JP3999301B2 - 露光データ作成方法 - Google Patents

露光データ作成方法 Download PDF

Info

Publication number
JP3999301B2
JP3999301B2 JP05339697A JP5339697A JP3999301B2 JP 3999301 B2 JP3999301 B2 JP 3999301B2 JP 05339697 A JP05339697 A JP 05339697A JP 5339697 A JP5339697 A JP 5339697A JP 3999301 B2 JP3999301 B2 JP 3999301B2
Authority
JP
Japan
Prior art keywords
exposure
data
pattern data
cpu
exposure pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05339697A
Other languages
English (en)
Other versions
JPH10256113A (ja
Inventor
正明 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP05339697A priority Critical patent/JP3999301B2/ja
Priority to US08/963,587 priority patent/US5995878A/en
Priority to KR1019970078530A priority patent/KR100291494B1/ko
Publication of JPH10256113A publication Critical patent/JPH10256113A/ja
Application granted granted Critical
Publication of JP3999301B2 publication Critical patent/JP3999301B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • H01J37/3026Patterning strategy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31764Dividing into sub-patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は露光データ作成方法に関するものである。
【0002】
近年の半導体集積回路(LSI)においては、大規模化及び高集積化が進められ、そのLSIを作成するために必要な露光データのデータ量も増大している。露光データの増大は露光時間の長時間化、ひいてはLSIの製造時間の長時間化を招くことから、露光データのデータ量削減が要求されている。
【0003】
【従来の技術】
図22は、可変矩形型電子ビーム(EB)露光装置の概略構成図である。EB露光装置10は、第1,第2アパーチャ11,12を備え、各アパーチャ11,12にはそれぞれ所定面積の矩形窓13,14が形成されている。EB露光装置11は、アパーチャ合わせ用電磁偏向器(第1電磁偏向器)15を制御し、第1アパーチャ11により成形されたビームと第2アパーチャ12の矩形窓14との重なる具合を変え、矩形窓14を透過するビームの断面形状、即ち露光パターンを制御する。そして、露光装置10は、位置合わせ用電磁偏向器(第2電磁偏向器)16,パターン用電磁偏向器(第3電磁偏向器)17を制御して透過ビームを偏向させると共に、ステージ18をX,Y軸方向に移動させ、該ステージ18上に載置された半導体ウェハ19に所望のパターンを露光する。
【0004】
第1〜第3電磁偏向器15〜17及びステージ18の制御は、半導体ウェハ19上に描画する半導体チップの設計データ(パターンデータ)により作成された露光データに基づいて制御される。例えば、半導体ウェハ19には、図23に示される半導体チップ20がマトリクス状に形成される。半導体チップ20は、複数のフィールド21に分割され、各フィールド21は更に複数のサブフィールド22に分割される。
【0005】
そして、第1電磁偏向器15は、サブフィールド22にその時に露光されるパターンの大きさに基づいて制御され、矩形窓14を透過するビームがパターンの大きさに対応した断面形状に制御される。そして、第2,第3電磁偏向器16,17及びステージ18は、その時々に描画されるパターンの位置に基づいて制御される。例えば、ステージ18により1つのフィールド21が選択され、第2電磁偏向器16により1つのサブフィールド22が選択される。そして、第3電磁偏向器17により選択されたサブフィールド22内のパターンが露光される。
【0006】
ところで、半導体チップ20の露光パターンデータは、図示しない露光データ作成装置により作成され、上記のEB露光装置10に供給される。従来の露光データ作成装置は、半導体チップ20の露光パターンデータにおいて、中の繰り返しの多いパターンデータをマトリクス認識により抽出し、マトリクス表現にて露光データを作成していた。更に、露光データ作成装置は、露光データを基となる設計データと同様に階層化し、繰り返しの多い露光パターンデータを露光パターンデータ群とし、そのデータ群を繰り返し配置定義することにより、露光データのデータ量を減少させていた。
【0007】
【発明が解決しようとする課題】
しかしながら、抽出される露光パターンデータ群には、繰り返しの多いパターンデータ、例えばメモリセルの共通部分が抽出される。そのため、メモリセルの共通部分を抽出した露光パターンデータ群は、領域的に小さくなるので、配置数及び露光回数が多くなり、露光データもその分多くなる。また、多くの露光装置においては、各種偏向により電子ビームを所定の配置位置まで移動させる。例えば、図22に示すEB露光装置10においては、第1,第2アパーチャ11,12により成形された電子ビームは、第2,第3電磁偏向器16,17、ステージ18の各種偏向により半導体ウェハ19の所定の配置位置まで移動される。
【0008】
従って、繰り返される露光パターンデータの配置位置を示す配置データが多くなると、第2,第3電磁偏向器16,17では所望の配置位置までビームを移動させることができなくなり、ステージ18を制御することによりウェハ19の位置を第2,第3電磁偏向器16,17により移動可能な位置まで移動させなければならない。ステージ18による移動は、第2,第3電磁偏向器16,17による移動に比べて時間がかかる。そのため、ビームの移動時間が長くなり、半導体ウェハ19全体の露光時間が増大する。
【0009】
更に、各種偏向においては、目的の配置位置に合わせるときの制御的な問題(ステージの機械的精度等)によって、位置合わせ誤差が発生する場合がある。すると、配置回数が多いほど位置合わせ誤差の発生する箇所が多くなり、チップ全体の露光精度が低下する。このため、大きな領域での繰り返し単位を求めることが要求されるが、大きな領域の露光パターンには繰り返し性の無いパターンが付着するため、マトリクス認識の妨げになると共に、抽出する対象となるデータ量が増えるので抽出処理時間が増加する。
【0010】
本発明は上記問題点を解決するためになされたものであって、その目的は繰り返しの多い露光パターンデータのデータ量を少なくすることができる露光データ生成方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、半導体集積回路を露光媒体上に露光するために用いられる露光データを作成する露光データ作成方法であって、前記半導体集積回路の設計データから繰り返し性のある露光パターンデータを露光パターンデータ群として抽出するステップと、前記露光パターンデータ群を構成する繰り返し露光パターンデータを所定のまとめ領域に複数まとめ直すまとめ情報テーブルを作成するステップと、前記まとめ情報テーブルに基づいて前記設計データをまとめ直した露光データを作成するステップとを備え、前記まとめ情報を作成するステップは、前記露光パターンデータ群を認識し、前記露光パターンデータ群を構成する露光パターンデータの繰り返し個数と繰り返しピッチとを求める第1のステップと、前記露光パターンデータの繰り返し個数と繰り返しピッチとに基づいて、前記まとめ領域に格納する基の露光パターンデータのまとめ情報テーブルを求める第2のステップと、前記まとめ情報テーブルに基づいて、前記露光パターンデータ群の配置データを再作成する第3のステップと、前記まとめ情報テーブルに基づいて、前記露光パターデータのパターンデータを再作成する第4のステップとから構成され、前記第2のステップは、前記まとめ領域に対して前記繰り返し露光パターンデータを格納する最大個数を求めるステップと、前記露光パターンデータ群の全ての繰り返し露光パターンデータを格納するのに必要なまとめ領域の個数を求めるステップと、前記まとめ領域に対して繰り返し露光パターンデータを均等配置できるか否かを判断し、その判断結果に基づいて均等配置できる場合に前記まとめ領域に繰り返しパターンデータを均等に配置する個数を候補値に設定するステップと、前記候補値に基づいて、該候補値が設定されていない場合には前記最大個数をまとめ領域に対する前記繰り返しパターンデータの併合値に設定し、前記候補値が設定されている場合には該候補値を併合値に設定するステップと、前記候補値と併合値とに基づいて前記まとめ情報テーブルを作成するステップとから構成される。
【0017】
請求項に記載の発明は、請求項に記載の露光データ作成方法において、前記まとめ情報を作成するステップは、前記まとめ領域に対するx方向とy方向の候補値及び併合値に基づいて前記まとめテーブル及び配置テーブルを作成するものであり、前記全てのまとめ領域に対して均等配置できる場合には1種類の前記まとめテーブルと配置テーブルとを作成するステップと、前記x方向またはy方向に対して均等配置できる場合にはそれぞれ2種類のまとめテーブルと配置テーブルとを作成するステップと、前記x方向及びy方向に対して均等配置できない場合には4種類のまとめテーブルと配置テーブルとを作成するステップとから構成される。
【0018】
請求項に記載の発明は、請求項1又は請求項2に記載の露光データ作成方法において、前記第4のステップは、基の露光パターンデータが単独表現か、複数の基本パターンデータを繰り返すマトリックス表現かを判断するステップと、前記判断結果に基づいて、露光パターンデータが単独表現の場合に露光データの再作成を行うステップと、前記判断結果に基づいて、基の露光パターンデータがマトリックス表現の場合に、該基の露光パターンデータを展開して露光データの再作成を行うステップとから構成される。
【0019】
請求項に記載の発明は、請求項に記載の露光データ作成方法において、前記露光パターンデータを展開するときに、前記基の露光パターンデータの繰り返し個数と、該露光パターンデータを構成する基本パターンデータのマトリックス個数とを比較し、少ない方を展開して新たな繰り返し露光パターンデータを作成するようにしたことを要旨とする。
【0020】
請求項に記載の発明は、請求項1及至のうちのいずれか1項に記載の露光データ作成方法において、前記露光データは、露光装置に備えられ露光媒体を移動させるステージと、前記露光媒体を露光するビームを該露光媒体の所望位置に移動させる偏向器とを制御するために利用されるものであり、前記まとめ領域は、前記露光装置のビーム移動させる偏向器に対応した領域に設定されたことを要旨とする。
【0025】
(作用)
請求項に記載の発明によれば、半導体集積回路の設計データから繰り返し性のある露光パターンデータが露光パターンデータ群として抽出され、露光パターンデータ群を構成する繰り返し露光パターンデータを所定のまとめ領域に複数まとめ直すまとめ情報テーブルが作成される。そのまとめ情報テーブルに基づいて設計データがまとめ直された露光データが作成される。そのまとめ情報テーブルを作成するステップは、第1〜第4のステップにより構成される。第1のステップでは、露光パターンデータ群が認識され、露光パターンデータ群を構成する露光パターンデータの繰り返し個数と繰り返しピッチとが求められる。第2のステップでは、露光パターンデータの繰り返し個数と繰り返しピッチとに基づいて、まとめ領域に格納する基の露光パターンデータのまとめ情報テーブルが求められる。第3のステップでは、まとめ情報テーブルに基づいて、露光パターンデータ群の配置データが再作成される。第4のステップでは、まとめ情報テーブルに基づいて、露光パターデータのパターンデータが再作成される。
そして、第2のステップにおいて、まとめ領域に対して繰り返し露光パターンデータを格納する最大個数と、露光パターンデータ群の全ての繰り返し露光パターンデータを格納するのに必要なまとめ領域の個数が求められる。まとめ領域に対して繰り返し露光パターンデータを均等配置できるか否かが判断され、その判断結果に基づいて均等配置できる場合にまとめ領域に繰り返しパターンデータを均等に配置する個数が候補値に設定され、候補値に基づいて、候補値が設定されていない場合には最大個数をまとめ領域に対する繰り返しパターンデータの併合値に設定し、候補値が設定されている場合には候補値が併合値に設定される。そして、候補値と併合値とに基づいてまとめ情報テーブルが作成される。
【0028】
請求項に記載の発明によれば、まとめ情報を作成するステップは、まとめ領域に対するx方向とy方向の候補値及び併合値に基づいてまとめテーブル及び配置テーブルを作成するものであり、全てのまとめ領域に対して均等配置できる場合には1種類のまとめテーブルと配置テーブルとが作成される。また、x方向またはy方向に対して均等配置できる場合にはそれぞれ2種類のまとめテーブルと配置テーブルとが作成される。更に、x方向及びy方向に対して均等配置できない場合には4種類のまとめテーブルと配置テーブルとが作成される。
【0029】
請求項に記載の発明によれば、第4のステップにおいて、基の露光パターンデータが単独表現か、複数の基本パターンデータを繰り返すマトリックス表現かが判断され、判断結果に基づいて、露光パターンデータが単独表現の場合に露光データの再作成が行われる。また、判断結果に基づいて、基の露光パターンデータがマトリックス表現の場合に、基の露光パターンデータが展開されて露光データの再作成が行われる。
【0030】
請求項に記載の発明によれば、露光パターンデータが展開されるときに、基の露光パターンデータの繰り返し個数と、露光パターンデータを構成する基本パターンデータのマトリックス個数とが比較され、少ない方が展開されて新たな繰り返し露光パターンデータが作成される。
【0031】
請求項に記載の発明によれば、露光データは、露光装置に備えられ露光媒体を移動させるステージと、露光媒体を露光するビームを露光媒体の所望位置に移動させる偏向器とを制御するために利用されるものであり、まとめ領域は、露光装置のビーム移動させる偏向器に対応した領域に設定される。
【0035】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図1〜図21に従って説明する。
図1は、本発明を適用した露光データ作成装置のシステム構成を示す模式図である。露光データ作成装置31は、中央処理装置(以下、CPUという)32、メモリ33、磁気ディスク34、表示器35、キーボード36、テープ装置37を備え、それらはバス38により相互に接続されている。
【0036】
磁気ディスク34には、図2〜図5に示す露光データ作成処理のプログラムデータが予め記憶されている。その露光データ作成処理のプログラムデータは、記憶媒体としての磁気テープ(MT)39に記憶され、供給される。磁気テープ39は、テープ装置37にセットされ、プログラムデータはそのテープ装置37により磁気テープ39から読み出され、バス38を介して磁気ディスク34に転送され記憶される。図1中のCPU32は、キーボード36の操作に基づいて起動されると、図2〜図5に示されるステップに従って露光データ作成処理を実行する。
【0037】
また、磁気ディスク34には、図2に示されるデータファイル41が記憶されている。データファイル41には、例えば図示しないCAD装置により回路設計及びレイアウト設計されたメモリ等の繰り返しの多いパターンを含む半導体装置(LSI)チップの設計データが予め格納されている。図1に示されるCPU32は、データフィル41から設計データを入力し、その設計データに基づいて図2に示される露光データ作成処理を実行する。
【0038】
また、図1中の磁気ディスク34には、図2に示されるデータファイル42〜45が格納される。また、図1中のメモリ33には、図2に示されるデータファイル46,47が格納される。図1中のCPU32は、図2に示されるフローチャートのステップ51〜57に従って露光データ作成処理を実行し、その処理において作成した各データを図2に示されるデータファイル42〜47に格納する。
【0039】
即ち、図2に示されるステップ51は処理データ入力処理(処理データ入力手段)であって、図1中のCPU32は、データフィル41から設計データを入力する。
【0040】
次に、図2に示されるステップ52は繰り返しデータ抽出処理(繰り返しデータ抽出手段)であって、図1中のCPU32は、入力した設計データから繰り返し性のある露光パターンデータを露光パターンデータ群として認識抽出する。そして、CPU32は、抽出した露光パターンデータ群を配置データとして図2中のデータファイル42に格納する。配置データの格納を終了すると、図1中のCPU32は、図2に示されるステップ53からステップ53に移る。
【0041】
次に、図2に示されるステップ53において、図1中のCPU32は、全ての設計データ、即ち、図2中のステップ52において抽出したパターンデータ群と、抽出した後のパターンデータに対して、所定の図形処理、例えば、OR処理、サイジング処理、シュリンク処理等のように、LSIの露光データを作成する上で必要となる図形処理を施す。そして、図1に示されるCPU32は、図形処理後のレイアウトデータを中間データとして磁気ディスク34上のデータファイル43に格納する。中間データの格納を終了すると、図1中のCPU32は、図2に示されるステップ53からステップ54に移る。
【0042】
次に、ステップ54は仮露光データ作成処理(仮露光データ作成手段)であって、図1中のCPU32は、ステップ53において図形処理した中間データを露光データに変換する。そして、CPU32は、変換後の露光データを仮露光データとして図2中のデータファイル44に格納する。仮露光データの格納を終了すると、図1中のCPU32は、図2に示されるステップ54からステップ55に移る。
【0043】
ステップ55はまとめ処理(まとめ手段)であって、図1中のCPU32は、ステップ52において作成した配置データに基づいて抽出した露光パターンデータ群に対してまとめ処理を実行する。まとめ処理は、露光パターンデータ群に含まれる微少な繰り返し露光パターンデータを、露光パターンデータ群のしめる面積よりも小さな所望の大きさのまとめ領域内の繰り返しパターンとしてまとめ直す処理である。更に、まとめ処理は、まとめ直した繰り返し露光パターンデータが各まとめ領域において同じ配置となるようにまとめ直す。
【0044】
図2に示すように、まとめ処理は、大きく4つのステップから構成される。第1ステップはマトリクス認識処理(マトリクス認識手段)であって、図1中のCPU32は、図2中のデータファイル42に格納された配置データ、即ち、図2中のステップ52において抽出した露光パターンデータ群に対してマトリクス認識を行う。マトリクス認識は、露光パターンデータ群を構成する繰り返し露光パターンデータ(以下、単に繰り返しパターンという)が所望のまとめ領域にまとめ直せるか否かを認識する処理である。
【0045】
そのマトリクス認識処理において、CPU32は、先ず、露光パターンデータ群を構成する繰り返しパターンの占める領域の面積(以下、単に領域という)、繰り返しピッチ、繰り返し個数を求める。例えば、図6に示すように、図1中のCPU32は、繰り返しパターンGの領域α、繰り返しパターンGの繰り返しピッチ(以下、マトリクスピッチという)gp(X方向のマトリクスピッチをgp(x),Y方向のマトリクスピッチをgp(y)とする)、繰り返しパターンGの繰り返し個数(以下、マトリクス個数という)gn(X方向のマトリクス個数をgn(x),Y方向のマトリクス個数をgn(y)とする)を求める。
【0046】
尚、図6においては、1つのまとめ領域Sにまとめられた繰り返しパターンGを示しており、実際には、図2中のステップ52において、図7に示すようにまとめ領域Sよりも大きな面積の露光パターンデータ群Rが抽出され、その露光パターンデータ群Rを構成する一部の複数の繰り返しパターンGがまとめ領域Sにまとめ直される。
【0047】
次に、CPU32は、求めた領域α等が、マトリクス認識の認識条件を満足するか否かを判断する。そのマトリクス認識の認識条件は、繰り返しパターンGの領域αが所望のまとめ領域Sの面積の半分以下であり、マトリクスピッチgpがまとめ領域Sよりも小さいことである。この認識条件を満たさない場合は、複数の領域αをまとめ領域Sにまとめることが不可能となる。
【0048】
尚、本実施形態では、所望のまとめ領域Sは、図23に示されるサブフィールド22の大きさに設定されている。従って、まとめ領域Sにまとめ直された複数の繰り返しパターンGは、図22に示されるEB露光装置10の第3電磁偏向器17を制御することにより露光される。
【0049】
第2ステップはまとめ情報テーブル作成処理(まとめ情報テーブル作成手段)であって、図1中のCPU32は、第1ステップにおいて認識条件を満足する領域αの繰り返しパターンGのまとめ情報を求める。そして、CPU32は、求めたまとめ情報をまとめ情報テーブルとして図2中のデータファイル46,47に格納する。図8に示すように、まとめ情報テーブル61は、まとめテーブル62と配置テーブル63とから構成される。図1中のCPU32は、まとめテーブル62をデータファイル46に、配置テーブル63をデータファイル47に格納する。
【0050】
まとめテーブル62は、基の繰り返しパターンデータを示すアドレス64、x方向のまとめ個数mn(x)、y方向のまとめ個数mn(y)、x方向の繰り返しピッチmp(x)、及び、y方向の繰り返しピッチmp(y)とから構成される。アドレス62は、まとめ領域Sにまとめる繰り返しパターンGのパターンデータのアドレスが格納される。まとめ個数mn(x),mn(y)は、それぞれまとめ領域Sにまとめられる繰り返しパターンGのx方向とy方向との個数を示している。ピッチmp(x),mp(y)は、それぞれ繰り返しパターンGのx方向とy方向との繰り返しピッチを示している。従って、まとめテーブル61には、まとめ領域Sに対して、繰り返しパターンGをx方向とy方向とにどのように配置してまとめるかを示した情報が格納される。
【0051】
配置テーブル63は、種類数65、まとめ情報アドレス66、x方向の繰り返し個数sn(x)、y方向の繰り返し個数sn(y)、x方向の繰り返しピッチsp(x)、及び、y方向の繰り返しピッチsp(y)とから構成される。まとめ情報アドレス66には、使用するまとめ領域Sの情報が格納されたまとめテーブル62の先頭アドレスが格納される。繰り返し個数sn(x),sn(y)と繰り返しピッチsp(x),sp(y)には、まとめ領域Sの繰り返し個数と繰り返しピッチがそれぞれ格納される。
【0052】
種類数65には、まとめ領域Sの種類の数が格納され、まとめ領域Sの種類は、そのまとめ領域Sにまとめられた繰り返しパターンGの状態に応じて設定される。
【0053】
図7に示すように、抽出した露光パターンデータ群Rの各繰り返しパターンGをまとめ領域Sにまとめ直す、即ち、複数の繰り返しパターンGを複数のまとめ領域Sに分割する方法として、図7左下に示す「単純配置」と、図7右下に示す「均等配置」とがある。「単純配置」は、まとめ領域Sにまとめられる(収容される)最大個数の繰り返しパターンGを所定の方向(図7において、x方向では左端、y方向では下端)から順にまとめ領域Sに分割する方法である。図7には、x方向とy方向とに「単純配置」された場合が示されている。
【0054】
図1中のCPU32は、抽出した露光パターンデータ群Rの各繰り返しパターンGをx方向とy方向とにそれぞれ複数のまとめ領域Sに対して「均等配置」できるか否かを判断する。x,y方向それぞれに対して「均等配置」可能な場合、CPU32は、繰り返しパターンGを複数のまとめ領域Sに対して均等に配置してまとめ直した露光データを作成する。一方、x,y方向のそれぞれに対して「均等配置」不可能な場合、CPU32は、繰り返しパターンGを複数のまとめ領域Sに対して「単純配置」を行う。そして、CPU32は、繰り返しパターンGを複数のまとめ領域に対して単純に配置してまとめ直した露光データを作成する。
【0055】
「単純配置」する方法では、最大個数の繰り返しパターンGがまとめ直されたまとめ領域S(図7においてまとめ領域S1)と、余りの繰り返しパターンGがまとめ直されたまとめ領域S(図7においてまとめ領域S2〜S4)とが発生する。尚、まとめ領域S2にはx方向の余りの繰り返しパターンGが、まとめ領域S3にはy方向の余りの繰り返しパターンGが、まとめ領域S4にはxy方向の余りの繰り返しパターンGが格納される。従って、xy方向に「単純配置」された場合、まとめ領域S内の繰り返しパターンGの状態、即ち、まとめ領域Sの種類は4種類となり、図8中の種類数65には「4」が格納される。
【0056】
一方、「均等配置」は、複数のまとめ領域Sに対して、同じ数の繰り返しパターンGを分割する方法である。図7には、x方向とy方向とに「均等配置」された場合が示されている。この場合、全てのまとめ領域S内の繰り返しパターンGの状態は同じとなるので、まとめ領域Sの種類は1種類となり、図8中の種類数65には「1」が格納される。
【0057】
尚、図7において、x方向(図7の左右方向)とy方向(図7の上下方向)に異なる分割方法が採用される場合がある。即ち、x方向に「単純配置」され、y方向に「均等配置」される。この場合、x方向のまとめ領域Sは2種類、y方向のまとめ領域Sは1種類となり、全体としてまとめ領域Sの種類は2種類となるので、図8中の種類数65には「2」が格納される。同様に、x方向に「均等配置」され、y方向に「単純配置」された場合、x方向のまとめ領域Sは1種類、y方向のまとめ領域Sは2種類となり、全体としてまとめ領域Sの種類は2種類となるので、図8中の種類数65には「2」が格納される。
【0058】
従って、まとめテーブル62は、まとめ領域の種類の数だけ作成される。例えば、まとめ領域Sが2種類の場合、図8の実線で示すまとめテーブル62と破線で示すまとめテーブル62の合計2個のまとめテーブル62が作成される。そして、配置デーブル63には、各まとめテーブル62に対して上記のまとめ情報アドレス65からy方向の繰り返しピッチsp(y)までの情報が格納される。
【0059】
即ち、配置デーブル63には、複数の繰り返しパターンGをまとめ直したまとめ領域Sが何種類あり、どの種類のまとめ領域Sを幾つどの様に配置するするかを示した情報が格納される。
従って、露光パターンデータ群は、複数のまとめ領域のパターンデータにより表現され、各まとめ領域のパターンデータは、同じ配置の微少な繰り返し露光パターンデータにより表現される。即ち、露光パターンデータ群は、微少な繰り返し露光パターンデータによるまとめ領域のパターンデータの繰り返しによって表現される。従来の方法では、露光パターンデータ群は、微少な繰り返し露光パターンデータのマトリクス(繰り返し)によって表現される。従って、本実施形態における露光パターンデータ群のデータ量は、従来のデータ量に比べて少なくなる。
【0060】
第3ステップは露光データ(配置データ)再作成処理(露光データ(配置データ)再作成手段)であって、図1中のCPU32は、図2中のデータファイル42に格納された配置データを入力する。そして、CPU32は、前記第2ステップにおいて作成した図8中のまとめ情報テーブル61に基づいて、基の配置データをまとめた後の配置データに再作成し、その再作成後の配置データを中間データとしてデータファイル44に格納する。
【0061】
第4ステップは露光データ(パターン)再作成処理(露光データ(パターン)再作成手段)であって、図1中のCPU32は、図2中のデータファイル44に格納された仮露光データを入力する。次に、CPU32は、前記第2ステップにおいて作成した図8中のまとめ情報テーブル61に基づいて、基の繰り返し露光パターンデータをまとめた後の繰り返し露光パターンデータに再作成する。そして、CPU32は、その再作成後の繰り返し露光パターンデータをデータファイル44に格納し、図2中のステップ55におけるまとめ処理を終了し、ステップ56に移る。
【0062】
図2に示されるステップ56はデータ終了判断処理(データ終了判断手段)であって、図1中のCPU32は、データファイル42に格納された配置データ、即ち、ステップ52において抽出した全てのパターンデータ群に対してステップ55のまとめ処理を実行したか否かを判断する。そして、全てのパターンデータ群に対してまとめ処理が実行されていない場合、図1中のCPU32は、ステップ55へ戻り、次のパターンデータ群に対してまとめ処理を実行する。
【0063】
即ち、CPU32は、ステップ55のまとめ処理を繰り返し実行し、抽出した全てのパターンデータ群に対してまとめ処理を実行する。そして、抽出した全てのパターンデータ群に対するまとめ処理が終了すると、図1中のCPU32は、図2に示されるステップ56からステップ57へ移る。
【0064】
ステップ57は露光データ構築処理(露光データ構築手段)であって、図1中のCPU32は、ステップ55において作成したまとめテーブルと配置テーブルとに基づいて、ステップ54において作成した仮露光データをつなぎ合わせ、正式な露光データとして図2に示されるデータファイル45に格納する。そして、正式な露光データの格納を終了すると、図1中のCPU32は露光データ作成処理を終了する。
【0065】
データファイル45に格納された正式な露光データは、露光媒体としてのウェハ19を露光する場合に利用される。即ち、図22に示す電子ビーム露光装置10において、データファイル45に格納された露光データに基づいて、第1〜第3電磁偏向器15〜17及びステージ18が制御され、ウェハ19の所定位置に所望の露光パターンが露光される。
【0066】
この時、図23に示される半導体チップ20において、繰り返しパターンデータGは、まとめ領域S毎に露光される。即ち、その時のまとめ領域S内にまとめ直された繰り返しパターンデータGが露光される。そして、まとめ領域Sの大きさは、図23に示される半導体チップ20のサブフィールド22の大きさに設定されている。従って、まとめ領域S内にまとめ直された繰り返しパターンGは、図22におけるEB露光装置10の第3電磁偏向器17の制御のみにより偏光される電子ビームによって露光され、第2偏向器16およびステージ18は制御されない。
【0067】
ところで、従来の繰り返し露光パターンデータ抽出においても、図7に示される本実施形態の繰り返しパターンGよりなる露光パターンデータRが抽出される。そして、露光パターンデータ群Rを従来の方法により変換した露光データを用いた場合、各繰り返しパターンGは、例えば、最下列左端から上方に向かって順番に露光される。
【0068】
この場合、繰り返しパターンGは、図8に示されるまとめ領域Sにまとめ直されていないので、EB露光装置10は、まとめ領域Sを越えて、即ち、図23中のサブフィールド22を越えて繰り返しパターンGを露光する。即ち、EB露光装置10は、露光データに基づいて第2,第3電磁偏向器16,17を制御する。すると、サブフィールド22内の一列の繰り返しパターンGが露光される毎に、第2電磁偏向器16が制御される。即ち、図23に示されるサブフィールド22内の繰り返し露光パターンGを露光している間にも第2電磁偏向器16が制御されるので、第2電磁偏向器16が制御される回数が多くなり、その分だけビーム移動時間が長くなる。
【0069】
一方、本実施形態では、図8に示されるまとめ領域S内の複数の繰り返しパターンGを露光している間、第2電磁偏向器16は制御されないので、第2電磁偏向器16を制御する回数が従来に比べて減少する。従って、第2電磁偏向器16が制御されなくなった分だけ、ビーム移動時間が少なくなる。
【0070】
更に、まとめ領域S内の繰り返しパターンGが第3電磁偏向器17により露光される間、第2電磁偏向器16及びステージ18は制御されないので、位置合わせ誤差の発生が防止されれ、露光精度が向上する。
【0071】
次に、図2中のステップ55におけるまとめ処理を、図3に示されるフローチャートのステップ71〜81に従って詳述する。
先ず、図3に示されるステップ71は図2中のステップ55における第1ステップであって、マトリクス認識処理(マトリクス認識手段)である。図1中のCPU32は、図2中のデータファイル42に格納された配置データ、即ち、図2中のステップ52において抽出した露光パターンデータ群に対してマトリクス認識を行い、マトリックス個数gn(x),gn(y)、マトリックスピッチgp(x),gp(y)を求める。
【0072】
図3に示されるステップ72〜77は図2中のステップ55における第2ステップであって、まとめ情報テーブル作成処理(まとめ情報テーブル作成手段)である。先ず、図1 中のCPU32は、図7 に示される露光パターンデータ群Rのx方向に対して処理を行う。
【0073】
ステップ72において、図1中のCPU32は、図2中のステップ52において抽出した露光パターンデータ群R(図7参照)の繰り返しパターンGがまとめ領域Sに最大幾つはいるかを求める。図1 中のCPU32は、まとめ領域Sのx方向の長さを繰り返しパターンGの領域αのx方向の長さで除算し、余りを切り捨てた結果をまとめ領域Sに対してx方向に収容可能な最大個数a(x)とする。
【0074】
次に、図3に示されるステップ73において、図1中のCPU32は、x方向に対してまとめ領域Sの必要な個数を求める。CPU32は、図7中の露光パターンデータ群Rのマトリックス個数gn(x)をステップ72において求めた最大個数aで除算し、切り上げた結果をまとめ領域Sが必要な個数b(x)とする。
【0075】
次に、図3に示されるステップ74において、図1中のCPU32は、x方向に対して「均等配置」できるか否かを判断する。CPU32は、まとめ領域Sに対して分割する最小個数「2」からステップ73において求めた個数bまでの数でx方向のマトリックス個数gn(x)を除算する。更に、CPU32は、その除算結果が割り切れる場合、その商が最大個数a(x)以下か否かを判断する。そして、CPU32は、割り切れた除算結果の商が最大個数a以下の場合、「均等配置」可能であると判断し、その商の値をまとめ領域Sに対する分割の候補値c(x)に設定する。
【0076】
そして、CPU32は、ステップ73において求めた個数b(x)まで確認すると、ステップ74からステップ75に移る。個数bまでしか確認しないのは、繰り返しパターンGをまとめ領域Sの必要個数b(x)よりも多くに分配すると、まとめ領域Sの配置個数が「単純配置」の場合よりも多くなり、かえって露光パターンデータのデータ量を多くするため、有効ではないからである。また、除算結果の商が最大個数a(x)よりも多い場合には、まとめ領域S内に繰り返しパターンGをまとめることができないため、この場合も有効としない。
【0077】
即ち、CPU32は、まとめ領域Sに対する繰り返しパターンGの配置数が図7に示すように左下から単純にまとめた場合の数以下であって、まとめ領域Sにまとめる数がそのまとめ領域Sの最大個数a(x)以下であり、且つ、全てのまとめ領域Sにおいて均等である場合である。これ以外の場合、CPU32は、候補値c(x)を設定しない。
【0078】
次に、図3に示されるステップ75において、図1中のCPU32は、繰り返しパターンGをまとめ領域Sにまとめる併合値d(x)を設定する。併合値d(x)は、まとめ領域Sに対してx方向に繰り返しパターンGをまとめ直すときの配置数である。
【0079】
CPU32は、図3中のステップ74において候補値c(x)が設定されている場合、その候補値c(x)を併合値d(x)に格納する。一方、ステップ74において候補値c(x)が設定されていない場合、図1中のCPU32は、図3中のステップ72において求めた最大個数a(x)を併合値d(x)に格納する。そして、CPU32は、併合値d(x)の設定を終了すると、図3中のステップ75からステップ76に移る。
【0080】
ステップ76において、図1中のCPU32は、併合値の設定をx,y方向ともに終了したか否かを判断する。そして、CPU32は、y方向の併合値d(y)の設定が終了していない場合、ステップ72に戻り、y方向に対する処理を実行する。即ち、図1中のCPU32は、x方向の併合値d(x)と同様に、最大個数a(y),必要個数b(y),候補値c(y)を求め、併合値d(y)を設定する。そして、y方向に対する処理を終了すると、図1中のCPU32は、ステップ76からステップ77に移る。
【0081】
図3に示されるステップ77はまとめ情報テーブル作成処理(まとめ情報テーブル作成手段)であって、図1中のCPU32は、図3中のステップ72からステップ76のループにおいて求めたx方向の候補値c(x)及び併合値d(x)とy方向の候補値c(y)及び併合値d(y)とに基づいて、まとめ情報テーブルを作成する。そのまとめ情報テーブルの作成において、図1中のCPU32は、候補値c(x),c(y)及び併合値d(x),d(y)により発生するまとめ領域Sの種類を求める。
【0082】
この時、X,Y方向それぞれにb4で候補値c(x),c(y)が設定されている場合と設定されていない場合とがある。候補値c(x),c(y)がそれぞれ設定されている場合は、まとめ領域Sに対して繰り返しパターンGが均等に分配可能、即ち、図7に示す「均等配置」の場合である。一方、候補値c(x),c(y)がそれぞれ設定されていない場合、まとめ領域Sに対して繰り返しパターンGが均等に分配不可能、即ち、図7に示す「単純配置」の場合である。
【0083】
従って、発生するまとめ領域Sの種類は、最大4種類となる。そして、図1中のCPU32は、各々の組み合わせに応じてまとめ情報テーブルを作成する。図8に示すように、まとめ情報テーブル61は、まとめテーブル62と配置テーブル63とから構成される。
【0084】
図1中のCPU32は、図8中のまとめテーブル62に対して、基の繰り返し露光パターンデータをどのようにまとめ直すかの情報をマトリクス表現で格納する。即ち、CPU32は、まとめ直す基の繰り返しパターンGのアドレスをアドレス64に格納する。更に、CPU32は、図3中のステップ72〜76において求めた候補値c(x),c(y)及び併合値d(x),d(y)に基づいて図8に示されるまとめ個数mn(x),mn(y)を求め、まとめテーブル62に格納する。また、CPU32は、抽出した繰り返しパターンGのマトリックスピッチgp(x),gp(y)をそれぞれ繰り返しピッチmp(x),mp(y)としてまとめテーブル62に格納する。
【0085】
また、CPU32は、図8中の配置テーブル63に対して、まとめ直した繰り返し露光パターンデータをどの位置に配置するのかの情報をマトリクス表現で格納する。即ち、CPU32は、まとめ直したまとめ領域Sの種類を種類数65に格納する。更に、CPU32は、使用する種類のまとめ領域Sのアドレスをアドレス66に、まとめ領域Sの繰り返し個数sn(x),sn(y)、まとめ領域Sの繰り返しピッチsp(x),sp(y)を格納する。
【0086】
図1中のCPU32は、図8に示されるまとめテーブル62を図1中のデータテーブル46に、図8に示される配置テーブル63を図1中のデータファイル47に格納する。そして、両データファイル46,47への格納が終了すると、図1中のCPU32は、図3に示されるステップ77からステップ78に移る。
【0087】
次に、図3に示されるステップ78は図2中のステップ55における第3ステップであって、露光データ(配置データ)再作成処理(露光データ(配置データ)再作成手段)である。図2中のデータファイル42に格納された配置データを入力する。そして、図1中のCPU32は、ステップ77において作成した図8中のまとめ情報テーブル61に基づいて、基の配置データをまとめた後の配置データに再作成し、その再作成後の配置データを中間データとしてデータファイル44に格納する。
【0088】
次に、図3に示されるステップ79〜81は図2中のステップ55における第4ステップであって、露光データ(パターン)再作成処理(露光データ(パターン)再作成手段)である。ステップ79において、図1中のCPU32は、図2中のデータファイル44に格納された仮露光データを入力し、基の露光パターン、即ち、繰り返しパターンG(図7参照)が単独表現か否かを判断する。そして、繰り返しパターンGが単独表現の場合、図1中のCPU32は、図3に示されるステップ79からステップ80に移る。
【0089】
ステップ80において、図1中のCPU32は、ステップ77において作成した図8中のまとめ情報テーブル61に基づいて、基の繰り返し露光パターンデータをまとめた後の繰り返し露光パターンデータに再作成する。そして、CPU32は、その再作成後の繰り返し露光パターンデータをデータファイル44に格納する。
【0090】
一方、図3中のステップ79において繰り返しパターンGが単独表現ではない、即ち、繰り返しパターンGが更に複数の基本パターンデータをx,y方向に繰り返すマトリックス表現である場合、図1中のCPU32はステップ79からステップ81に移る。ステップ81はパターンデータ展開処理(パターンデータ展開手段)であって、図1中のCPU32は、マトリックス表現の繰り返しパターンGの展開処理を行う。
【0091】
この時、図1中のCPU32は、入力した繰り返しパターンGを構成する基本パターンデータのマトリックス個数と、図3中のステップ77において求められ図8中のまとめテーブル62に格納された繰り返しパターンGのまとめ個数mn(x),mn(y)とを比較する。そして、CPU32は、比較結果に基づいて、個数の少ない方を展開したマトリックス表現にて再作成した新たな露光パターンデータをデータファイル44に格納する。
【0092】
例えば、図9(a)に示すように、まとめ領域Sには9個の繰り返しパターンGがまとめ直されており、各繰り返しパターンGは、それぞれ4個の基本パターンデータG1のマトリックスにより表現されている。この場合、繰り返しパターンGのまとめ個数mn(x),mn(y)はそれぞれ「3」であり、基本パターンデータG1のマトリックス個数はx,y方向にそれぞれ「2」である。そして、図9(a)に実線で示す露光パターンデータG1により構成される繰り返しパターンGを、点線で示すようにx方向,y方向に9回繰り返し露光する。
【0093】
従って、図1中のCPU32は、少ない方、即ち、基本パターンデータG1のマトリックス個数を展開し、3×3のマトリックス表現された基本パターンデータG1により構成される2×2、即ち、4個の新たな繰り返しパターンG2に展開する。そして、図9(a)と同様に図9(b)においても実線で示す露光パターンデータG1により構成される繰り返しパターンG2を点線で示すようにx方向,y方向に4回繰り返し露光する。従って、まとめ領域Sの繰り返し数は、9個から4個の減少する。
【0094】
ところで、露光データは、繰り返し露光される繰り返し露光パターンデータがその繰り返し数だけ並べて記述される。従って、露光データは、まとめ領域Sを構成する9個の繰り返しパターンGを4個の繰り返しパターンG2に変更することにより、その分だけデータ量が少なくなる。
【0095】
次に、ステップ77におけるまとめ情報テーブル作成処理(まとめ情報テーブル作成手段)を図4及び図5に示されるフローチャートに従って詳述する。
先ず、図4中のステップ101,102と図5中のステップ103において、図1中のCPU32は、まとめ領域Sに対する分割方法に応じて分岐する。即ち、CPU32は、x方向とy方向とにそれぞれ設定される「均等配置」又は「単純配置」に基づいて、分岐する。
【0096】
具体的には、図1中のCPU32は、先ず図4中のステップ101において、図3中のステップ74において求めた候補値c(x)と併合値d(x)とを比較する。そして、CPU32は、候補値c(x)と併合値d(x)とが一致する場合にはステップ102へ、一致しない場合には図5中のステップ103へ分岐する。
【0097】
次に、ステップ102,103において、図1中のCPU32は、図3中のステップ74において求めた候補値c(y)と併合値d(y)とをそれぞれ比較する。そして、CPU32は、図4のステップ102において、候補値c(y)と併合値d(y)とが一致する場合にはステップ104へ、一致しない場合にはステップ107へ分岐する。また、CPU32は、図5のステップ103において、候補値c(y)と併合値d(y)とが一致する場合にはステップ112へ、一致しない場合にはステップ117へ分岐する。
【0098】
即ち、図1中のCPU32は、候補値c(x),c(y)と併合値d(x),d(y)とが一致する、即ち、x方向及びy方向に「均等配置」される場合に図4中のステップ104に分岐する。そして、CPU32は、先ずステップ104において、図8中の配置テーブル63の種類数66に作成するまとめ領域Sの種類数「1」を格納する。
【0099】
次に、図1中のCPU32は、図4中のステップ105においてまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)に併合値d(x)を、まとめ個数mn(y)に併合値d(y)を格納する。また、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0100】
更に、図1中のCPU32は、図4中のステップ106において配置テーブル63(図8参照)を作成する。即ち、CPU32は、マトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(x),gn(y)をそれぞれ併合値d(x),d(y)にて除算した結果を配置テーブル63の繰り返し個数sn(x),sn(y)に格納する。また、CPU32は、求めたマトリックスピッチgp(x),gp(y)と併合値d(x),d(y)とをそれぞれ乗算した結果を繰り返しピッチsp(x),sp(y)に格納する。
【0101】
また、図1中のCPU32は、候補値c(x)と併合値d(x)が一致し候補値c(y)と併合値d(y)とが一致しない、即ち、x方向には「均等配置」されy方向には「単純配置」される場合に図4中のステップ107に分岐する。そして、CPU32は、先ずステップ107において、図8中の配置テーブル63の種類数66に作成するまとめ領域Sの種類数「2」を格納する。
【0102】
次に、図1中のCPU32は、図4中のステップ108において1種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)に併合値d(x)を格納する。また、CPU32は、まとめ個数mn(y)に併合値d(y)、即ち、y方向の最大個数a(y)を格納する。更にまた、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0103】
更に、図1中のCPU32は、図4中のステップ109において1種類目の配置テーブル63(図8参照)を作成する。即ち、CPU32は、マトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(x),gn(y)をそれぞれ併合値d(x),d(y)(=最大個数a(y))で除算した結果を配置テーブル63の繰り返し個数sn(x),sn(y)に格納する。また、CPU32は、求めたマトリックスピッチgp(x),gp(y)と併合値d(x),d(y)(=最大個数a(y))とをそれぞれ乗算した結果を繰り返しピッチsp(x),sp(y)に格納する。
【0104】
次に、図1中のCPU32は、図4中のステップ110において2種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)に併合値d(x)を格納する。また、CPU32は、まとめ個数mn(y)にマトリックス個数gn(y)を最大個数a(y)にて除算した余りを格納する。更にまた、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0105】
更に、図1中のCPU32は、図4中のステップ111において2種類目の配置テーブル63(図8参照)を作成する。即ち、CPU32は、x方向に対してマトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(x)を併合値d(x)にて除算した結果を繰り返し個数sn(x)に格納する。一方、y方向に対しては、2種類目のまとめ領域Sには、単純配置された余りの繰り返しパターンGが格納されるので、まとめ領域Sのy方向への繰り返しはない。そのため、CPU32は、y方向の繰り返し個数sn(y)に「1」を格納する。
【0106】
また、CPU32は、x方向に対して求めたマトリックスピッチgp(x)と併合値d(x)とを乗算した結果を繰り返しピッチsp(x)に格納する。一方、y方向に対してまとめ領域Sの繰り返しがないため、CPU32は、マトリックスピッチsp(y)に「0」を格納する。
【0107】
また、図1中のCPU32は、候補値c(x)と併合値d(x)が一致せず候補値c(y)と併合値d(y)が一致する、即ち、x方向には「単純配置」されy方向には「均等配置」される場合に図5中のステップ112に分岐する。そして、CPU32は、先ずステップ112において、図8中の配置テーブル63の種類数66に作成するまとめ領域Sの種類数「2」を格納する。
【0108】
次に、図1中のCPU32は、図5中のステップ113において1種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)に併合値d(x)、即ち、x方向の最大個数a(x)を格納する。また、CPU32は、まとめ個数mn(y)に併合値d(y)を格納する。更にまた、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0109】
更に、図1中のCPU32は、図5中のステップ114において1種類目の配置テーブル63を作成する。即ち、CPU32は、マトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(x),gn(y)をそれぞれ併合値d(x)(=最大個数a(x)),d(y)で除算した結果を配置テーブル63の繰り返し個数sn(x),sn(y)に格納する。また、CPU32は、求めたマトリックスピッチgp(x),gp(y)と併合値d(x)(=最大個数a(x)),d(y)とをそれぞれ乗算した結果を繰り返しピッチsp(x),sp(y)に格納する。
【0110】
次に、図1中のCPU32は、図5中のステップ115において2種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)にマトリックス個数gn(x)を併合値d(x)にて除算した余りを格納する。また、CPU32は、まとめ個数mn(y)に併合値d(y)を格納する。更にまた、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0111】
更に、図1中のCPU32は、図5中のステップ116において2種類目の配置テーブル63(図8参照)を作成する。即ち、x方向に対して2種類目のまとめ領域Sには単純配置された余りの繰り返しパターンGが格納されるので、まとめ領域Sのx方向への繰り返しはない。そのため、CPU32は、x方向のマトリックス個数sn(x)に「1」を格納する。一方、CPU32は、y方向に対してマトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(y)を併合値d(y)にて除算した結果を配置テーブル63の繰り返し個数sn(y)に格納する。
【0112】
また、x方向に対してまとめ領域Sの繰り返しがないため、CPU32は、マトリックスピッチsp(x)に「0」を格納する。一方、CPU32は、y方向に対して求めたマトリックスピッチgp(y)と併合値d(y)とを乗算した結果を繰り返しピッチsp(y)に格納する。
【0113】
また、図1中のCPU32は、候補値c(x),c(y)と併合値d(x),d(y)が共に一致しない、即ち、x方向及びy方向に「単純配置」される場合に図5中のステップ117に分岐する。そして、CPU32は、先ずステップ117において、図8中の配置テーブル63の種類数66に作成するまとめ領域Sの種類数「4」を格納する。
【0114】
次に、図1中のCPU32は、図5中のステップ118において1種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)に併合値d(x)(=最大個数a(x))を、まとめ個数mn(y)に併合値d(y)(=最大個数a(y))を格納する。また、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0115】
更に、図1中のCPU32は、図5中のステップ119において1種類目の配置テーブル63(図8参照)を作成する。即ち、CPU32は、マトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(x),gn(y)をそれぞれ併合値d(x)(=最大個数a(x)),d(y)(=最大個数a(y))にて除算した結果を配置テーブル63の繰り返し個数sn(x),sn(y)に格納する。また、CPU32は、求めたマトリックスピッチgp(x),gp(y)と併合値d(x)(=最大個数a(x)),d(y)(=最大個数a(y))とをそれぞれ乗算した結果を繰り返しピッチsp(x),sp(y)に格納する。
【0116】
次に、図1中のCPU32は、図5中のステップ120において2種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)にマトリックス個数gn(x)を併合値d(x)にて除算した余りを格納する。また、CPU32は、まとめ個数mn(y)に併合値d(y)(=最大個数a(y))を格納する。また、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0117】
更に、図1中のCPU32は、図5中のステップ121において2種類目の配置テーブル63(図8参照)を作成する。即ち、x方向に対して2種類目のまとめ領域Sには単純配置された余りの繰り返しパターンGが格納されるので、まとめ領域Sのx方向への繰り返しはない。そのため、CPU32は、x方向のマトリックス個数sn(x)に「1」を格納する。一方、CPU32は、y方向に対してマトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(y)を併合値d(y)にて除算した結果を配置テーブル63の繰り返し個数sn(y)に格納する。
【0118】
また、x方向に対してまとめ領域Sの繰り返しがないため、CPU32は、マトリックスピッチsp(x)に「0」を格納する。一方、CPU32は、y方向に対して求めたマトリックスピッチgp(y)と併合値d(y)とを乗算した結果を繰り返しピッチsp(y)に格納する。
【0119】
次に、図1中のCPU32は、図5中のステップ122において3種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x)に併合値d(x)(=最大個数a(x))を格納する。また、CPU32は、、まとめ個数mn(y)にマトリックス個数gn(y)を最大個数a(y)にて除算した余りを格納する。更にまた、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0120】
更に、図1中のCPU32は、図5中のステップ123において3種類目の配置テーブル63(図8参照)を作成する。即ち、CPU32は、x方向に対してマトリックス認識(図3,ステップ71)において求めたマトリックス個数gn(x)を併合値d(x)にて除算した結果を繰り返し個数sn(x)に格納する。一方、y方向に対しては、3種類目のまとめ領域Sには、単純配置された余りの繰り返しパターンGが格納されるので、まとめ領域Sのy方向への繰り返しはない。そのため、CPU32は、y方向の繰り返し個数sn(y)に「1」を格納する。
【0121】
また、CPU32は、x方向に対して求めたマトリックスピッチgp(x)と併合値d(x)とを乗算した結果を繰り返しピッチsp(x)に格納する。一方、y方向に対してまとめ領域Sの繰り返しがないため、CPU32は、マトリックスピッチsp(y)に「0」を格納する。
【0122】
次に、図1中のCPU32は、図5中のステップ124において4種類目のまとめテーブル62(図8参照)を作成する。即ち、CPU32は、まとめテーブル62のまとめ個数mn(x),mn(y)に対して、マトリックス個数gn(x),gn(y)をそれぞれ最大個数a(x),a(y)にて除算した余りを格納する。また、CPU32は、繰り返しピッチmp(x),mp(y)にそれぞれ図3中のステップ71において求めた繰り返しパターンGのマトリックスピッチgp(x),gp(y)を格納する。
【0123】
更に、図1中のCPU32は、図5中のステップ125において4種類目の配置テーブル63(図8参照)を作成する。即ち、x方向に対して、4種類目のまとめ領域Sには単純配置された余りの繰り返しパターンGが格納されるので、まとめ領域Sのx方向への繰り返しはない。また、y方向に対して4種類目のまとめ領域Sには単純配置された余りの繰り返しパターンGが格納されるので、まとめ領域Sのy方向への繰り返しはない。そのため、CPU32は、x,y方向の繰り返し個数sn(x),sn(y)に「1」を格納する。
【0124】
また、x方向に対してまとめ領域Sの繰り返しがない。また、y方向に対してまとめ領域Sの繰り返しがない。従って、CPU32は、マトリックスピッチsp(x),sp(y)に「0」を格納する。
【0125】
次に、上記のように構成された露光データ作成装置31の作用を図10〜21に従って説明する。
先ず、図10〜12に従って、X,Y方向共に均等配置できる場合について説明する。
【0126】
図1中のCPU32は、図2中のデータファイル41に格納された設計データから図10に示す露光パターンデータ群Rを抽出する。露光パターンデータ群Rは、81個の繰り返しパターンGがx方向とy方向のマトリックスに配列されている。
【0127】
図1中のCPUは、繰り返しパターンGを入力し、図3中のステップ71において繰り返しパターンGのマトリクス認識を行い、マトリクス個数gn(x)=9,gn(y)=9と、マトリックスピッチgp(x),gp(y)とを求める。
【0128】
次に、CPU32は、図3中のステップ72において図10に示されるまとめ領域Sに収容可能な最大個数a(x)=4を、図3中のステップ73においてまとめ領域Sの必要個数b(x)=3を求める。
【0129】
CPU32は、図3中のステップ74において判定条件に当てはまるため均等配置可能と判断し、候補値c(x)=3を設定する。これにより、CPU32は、図3中のステップ75において候補値c(x)が設定されているため、併合値d(x)=候補値c(x)=3を設定する。
【0130】
CPU32は、図3中のステップ76においてy方向に対して処理を終了していないため、図3中のステップ72〜75においてy方向のマトリクス個数gn(y)について同様の処理を行い、最大個数a(y)=4、必要個数b(y)=3を求める。更に、CPU32は、ステップ74において判定条件に当てはまるため均等配置可能であると判断して候補値c(y)=3を設定し、ステップ75において併合値d(y)=候補値c(y)=3を設定する。
【0131】
次に、図3中のステップ77において、図1中のCPU32はまとめ情報を作成する。この時、図3中のステップ74において候補値c(x),c(y)共に設定されているため、図1中のCPU32は、図4中のステップ101,102の判定によりステップ104へ分岐する。
【0132】
図4中のステップ104において、図1中のCPU32は、X,Y方向共に均等配置できるためまとめ領域Sの種類は1種類となり、図8中のまとめテーブル62の種類数65に「1」を格納する。
【0133】
次に、図4中のステップ105において、図1中のCPU32は、まとめテーブル62を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=3,d(y)=3であるため、CPU32は、まとめテーブル62のまとめ個数mn(x)=d(x)=3,mn(y)=d(y)=3を設定する。
【0134】
更に、図4中のステップ106において、図1中のCPU32は、配置テーブル63を作成する。この時、繰り返しパターンGの繰り返し個数gn(x)=9,gn(y)=9、併合値d(x)=3,d(y)=3であるため、まとめ領域Sのx方向の繰り返し個数sn(x)=gn(x)÷d(x)=9÷3=3、y方向の繰り返し個数sn(y)=gn(y)÷d(y)=9÷3=3となる。また、まとめ領域Sのx方向の繰り返しピッチsp(x)=gp(x)×d(x)=gp(x)×3、y方向の繰り返しピッチsp(y)=gp(y)×d(y)=gp(y)×3となる。
【0135】
その結果、図11に示すように、各値が格納された1種類のまとめテーブル62と配置テーブル63とにより図10中の露光パターンデータ群Rのまとめ情報テーブル61が構成される。
【0136】
図3中のステップ78において、図1中のCPU32は、作成したまとめ情報テーブルに基づいて、ステップ71にて入力した81個の繰り返しパターンGの配置データを9個のまとめ領域Sの配置データに置き換える。更に、CPU32は、図3中のステップ79〜81において基の繰り返し露光パターンデータをまとめ情報テーブル61に基づいて展開し、新たな繰り返し露光パターンデータとして出力する。
【0137】
従って、図10に示される露光パターンデータ群Rの配置数は、81個から9個に減少する。そして、図12に示すように、繰り返し個数mn(x)×mn(y)=3×3個の繰り返しパターンGにより構成される1種類のまとめ領域Sを、繰り返しピッチsp(x),sp(y)にて露光する事により、露光パターンデータ群Rが露光される。
【0138】
次に、図13〜15に従って、X方向にのみ均等配置できる場合について説明する。
図1中のCPU32は、図2中のデータファイル41に格納された設計データから図13に示す露光パターンデータ群Rを抽出する。露光パターンデータ群Rは、90個の繰り返しパターンGがx方向とy方向のマトリックスに配列されている。
【0139】
図1中のCPUは、繰り返しパターンGを入力し、図3中のステップ71において繰り返しパターンGのマトリクス認識を行い、マトリクス個数gn(x)=9,gn(y)=10と、マトリックスピッチgp(x),gp(y)とを求める。
【0140】
次に、CPU32は、図3中のステップ72において図13に示されるまとめ領域Sに収容可能な最大個数a(x)=4を、図3中のステップ73においてまとめ領域Sの必要個数b(x)=3を求める。
【0141】
CPU32は、図3中のステップ74において判定条件に当てはまるため均等配置可能と判断し、候補値c(x)=3を設定する。そのため、CPU32は、図3中のステップ75において候補値c(x)が設定されているので、併合値d(x)=候補値c(x)=3を設定する。
【0142】
CPU32は、図3中のステップ76においてy方向に対して処理を終了していないため、図3中のステップ72〜75においてy方向のマトリクス個数gn(y)について同様の処理を行い、最大個数a(y)=4、必要個数b(y)=3を求める。更に、CPU32は、ステップ74において判定条件に当てはまらないため均等配置不可能であると判断して候補値c(y)を設定しない。そのため、CPU32は、ステップ75において併合値d(y)=最大個数a(y)=4を設定する。
【0143】
次に、図3中のステップ77において、図1中のCPU32はまとめ情報を作成する。この時、図3中のステップ74において候補値c(x)は設定されているが候補値c(y)は設定されていないので、図1中のCPU32は、図4中のステップ101,102の判定によりステップ107へ分岐する。そして、図4中のステップ107において、図1中のCPU32は、図8中のまとめテーブル62の種類数65にまとめ領域Sの種類数「2」を格納する。
【0144】
次に、図4中のステップ108において、図1中のCPU32は、1種類目のまとめテーブル62a(図14参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=3,d(y)=4であるため、CPU32は、まとめテーブル62aのまとめ個数mn(x)=d(x)=3,mn(y)=d(y)=4を設定する。
更に、図4中のステップ109において、図1中のCPU32は、1種類目の配置テーブル63を作成する。この時、繰り返しパターンGの繰り返し個数gn(x)=9,gn(y)=10、併合値d(x)=3,d(y)=4であるため、まとめ領域Sのx方向の繰り返し個数sn(x)=gn(x)÷d(x)=9÷3=3、y方向の繰り返し個数sn(y)=gn(y)÷d(y)=10÷4=2(商)となる。また、まとめ領域Sのx方向の繰り返しピッチsp(x)=gp(x)×d(x)=gp(x)×3、y方向の繰り返しピッチsp(y)=gp(y)×d(y)=gp(y)×4となる。
【0145】
次に、図4中のステップ110において、図1中のCPU32は、2種類目のまとめテーブル62b(図14参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=3,d(y)=a(y)=4であるため、CPU32は、まとめテーブル62bのx方向のまとめ個数mn(x)=d(x)=3を設定する。更に、CPU32は、y方向のまとめ個数mn(y)=2(繰り返し個数gn(y)÷最大個数a(y)=10÷4の余り)を設定する。
【0146】
更に、図4中のステップ111において、図1中のCPU32は、2種類目の配置テーブル63を作成する。この時、繰り返しパターンGの繰り返し個数gn(x)=9、併合値d(x)=3であるため、まとめ領域Sのx方向の繰り返し個数sn(x)=gn(x)÷d(x)=9÷3=3となる。一方、2種類目のまとめ領域Sには余りの繰り返しパターンGが格納されるy方向の繰り返し配置が無いので、繰り返し個数sn(y)=1となる。
【0147】
また、まとめ領域Sのx方向の繰り返しピッチsp(x)=gp(x)×d(x)=gp(x)×3となる。一方、2種類目のまとめ領域Sには余りの繰り返しパターンGが格納されy方向の繰り返し配置は無いので、繰り返しピッチsp(y)=0となる。
【0148】
その結果、図14に示すように、各値が格納された2種類のまとめテーブル62a,62bと、配置テーブル63とにより図13中の露光パターンデータ群Rのまとめ情報テーブル61が構成される。従って、図15に示すように、繰り返し個数mn(x)×mn(y)=3×4のマトリックスの繰り返しパターンGよりなる1種類目のまとめ領域Saと、繰り返し個数mn(x)×mn(y)=3×2のマトリックスの繰り返しパターンGよりなる2種類目のまとめ領域Sbとが構成される。そして、露光パターンデータ群Rは、6個の1種類目のまとめ領域Saと3個の2種類目のまとめ領域Sbにより露光される。
【0149】
図3中のステップ78において、図1中のCPU32は、作成したまとめ情報テーブルに基づいて、ステップ71にて入力した90個の繰り返しパターンGの配置データを9個のまとめ領域S(6個のまとめ領域Saと3個のまとめ領域Sb)の配置データに置き換える。更に、CPU32は、図3中のステップ79〜81において基の繰り返し露光パターンデータをまとめ情報テーブル61に基づいて展開し、新たな繰り返し露光パターンデータとして出力する。この結果、繰り返しパターンデータの配置数は、90個から9個に減少する。
【0150】
次に、図16〜18に従って、Y方向にのみ均等配置できる場合について説明する。
図1中のCPU32は、図2中のデータファイル41に格納された設計データから図16に示す露光パターンデータ群Rを抽出する。露光パターンデータ群Rは、99個の繰り返しパターンGがx方向とy方向のマトリックスに配列されている。
【0151】
図1中のCPUは、繰り返しパターンGを入力し、図3中のステップ71において繰り返しパターンGのマトリクス認識を行い、マトリクス個数gn(x)=11,gn(y)=9と、マトリックスピッチgp(x),gp(y)とを求める。
【0152】
次に、CPU32は、図3中のステップ72において図16に示されるまとめ領域Sに収容可能な最大個数a(x)=4を、図3中のステップ73においてまとめ領域Sの必要個数b(x)=3を求める。
【0153】
CPU32は、図3中のステップ74において判定条件に当てはまらないため均等配置不可能と判断し、候補値c(x)を設定しない。そのため、CPU32は、図3中のステップ75において候補値c(x)が設定されていないため、併合値d(x)=最大個数a(x)=4を設定する。
【0154】
CPU32は、図3中のステップ76においてy方向に対して処理を終了していないため、図3中のステップ72〜75においてy方向のマトリクス個数gn(y)について同様の処理を行い、最大個数a(y)=4、必要個数b(y)=3を求める。更に、CPU32は、ステップ74において判定条件に当てはまるため均等配置可能であると判断して候補値c(y)=3を設定する。そのため、CPU32は、ステップ75において候補値c(y)が設定されているので、併合値d(y)=候補値c(y)=3を設定する。
【0155】
次に、図3中のステップ77において、図1中のCPU32はまとめ情報を作成する。この時、図3中のステップ74において候補値c(x)は設定されていないが候補値c(y)は設定されているので、図1中のCPU32は、図4中のステップ101及び図5中のステップ103の判定によりステップ112へ分岐する。そして、図5中のステップ112において、図1中のCPU32は、図8中のまとめテーブル62の種類数65にまとめ領域Sの種類数「2」を格納する。
【0156】
次に、図5中のステップ113において、図1中のCPU32は、1種類目のまとめテーブル62a(図17参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=a(x)=4,d(y)=3であるため、CPU32は、まとめテーブル62aのまとめ個数mn(x)=d(x)=4,mn(y)=d(y)=3を設定する。
【0157】
更に、図5中のステップ114において、図1中のCPU32は、1種類目の配置テーブル63を作成する。この時、繰り返しパターンGの繰り返し個数gn(x)=11,gn(y)=9、併合値d(x)=4,d(y)=3であるため、まとめ領域Sのx方向の繰り返し個数sn(x)=gn(x)÷d(x)=11÷4=3(商)、y方向の繰り返し個数sn(y)=gn(y)÷d(y)=9÷3=3となる。また、まとめ領域Sのx方向の繰り返しピッチsp(x)=gp(x)×d(x)=gp(x)×4、y方向の繰り返しピッチsp(y)=gp(y)×d(y)=gp(y)×3となる。
【0158】
次に、図5中のステップ115において、図1中のCPU32は、2種類目のまとめテーブル62b(図17参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=4,d(y)=3であるため、CPU32は、まとめテーブル62bのx方向のまとめ個数mn(x)=3(繰り返し個数gn(x)÷併合値d(x)=11÷4の余り)を設定する。更に、CPU32は、y方向のまとめ個数mn(y)=d(y)=3を設定する。
【0159】
更に、図5中のステップ116において、図1中のCPU32は、2種類目の配置テーブル63を作成する。この時、2種類目のまとめ領域Sには余りの繰り返しパターンGが格納されるx方向の繰り返し配置が無いので、繰り返し個数sn(x)=1となる。一方、繰り返しパターンGの繰り返し個数gn(y)=9、併合値d(y)=3であるため、まとめ領域Sのy方向の繰り返し個数sn(y)=gn(y)÷d(y)=9÷3=3となる。
【0160】
また、2種類目のまとめ領域Sには余りの繰り返しパターンGが格納されx方向の繰り返し配置は無いので、繰り返しピッチsp(x)=0となる。一方、まとめ領域Sのy方向の繰り返しピッチsp(y)=gp(y)×d(y)=gp(y)×3となる。
【0161】
その結果、図17に示すように、各値が格納された2種類のまとめテーブル62a,62bと、配置テーブル63とにより図16中の露光パターンデータ群Rのまとめ情報テーブル61が構成される。従って、図18に示すように、繰り返し個数mn(x)×mn(y)=4×3のマトリックスの繰り返しパターンGよりなる1種類目のまとめ領域Saと、繰り返し個数mn(x)×mn(y)=3×3のマトリックスの繰り返しパターンGよりなる2種類目のまとめ領域Sbとが構成される。そして、露光パターンデータ群Rは、6個の1種類目のまとめ領域Saと3個の2種類目のまとめ領域Sbにより露光される。
【0162】
図3中のステップ78において、図1中のCPU32は、作成したまとめ情報テーブルに基づいて、ステップ71にて入力した99個の繰り返しパターンGの配置データを9個のまとめ領域S(6個のまとめ領域Saと3個のまとめ領域Sb)の配置データに置き換える。更に、CPU32は、図3中のステップ79〜81において基の繰り返し露光パターンデータをまとめ情報テーブル61に基づいて展開し、新たな繰り返し露光パターンデータとして出力する。この結果、繰り返しパターンデータの配置数は、99個から9個に減少する。
【0163】
更に次に、図19〜21に従って、X,Y方向共に均等配置できない場合について説明する。
図1中のCPU32は、図2中のデータファイル41に格納された設計データから図19に示す露光パターンデータ群Rを抽出する。露光パターンデータ群Rは、100個の繰り返しパターンGがx方向とy方向のマトリックスに配列されている。
【0164】
図1中のCPUは、繰り返しパターンGを入力し、図3中のステップ71において繰り返しパターンGのマトリクス認識を行い、マトリクス個数gn(x)=10,gn(y)=10と、マトリックスピッチgp(x),gp(y)とを求める。
【0165】
次に、CPU32は、図3中のステップ72において図19に示されるまとめ領域Sに収容可能な最大個数a(x)=4を、図3中のステップ73においてまとめ領域Sの必要個数b(x)=3を求める。
【0166】
CPU32は、図3中のステップ74において判定条件に当てはまらないため均等配置不可能と判断し、候補値c(x)を設定しない。そのため、CPU32は、図3中のステップ75において候補値c(x)が設定されていないため、併合値d(x)=最大個数a(x)=4を設定する。
【0167】
CPU32は、図3中のステップ76においてy方向に対して処理を終了していないため、図3中のステップ72〜75においてy方向のマトリクス個数gn(y)について同様の処理を行い、最大個数a(y)=4、必要個数b(y)=3を求める。更に、CPU32は、ステップ74において判定条件に当てはまらないため均等配置不可能であると判断して候補値c(y)を設定しない。そのため、CPU32は、ステップ75において候補値c(y)が設定されていないため、併合値d(y)=最大値a(y)=4を設定する。
【0168】
次に、図3中のステップ77において、図1中のCPU32はまとめ情報を作成する。この時、図3中のステップ74において候補値c(x),c(y)は共に設定されていないので、図1中のCPU32は、図4中のステップ101及び図5中のステップ103の判定によりステップ117へ分岐する。そして、図5中のステップ117において、図1中のCPU32は、図8中のまとめテーブル62の種類数65にまとめ領域Sの種類数「4」を格納する。
【0169】
次に、図5中のステップ118において、図1中のCPU32は、1種類目のまとめテーブル62a(図20参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=4,d(y)=4であるため、CPU32は、まとめテーブル62aのまとめ個数mn(x)=d(x)=4,mn(y)=d(y)=4を設定する。
【0170】
更に、図5中のステップ119において、図1中のCPU32は、1種類目の配置テーブル63(図20参照)を作成する。この時、繰り返しパターンGの繰り返し個数gn(x)=10,gn(y)=10、併合値d(x)=4,d(y)=4であるため、まとめ領域Sのx方向の繰り返し個数sn(x)=gn(x)÷d(x)=10÷4=2(商)、y方向の繰り返し個数sn(y)=gn(y)÷d(y)=10÷4=2(商)となる。また、まとめ領域Sのx方向の繰り返しピッチsp(x)=gp(x)×d(x)=gp(x)×4、y方向の繰り返しピッチsp(y)=gp(y)×d(y)=gp(y)×4となる。
【0171】
次に、図5中のステップ120において、図1中のCPU32は、2種類目のまとめテーブル62b(図20参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=4,d(y)=4であるため、CPU32は、まとめテーブル62bのx方向のまとめ個数mn(x)=2(繰り返し個数gn(x)÷併合値d(x)=10÷4の余り)を設定する。更に、CPU32は、y方向のまとめ個数mn(y)=併合値d(y)=4を設定する。
【0172】
更に、図5中のステップ121において、図1中のCPU32は、2種類目の配置テーブル63(図20参照)を作成する。この時、2種類目のまとめ領域Sには余りの繰り返しパターンGが格納されx方向の繰り返し配置が無いので、繰り返し個数sn(x)=1となる。一方、繰り返しパターンGの繰り返し個数gn(y)=10、併合値d(y)=4であるため、まとめ領域Sのy方向の繰り返し個数sn(y)=2(繰り返し個数gn(y)÷併合値d(y)=10÷4の余り)となる。
【0173】
また、2種類目のまとめ領域Sには余りの繰り返しパターンGが格納されx方向の繰り返し配置は無いので、繰り返しピッチsp(x)=0となる。一方、まとめ領域Sのy方向の繰り返しピッチsp(y)=gp(y)×d(y)=gp(y)×4となる。
【0174】
次に、図5中のステップ122において、図1中のCPU32は、3種類目のまとめテーブル62c(図20参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=a(x)=4,d(y)=a(y)=4であるため、CPU32は、まとめテーブル62cのまとめ個数mn(x)=d(x)=4,mn(y)=2(繰り返し個数gn(y)÷併合値d(y)=10÷4の余り)を設定する。
【0175】
更に、図5中のステップ123において、図1中のCPU32は、3種類目の配置テーブル63(図20参照)を作成する。この時、繰り返しパターンGの繰り返し個数gn(x)=10、併合値d(x)=4であるため、まとめ領域Sのx方向の繰り返し個数sn(x)=gn(x)÷d(x)=10÷4=2(商)となる。一方、3種類目のまとめ領域Sにはy方向の余りの繰り返しパターンGが格納されy方向の繰り返し配置がないので、繰り返し個数sn(y)=1となる。
【0176】
また、まとめ領域Sのx方向の繰り返しピッチsp(x)=gp(x)×d(x)=gp(x)×4となる。一方、3種類目のまとめ領域Sにはy方向の余りの繰り返しパターンGが格納されy方向の繰り返し配置は無いので、繰り返しピッチsp(y)=0となる。
【0177】
更に次に、図5中のステップ124において、図1中のCPU32は、4種類目のまとめテーブル62d(図20参照)を作成する。まとめ領域Sにまとめ直す繰り返しパターンGの併合値d(x)=a(x)=4,d(y)=a(y)=4であるため、CPU32は、まとめテーブル62dのまとめ個数mn(x)=2(繰り返し個数gn(x)÷併合値d(x)=10÷4の余り)を、まとめ個数mn(y)=2(繰り返し個数gn(y)÷併合値d(y)=10÷4の余り)設定する。
【0178】
次に、図5中のステップ125において、図1中のCPU32は、4種類目の配置テーブル63(図20参照)を作成する。この時、3種類目のまとめ領域Sにはx方向及びy方向の余りの繰り返しパターンGが格納されx,y方向共に繰り返し配置がないので、繰り返し個数sn(x)=1,sn(y)=1となる。また、3種類目のまとめ領域Sにはx方向及びy方向の余りの繰り返しパターンGが格納されx,y方向共に繰り返し配置は無いので、繰り返しピッチsp(x)=0,sp(y)=0となる。
【0179】
その結果、図20に示すように、各値が格納された4種類のまとめテーブル62a〜62dと、配置テーブル63とにより図19中の露光パターンデータ群Rのまとめ情報テーブル61が構成される。従って、図21に示すように、繰り返し個数mn(x)×mn(y)=4×4のマトリックスの繰り返しパターンGよりなる1種類目のまとめ領域Saと、繰り返し個数mn(x)×mn(y)=2×4のマトリックスの繰り返しパターンGよりなる2種類目のまとめ領域Sbと、繰り返し個数mn(x)×mn(y)=4×2のマトリックスの繰り返しパターンGよりなる3種類目のまとめ領域Scと、繰り返し個数mn(x)×mn(y)=2×2のマトリックスの繰り返しパターンGよりなる4種類目のまとめ領域Sdとが構成される。そして、露光パターンデータ群Rは、4個の1種類目のまとめ領域Sa、2個の2種類目のまとめ領域Sb、2個の3種類目のまとめ領域Sc、及び、1個の4種類目のまとめ領域Sdにより露光される。
【0180】
そして、図3中のステップ78において、図1中のCPU32は、作成したまとめ情報テーブルに基づいて、ステップ71にて入力した100個の繰り返しパターンGの配置データを9個のまとめ領域S(4個のまとめ領域Sa、2個のままとめ領域Sb、2個のまとめ領域Sc、及び、1個のまとめ領域Sd)の配置データに置き換える。更に、CPU32は、図3中のステップ79〜81において基の繰り返し露光パターンデータをまとめ情報テーブル61に基づいて展開し、新たな繰り返し露光パターンデータとして出力する。この結果、繰り返しパターンデータの配置数は、100個から9個に減少する。
【0181】
以上記述したように、本実施の形態によれば、以下の効果を奏する。
○半導体集積回路の設計データから繰り返し性のある露光パターンデータを露光パターンデータ群として抽出するとともに、設計データを変換した仮露光データを作成する。露光パターンデータ群を構成する繰り返し露光パターンデータを所定のまとめ領域にまとめ直すまとめ情報テーブルを作成する。そして、作成したまとめ情報テーブルに基づいて、仮露光パターンデータをまとめなおした正式な露光データを作成するようにした。その結果、繰り返し露光パターンデータを所定のまとめ領域にまとめ直した分、露光データのデータ量を少なくすることができる。
【0182】
○データファイル45に格納された正式な露光データは、露光媒体としてのウェハ19を露光する場合に利用され、繰り返しパターンデータGは、まとめ領域S毎に露光される。即ち、その時のまとめ領域S内にまとめ直された繰り返しパターンデータGが露光される。そして、まとめ領域Sの大きさは、図23に示される半導体チップ20のサブフィールド22の大きさに設定されている。従って、まとめ領域S内にまとめ直された繰り返しパターンGは、図22におけるEB露光装置10の第3電磁偏向器17の制御のみにより偏光される電子ビームによって露光され、第2偏向器16およびステージ18は制御されない。その結果、第2電磁偏向器16を制御する回数が従来に比べて減少し、第2電磁偏向器16が制御されなくなった分だけ、ビーム移動時間が少なくなる。更に、まとめ領域S内の繰り返しパターンGが第3電磁偏向器17により露光される間、第2電磁偏向器16及びステージ18は制御されないので、位置合わせ誤差の発生が防止されれ、露光精度が向上する。
【0183】
尚、本発明は前記実施の形態の他、以下の態様で実施してもよい。
上記実施形態では、まとめ領域Sの大きさを図23に示される半導体チップ20のサブフィールド22の大きさに設定したが、適宜変更して実施してもよい。例えば、まとめ領域Sの大きさをサブフィールド22を更に複数に分割した1つの大きさ、複数のサブフィールド22をまとめた大きさ、フィールド21の大きさ等に設定して実施しても良い。
【0184】
上記実施形態では、図3中のステップ72〜76のループにおいて先ずx方向に対する併合値d(x)等を求め、次にy方向に対する併合値d(y)等を求める用にしたが、ステップ72〜75においてx方向とy方向の各値をそれぞれ求め、ステップ76を省略して実施してもよい。
【0185】
上記実施形態において、ブロックパターンデータ51を格納するデータファイル45と、ブロック配置データ61を格納するデータファイル46をメモリ33上に設けたが、データファイル45,46をそれぞれ磁気ディスク34上に設けて実施してもよい。
【0186】
上記実施形態では、露光媒体として半導体ウェハ19にLSIの設計パターンを露光する場合について説明したが、露光媒体としてはウェハ以外の物でもよく、例えば、LCDやPDP等のパネルにパターンを露光する場合に用いてもよい。
【0187】
上記実施形態のプログラムを記憶した記憶媒体は、コンピュータソフトウエアを記録できるものならどのようなものでもよい。具体的には、半導体メモリ、フロッピ−デイスク(FD)、ハードディスク(HD)、光ディスク(CD−ROM)、光磁気ディスク(MO,MD)、相変化ディスク(PD)、磁気テープ等を含むものである。
【0188】
【発明の効果】
以上詳述したように、請求項1乃至に記載の発明によれば、繰り返しの多い露光パターンデータのデータ量を少なくすることが可能な露光データ生成方法を提供することができる。
【図面の簡単な説明】
【図1】 一実施形態の露光データ作成装置の概略構成図。
【図2】 一実施形態の露光データ作成処理のフローチャート。
【図3】 一実施形態のまとめ処理のフローチャート。
【図4】 一実施形態のまとめ情報テーブル作成処理のフローチャート。
【図5】 一実施形態のまとめ情報テーブル作成処理のフローチャート。
【図6】 繰り返し露光領域とまとめ領域との関係を示す説明図。
【図7】 繰り返しパターンのまとめ方を示す説明図。
【図8】 まとめ情報テーブルの概略構成図。
【図9】 (a)(b)は繰り返し露光パターンデータの展開を示す説明図。
【図10】 繰り返しパターンと領域を示す説明図。
【図11】 繰り返しパターンのまとめ情報テーブルを示す説明図。
【図12】 生成される露光パターンデータと描画状態を示す説明図。
【図13】 繰り返しパターンと領域を示す説明図。
【図14】 繰り返しパターンのまとめ情報テーブルを示す説明図。
【図15】 生成される露光パターンデータと描画状態を示す説明図。
【図16】 繰り返しパターンと領域を示す説明図。
【図17】 繰り返しパターンのまとめ情報テーブルを示す説明図。
【図18】 生成される露光パターンデータと描画状態を示す説明図。
【図19】 繰り返しパターンと領域を示す説明図。
【図20】 繰り返しパターンのまとめ情報テーブルを示す説明図。
【図21】 生成される露光パターンデータと描画状態を示す説明図。
【図22】 電子ビーム露光装置の概略構成図。
【図23】 半導体チップの概略平面図。
【符号の説明】
52 繰り返しデータ抽出手段
54 仮露光データ作成手段
55 まとめ手段
57 露光データ構築手段

Claims (5)

  1. 半導体集積回路を露光媒体上に露光するために用いられる露光データを作成する露光データ作成方法であって、
    前記半導体集積回路の設計データから繰り返し性のある露光パターンデータを露光パターンデータ群として抽出するステップと、
    前記露光パターンデータ群を構成する繰り返し露光パターンデータを所定のまとめ領域に複数まとめ直すまとめ情報テーブルを作成するステップと、
    前記まとめ情報テーブルに基づいて前記設計データをまとめ直した露光データを作成するステップと
    を備え、
    前記まとめ情報を作成するステップは、
    前記露光パターンデータ群を認識し、前記露光パターンデータ群を構成する露光パターンデータの繰り返し個数と繰り返しピッチとを求める第1のステップと、
    前記露光パターンデータの繰り返し個数と繰り返しピッチとに基づいて、前記まとめ領域に格納する基の露光パターンデータのまとめ情報テーブルを求める第2のステップと、
    前記まとめ情報テーブルに基づいて、前記露光パターンデータ群の配置データを再作成する第3のステップと、
    前記まとめ情報テーブルに基づいて、前記露光パターデータのパターンデータを再作成する第4のステップと
    から構成され、
    前記第2のステップは、
    前記まとめ領域に対して前記繰り返し露光パターンデータを格納する最大個数を求めるステップと、
    前記露光パターンデータ群の全ての繰り返し露光パターンデータを格納するのに必要なまとめ領域の個数を求めるステップと、
    前記まとめ領域に対して繰り返し露光パターンデータを均等配置できるか否かを判断し、その判断結果に基づいて均等配置できる場合に前記まとめ領域に繰り返しパターンデータを均等に配置する個数を候補値に設定するステップと、
    前記候補値に基づいて、該候補値が設定されていない場合には前記最大個数をまとめ領域に対する前記繰り返しパターンデータの併合値に設定し、前記候補値が設定されている場合には該候補値を併合値に設定するステップと、
    前記候補値と併合値とに基づいて前記まとめ情報テーブルを作成するステップと
    から構成された露光データ作成方法。
  2. 請求項1に記載の露光データ作成方法において、
    前記まとめ情報を作成するステップは、
    前記まとめ領域に対するx方向とy方向の候補値及び併合値に基づいて前記まとめテーブル及び配置テーブルを作成するものであり、
    前記全てのまとめ領域に対して均等配置できる場合には1種類の前記まとめテーブルと配置テーブルとを作成するステップと、
    前記x方向またはy方向に対して均等配置できる場合にはそれぞれ2種類のまとめテーブルと配置テーブルとを作成するステップと、
    前記x方向及びy方向に対して均等配置できない場合には4種類のまとめテーブルと配置テーブルとを作成するステップと
    から構成された露光データ作成方法。
  3. 請求項1又は請求項2に記載の露光データ作成方法において、
    前記第4のステップは、
    基の露光パターンデータが単独表現か、複数の基本パターンデータを繰り返すマトリックス表現かを判断するステップと、
    前記判断結果に基づいて、露光パターンデータが単独表現の場合に露光データの再作成を行うステップと、
    前記判断結果に基づいて、基の露光パターンデータがマトリックス表現の場合に、該基の露光パターンデータを展開して露光データの再作成を行うステップと
    から構成された露光データ作成方法。
  4. 請求項3に記載の露光データ作成方法において、
    前記露光パターンデータを展開するときに、前記基の露光パターンデータの繰り返し個数と、該露光パターンデータを構成する基本パターンデータのマトリックス個数とを比較し、少ない方を展開して新たな繰り返し露光パターンデータを作成するようにした露光データ作成方法。
  5. 請求項1及至4のうちのいずれか1項に記載の露光データ作成方法において、
    前記露光データは、露光装置に備えられ露光媒体を移動させるステージと、前記露光媒体を露光するビームを該露光媒体の所望位置に移動させる偏向器とを制御するために利用されるものであり、
    前記まとめ領域は、前記露光装置のビーム移動させる偏向器に対応した領域に設定された露光データ作成方法。
JP05339697A 1997-03-07 1997-03-07 露光データ作成方法 Expired - Lifetime JP3999301B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05339697A JP3999301B2 (ja) 1997-03-07 1997-03-07 露光データ作成方法
US08/963,587 US5995878A (en) 1997-03-07 1997-11-04 Method and apparatus for generating exposure data of semiconductor integrated circuit
KR1019970078530A KR100291494B1 (ko) 1997-03-07 1997-12-30 노광데이타작성방법과노광데이타작성장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05339697A JP3999301B2 (ja) 1997-03-07 1997-03-07 露光データ作成方法

Publications (2)

Publication Number Publication Date
JPH10256113A JPH10256113A (ja) 1998-09-25
JP3999301B2 true JP3999301B2 (ja) 2007-10-31

Family

ID=12941675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05339697A Expired - Lifetime JP3999301B2 (ja) 1997-03-07 1997-03-07 露光データ作成方法

Country Status (3)

Country Link
US (1) US5995878A (ja)
JP (1) JP3999301B2 (ja)
KR (1) KR100291494B1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278124B1 (en) * 1998-03-05 2001-08-21 Dupont Photomasks, Inc Electron beam blanking method and system for electron beam lithographic processing
US6272398B1 (en) * 1998-09-21 2001-08-07 Siebolt Hettinga Processor-based process control system with intuitive programming capabilities
KR100336525B1 (ko) * 2000-08-07 2002-05-11 윤종용 반도체 장치의 제조를 위한 노광 방법
US6812474B2 (en) * 2001-07-13 2004-11-02 Applied Materials, Inc. Pattern generation method and apparatus using cached cells of hierarchical data
JP2003100603A (ja) * 2001-09-25 2003-04-04 Canon Inc 露光装置及びその制御方法並びにデバイスの製造方法
JP4989158B2 (ja) * 2005-09-07 2012-08-01 株式会社ニューフレアテクノロジー 荷電粒子線描画データの作成方法及び荷電粒子線描画データの変換方法
KR100660045B1 (ko) * 2005-10-13 2006-12-22 엘지전자 주식회사 마스크리스 노광기용 패턴정보 생성방법 및 노광방법
JP4778776B2 (ja) * 2005-11-01 2011-09-21 株式会社ニューフレアテクノロジー 荷電粒子線描画データの作成方法
JP4778777B2 (ja) * 2005-11-01 2011-09-21 株式会社ニューフレアテクノロジー 荷電粒子線描画データの作成方法
JP5068515B2 (ja) * 2006-11-22 2012-11-07 株式会社ニューフレアテクノロジー 描画データの作成方法、描画データの変換方法及び荷電粒子線描画方法
CN101252101B (zh) * 2008-01-17 2010-08-11 中电华清微电子工程中心有限公司 采用曝光场拼接技术制作超大功率智能器件的方法
US7941780B2 (en) * 2008-04-18 2011-05-10 International Business Machines Corporation Intersect area based ground rule for semiconductor design
JP5357530B2 (ja) * 2008-12-16 2013-12-04 株式会社ニューフレアテクノロジー 描画用データの処理方法、描画方法、及び描画装置
JP5498105B2 (ja) * 2009-09-15 2014-05-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP5563385B2 (ja) 2010-06-23 2014-07-30 ラピスセミコンダクタ株式会社 レイアウトパタン生成装置及びレイアウトパタン生成方法
US9141730B2 (en) * 2011-09-12 2015-09-22 Applied Materials Israel, Ltd. Method of generating a recipe for a manufacturing tool and system thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046012A (en) * 1988-06-17 1991-09-03 Fujitsu Limited Pattern data processing method
US5253182A (en) * 1990-02-20 1993-10-12 Hitachi, Ltd. Method of and apparatus for converting design pattern data to exposure data
JP3043031B2 (ja) * 1990-06-01 2000-05-22 富士通株式会社 露光データ作成方法,パターン露光装置及びパターン露光方法
JP3118048B2 (ja) * 1991-12-27 2000-12-18 富士通株式会社 ブロック露光用パターン抽出方法
US5590048A (en) * 1992-06-05 1996-12-31 Fujitsu Limited Block exposure pattern data extracting system and method for charged particle beam exposure
EP0608657A1 (en) * 1993-01-29 1994-08-03 International Business Machines Corporation Apparatus and method for preparing shape data for proximity correction
US5847959A (en) * 1997-01-28 1998-12-08 Etec Systems, Inc. Method and apparatus for run-time correction of proximity effects in pattern generation

Also Published As

Publication number Publication date
US5995878A (en) 1999-11-30
KR100291494B1 (ko) 2001-07-12
KR19980079561A (ko) 1998-11-25
JPH10256113A (ja) 1998-09-25

Similar Documents

Publication Publication Date Title
JP3999301B2 (ja) 露光データ作成方法
DE60116769T2 (de) Verfahren und system zur hierarchischen metallenden-, einschliessungs- und belichtungsprüfung
US8525135B2 (en) System and method of electron beam writing
JP3983990B2 (ja) 回路パターンの設計方法と荷電粒子ビーム露光方法及び記録媒体
KR100311594B1 (ko) 노광데이터작성방법,노광데이터작성장치및기록매체
US7269819B2 (en) Method and apparatus for generating exposure data
JP3886695B2 (ja) 露光パターンデータ生成方法、露光パターンデータ生成装置、半導体装置の製造方法、及びフォトマスクの製造方法
US6574789B1 (en) Exposing method and apparatus for semiconductor integrated circuits
US6200710B1 (en) Methods for producing segmented reticles
US5917579A (en) Block exposure of semiconductor wafer
Hu et al. Pattern sensitive placement for manufacturability
KR20010051381A (ko) 부분 일괄 전사 노광용 마스크 데이터 작성 방법, 및 노광방법
JP3923919B2 (ja) 露光データ生成方法及び露光データ生成プログラム
US6189129B1 (en) Figure operation of layout for high speed processing
US20010037487A1 (en) Method of extracting characters and computer-readable recording medium
JPH09289252A (ja) 図形処理方法および装置
JP4745278B2 (ja) 回路パターンの設計方法及び回路パターンの設計システム
JP3353766B2 (ja) パターンデータ処理方法及びプログラムを記憶した記憶媒体
JPH0513313A (ja) 露光装置
JP2005159198A (ja) 電子ビーム露光用データ作成システム、電子ビーム露光用データ作成方法、電子ビーム露光用データ作成プログラム
JP5068549B2 (ja) 描画データの作成方法及びレイアウトデータファイルの作成方法
JP2534383B2 (ja) 露光デ―タ処理方法
JPS6381819A (ja) 電子ビ−ム露光の制御方式
JP3408010B2 (ja) 荷電粒子ビーム露光装置用パターン展開方法及び装置
JP2932792B2 (ja) 回路分割装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term