積%を以下とすることで、支持体33aとインターコネクタ33fの間の熱膨張係数差を小さくすることができ、両者の界面の亀裂が発生を抑制できる。
【0045】
また、電位降下が小さくなるという点から中間膜33eの厚さは20μm以下が望ましく、さらに、10μm以下が望ましい。
【0046】
インターコネクタ33fは、支持体33aの内外の燃料ガス、酸素含有ガスの漏出を防止するため緻密質とされており、また、インターコネクタ33fの内外面は、燃料ガス、酸素含有ガスと接触するため、耐還元性、耐酸化性を有している。
【0047】
このインターコネクタ33fの厚みは、30〜200μmであることが望ましい。30μm以上とすることで、ガス透過を防止でき、200μm以下とすることで抵抗成分を小さくできる。
【0048】
このインターコネクタ33fの端面と固体電解質33cの端面との間には、シール性を向上すべく例えば、Y23からなる接合層を介在させても良い。
【0049】
また、インターコネクタ33f表面にP型半導体、例えば、遷移金属ペロブスカイト型酸化物からなる集電膜33gを設けることが望ましい。インターコネクタ33f表面に直接金属の集電部材を配して集電すると非オーム接触により、電位降下が大きくなる。オーム接触をし、電位降下を少なくするためには、インターコネクタ33fにP型半導体からなる集電膜33gを接続する必要があり、P型半導体である遷移金属ペロブスカイト型酸化物を用いることが望ましい。遷移金属ペロブスカイト型酸化物としては、ランタン−マンガン系酸化物、ランタン−鉄系酸化物、又は、それらの複合酸化物の少なくとも一種からなることが望ましい。
【0050】
以上のような燃料電池セル33の製法について説明する。先ず、希土類酸化物粉末とNi及び/又はNiO粉末を混合し、この混合粉末に、有機バインダーと、溶媒とを混合した支持体材料を用い、押し出し成形して、扁平状の支持体成形体を作製し、これを乾燥、脱脂する。
【0051】
次に、Ni及び/又はNiO粉末と希土類元素が固溶したZ2粉末と有機バインダーと、溶媒を混合し、作製したスラリーを用いてシート状の燃料側電極成形体を作製し、支持体成形体に積層する。
【0052】
次に、希土類元素が固溶したZ2粉末と有機バインダーと、溶媒を混合した固体電解質材料を用いてシート状の固体電解質成形体を作製し、支持体成形体上の燃料側電極成形体上に前記シート状の固体電解質成形体成形体を積層巻き付けし、乾燥する。なお、このとき脱脂を行ってもよい。
【0053】
次に、Ni及び/又はNiO粉末と希土類元素が固溶したZ2粉と有機バインダーと、溶媒を混合したスラリーを用いてシート状の中間膜成形体を作製し、支持体成形体に積層する。
【0054】
次に、ランタン−クロム系酸化物粉末と、有機バインダーと、溶媒を混合したインターコネクタ材料を用いてシート状のインターコネクタ成形体を作製し、中間膜成形体上に積層する。
【0055】
これにより、支持体成形体の一方の平坦部の表面に、燃料側電極成形体、固体電解質成形体を順次積層するとともに、他方の平坦部の表面に中間膜成形体、インターコネクタ成形体が積層された積層成形体を作製する。
【0056】
次に、積層成形体を脱脂処理し、酸素含有雰囲気中で1300〜1600℃で同時焼成する。
【0057】
次に、P型半導体である遷移金属ペロブスカイト型酸化物粉末と、溶媒を混合し、ペーストを作製し、前記積層体をこのペースト中に浸漬し、固体電解質33b、インターコネクタ33fの表面に酸素側電極成形体、集電膜成形体をディッピングにより形成するか、または、直接スプレー塗布し、1000〜1300℃で焼き付けることにより、本発明の燃料電池セル33を作製できる。
【0058】
尚、各成形体はドクターブレードによるシート成形や印刷、スラリーディップ、スプレーによる吹き付けなどにより作製することができ、または、これらの組み合わせにより作製してもよい。
【0059】
尚、燃料電池セル33は、酸素含有雰囲気での焼成により、支持体33a、燃料側電極33b、中間膜33中のNi成分が、NiOとなっているため、その後、支持体33a側から還元性の燃料ガスを流し、NiOを800〜1000℃で還元処理する。また、この還元処理は発電時に行ってもよい。
【0060】
尚、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、円筒状の支持体33aを用いて円筒型燃料電池セルを作製してもよく、支持体33aを用いる燃料電池セル33であれば形状は問わない。また、酸素側電極33dと固体電解質33cとの間に、反応防止層を形成しても良い。
【0061】
尚、上記した本発明の燃料電池セル33を収納容器内に複数収納し、電気的に接続し、発電を行うことで、発電性能に優れ、信頼性の高い燃料電池を作製することができる。
【0062】
【実施例】
先ず、平均粒径0.05〜10μmのNiO粉末と、平均粒径0.05〜5μmのNi粉末と、平均粒径0.75〜30μmのY23粉末と、平均粒径0.5〜30μmのYb23粉末とを、焼成後における体積比率が表1になるように混合した。尚、表1中のNiO粉末量は、Ni換算量である。また、焼成後の体積比率は蛍光X線によって算出した。
【0063】
次に、この混合粉末に、ポアー剤、PVAからなる有機バインダーと、水からなる溶媒とを混合して形成した支持体材料を押出成形し、扁平状の支持体成形体を作製し、これを乾燥した。
【0064】
次に、Ni及び/又はNiO粉末と希土類元素が固溶したZ2粉末と有機バインダーと、溶媒を混合し、作製したスラリーを用いてシート状の燃料側電極成形体を作製し、支持体成形体に積層する。
【0065】
次に、希土類元素が固溶したZ2粉末と有機バインダーと、溶媒を混合した固体電解質材料を用いてシート状の固体電解質成形体を作製し、支持体成形体上の燃料側電極成形体上に前記シート状の固体電解質成形体を積層巻き付けし、乾燥する。なお、このとき脱脂を行ってもよい。
【0066】
次に、Ni及び/又はNiO粉末と希土類元素が固溶したZ2粉と有機バインダーと、溶媒を混合したスラリーを用いてシート状の中間膜成形体を作製し、支持体成形体に積層する。
【0067】
次に、ランタン−クロム系酸化物粉末と、有機バインダーと、溶媒を混合したインターコネクタ材料を用いてシート状のインターコネクタ成形体を作製し、中間膜成形体上に積層する。
【0068】
これにより、支持体成形体の一方の平坦部の表面に、燃料側電極成形体、固体電解質成形体を順次積層するとともに、他方の平坦部の表面に中間膜成形体、インターコネクタ成形体が積層された積層成形体を作製する。
【0069】
次に、積層成形体を脱脂処理し、酸素含有雰囲気中で1300〜1600℃で同時焼成する。
【0070】
次に、P型半導体である平均粒径2μmのLa0.6 0.4Co0.2Fe0.83末と、溶媒を混合し、ペーストを作製し、前記積層体をこのペースト中に浸漬し、固体電解質33b、インターコネクタ33fの表面に酸素側電極成形体、集電膜成形体をディッピングにより形成するか、または、直接スプレー塗布し、1000〜1300℃で焼き付けることにより、本発明の燃料電池セル33を作製できる。
【0071】
得られた燃料電池セル33から支持体33a部分、約幅6mm、厚み3mm、長さ40mmの試験片を切り出し、マイクロメータを用いて長さを測定し、酸素分圧約10-19Paでの還元雰囲気中において室温〜1000℃での熱処理を施し、室温まで冷却した後、さらに長さを測定した。長さの変化を初期の長さで除した値(ΔL/L)を表1に記載した。この時、還元前後の試験片の重量を測定し、還元処理によって還元体に変化していることをその組成から計算で求めた値と比較して確認した。
【0072】
また、この作製した燃料電池セル33を100mm長さに切り出し、酸素分圧約10-19Paの還元雰囲気中において室温〜1000℃の温度範囲で50回の熱サイクルを繰り返し、固体電解質33c表面のクラックの存在を双眼顕微鏡にて確認した。また、さらに−0.069×ln(R2/R1)−0.0483X+2.495の値を算出し、表1に記載した。尚、表1へは計算値と記載している。
【0073】
【表1】
Figure 0004012830
【0074】
この表1から、鉄属金属酸化物であるNiO、鉄属金属Ni、及び希土類元素酸化物であるY23、Yb23を原料として用いた場合、支持体33aの熱膨張係数を制御するためにNiO、Ni、Y23、Yb23量を変化させても、Ni量が支持体33a全量中の42〜52体積%の範囲であれば、任意のNi量に対して、NiO、Niの平均粒径とY23、Yb23の平均粒径の比を変化させることによって、還元処理における支持体33aの変化量(ΔL/L1)も同時に制御することができ、しかも、この変化量(ΔL/L1)を±0.05%の範囲内に入るようにすることができることがわかる。
【0075】
一方、還元後における試験片の長さの変化量(ΔL/L)が0.05%を超えた比較例の試料No.1では、熱サイクル試験後の燃料電池セル33の固体電解質33cにクラックが発生していた。
【0076】
また、還元後における試験片の長さの変化量(ΔL/L)が−0.05%未満の比較例の試料No.10にも、熱サイクル試験後の燃料電池セルの固体電解質33cにクラックが発生していた。
【0077】
以上の結果より、還元処理前後の変化量(ΔL/L1)を±0.05%の範囲とすることで、還元雰囲気中での室温〜1000℃までの熱サイクルにおいても、固体電解質33c表面にクラックが発生することがなく、信頼性の高い燃料電池セル33を提供できることがわかった。
【0078】
【発明の効果】
本発明の燃料電池セルでは、支持体に導電性を付与できるとともに、支持体の熱膨張係数を制御でき、さらに還元後の支持体の寸法変化を小さくすることが可能となり、電解質表面にクラックが発生することや、固体電解質が剥離することを防止できる。
【図面の簡単な説明】
【図1】本発明の燃料電池セルを示す断面斜視図である。
【図2】従来の燃料電池セルを示す断面斜視図である。
【符号の説明】
33・・・燃料電池セル
33a・・・支持体
33b・・・燃料側電極
33c・・・固体電解質
33d・・・酸素側電極

Claims (4)

  1. Ni及び/又はNiOをNi換算で全量中42〜52体積%と、Y 2 3 及び/又はYb 2 3 を全量中48〜58体積%とからなる支持体表面に、燃料極側電極、固体電解質、酸素側電極を順次設けてなり、前記支持体の寸法をL1とし、該支持体を1000℃の還元雰囲気で熱処理した後の該支持体の寸法をL2とし、その変化量(ΔL)をΔL=L2−L1としたとき、ΔL/L1が−0.05〜0.05%であることを特徴とする燃料電池セル。
  2. 前記支持体のNi及び/又はNiOの平均粒径をR1とし、前記支持体の 2 3 及び/又はYb 2 3 の平均粒径をR2としたとき、R2/R1の比が0.4以上であることを特徴とする請求項記載の燃料電池セル。
  3. 前記支持体中のNi及び/又はNiOの支持体全量中におけるNi換算での体積比率(X)と、前記Ni及び/又はNiOの平均粒径R1と、 2 3 及び/又はYb 2 3 の平均粒径R2との関係が−0.05≦−0.069×ln(R2/R1)−0.0483X+2.495≦0.05を満足することを特徴とする請求項1又は2記載の燃料電池セル。
  4. 請求項1乃至のうちいずれかに記載の燃料電池セルを収納容器内に複数収容してなることを特徴とする燃料電池。
JP2003020874A 2003-01-29 2003-01-29 燃料電池セル及び燃料電池 Expired - Fee Related JP4012830B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020874A JP4012830B2 (ja) 2003-01-29 2003-01-29 燃料電池セル及び燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020874A JP4012830B2 (ja) 2003-01-29 2003-01-29 燃料電池セル及び燃料電池

Publications (2)

Publication Number Publication Date
JP2004234970A JP2004234970A (ja) 2004-08-19
JP4012830B2 true JP4012830B2 (ja) 2007-11-21

Family

ID=32950388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020874A Expired - Fee Related JP4012830B2 (ja) 2003-01-29 2003-01-29 燃料電池セル及び燃料電池

Country Status (1)

Country Link
JP (1) JP4012830B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170599A (ja) * 2015-02-19 2015-09-28 日本碍子株式会社 燃料電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079991B2 (ja) * 2005-06-30 2012-11-21 京セラ株式会社 燃料電池セル及び燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170599A (ja) * 2015-02-19 2015-09-28 日本碍子株式会社 燃料電池

Also Published As

Publication number Publication date
JP2004234970A (ja) 2004-08-19

Similar Documents

Publication Publication Date Title
KR100437498B1 (ko) 연료극 지지체식 원통형 고체산화물 연료전지 스택과 그제조 방법
JP4000128B2 (ja) 燃料極支持体式平管型固体酸化物燃料電池スタック及びその製造方法
JP5080951B2 (ja) 横縞型燃料電池セルスタックおよび燃料電池
US7285347B2 (en) Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of the same
JP4544872B2 (ja) 燃料電池セル及び燃料電池
JP4853979B2 (ja) 燃料電池セル
JP4511122B2 (ja) 燃料電池セル
JP4009179B2 (ja) 燃料電池セル及び燃料電池
JP4883992B2 (ja) 燃料電池セル及び燃料電池
JP4012830B2 (ja) 燃料電池セル及び燃料電池
JP4002521B2 (ja) 燃料電池セル及び燃料電池
JP2004063226A (ja) 燃料電池セル及びその製法並びに燃料電池
JP2006127973A (ja) 燃料電池セル
JP4460881B2 (ja) 燃料電池セルの製法
JP2004265739A (ja) 燃料電池セル
JP2004265742A (ja) 集電部材の表面処理方法
JP4412984B2 (ja) 燃料電池セル及び燃料電池
JP4925574B2 (ja) 燃料電池セル及び燃料電池
JP4480377B2 (ja) 燃料電池セル及び燃料電池
JP3935086B2 (ja) 燃料電池セル及び燃料電池
JP4012846B2 (ja) 燃料電池セルの製造方法
JP2009087539A (ja) 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
JP4502665B2 (ja) 棒状体の製法および棒状燃料電池セルの製法
JP4683889B2 (ja) 燃料電池セル及びその製法並びに燃料電池
JP4002525B2 (ja) 燃料電池セル及び燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees