JP4004795B2 - 研磨用流体の供給装置 - Google Patents

研磨用流体の供給装置 Download PDF

Info

Publication number
JP4004795B2
JP4004795B2 JP2001400654A JP2001400654A JP4004795B2 JP 4004795 B2 JP4004795 B2 JP 4004795B2 JP 2001400654 A JP2001400654 A JP 2001400654A JP 2001400654 A JP2001400654 A JP 2001400654A JP 4004795 B2 JP4004795 B2 JP 4004795B2
Authority
JP
Japan
Prior art keywords
polishing fluid
polishing
mixing
temperature
mixing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400654A
Other languages
English (en)
Other versions
JP2003197577A (ja
Inventor
一雅 山田
悦二 立木
聡 宮島
Original Assignee
松下環境空調エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下環境空調エンジニアリング株式会社 filed Critical 松下環境空調エンジニアリング株式会社
Priority to JP2001400654A priority Critical patent/JP4004795B2/ja
Publication of JP2003197577A publication Critical patent/JP2003197577A/ja
Application granted granted Critical
Publication of JP4004795B2 publication Critical patent/JP4004795B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造における半導体基板表面の平面加工を行う場合の化学機械研磨(Chemical Mechanical Polish:以下CMPと略す)スラリーの供給装置に関するものである。
【0002】
【従来の技術】
近年、半導体装置の集積度の増加に伴い、配線基板表面の平坦化が重要になってきている。なかでも、CMP法は、平坦化のためにもっとも多用され、必要不可欠な工程となっている。
しかしながら半導体装置の製造技術は、平坦化された面への加工が基本であり、平坦化が不十分な場合は、配線の段切れ等の問題が発生し、微細加工が不可能になる。したがって、半導体製造工程におけるスラリーによる表面平坦化工程においては、ますます高い表面平坦化精度が要求されるようになってきている。
【0003】
図11に示すように、従来、CMPスラリー用材料は、少なくともスラリー貯留手段とその供給ラインとを有し、必要に応じて、恒温化手段や混合手段とを備えるスラリー供給装置によって、半導体製造装置に供給されるようになっている。
平坦化の精度向上のためには、平坦化工程に供給されるCMPスラリー中の砥粒の粒度径ないしは粒度分布が安定していることも重要な要素である。砥粒の粒度が一定でないと、研磨レートが不安定化し、ひいては、平坦化精度が低下することになる。また、マイクロスクラッチ等の平坦化工程での製造不良が生ずることとなる。
また、CMPスラリーは、通常、金属酸化物等の砥粒(機械的研磨成分)、過酸化水素等の酸化剤あるいはKOH等のアルカリからなる化学的研磨成分、分散助剤、pH調整剤等を含有している。分散助剤等としては、界面活性剤や有機酸等の有機物が使用されることが多い。ここで酸化剤等の化学的研磨成分の濃度が安定していることも平坦化の精度向上のためには、重要である。
【0004】
【発明が解決しようとする課題】
供給装置内のスラリー貯留槽等では、スラリーの滞留による砥粒の沈降や、部分的に生じた温度ストレス等による砥粒の凝集によって、スラリー中の砥粒濃度やサイズが変化し、研磨レート等に影響を及ぼしうる。加えて、砥粒を含むスラリー用材料に酸化剤等が添加された後においては、精度よく酸化剤濃度等を調整することが困難であった。特に、スラリーが凝集すると、マイクロスクラッチを生じ、製造不良となることがあった。
【0005】
そこで、本発明は、品質の安定した研磨用流体を研磨装置に供給できる、研磨用流体の供給装置を提供することを、その目的とする。
【0006】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、上記した課題は、以下の手段により解決できることを見出し、本発明を完成した。
すなわち、本発明によれば、以下の手段が提供される。
【0007】
(1)CMPスラリー用材料を含む研磨用流体を研磨装置に供給するための装置であって、
前記研磨用流体の供給装置は、砥粒等の機械的研磨成分を含有の第1の研磨用流体を貯留する第1貯留手段と、
酸化剤等の化学的研磨成分を含有の第2の研磨用流体を貯留する第2貯留手段と、
前記第1の研磨用流体及び前記第2の研磨用流体を混合するための円筒状の混合手段と、
前記各貯留手段を起点及び終点とする研磨用流体の循環用の配管ループ、および前記混合手段を起点及び終点とする、研磨用流体の循環用の配管ループと、
前記配管ループのいずれかに備えられる、前記混合手段および/または研磨装置に至る研磨用流体の供給ラインに分岐する少なくとも一つの分岐部と、少なくとも一つの恒温化手段とを備え、
前記混合手段の底部を、逆円錐状あるいは逆円錐台状あるいは凹曲面状として、前記混合手段の配管ループの流入管路を、前記混合手段の側壁下部に、研磨用流体が相対する側壁方向に斜め上方で、予め設定された液面位を指向して噴出するように設け、前記混合手段の配管ループの流出管路を、前記混合手段の底部の最下部に設けた構成であり、
前記恒温化手段は、前記第1貯留手段の配管ループの一部が導入可能に備えられ、恒温化媒体が供給され循環される恒温化槽と、この恒温化槽に供給される恒温化媒体に所定温度を付与する恒温化媒体の循環供給手段、とを備え、前記配管ループの前記恒温化槽への導入部位はコイル状であり、以下の工程;前記第1の研磨用流体の温度を検出する工程と、検出された前記第1の研磨用流体の温度が予め設定された基準温度を含む許容温度域内にあるか否かを判定する工程と、検出された温度が許容温度域内にある場合には、基準温度を目標到達温度とすることを決定し、検出された温度が許容温度域の一方の閾値を超えている場合には、当該検出温度が当該一方の閾値の超えた程度に応じて許容温度域の反対側の閾値を超えた所定温度を目標到達温度とすることを決定する工程と、前記第1の研磨用流体に対して、決定された目標到達温度となるような温度制御を実施する工程、とを有する温度制御工程を繰り返し実施することを特徴とする研磨用流体の供給装置。
(2)前記混合手段及び前記混合手段の配管ループを支持する重量検出手段と、前記混合手段の配管ループに備えられる圧送手段と、前記重量検出手段からの情報に基づいて前記研磨用流体の供給量を算出する演算手段と、前記演算手段からの情報に基づいて前記第2の研磨用流体を前記混合手段に供給する動作手段とを備え、
前記第2の研磨用流体を、前記混合手段の配管ループに設けた供給口から供給する構成としたことを特徴とする(1)に記載の研磨用流体の供給装置。
(3)CMPスラリー用材料を含む研磨用流体を研磨装置に供給するための装置であって、
前記研磨用流体の供給装置は、砥粒等の機械的研磨成分を含有の第1の研磨用流体を貯留する第1貯留手段と、
酸化剤等の化学的研磨成分を含有の第2の研磨用流体を貯留する第2貯留手段と、
前記第1の研磨用流体及び前記第2の研磨用流体を混合するための円筒状の混合手段と、
前記各貯留手段を起点及び終点とする研磨用流体の循環用の配管ループ、および前記混合手段を起点及び終点とする、研磨用流体の循環用の配管ループと、
前記配管ループのいずれかに備えられる、前記混合手段および/または研磨装置に至る研磨用流体の供給ラインに分岐する少なくとも一つの分岐部と、少なくとも一つの恒温化手段とを備え、
前記混合手段の底部を、逆円錐状あるいは逆円錐台状あるいは凹曲面状として、前記混合手段の配管ループの流入管路を、前記混合手段の側壁下部に、研磨用流体が相対する側 壁方向に斜め上方で、予め設定された液面位を指向して噴出するように設け、前記混合手段の配管ループの流出管路を、前記混合手段の底部の最下部に設けた構成であるとともに、
前記混合手段及び前記混合手段の配管ループを支持する重量検出手段と、前記混合手段の配管ループに備えられる圧送手段と、前記重量検出手段からの情報に基づいて前記研磨用流体の供給量を算出する演算手段と、前記演算手段からの情報に基づいて前記第2の研磨用流体を前記混合手段に供給する動作手段とを備え、
前記第2の研磨用流体を、前記混合手段の配管ループに設けた供給口から供給する構成としたことを特徴とする研磨用流体の供給装置。
【0008】
本発明によれば、品質の安定した研磨用流体を供給することができて、安定した研磨レートを確保することができる。また、精度及び正確性の高い平坦化工程を容易に実施することができる。また、マイクロスクラッチなどの不具合を防止できる。
【0009】
【発明を実施するための形態】
以下、本発明の実施の形態について詳細に説明する。
本発明は、研磨用流体を、温度、スラリー濃度、粒径分布、酸化剤濃度を安定した状態で研磨装置に供給するものである。なお、本明細書において、研磨用流体とは、半導体装置や基板等の平坦化等を目的として使用される研磨用流体を意味するものである。研磨用流体というときには、最終的に研磨工程に供給されて被研磨物を研磨するのに用いられる最終研磨用組成物の他、最終研磨用組成物の少なくとも1成分を含有する流体を含む概念である。研磨用流体は、水等の溶液中に、研磨用成分を懸濁あるいは溶解させて得られる。砥粒を含む場合には、懸濁液ないしはスラリーとなる。
【0010】
CMPスラリー用材料あるいは研磨工程に供給される最終組成物である研磨用組成物等の研磨用流体の滞留を防止し、温度ストレスを回避して温度制御し、ガス等の混入を防止し、高精度で研磨用流体中の所定成分の濃度を制御することにより、品質の安定した研磨用流体を供給することができる。特に、砥粒の凝集が抑制され、酸化剤等の濃度が精度よく制御されることから、所期の研磨レートを安定して確保することができる。そして、精度及び正確性の高い研磨工程及び平坦化工程を実施することができる。また、マイクロスクラッチ等の発生を防止できる。
【0011】
(研磨用流体)
研磨用流体には、従来公知の各種半導体研磨用のCMP等の研磨用組成物の成分を含んでいる。ここで、研磨用組成物の成分とは、媒体の他、砥粒、酸化剤、酸化剤の水溶化剤、砥粒の分散剤、各種研磨助剤(界面活性剤、研磨油、防錆剤、分散助剤、消泡剤等)がある。研磨用流体は、被研磨物や研磨方法等に応じて適宜その成分あるいは濃度が調整される。媒体は、水を主成分とする水性媒体であることが多い。他に、アルコール等の水溶性の有機溶媒を含有することもある。
【0012】
砥粒としては、例えば、コロイダルシリカ、ヒュームドシリカ等の二酸化ケイ素、ベーマイト、アルミナ、アルミナゾル、ヒュームドアルミナ等のアルミニウム酸化物、酸化セリウム、炭化ケイ素及び酸化クロミウム等を例示できる。これらの砥粒の粒子径は特に問わないが、約0.05μm〜約0.2μmであることが好ましい。
【0013】
酸化剤としては、過酸化水素水、過酢酸、硝酸鉄、ヨウ素酸カリウム、過ヨウ素酸化リウム、フェリシアン化カリウム、アンモニウムセリウムナイトレート等を例示できる。一般的には、過酸化水素である。具体的には、約30%濃度あるいはこれを下回る濃度の過酸化水素水を使用することができる。酸化物は、また、硝酸第二鉄や過ヨウ素酸化カリウムも好ましく使用できる。これらの酸化剤は1種類あるいは2種類以上を組み合わせて使用することができる。
また、ジエチレントリアミンペンタアセテート及びエチレンジアミンテトラアセテートなどをキレート形成剤として使用できる。
【0014】
酸化剤を水溶化する水溶化剤としては、酸を使用することができる。酸は、Cu2+等の金属イオンと錯イオンを形成する能力を利用している。酸としては、無機酸や有機酸、あるいはこれらの塩を利用できる。具体的には、安息香酸、シュウ酸、マロン酸、コハク酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、及びその塩、あるいはこれらの混合物である。
【0015】
防錆剤は、例えば被研磨物が銅あるいは銅合金である場合には、BTAやBTA誘導体、あるいは、ポリアクリル酸やその塩等のカルボン酸を備えるポリマー等を使用することができる。
【0016】
(研磨用流体の供給)
本発明の研磨用流体の供給装置は、研磨装置に至る研磨用流体の供給ラインにおいて、研磨用流体を循環させる配管ループを備えることができる。
研磨用流体の供給装置は、通常、研磨用流体の貯留手段と、貯留手段から研磨装置側を指向する研磨用流体の送液用配管群からなる送液ラインとを有する研磨用流体の供給ラインを少なくとも1本備えている。なお、本明細書において供給ラインとは、供給装置内から研磨装置に供給される経路の全体を意味している。供給ラインというときは、供給工程を実施する全ての手段とこれらの手段を連絡する送液ラインを包含する。また、研磨装置に到達する経路数が供給ラインの数に対応する。例えば、供給装置から研磨装置に対して最終的に2本の経路で研磨用流体が送液されるときは、供給ラインは2本となる。なお、送液ラインとは、供給ラインを構成する送液用経路である。
供給ラインには、他に、通常、ポンプ等の供給手段を備えるとともに、必要に応じて混合手段を備えている。
以下、本発明の研磨用流体の一供給形態を、図1に例示する形態に基づいて説明する。
【0017】
図1には、研磨用流体の供給ラインの一例が記載されているとともに、本発明において配管ループを備えうる部位を明示している。
本発明の供給装置は、少なくとも、研磨用流体の貯留手段4と、送液ライン8とを有する供給ライン2を備えている。供給ライン2には、必要に応じて、混合手段12や他の研磨用流体を貯留する貯留手段とを備えている。酸化剤を含有する研磨用組成物を供給する場合等には、混合手段12及び他の貯留手段を備えている。
【0018】
(貯留手段)
貯留手段4は、研磨用流体を貯めておくことのできる容器であり、少なくとも、研磨装置側へ研磨用流体を供給するための供給口および戻り口を備えている。図1に示すのは、貯留手段4に貯留される研磨用流体が、最終的に混合手段12において他の研磨用流体と混合されて研磨用組成物が調製されるようになっている。
【0019】
貯留手段4は、1つの供給ライン2に対して2以上備えられていてもよい。図1には図示していないが、同一の研磨用流体を貯留する2以上の貯留手段を備えてこれらの貯留手段からの送液を切り替え可能とすることにより、貯留手段の容量にかかわらず連続運転が可能となる。
また、同様に図示はしないが、供給ライン2内に2以上の種類の異なる研磨用流体の貯留手段を備えることもできる。すなわち、少なくとも第1の研磨用流体の貯留手段と、第2の研磨用流体の貯留手段とを備えることができる。2種類以上の貯留手段を備えることにより、これらの貯留手段に貯留される研磨用流体を混合して新たな別の研磨用流体を調製することができる。この場合には、供給ライン2には、混合部12を備えることになる。
研磨用組成物が酸化剤を含有する場合には、酸化剤を含有する研磨用流体と、それ以外の成分を含有する研磨用流体とをそれぞれ異なる研磨用流体の貯留手段に貯留するようにするのがよい。なお、酸化剤の安定性を妨げない限り、酸化剤と他の成分を同時に貯留することもできる。
【0020】
貯留手段から混合手段あるいは研磨装置への送液ラインにおける研磨用液体の送液や停止は、送液用配管に設けられたバルブ等によって切り替え可能に形成されている。
【0021】
(混合手段)
混合手段12は、2種類以上の研磨用流体を混合するものである。2種類以上の研磨用流体のそれぞれに含まれる研磨用組成物の成分や濃度等は各種設定することができる。なお、図1においては、他の種類の研磨用流体の貯留手段は省略されている。
混合手段12は、バッチ式あるいは連続式のいずれとすることもできる。供給手段において発生し、研磨用組成物において影響の大きいと予測される脈流の影響を回避するには、バッチ式とすることが好ましい。バッチ式混合手段には、混合槽を有している。混合手段12には、必要に応じて、流量あるいは重量制御さらには、濃度制御等の混合量の制御手段を設けることができる。
【0022】
(供給手段)
供給ライン2のいずれかには、研磨用流体を混合手段等の各手段を介して研磨装置へ供給するための供給手段を有している。供給手段の設置部位や個数は、当業者において必要に応じて容易に適宜設定することができる。供給手段は、特に限定しないが、ポンプ等の各種圧送手段を利用できる。圧送手段によって発生する脈流や、衝突、強い遠心力などによるスラリーへのストレスは、砥粒やその他の成分の供給濃度、粒度径に変化を与え、研磨レートを変動させる大きな要因となりうる。したがって、供給手段としては、好ましくは、容積型のベローズポンプ等の供給手段を使用することが好ましい。
なお、混合手段から研磨装置への研磨用流体の供給形態あるいは、研磨装置内における研磨用流体の最終的な供給形態は、ポンプ等による圧送ではなく、ヘッド差などを利用した重力落下等による供給形態が好ましい。圧送によれば、研磨用流体には微視的レベルで繰り返しストレスが加わっているために砥粒の凝集が発生していたが、重力落下等による供給形態によれば、研磨用流体にストレスがかからないため凝集も発生せずしかも安定した流量を確保することができる。
【0023】
(配管ループ)
配管ループは、研磨用流体を循環させることにより、研磨用流体の滞留や沈降による濃度、粒度変化を防止して、微生物の繁殖を防止することができ、また、砥粒の沈降等を防止できる。結果として、砥粒の粒度分布や濃度を安定して維持することができるようになっている。したがって、特に、供給ライン2上の砥粒を含む研磨用流体の存在個所において設置することが好ましい。また、配管ループ内が研磨用流体を循環させるためのポンプ等の循環手段は、配管ループに一体にあるいは別個に設けることができる。
配管ループの第1の形態は、研磨用流体の貯留手段4を起点及び終点とする循環経路として設けられる配管ループ20である。
この配管ループ20は、研磨用流体の送液ライン8とは独立して形成されており、送液ライン8を構成する送液用配管への分岐部を有していない(以下、この形態を独立循環系という。)。したがって、貯留手段4からの送液時においても、貯留手段4内の研磨用流体を循環させることができ、スラリーの滞留による凝集を防止できる。
この配管ループでは、研磨用流体を、間欠的あるいは常時に循環させることができる。好ましくは予め設定した所定時間間隔で間欠循環運転を行う。
【0024】
配管ループの第2の形態は、貯留手段4を起点及び終点とする循環経路として設けられる配管ループ22である。このループ22も、貯留手段4内の研磨用流体の滞留を防止することができるが、特に、送液ライン8を構成する送液用配管への分岐部を有している(以下、この形態を分岐循環系という。)。したがって、ループ22は、研磨用流体の送液ライン8の一部でもあるため、貯留手段4内での滞留防止とともに、送液ライン8における滞留も防止できる点において好ましい。
なお、第1の形態及び第2の形態の双方の態様を有する配管ループもある。すなわち、ループの起点及び終点はそれぞれ一箇所であるが、起点からのループの往路が途中で独立循環系と分岐循環系とに分岐しており、終点へのループの復路において、前記独立循環系と分岐循環系とが合流するようになっている複合循環系の形態がある。
【0025】
さらに、第3の形態は、混合手段12を終点及び起点とする循環経路として設けられ、送液ライン8と独立している配管ループ24である。このループ24によれば、混合手段12内の研磨用流体の滞留を防止して微生物の繁殖を防止できる。
第4の形態は、混合手段12を終点及び起点とする循環経路であって、送液ライン8を構成する送液用配管への分岐部を有する形態の配管ループ26である。この形態であると、特に、ループ26中を循環中の研磨用流体を供給できる点において好ましい。
なお、上述のように、第3の形態と第4の形態を併せもつ複合循環系の配管ループ形態もある。
【0026】
各種配管ループは、上記形態のうち1種類あるいは2種類以上を組み合わせて使用することができる。組み合わせは必要に応じて設定することができる。
配管ループは、特に、送液及び送液停止(送液待機中)を切替可能に形成された貯留手段及び混合手段に設けられることが好ましい。
すなわち、好ましくは、2以上の貯留手段がそれぞれ送液切替可能に形成されており、それぞれの貯留手段に配管ループを設けることが好ましい。また、2以上の混合手段がそれぞれ送液を切替可能に形成されており、それぞれの混合手段に配管ループを設けることが好ましい。このようにすると、最も、研磨用流体が滞留しやすい送液待機中においても、研磨用流体の品質を保持できる。また、貯留手段あるいは混合手段の切替後、直ちに安定した品質の研磨用流体を供給することができる。
【0027】
配管ループを用いての研磨用流体の循環工程は、研磨用流体の送液の待機中にある貯留手段および/または混合手段において実施される。循環工程では、研磨用流体を、間欠的あるいは常時に循環させることができる。好ましくは、予め設定した所定時間間隔で間欠運転する。また、研磨装置への研磨用流体の供給時期の所定時間前のみにおいてかかる間欠運転を実施することもできる。
【0028】
(恒温化手段)
配管ループには、ループを循環する研磨用流体の恒温化手段を備えていることが好ましい。ループに恒温化手段を備えることにより、過度な温度ストレスを研磨用流体に付与することが防止され、温度ストレスによる砥粒の凝集などの品質低下が回避されるため、品質の安定した研磨用流体を供給することができる。また、恒温化手段は、研磨用流体を予め設定した基準温度に恒温化する手段であって、基準温度付近の温度に維持されている恒温部位とすることもできるし、また、研磨用流体の温度を検出して、検出温度に応じて研磨用流体を加熱あるいは冷却する手段とすることもできる。
【0029】
恒温化手段30を貯留手段4に付随して設置した例を図2に示す。
恒温化手段30は、貯留手段及び混合手段の配管ループに設けることができるが、特に貯留手段に設けることにより、送液待機時間を利用して研磨用流体に研磨工程に予め適した温度にする恒温化工程を実施できる。また、貯留手段4に導入されるCMPスラリーの充てんされたボトルは、温度管理されていないため、貯留手段4の送液待機時間に、このボトル内の研磨用流体の恒温化工程を実施するのは、非常に効果的である。恒温化手段30は、図2(a)に示すように、貯留手段4の独立循環系の配管ループ20において設けることが好ましい。また、図2(b)に示すように、貯留手段4が複合循環系の配管ループ32を有する場合には、恒温化手段30を、独立循環系の配管ループ34に設けることが好ましい。独立循環系のループ34に設けることにより、恒温化工程を送液ライン8とは独立して実施して、温度の安定化した研磨用流体を送液ライン側(分岐循環系ループ36)へ供給できる。
【0030】
恒温化手段の一形態を、図3に示す。
この恒温化手段30は、恒温化槽310と、この恒温化槽310に所定温度を付与した恒温化媒体312を供給し循環させる恒温化媒体の循環供給手段(典型的には,加熱機能を有するチラーなど)320とを備えている。この恒温化槽310には、貯留手段4からの配管ループ20が導入されており、恒温化媒体312に浸漬されるようになっている。恒温化槽310に恒温化媒体が供給され、循環されることにより、配管ループ20の恒温化槽310への導入部位内部での温度勾配が形成されにくくなり、この結果、砥粒の堆積や滞留を抑制することができる。また、配管ループ20は、恒温化槽310内に導入されている部分(導入部位)は、コイル状に形成されていることが好ましい。コイル状であると、導入部位に必要な配管長さを容易に確保できるとともに、スラリーへのストレスも軽減できる。コイル形態は、特に限定せず、鉛直状に巻かれたコイル状(縦巻き状)でも水平状に巻かれたコイル状(横巻き状)であってもよいが、配管ループ内での砥粒の堆積などを考慮すると、横巻き状であることが好ましい。また、円環状に巻かれていることが好ましい。なお、配管ループ20の導入部位が横巻き状コイルの場合、図3に示すように、研磨用流体が、コイル状部の上部から流入し、コイル状部の下部から流出して貯留手段4へ返流するようにコイル状部を構成することもできるし、反対に、コイル状部の下部から流入し、その上部から流出するように構成することもできる。
なお、効率的な熱交換を考慮すれば、循環させる恒温化媒体312の恒温化槽310への供給位置の近傍に、スラリーの流入位置とすることが好ましい。
【0031】
恒温化手段は、好ましくは、研磨用流体の温度検出手段と、検出された研磨用流体の温度が予め設定された基準温度を含む許容温度域内にあるか否かを判定する手段と、検出された温度が許容温度域内にある場合には、基準温度を目標到達温度とすることを第1の演算手段と、検出された温度が許容温度域の一方の閾値を超えている場合には、当該検出温度が当該一方の閾値の超えた程度に応じて許容温度域の反対側の閾値を超えた所定温度を目標到達温度とする第2の演算手段と、前記目標到達温度となるように研磨用流体を加熱あるいは冷却する手段とを備えている。加熱あるいは冷却手段は、前記検知温度と目標到達温度の相関を検出して、チラーなどの恒温化媒体の循環供給手段内の恒温化媒体の設定温度をコントロールすることができることが好ましい。
【0032】
この恒温化手段により研磨用流体の恒温化工程について図4を例示して説明する。なお、図4においてThは、温度検出手段によって検出された研磨用流体の温度である。
まず、研磨用流体の温度を、温度検出手段によって検出する。次いで、判定手段によって、Thが許容温度域内か否かを判定する。図4においては、検出温度は、許容温度域の上限の閾値を超えた値となっている。Thが許容温度域内であれば、第1の演算手段は予め設定されている基準温度を目標到達温度とする演算を実施する。他方、Thが閾値を超えたこと判定されると、第2の演算手段によって、検出されたThの反対側の閾値(ここでは、Thは上限閾値を越えているので、下限の閾値となる。)よりもさらに低い温度が目標到達温度として設定する演算工程が実施される。この目標到達温度が下限閾値をどれだけ越える温度とするかは、検出温度が閾値を越えた温度に基づいて演算が行われる。そして、第1あるいは第2の演算手段によって設定された目標到達温度となるような温度制御が実行される。一定時間をおいて、これらの工程を繰り返し、検出温度が許容温度域内と判定されると、目標到達温度は、基準温度とされ、それに基づいて温度制御が実行される。この結果、図4に示すようにして、研磨用流体の温度が経時変化する。
【0033】
このように、目標到達温度を常時基準温度として温度制御するのでなく、検出した温度が許容温度域内か外かを判断して、判断結果に応じて目標到達温度を設定することにより、基準温度に到達するまでの所要時間を短縮することができる。すなわち、検出温度が許容温度粋を超えている場合には、その超えた温度差に応じて反対側の閾値を越えた温度を目標温度に設定してパワーの大きいあるいは急速な加熱あるいは加温をすることができる。また、本手段による温度検出〜温度制御工程を繰り返し実施することにより、検出温度が許容温度域内であると判定されると、本来の基準温度に設定されて、過度な加熱あるいは冷却が回避され、適切に温度制御が行われる。
【0034】
(貯留手段の研磨用流体の貯留量の検出手段)
本発明の供給装置は、貯留手段に直接にあるいは関連して貯留手段内に貯留される研磨用流体量を検出する手段を設けることができる。この流体貯留量の検出手段は、配管ループに替えてあるいは配管ループとともに設けることができる。
研磨用流体の貯留量を検出する手段は、研磨用流体の貯留槽(ボトル)の液面位を測定することによるものであってもよいが、好ましくは、貯留槽の重量を検出できる手段とする。重量検出手段によれば、貯留ボトルの設置位置などによらずに貯留量を検出でき、また、貯留ボトルの交換作業も容易だからである。重量検出手段としては、貯留手段を支持するロードセル他の各種の計測手段を採用することができる。
流体貯留量を検出することにより、交換された研磨用流体の貯留ボトル内の当初の研磨用流体量を把握することができ、適切な貯留量であるか否かを判断できる。さらに、貯留手段内の研磨用流体の残量等を確実に把握することができ、研磨用流体の送液の停止すべき時期及び研磨用流体の供給源の切替時期を、これらの検出手段からの出力を演算手段で判断できるため、バルブの開閉によるボトル切替動作を自動的に実行させることができる。これにより、誤って送液用配管にガスを吸引することが回避できるとともに、貯留手段底部にある、砥粒等が沈降した研磨用流体の吸引も回避することができる。結果として、常時安定した品質の研磨用流体を供給できることになる。したがって、貯留量の検出手段は、2以上の貯留手段を備える場合に、それぞれの貯留手段に設けることが好ましい。
【0035】
なお、流体量検出手段としては、液面位検出手段を採用することもできる。好ましくは重量検出手段と液面位検出手段との双方を備えるようにする。液面位検出手段と重量検出手段を備える場合には、当初の研磨用流体の流体量の出力値(重量)から、適切な所定スラリー量か否かを判断し、この判断に基づいて、配管ループによる循環工程や恒温化工程を開始して使用時まで待機できる。さらに、使用開始後にあっては、重量検出手段で残量変化を観察するとともに、液面位検出手段によっても液面位を観察することで、重量検出手段による残量誤認によって送液用配管への空気の導入を回避して、ボトルの切替操作を実行することができる。また、液面位検出手段を備えることで、貯留ボトル底部の不具合の多い研磨用流体の吸引を回避することが可能となる。
液面位検出手段としては、差圧式、超音波式、および静電容量式のいずれかの計測手段の他、各種の計測手段を採用することができる。
【0036】
図5には、複数(2個)の貯留手段4のそれぞれに複合循環系の配管ループ32を備え、各貯留手段4が、ロードセル40上に設置された形態が示されている。また、この形態では、液面位検出手段46を貯留手段4(貯留ボトル)に備えている。このように、2以上の貯留手段4にそれぞれ、流体貯留量の検出手段(ここではロードセル40)を備えていることにより、貯留手段4の切り替える時期を予め把握でき、時間的及び作業上のロスなく貯留手段4の切替を実行でき、研磨用流体の安定供給を確保できる。また、同時に、液面位検出手段46も備えているため、同時に液面位も検出して、確実に貯留手段4の切替時期を判断することができる。
【0037】
なお、このような流体量の検出手段に付随して、検出手段からの出力値が予め設定した貯留量(下限量あるいは上限量のいずれかあるいは双方等)を維持しているか否かを判定する演算手段42、この演算手段42による判定結果に基づいて貯留手段4からの送液開始、停止、送液ラインの切り替え等の動作を実行させる動作手段44を備えるようにすることができる。動作手段44は、ポンプやバルプの切替等のための信号を出力する。このような一連の手段を設けることにより、送液ラインへのガスの吸引や砥粒濃厚スラリー等の吸引をより確実に未然防止できる。
【0038】
(混合手段への研磨用流体の供給)
貯留手段4から混合手段12への研磨用流体の供給形態について図6に例示する。
貯留手段4から混合手段12への研磨用流体の供給は、各研磨用流体の供給用配管を介して行われるが、空気との接触を回避して、蒸発による濃度変化や乾燥によって接触する内壁表面に固着させないようにすること、及び確実に混合されるように行うことが好ましい。この観点から、図6に示すように、特に、砥粒を含有する研磨用流体aの供給口14を、混合手段12内の液面位より下方となる位置に設けることが好ましい。これにより、砥粒を含有する研磨用流体aの供給口14が乾燥により固着されず、また、この研磨用流体aも乾燥することもない。
また、相対的に混合量が少ない酸化剤を含有する研磨用流体bは、混合手段12に付随する配管ループ60上にその供給口64を設けることが好ましい。これにより、少量の添加量でも効率よく混合される。
さらに、純水などの希釈用の研磨用流体cの供給口16を、混合手段12内部のキャビティの上部に設け、かつ、噴霧状に供給することが好ましい。これにより、この研磨用流体cの供給時の混合手段12への荷重負荷の衝撃を小さくすることができ、供給時の荷重のブレを小さくすることができる。また、内壁から流下させるように供給すれば、内壁に付着するスラリーを洗い流すことができ、粒子の固着を防ぐことができ、かつ槽内の湿潤を保つことができる。
以上のような供給手段を採用することで、いずれの場合でも、供給量のチェックと全研磨用流体の重量を精度良くかつ正確に行うことができる。
【0039】
(混合手段における各種研磨用流体の供給量の検知手段及び濃度測定手段)
混合手段12には、二以上の研磨用流体が供給され混合されるようになっているが、それぞれの研磨用流体の供給量を検出できる手段を備えるようにすることができる。研磨用流体の供給量は、好ましくは、ロードセルなどの重量検出手段によって重量制御される。なお、研磨用流体の供給量を、それぞれの供給用配管による供給容量で制御することもできるが、精度の高い濃度管理のためには、重量制御とすることが好ましい。
図6に、混合手段12に研磨用流体の供給量の検出手段を備えた一形態を例示する。この形態では、混合手段12を、供給量検出手段50としてのロードセル上に設置している。図6にも示すように、この検出手段50は、演算手段52と動作手段54とをさらに有している。演算手段52は、研磨用流体a〜cの3種類のそれぞれの供給時期とその間の重量増加量(供給量)とから所定量が供給されたか否かを判定し、動作手段54は、この演算結果に基づいて各貯留手段4a〜4cからの送液用配管の送液バルブの開閉動作を実行するようになっている。これらにより、混合手段12における調合作業を簡易に実行できる。特に、混合手段12中の研磨用流体の所定成分の濃度測定手段56を、混合手段12中の研磨用流体に関連して備えることにより、演算手段52においてこの所定成分濃度の出力値が予め設定された基準濃度に一致するか否かを判定し、濃度調整に必要な各研磨用流体a〜cの供給量も算出するようにすることで、濃度制御も容易に実現される。
【0040】
特に、図7に示すように、混合手段12を起点および終点とする配管ループ60も、混合手段12とともに、重量制御されていることが好ましい。すなわち、混合手段12とともに配管ループ60もロードセル50上によって支持されているようにすることが好ましい。さらに、混合手段12に関連する各種研磨用流体の供給経路も混合手段12とともに重量制御されていることが好ましい。
配管ループ60には、ポンプ等の圧送手段62、所定成分の濃度測定手段56、これらに付随するバルブ類の他、研磨用流体の供給部64からの供給用配管、のうちの1種あるいは2種以上を一体に設けることができる。よって、配管ループ60には、これらの付随される部材に起因する荷重変動が発生しうる。このような各種部材を備える配管ループ60を一体で重量制御することで、配管ループ60に設けられる部材に起因して発生しうる不可避あるいは不測による各種の荷重変動による重量検出あるいは制御への影響を回避することができる。
また、配管ループ60とは独立して設けられる研磨用流体の供給経路の一部あるいはこれに付随するバルブも混合手段12とともに重量制御することで、同様に、これらに起因する荷重変動による重量検出への影響を排除することができる。
以上のことから、重量制御範囲を混合手段12のみならず、配管ループ60や各種供給系統まで含むようにすることにより、各種研磨用流体a〜cの混合工程における各種研磨用流体a〜cの供給量以外の他の荷重変化を抑制あるいは回避して、精度よくこれらの供給量を検出し、同時に測定精度の高い濃度管理が可能となる。
【0041】
なお、酸化剤濃度が研磨用流体の品質の重要な要素である点を考慮すると、配管ループ60上に設けられる研磨用流体の供給部64を、過酸化水素等の酸化剤を含む研磨用流体aの供給用とし、濃度測定手段56の測定対象を酸化剤とすることが好ましい。
酸化剤の濃度測定手段としては、超音波式の濃度測定手段を用いることが好ましい。超音波式の濃度測定手段によれば、インラインで研磨用流体の酸化剤濃度を精度よくかつ短時間で測定することができる。このため、短時間でかつ正確性及び精度よく酸化剤を含有する研磨用流体を調製することができる。加えて、濃度測定用の研磨用流体を必要としないため、研磨用流体に無駄がない。
なお、超音波濃度測定手段は、できるだけ圧力変動の小さい箇所に設けることが好ましい。また、超音波濃度測定手段は、測定値の安定化ひいては測定精度の高い濃度管理の観点から、上方流れにて測定できるように設けられることが好ましい。例えば、濃度測定手段を、上方を指向し、かつ混合手段12内の研磨用流体の液面よりも下方となる配管ループ60の箇所に設置することができる。
【0042】
精度の高い濃度管理を達成するために、混合手段12には、さらに、研磨用流体の容量変化を検出できる容量検出手段58を備えることもできる。容量検出手段58を備えることにより、重量検出手段50によって検出される研磨用流体の重量変化から、研磨用流体の密度(単位体積あたりの重量)を算出することができる。これにより、一層安定した品質の研磨用流体を供給することができるようになる。
かかる容量検出手段58としては、混合手段12内の液面位の検出手段など、公知の各種手段を採用できる。なお、液面位を検出することに加え、循環経路などに循環する液量も加算することで、容易に研磨用流体の全容量を、別に設ける演算手段などにより算出することができる。
スラリー濃度を知るための市販の比重計を循環経路に設けると、二重確認の点で有効となる。
【0043】
(混合手段内における研磨用流体の均一化手段)
混合手段12内には、通常、研磨用流体の内部滞留を防止して均一化するための手段が設けられる。本発明においては、スラリーに衝突などのストレスを与えやすく計量面で支障となりうる攪拌機などをもちいることなく、上記した配管ループ60をその手段として用いることができる。特に、図6及び図7に示すように、配管ループ60の流出管路66を混合手段12の底部に設け、流入管路68を混合手段12の側壁の底部側近傍に設け、さらに、循環される研磨用流体が相対する側壁方向に斜め上方を指向して流入するように形成する。
このような形態の均一化手段を備えていることにより、配管ループ60を循環して流入される研磨用流体によって、混合手段12内には、図5及び6に図示するような内部循環状態を形成することができる。すなわち、斜め上方を指向して流入した研磨用流体が相対する側壁に衝突することにより、衝突箇所から側壁に沿った研磨用流体の流れが新たに形成されることになる。このような新たな研磨用流体の流れにより、混合手段12内の全体が均一に攪拌されることになる。したがって、研磨用流体に対してストレスを与えることなく、かつ短時間で混合を達成することができる。したがって、研磨装置からの頻繁な送液要求に対しても、常時均一で所定成分の濃度が良好に制御された研磨用流体を供給することができるようになる。なお、従来、攪拌翼の回転等を用いると、短時間で混合するために攪拌翼の周速を速くすると研磨用流体に対するストレスが大きくなり周速を落とすと混合時間が長くなりすぎるという問題があったが、本均一化手段によれば、上述したように、当該問題は解消されている。
また、この好ましい形態によれば、単一の流入管路66により、好ましい内部循環状態を形成できるため、外部からのストレスを極力押さえつつ、混合を短時間に達成することができる。すなわち、発生する内部循環流が、混合手段12の底部側から斜め上方を指向する研磨用流体の流れのみを起源としているために、混合手段12内で、研磨用流体同士が衝突するような箇所が形成されにくくなっている。このため、砥粒の衝突、沈降、凝集を効果的に防止することができる。
特に、研磨用流体の流入方向が、混合手段12の予め設定された液面位近傍を指向する場合には、新たに形成される流れの方向性が側壁と液面とによって制限されることによって、混合槽12内を速やかに均一化できる好ましい循環状態を形成することができる(図8(a)及び(b)参照)。
【0044】
混合手段12は、円筒状であり、底部が逆円錐状あるいは逆円錐台状あるいは凹曲面状となっていることがより好ましい。円筒状であると、側壁に沿って好ましい研磨用流体の流れが形成され、また、底部が逆円錐状あるいは逆円錐台状あるいは凹曲面状であると、底部を指向する新たな流れがスムーズに底部に行き渡り、その後上方を指向する。
【0045】
このような均一化工程は、混合中あるいは送液待機中の他、送液中においても実施することができるが、好ましくは、混合中あるいは送液待機中において実施する。また、流入管路68からの流入流速及び循環流量は,研磨用流体にストレスがかからない程度とする。この流入流速とは、流入口の有効面積における平均流速とする。本発明者によれば、流入流速と循環液量を一定範囲に設定することで、スラリーへのストレスを抑制しつつ速やかな均一化を図ることができることを見出している。例えば、流入流速は、約1.0〜約1.5m/sとすることが好ましい。1.0m/s未満であると、混合時間が長くなりすぎる傾向にあり、1.5m/sを超えると、スラリーにストレスがかかりすぎるからである。より好ましくは、約1.1m/s〜約1.2m/sである。また、循環流量は、毎分あたり、混合槽の混合容積に対して約15〜約25%の容量とすることが好ましい。15%未満であると、混合時間が長くなりすぎる傾向にあり、25%を超えると、スラリーにストレスがかかりすぎるからである。より好ましくは、混合容積の約16〜約20%/分とする。例えば、混合容積が30lの場合には、約5〜約6L/分とすることができる。
このような混合方法は、混合手段の全容量の理論抜き換え時間より、いかに速く混合を完了させるかという点で有利である。すなわち、この混合方法では、理論抜き換え時間の60%で混合することができる。
なお、混合手段12内における研磨用流体の液面位が徐々に変動する場合には、変動する液面位近傍を指向するように、研磨用流体の指向性を調整することができる。
【0046】
図9に、図6に示すような、混合手段12と配管ループ60等を有する系において、濃度測定手段56として超音波濃度測定手段を用いて、砥粒含有スラリーと水との混合物に、酸化剤として一定量の過酸化水素を供給部64から供給し、供給後の過酸化水素濃度の経時変化を示す。なお、混合手段12内における液量は、30Lであり、流入流速は、1.17m/s、循環流量は5L/minであった。図9に示すように、おおよそ3分で設定濃度である2.5%となり、その後その濃度で安定であった。すなわち、本均一化手段によれば、最適な流入方向とある範囲内の流入流速、総容量に対する循環流量を設定することで、適度な抜き出し(内容液の置換)量を実現し、かつ適度な乱流を発生させることができる。このため、一箇所の流入口からでも、スラリーにストレスを与えることなく、短時間で効率的な混合ができることがわかった。したがって、本均一化手段によれば、短時間で混合を完了することができ、その後の濃度も安定であることがわかる。
【0047】
さらに、図10には、典型的な研磨用流体の組成において酸化剤(過酸化水素)濃度を異ならせて調製した種々の試験用研磨用流体について、従来の測定法である滴定法と超音波濃度測定手段との双方で酸化剤濃度を測定し、得られた実測値の偏差を求めた結果を示す。
図10に示すように、超音波濃度測定手段は、滴定法の実測値とほぼ同等の正確性を有していることがわかった。
【0048】
なお、貯留手段、混合手段及び送液用配管はいずれも、耐酸性あるいは耐アルカリ性等の耐薬品性や耐磨耗性を有する材料で形成されていることが好ましい。また、透明性あるいは半透明性を有して、内部を可視化できる材料であることも好ましい。スラリーの滞留や砥粒の沈降状態を外部から把握することができるからである。耐薬品性、耐磨耗性、及び透明性を有する材料としては、PFA樹脂(四フッ化エチレン樹脂)若しくは塩化ビニル樹脂等の合成樹脂材料を挙げることができる。
【0049】
上記貯留手段、あるいは貯留手段と混合手段に加えて、配管ループ、研磨用流体量の検知手段、恒温化手段、混合手段への研磨用流体の供給量検知手段、及び均一化手段のうちのいずれか1種あるいは2種以上の手段を組み合わせることにより、本願発明の供給装置が提供される。また、これらの手段を組み合わせるによって、本発明の研磨用流体の供給工程を実施することができ、各手段による工程を組み合わせることにより多様な供給工程の設計が可能である。各手段及び各手段の2以上の組み合わせによって実施される各工程における作用効果は、対応する手段あるいは手段の組み合わせによる作用効果と同一である。
【0050】
以上説明したように、本発明の研磨用流体の供給装置及び方法によれば、研磨用流体の滞留防止、貯留手段内の研磨用流体量の検知、恒温化、混合手段内の研磨用流体の供給量検知あるいは所定成分の濃度測定、及び均一化を目的とする手段あるいは工程のうちのいずれか1種あるいは2種以上の手段あるいは工程を備えることにより、安定した品質を維持した研磨用流体を研磨装置に供給することができる。また、研磨装置への送液を停止することなくあるいは停止時間を最小限として、送液を継続することができる。この結果、研磨レートを安定化することができて、精度及び正確性の高い研磨工程を実施することができる。また、マイクロスクラッチ等の被研磨物における不具合も回避することができる。
研磨装置が停止時に、供給装置の内部(各種槽、配管等)を定期洗浄するのにあたり、構造が簡易であるために、メンテナンスが容易で、短時間で作業を完了できるというメリットがある。
【0051】
【発明の効果】
本発明によれば、品質の安定した研磨用流体を研磨装置に供給できる、研磨用流体の供給装置及び方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の供給装置の一形態を示す図である。
【図2】 貯留手段に備えられる恒温化手段の設置例を示す図(a)及び(b)である。
【図3】 恒温化手段の一形態を示す図である。
【図4】 恒温化手段による温度制御工程を実施した場合の研磨用流体の温度の経時変化を示す図である。
【図5】 貯留手段における研磨用流体の貯留量の検出手段等を示す図である。
【図6】 混合手段における研磨用流体の供給量の検出手段等の一形態を示す図である。
【図7】 混合手段における研磨用流体の供給量の検出手段等の他の形態を示す図である。
【図8】 均一化手段によって混合手段内に形成される研磨用流体の流れを示す図(a)及び(b)である。
【図9】 本均一化手段による酸化剤濃度の均一化工程における酸化剤濃度の経時変化を示す図である。
【図10】 超音波濃度測定手段と従来法である滴定法とによる、研磨用流体中の各種濃度の酸化剤の実測値の偏差を示す図である。
【図11】 従来の研磨用流体の供給装置の一例を示す図である。
【符号の説明】
2 供給ライン
8 送液ライン
4 貯留手段
12 混合手段
20、22、24、26、32、60 配管ループ
30 恒温化手段
40 貯留手段内の研磨用流体量の検出手段
42、52 演算手段
44、54 動作手段
50 混合手段への研磨用流体の供給量検出手段
60 配管ループ
62 圧送手段
56 濃度測定手段
66 流出管路
68 流入管路

Claims (3)

  1. CMPスラリー用材料を含む研磨用流体を研磨装置に供給するための装置であって、
    前記研磨用流体の供給装置は、砥粒等の機械的研磨成分を含有の第1の研磨用流体を貯留する第1貯留手段と、
    酸化剤等の化学的研磨成分を含有の第2の研磨用流体を貯留する第2貯留手段と、
    前記第1の研磨用流体及び前記第2の研磨用流体を混合するための円筒状の混合手段と、
    前記各貯留手段を起点及び終点とする研磨用流体の循環用の配管ループ、および前記混合手段を起点及び終点とする、研磨用流体の循環用の配管ループと、
    前記配管ループのいずれかに備えられる、前記混合手段および/または研磨装置に至る研磨用流体の供給ラインに分岐する少なくとも一つの分岐部と、少なくとも一つの恒温化手段とを備え、
    前記混合手段の底部を、逆円錐状あるいは逆円錐台状あるいは凹曲面状として、前記混合手段の配管ループの流入管路を、前記混合手段の側壁下部に、研磨用流体が相対する側壁方向に斜め上方で、予め設定された液面位を指向して噴出するように設け、前記混合手段の配管ループの流出管路を、前記混合手段の底部の最下部に設けた構成であり、
    前記恒温化手段は、前記第1貯留手段の配管ループの一部が導入可能に備えられ、恒温化媒体が供給され循環される恒温化槽と、この恒温化槽に供給される恒温化媒体に所定温度を付与する恒温化媒体の循環供給手段、とを備え、前記配管ループの前記恒温化槽への導入部位はコイル状であり、以下の工程;前記第1の研磨用流体の温度を検出する工程と、検出された前記第1の研磨用流体の温度が予め設定された基準温度を含む許容温度域内にあるか否かを判定する工程と、検出された温度が許容温度域内にある場合には、基準温度を目標到達温度とすることを決定し、検出された温度が許容温度域の一方の閾値を超えている場合には、当該検出温度が当該一方の閾値の超えた程度に応じて許容温度域の反対側の閾値を超えた所定温度を目標到達温度とすることを決定する工程と、前記第1の研磨用流体に対して、決定された目標到達温度となるような温度制御を実施する工程、とを有する温度制御工程を繰り返し実施することを特徴とする研磨用流体の供給装置。
  2. 前記混合手段及び前記混合手段の配管ループを支持する重量検出手段と、前記混合手段の配管ループに備えられる圧送手段と、前記重量検出手段からの情報に基づいて前記研磨用流体の供給量を算出する演算手段と、前記演算手段からの情報に基づいて前記第2の研磨用流体を前記混合手段に供給する動作手段とを備え、
    前記第2の研磨用流体を、前記混合手段の配管ループに設けた供給口から供給する構成としたことを特徴とする請求項1に記載の研磨用流体の供給装置。
  3. CMPスラリー用材料を含む研磨用流体を研磨装置に供給するための装置であって、
    前記研磨用流体の供給装置は、砥粒等の機械的研磨成分を含有の第1の研磨用流体を貯留する第1貯留手段と、
    酸化剤等の化学的研磨成分を含有の第2の研磨用流体を貯留する第2貯留手段と、
    前記第1の研磨用流体及び前記第2の研磨用流体を混合するための円筒状の混合手段と、
    前記各貯留手段を起点及び終点とする研磨用流体の循環用の配管ループ、および前記混合手段を起点及び終点とする、研磨用流体の循環用の配管ループと、
    前記配管ループのいずれかに備えられる、前記混合手段および/または研磨装置に至る研磨用流体の供給ラインに分岐する少なくとも一つの分岐部と、少なくとも一つの恒温化手段とを備え、
    前記混合手段の底部を、逆円錐状あるいは逆円錐台状あるいは凹曲面状として、前記混合手段の配管ループの流入管路を、前記混合手段の側壁下部に、研磨用流体が相対する側 壁方向に斜め上方で、予め設定された液面位を指向して噴出するように設け、前記混合手段の配管ループの流出管路を、前記混合手段の底部の最下部に設けた構成であるとともに、
    前記混合手段及び前記混合手段の配管ループを支持する重量検出手段と、前記混合手段の配管ループに備えられる圧送手段と、前記重量検出手段からの情報に基づいて前記研磨用流体の供給量を算出する演算手段と、前記演算手段からの情報に基づいて前記第2の研磨用流体を前記混合手段に供給する動作手段とを備え、
    前記第2の研磨用流体を、前記混合手段の配管ループに設けた供給口から供給する構成としたことを特徴とする研磨用流体の供給装置。
JP2001400654A 2001-12-28 2001-12-28 研磨用流体の供給装置 Expired - Fee Related JP4004795B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400654A JP4004795B2 (ja) 2001-12-28 2001-12-28 研磨用流体の供給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400654A JP4004795B2 (ja) 2001-12-28 2001-12-28 研磨用流体の供給装置

Publications (2)

Publication Number Publication Date
JP2003197577A JP2003197577A (ja) 2003-07-11
JP4004795B2 true JP4004795B2 (ja) 2007-11-07

Family

ID=27605109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400654A Expired - Fee Related JP4004795B2 (ja) 2001-12-28 2001-12-28 研磨用流体の供給装置

Country Status (1)

Country Link
JP (1) JP4004795B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010792A1 (en) 1998-12-30 2003-01-16 Randy Forshey Chemical mix and delivery systems and methods thereof
JP4524633B2 (ja) * 2005-02-28 2010-08-18 三菱化学エンジニアリング株式会社 研磨液の供給方法
JP2006269737A (ja) * 2005-03-24 2006-10-05 Nec Electronics Corp スラリー供給装置
JP2011173198A (ja) * 2010-02-24 2011-09-08 Disco Corp 混合液供給装置
WO2017155669A1 (en) 2016-03-11 2017-09-14 Fujifilm Planar Solutions, LLC Advanced fluid processing methods and systems
JP6265289B1 (ja) * 2017-03-17 2018-01-24 栗田工業株式会社 酸化剤濃度測定装置及び酸化剤濃度測定方法
KR102070704B1 (ko) * 2018-01-08 2020-01-29 에스케이실트론 주식회사 슬러리 냉각장치 및 그를 구비한 슬러리 공급 시스템
JP6538952B1 (ja) * 2018-12-11 2019-07-03 株式会社西村ケミテック 研磨液供給装置
JP2021126726A (ja) * 2020-02-13 2021-09-02 住友金属鉱山株式会社 切削液管理方法
CN115138234A (zh) * 2022-06-27 2022-10-04 上海华力集成电路制造有限公司 用于铝化学机械研磨工艺的研磨液混合装置及方法
CN115781521B (zh) * 2022-11-08 2023-06-13 广东睿华光电科技有限公司 一种用于防眩光玻璃生产抛光剂喷管结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304130A (ja) * 1992-04-28 1993-11-16 Tokyo Electron Ltd 洗浄液の温度制御方法
JPH0957609A (ja) * 1995-08-28 1997-03-04 Speedfam Co Ltd 化学的機械研磨のための研磨材液供給装置
JP3801325B2 (ja) * 1997-10-31 2006-07-26 株式会社荏原製作所 研磨装置及び半導体ウエハの研磨方法
US6107203A (en) * 1997-11-03 2000-08-22 Motorola, Inc. Chemical mechanical polishing system and method therefor
JP3538042B2 (ja) * 1998-11-24 2004-06-14 松下電器産業株式会社 スラリー供給装置及びスラリー供給方法
JP3678044B2 (ja) * 1999-03-19 2005-08-03 栗田工業株式会社 研磨剤スラリの再利用方法及び装置
JP3763707B2 (ja) * 1999-08-30 2006-04-05 株式会社荏原製作所 砥液供給装置
JP2001144058A (ja) * 1999-11-17 2001-05-25 Canon Inc 研磨方法および研磨装置
JP3778747B2 (ja) * 1999-11-29 2006-05-24 株式会社荏原製作所 砥液供給装置
JP2001260006A (ja) * 2000-03-23 2001-09-25 Matsushita Electric Ind Co Ltd 研磨剤調整装置及び研磨剤調整方法
JP2001345296A (ja) * 2000-06-02 2001-12-14 Reiton:Kk 薬液供給装置

Also Published As

Publication number Publication date
JP2003197577A (ja) 2003-07-11

Similar Documents

Publication Publication Date Title
JP4004795B2 (ja) 研磨用流体の供給装置
KR100668186B1 (ko) 슬러리 공급장치
KR20200052260A (ko) 개선된 유체 처리 방법 및 시스템
JP2021169083A5 (ja)
US6910954B2 (en) Method of supplying slurry and a slurry supply apparatus having a mixing unit at a point of use
US6802762B2 (en) Method for supplying slurry to polishing apparatus
JPWO2017155669A5 (ja)
US11396083B2 (en) Polishing liquid supply device
JP2003282499A (ja) 化学的機械的研磨設備のスラリ供給装置及び方法
JP4362473B2 (ja) 薬液供給装置及び供給装置
JP7133518B2 (ja) 研磨液供給装置
JP2005313266A (ja) スラリーの供給装置と供給方法
CN114570261A (zh) 清洗药液供给装置以及清洗药液供给方法
KR100723586B1 (ko) 약액 공급 장치
JP2006269737A (ja) スラリー供給装置
JP2003197575A (ja) 研磨剤供給装置および研磨剤供給方法
JP2001260006A (ja) 研磨剤調整装置及び研磨剤調整方法
JP2002233954A (ja) スラリー供給方法およびその装置
JP4645056B2 (ja) 研磨液供給装置
JP2020093325A (ja) 研磨液供給装置
JP4486870B2 (ja) スラリーの供給装置及びスラリーの供給方法
JP2004098286A (ja) スラリー供給装置
JP6667032B1 (ja) 研磨液供給装置
JP2005294350A (ja) 研磨液供給装置
JP2004136440A (ja) スラリー供給装置及びスラリー供給方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees