JP3985445B2 - 電界放射型電子源の製造方法 - Google Patents

電界放射型電子源の製造方法 Download PDF

Info

Publication number
JP3985445B2
JP3985445B2 JP2000326273A JP2000326273A JP3985445B2 JP 3985445 B2 JP3985445 B2 JP 3985445B2 JP 2000326273 A JP2000326273 A JP 2000326273A JP 2000326273 A JP2000326273 A JP 2000326273A JP 3985445 B2 JP3985445 B2 JP 3985445B2
Authority
JP
Japan
Prior art keywords
substrate
layer
electrode
lower electrode
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000326273A
Other languages
English (en)
Other versions
JP2002134008A (ja
Inventor
由明 本多
浩一 相澤
卓哉 菰田
勉 櫟原
祥文 渡部
崇 幡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000326273A priority Critical patent/JP3985445B2/ja
Publication of JP2002134008A publication Critical patent/JP2002134008A/ja
Application granted granted Critical
Publication of JP3985445B2 publication Critical patent/JP3985445B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電界放射により電子線を放射するようにした電界放射型電子源の製造方法に関するものである。
【0002】
【従来の技術】
従来より、電界放射型電子源として、例えば米国特許3665241号などに開示されているいわゆるスピント(Spindt)型電極と呼ばれるものがある。このスピント型電極は、微小な三角錐状のエミッタチップを多数配置した基板と、エミッタチップの先端部を露出させる放射孔を有するとともにエミッタチップに対して絶縁された形で配置されたゲート層とを備え、真空中にてエミッタチップをゲート層に対して負極として高電圧を印加することにより、エミッタチップの先端から放射孔を通して電子線を放射するものである。
【0003】
しかしながら、スピント型電極は、製造プロセスが複雑であるとともに、多数の三角錐状のエミッタチップを精度良く構成することが難しく、例えば平面発光装置やディスプレイなどへ応用する場合に大面積化が難しいという問題があった。また、スピント型電極は、電界がエミッタチップの先端に集中するので、エミッタチップの先端の周りの真空度が低くて残留ガスが存在するような場合、放射された電子によって残留ガスがプラスイオンにイオン化され、プラスイオンがエミッタチップの先端に衝突するから、エミッタチップの先端がダメージ(例えば、イオン衝撃による損傷)を受け、放射される電子の電流密度や効率などが不安定になったり、エミッタチップの寿命が短くなってしまうという問題が生じる。したがって、スピント型電極では、この種の問題の発生を防ぐために、高真空(約10-5Pa〜約10-6Pa)で使用する必要があり、コストが高くなるとともに、取扱いが面倒になるという不具合があった。
【0004】
この種の不具合を改善するために、MIM(Metal Insulator Metal)方式やMOS(Metal Oxide Semiconductor)型の電界放射型電子源が提案されている。前者は金属−絶縁膜−金属、後者は金属−酸化膜−半導体の積層構造を有する平面型の電界放射型電子源である。しかしながら、このタイプの電界放射型電子源において電子の放射効率を高めるためには(多くの電子を放射させるためには)、上記絶縁膜や上記酸化膜の膜厚を薄くする必要があるが、上記絶縁膜や上記酸化膜の膜厚を薄くしすぎると、上記積層構造の上下の電極間に電圧を印加した時に絶縁破壊を起こす恐れがあり、このような絶縁破壊を防止するためには上記絶縁膜や上記酸化膜の膜厚の薄膜化に制約があるので、電子の放出効率(引き出し効率)をあまり高くできないという不具合があった。
【0005】
また、近年では、特開平8−250766号公報に開示されているように、シリコン基板などの単結晶の半導体基板を用い、その半導体基板の一表面を陽極酸化することにより多孔質半導体層(ポーラスシリコン層)を形成して、その多孔質半導体層上に金属薄膜を形成し、半導体基板と金属薄膜との間に電圧を印加して電子を放射させるように構成した電界放射型電子源(半導体冷電子放出素子)が提案されている。
【0006】
しかしながら、上述の特開平8−250766号公報に記載の電界放射型電子源では、基板が半導体基板に限られるので、大面積化やコストダウン化が難しいという不具合がある。また、特開平8−250766号公報に記載の電界放射型電子源では電子放出時にいわゆるポッピング現象が生じやすく、電子放出量にむらが起こりやすいので、平面発光装置やディスプレイなどに応用すると、発光むらができてしまうという不具合がある。
【0007】
そこで、本願発明者らは、特願平10−272340号、特願平10−272342号において、多孔質多結晶半導体層(例えば、多孔質化された多結晶シリコン層)を急速熱酸化(RTO)技術によって急速熱酸化することによって、導電性基板と金属薄膜(表面電極)との間に介在し導電性基板から注入された電子がドリフトする強電界ドリフト層を形成した電界放射型電子源を提案した。この電界放射型電子源10’は、例えば、図3に示すように、導電性基板たるn形シリコン基板1の主表面(一表面)側に酸化した多孔質多結晶シリコン層よりなる強電界ドリフト層6が形成され、強電界ドリフト層6上に金属薄膜よりなる表面電極7が形成され、n形シリコン基板1の裏面にオーミック電極2が形成されている。なお、強電界ドリフト層6の厚さは例えば1.5μmに設定されている。
【0008】
図3に示す構成の電界放射型電子源10’では、表面電極7を真空中に配置するとともに図4に示すように表面電極7に対向してコレクタ電極12を配置し、表面電極7をn形シリコン基板1(オーミック電極2)に対して正極として直流電圧Vpsを印加するとともに、コレクタ電極12を表面電極7に対して正極として直流電圧Vcを印加することにより、n形シリコン基板1から注入された電子が強電界ドリフト層6をドリフトし表面電極7を通して放出される(なお、図4中の一点鎖線は表面電極7を通して放出された電子e-の流れを示す)。したがって、表面電極7としては、仕事関数の小さな材料を用いることが望ましい。ここにおいて、表面電極7とオーミック電極2との間に流れる電流をダイオード電流Ipsと称し、コレクタ電極12と表面電極7との間に流れる電流を放出電子電流Ieと称し、ダイオード電流Ipsに対する放出電子電流Ieが大きい(Ie/Ipsが大きい)ほど電子放出効率が高くなる。なお、この電界放射型電子源10’では、表面電極7とオーミック電極2との間に印加する直流電圧Vpsを10〜20V程度の低電圧としても電子を放出させることができる。
【0009】
この電界放射型電子源10’では、電子放出特性の真空度依存性が小さく且つ電子放出時にポッピング現象が発生せず安定して電子を高い電子放出効率で放出することができる。ここにおいて、強電界ドリフト層6は、図5に示すように、少なくとも、導電性基板たるn形シリコン基板1の主表面側に列設された柱状の多結晶シリコンのグレイン51と、グレイン51の表面に形成された薄いシリコン酸化膜52と、グレイン51間に介在するナノメータオーダの微結晶シリコン層63と、微結晶シリコン層63の表面に形成され当該微結晶シリコン層63の結晶粒径よりも小さな膜厚の絶縁膜であるシリコン酸化膜64とから構成されると考えられる。すなわち、強電界ドリフト層6は、各グレインの表面が多孔質化し各グレインの中心部分では結晶状態が維持されていると考えられる。したがって、強電界ドリフト層6に印加された電界はほとんどシリコン酸化膜64にかかるから、注入された電子はシリコン酸化膜64にかかっている強電界により加速され多結晶シリコンのグレイン51間を表面に向かって図5中の矢印Aの向きへ(図5中の上方向へ向かって)ドリフトするので、電子放出効率を向上させることができる。ここに、強電界ドリフト層6の表面に到達した電子はホットエレクトロンであると考えられ、表面電極7を容易にトンネルし真空中に放出される。なお、表面電極7の膜厚は10nmないし15nm程度に設定されている。
【0010】
ところで、上記導電性基板としてn形シリコン基板1などの半導体基板の代わりに、ガラス基板などの絶縁性基板上に導電性層よりなる下部電極を形成したものを使用すれば、電子源の大面積化および低コスト化が可能になる。
【0011】
図6に、ガラス基板よりなる絶縁性基板11と該絶縁性基板11の一表面上に形成した下部電極8’とで構成した導電性基板を用いた電界放射型電子源10”を示す。すなわち、この電界放射型電子源10”は、図6に示すように、絶縁性基板11の一表面上に金属薄膜(例えば、タングステン薄膜)よりなる下部電極8’が形成され、下部電極8’上に強電界ドリフト層6が形成され、強電界ドリフト層6上に金属薄膜(例えば、金薄膜)よりなる表面電極7が形成されている。ここに、強電界ドリフト層6は、下部電極8’上にノンドープの多結晶シリコン層を堆積させた後に、該多結晶シリコン層を陽極酸化処理にて多孔質化し、さらに急速加熱法によって酸化若しくは窒化することにより形成されている。なお、下部電極8’の膜厚は例えば200nm程度に設定されている。
【0012】
この電界放射型電子源10”では、表面電極7を真空中に配置するとともに図7に示すように表面電極7に対向してコレクタ電極12を配置し、表面電極7を下部電極8’に対して正極として直流電圧Vpsを印加するとともに、コレクタ電極12を表面電極7に対して正極として直流電圧Vcを印加することにより、下部電極8’から注入された電子が強電界ドリフト層6をドリフトし表面電極7を通して放出される(なお、図7中の一点鎖線は表面電極7を通して放出された電子e-の流れを示す)。ここにおいて、表面電極7と下部電極8’との間に流れる電流をダイオード電流Ipsと称し、コレクタ電極12と表面電極7との間に流れる電流を放出電子電流Ieと称し、ダイオード電流Ipsに対する放出電子電流Ieが大きい(Ie/Ipsが大きい)ほど電子放出効率が高くなる。なお、この電界放射型電子源10”では、表面電極7と下部電極8’との間に印加する直流電圧Vpsを10〜20V程度の低電圧としても電子を放出させることができる。
【0013】
また、図6に示した電界放射型電子源10”をディスプレイの電子源とし応用する場合には、例えば図8に示す構成を採用すればよい。
【0014】
図8に示すディスプレイは、電界放射型電子源10に対向してガラス基板14を配設し、ガラス基板14における電界放射型電子源10との対向面にコレクタ電極12および蛍光体層15を設けてある。ここに、蛍光体層15はコレクタ電極12の表面に塗布されており、電界放射型電子源10から放射される電子により可視光を発光する。また、ガラス基板14は図示しないスペーサによって電界放射型電子源10と離間させてあり、ガラス基板14と電界放射型電子源10との間に形成される気密空間を真空にしてある。
【0015】
図8に示した電界放射型電子源10は、ガラス基板よりなる絶縁性基板11と、絶縁性基板11の一表面上に列設された複数の下部電極8”と、下部電極8”にそれぞれ重なる形で形成された複数の酸化した多孔質多結晶シリコン層よりなるドリフト部6aおよびドリフト部6aの間を埋める多結晶シリコン層よりなる分離部6bを有する強電界ドリフト層6と、強電界ドリフト層6の上でドリフト部6aおよび分離部6bに跨って下部電極8”に交差する方向に列設された複数の表面電極7とを備えている。
【0016】
この電界放射型電子源10では、絶縁性基板11の一表面上に列設された複数の下部電極8”と、強電界ドリフト層6上に列設された複数の表面電極7との間に強電界ドリフト層6のドリフト部6aが挟まれているから、表面電極7と下部電極8”との組を適宜選択して選択した組間に電圧を印加することにより、選択された表面電極7と下部電極8”との交点に相当する部位のドリフト部6aにのみ強電界が作用して電子が放出される。つまり、表面電極7と下部電極8”とからなる格子の格子点に電子源を配置したことに相当し、電圧を印加する表面電極7と下部電極8”との組を選択することによって所望の格子点から電子を放出させることが可能になる。なお、表面電極7と下部電極8”との間に印加する電圧は10〜20V程度になっている。
【0017】
以下、図8に示す構成の電界放射型電子源10の製造方法について図9を参照しながら簡単に説明する。
【0018】
まず、絶縁性基板11の一表面(図9(a)における上面)上に金属薄膜(例えば、タングステン薄膜)からなる導電性層18を例えばスパッタ法によって成膜し、導電性層18上にレジスト層19を塗布形成し、当該レジスト層19のうち下部電極8に対応した部位が残るようにレジスト層19へ溝19aを開口することにより、図9(a)に示す構造が得られる。
【0019】
次に、レジスト層19をマスクとしてドライエッチングによって導電性層18をパターニングすることによりそれぞれ導電性層18の一部からなる断面長方形状の下部電極8”を形成した後、レジスト層19を除去することにより、図9(b)に示す構造が得られる。
【0020】
その後、絶縁性基板11の上記一表面側の全面に、絶縁性基板11および下部電極8”を覆うように所定膜厚(例えば、1,5μm)のノンドープの多結晶シリコン層3を例えばプラズマCVD法によって成膜することにより、図9(c)に示す構造が得られる。
【0021】
次に、多結晶シリコン層3のうち下部電極8”に重なる部位を陽極酸化処理にて多孔質化することにより強電界ドリフト層6におけるドリフト部6aとなる部位のパターンを形成し、その後、ランプアニール装置を用い、乾燥酸素雰囲気中で急速熱酸化することによって酸化した多孔質多結晶シリコン層よりなるドリフト部6aが形成され、図9(d)に示す構造が得られる。
【0022】
続いて、強電界ドリフト層6上に所定膜厚(例えば、15nm)の表面電極7を形成することによって図9(e)に示す構成の電界放射型電子源10が得られる。
【0023】
【発明が解決しようとする課題】
ところで、上述のように図8に示した構成の電界放射型電子源10は、絶縁性基板11の一表面上にドライエッチングによって断面長方形状の下部電極8”をパターニングした後に、絶縁性基板11の一表面側の全面に多結晶シリコン層3を堆積させ、多結晶シリコン層3のうち下部電極8”上の部位を陽極酸化処理によって多孔質化し、さらに酸化を施してドリフト部6aを形成しているものである。ここにおいて、本願発明者らはドリフト部6aの厚さを薄くするにつれて単位面積当たりの電子放出量が多くなり電子放出効率が高くなることを実験的に確認している。しかしながら、図8に示した構成の電界放射型電子源10では、絶縁性基板11の一表面上に形成された下部電極8”の断面形状が長方形状であって、多結晶シリコン層3の膜厚を薄くするほど多結晶シリコン層3の表面形状が下部電極8”の形状を反映しやすくなるから、図10に示すようにドリフト部6aの表面と分離部6bの表面との間に急峻な段差が形成され、段差部分での表面電極7の被覆率が低下して表面電極7が断線したり、表面電極7と下部電極8”との間の距離が短くなった部分で表面電極7と下部電極8”とが短絡してしまう恐れがあった。
【0024】
本発明は上記事由に鑑みて為されたものであり、その目的は、大面積化が可能で、電子放出量が高く且つ表面電極の断線や表面電極と下部電極との間の短絡を防止することが可能な電界放射型電子源を提供することにある。
【0025】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、基板と、基板の一表面上に列設された複数の下部電極と、各下部電極の表面側に各下部電極にそれぞれ重なる形で形成された複数の酸化若しくは窒化した多孔質半導体層よりなるドリフト部およびドリフト部の間を埋める分離部を有する強電界ドリフト層と、強電界ドリフト層上において下部電極に交差する方向に列設された複数の表面電極とを備え、表面電極を下部電極に対して正極として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、下部電極の形成にあたっては、基板の前記一表面上の全面にレジスト層を形成した後、レジスト層へ下部電極のパターンに対応し且つ基板に近づくほど開口幅が徐々に大きくなるテーパ状の開口断面の溝を開口し、次に、基板の前記一表面側の全面に導電性層を成膜し、その後、リフトオフによりレジスト層およびレジスト層上の導電性層を除去することにより基板の前記一表面上にパターニングされた導電性層よりなる断面台形状の下部電極を形成することを特徴とし、基板の前記一表面上に形成したレジスト層へ下部電極のパターンに対応し且つ基板に近づくほど開口幅が徐々に大きくなるテーパ状の開口断面の溝を開口し、次に、基板の前記一表面側の全面に導電性層を成膜し、その後、リフトオフによりレジスト層およびレジスト層上の導電性層を除去することにより基板の前記一表面上にパターニングされた導電性層よりなる断面台形状の下部電極を形成しているので、基板としてガラス基板を用いることにより大面積化を図ることができ、しかも強電界ドリフト層の厚さを比較的薄くしても強電界ドリフト層の表面においてドリフト部の表面と分離部の表面との間に急峻な段差が形成されるのを防ぐことができ、表面電極の断線や表面電極と下部電極との間の短絡を防止することができるから、大面積化が可能で、電子放出量が高く且つ表面電極の断線や表面電極と下部電極との間の短絡を防止することが可能な電界放射型電子源を提供することができる。
【0026】
請求項2の発明は、請求項1の発明において、前記導電性層の成膜にあたっては、粒子の飛来する向きと前記基板の向きとを、前記基板の前記一表面上であって前記溝の周壁近傍に粒子が入り込み且つ前記基板の前記一表面上に断面台形状の導電性層が形成されるように時間経過に伴って相対的に変化させるので、真空蒸着法や電子ビーム蒸着法などのように蒸発源が点源に近似できるような成膜法を採用し且つ前記基板を大面積化しても前記基板の前記一表面上に断面台形状の導電性層を形成することができ、下部電極の材料として採用できる材料の選択肢を広げることができる。
【0027】
請求項3の発明は、請求項1の発明において、前記導電性層の成膜にあたっては、前記基板の前記一表面上であって前記溝の周壁近傍に粒子が入り込み且つ前記基板の前記一表面上に断面台形状の導電性層が形成されるようにプラズマを利用した成膜法を用いるので、前記基板を大面積化しても前記基板の前記一表面上に断面台形状の導電性層を形成することができ、請求項2の発明のように粒子の飛来する向きと基板の向きとを時間経過に伴って相対的に変化させる必要がないから、導電性層を成膜する成膜装置の構成が簡単になるとともに成膜装置の故障が少なくなり、結果的に低コスト化を図ることができる。
【0028】
【発明の実施の形態】
本実施形態の電界放射型電子源10の基本構成は図8に示した従来構成と略同じであって、図1(f)および図2に示すように、ガラス基板よりなる絶縁性基板11と、絶縁性基板11の一表面上に列設された複数の下部電極8と、下部電極8にそれぞれ重なる形で形成された複数の酸化した多孔質多結晶シリコン層よりなるドリフト部6aおよびドリフト部6aの間を埋める多結晶シリコン層よりなる分離部6bを有する強電界ドリフト層6と、強電界ドリフト層6の上でドリフト部6aおよび分離部6bに跨って下部電極8に交差(直交)する方向に列設された複数の表面電極7とを備えている。ここにおいて、下部電極8はタングステン薄膜からなる導電性層により構成し、表面電極7は金薄膜からなる導電性薄膜により構成している。また、下部電極8の膜厚は200nm、表面電極7の膜厚は15nmにそれぞれ設定されているが、これらの膜厚は特に限定するものではない。また、強電界ドリフト層6の厚さは1.5μmに設定してあるが、強電界ドリフト層6の厚さも特に限定するものではない。なお、本実施形態では、絶縁性基板11が基板を構成している。
【0029】
本実施形態の電界放射型電子源10では、図8に示した従来構成と同様、絶縁性基板11の一表面上に列設された複数の下部電極8と、強電界ドリフト層6上に列設された複数の表面電極7との間に強電界ドリフト層6のドリフト部6aが挟まれているから、表面電極7と下部電極8との組を適宜選択して選択した組間に電圧を印加することにより、選択された表面電極7と下部電極8との交点に相当する部位のドリフト部6aにのみ強電界が作用して電子が放出される。つまり、表面電極7と下部電極8とからなる格子の格子点に電子源を配置したことに相当し、電圧を印加する表面電極7と下部電極8との組を選択することによって所望の格子点から電子を放出させることが可能になる。なお、表面電極7と下部電極8との間に印加する電圧は10〜20V程度になっている。ここにおいて、各表面電極7は、短冊状に形成され、長手方向の両端部上にそれぞれパッド27が形成されている。また、各下部電極8も、短冊状に形成され、長手方向の両端部上にそれぞれパッド28が形成されている。
【0030】
本実施形態の電界放射型電子源10におけるドリフト部6aは、上述の図5に示した強電界ドリフト層6と同様に、少なくとも、絶縁性基板11の一表面側に列設された柱状の多結晶シリコンのグレイン51と、グレイン51の表面に形成された薄いシリコン酸化膜52と、グレイン51間に介在するナノメータオーダの微結晶シリコン層63と、微結晶シリコン層63の表面に形成され当該微結晶シリコン層63の結晶粒径よりも小さな膜厚の絶縁膜であるシリコン酸化膜64とから構成されると考えられる。
【0031】
なお、本実施形態では、強電界ドリフト層6のドリフト部6aを酸化した多孔質多結晶シリコン層により形成しているが、強電界ドリフト層6のドリフト部6aを窒化した多孔質多結晶シリコン層により形成してもよく、多孔質多結晶シリコン層以外の多孔質半導体層を酸化若しくは窒化したものでもよい。なお、強電界ドリフト層6のドリフト部6aを窒化した多孔質多結晶シリコン層とした場合には図5にて説明した各シリコン酸化膜52,64がいずれもシリコン窒化膜となる。
【0032】
本実施形態においては、表面電極7を構成する導電性薄膜として金薄膜を用いているが、表面電極7の材料は金に限定されるものではなく、例えば、アルミニウム、クロム、タングステン、ニッケル、白金などの仕事関数が小さな材料を用いてもよい。ここに、金の仕事関数は5.10eV、アルミニウムの仕事関数は4.28eV、クロムの仕事関数は4.50eV、タングステンの仕事関数は4.55eV、ニッケルの仕事関数は5.15eV、白金の仕事関数は5.65eVである。また、表面電極7を厚み方向に積層された複数層の薄膜電極層からなる導電性薄膜により構成してもよい。この場合、最上層の薄膜電極層としては、耐酸化性に優れ仕事関数が小さな性質を有する材料を採用し、最下層の薄膜電極層としては、仕事関数が小さく且つ強電界ドリフト層6との密着性が良い性質の材料を採用すればよい。ここに、最下層の薄膜電極層の材料は、最上層の薄膜電極層の材料に比べて強電界ドリフト層6中へ拡散しにくい(つまり、強電界ドリフト層6の材料中での拡散係数が小さい)性質を有していることが望ましい。
【0033】
上述のような仕事関数が小さくかつ強電界ドリフト層6との密着性が良い性質を有する表面電極7を採用することにより、表面電極7が強電界ドリフト層6から剥離するのを防止することができ、表面電極7の断線を防止できるとともに経時安定性が向上し、また、製造時の歩留まりが高くなって低コスト化を図ることができる。
【0034】
また、最上層の薄膜電極層としては例えば金を用い、最下層の薄膜電極層としては、クロムを用いればよいが、最下層の薄膜電極層としてはクロムの代わりに、ニッケル、白金、チタン、ジルコニウム、ロジウム、ハフニウム、イリジウムのいずれかあるいはそれらの酸化物を用いてもよい。最下層の薄膜電極層として、クロム、ニッケル、白金、チタン、ジルコニウム、ロジウム、ハフニウム、イリジウムのいずれかあるいはそれらの酸化物を用いることにより、最下層の薄膜電極層の材料コストを比較的安価にすることができる。
【0035】
また、本実施形態では、下部電極8を構成する導電性層としてタングステン薄膜を用いているが、下部電極8の材料はタングステンに限定されるものではなく、タングステンの代わりに、アルミニウム、ニッケル、コバルト、クロム、ハフニウム、モリブデン、パラジウム、白金、ロジウム、タンタル、チタン、ジルコニウムのいずれかを用いてもよいし、これらの金属の酸化物やこれらの金属のうちの複数種類よりなる合金膜や、これらの金属とSiとの合金(例えば、アルミニウムを主成分としたAi−Si合金)やシリサイド膜を用いてもよい。
【0036】
なお、下部電極8を厚み方向に積層された複数層の導電性膜からなる導電性層により構成してもよい。複数層の導電性膜により導電性層を構成する場合には、例えば最上層の導電性膜としてアルミニウムを用い、最下層の導電性膜としてはアルミニウムに比べて抵抗が小さな銅を用いればよい。
【0037】
以下、本実施形態の電界放射型電子源10の製造方法について図1を参照しながら説明する。
【0038】
まず、絶縁性基板11の一表面(図1(a)における上面)の全面上に所定膜厚(例えば、2μm)のレジスト層20を塗布形成した後、レジスト層20へ下部電極8のパターンに対応し且つ絶縁性基板11に近づくほど開口幅が徐々に大きくなる溝21を開口することにより、図1(a)に示すような構造が得られる。ここにおいて、溝21はいわゆる逆テーパ状の形状に形成されている。なお、本実施形態では、レジスト層20としては、ノボラック樹脂を用いた化学増幅型レジストを採用している。また、絶縁性基板11の上記一表面における開口幅Laは0.6mmに設定してある。
【0039】
次に、絶縁性基板11の上記一表面側の全面に所定膜厚(例えば、200nm)のタングステン薄膜よりなる導電性層18をスパッタ法により成膜(堆積)することにより、図1(b)に示す構造が得られる。ここにおいて、導電性層18の成膜にあたっては、粒子(ここでは、ラジカルやイオンなどの反応粒子)の飛来する向きと絶縁性基板11の向きとを、絶縁性基板11の上記一表面上であって溝21の周壁21b近傍に上記粒子が入り込み且つ絶縁性基板11の上記一表面上に断面台形状の導電性層18が形成されるように時間経過に伴って相対的に変化させている。したがって、絶縁性基板11における溝21の底面のうちレジスト層20の影となる部位上まで導電性層18が堆積され且つ影となる部位上ではレジスト層20と絶縁性基板11との境界に近づくほど導電性層18の膜厚が小さくなる。要するに、下部電極8は幅方向(図1(c)における左右方向)の両端部がいわゆる順テーパ状の形状に形成されている。なお、本実施形態では、上記粒子の飛来する向きと絶縁性基板11の向きとを相対的に変化させるために、絶縁性基板11が載置され陽極となるホルダ上で絶縁性基板11を回転させながら、ホルダをターンテーブルの中心の周りで回転させているが、このように絶縁性基板11を動かす代わりに、陰極となるターゲットを動かすようにしてもよい。
【0040】
上述のように絶縁性基板11の上記一表面側の全面に導電性層18を成膜した後、リフトオフによりレジスト層20およびレジスト層20上の導電性層18を有機溶剤中若しくは酸溶液中で除去することによって絶縁性基板11上にパターニングされた導電性層18からなる断面台形状の下部電極18が形成され、図1(c)に示す構造が得られる。
【0041】
その後、絶縁性基板11の上記一表面側の全面に所定膜厚(例えば、1.5μm)のノンドープの多結晶シリコン層3を例えばプラズマCVD法によって形成することにより、図1(d)に示すような構造が得られる。ここにおいて、ノンドープの多結晶シリコン層3は、プラズマCVD法により堆積しているので、600℃以下(100℃〜600℃)の低温プロセスで成膜することができる。なお、ノンドープの多結晶シリコン層3の形成方法は、プラズマCVD法に限らず、触媒CVD法により形成してもよく、触媒CVD法でも600℃以下の低温プロセスで成膜することができる。
【0042】
ノンドープの多結晶シリコン層3を形成した後、55wt%のフッ化水素水溶液とエタノールとを略1:1で混合した混合液よりなる電解液の入った陽極酸化処理槽を利用し、白金電極(図示せず)を負極、下部電極8を正極として、多結晶シリコン層3に光照射を行いながら所定の条件で陽極酸化処理を行うことによって、多結晶シリコン層3のうち下部電極8に重なる部位に多孔質多結晶シリコン層を形成し、その後、陽極酸化処理槽から電解液を除去し、該陽極酸化処理槽に新たに酸(例えば、略10%の希硝酸、略10%の希硫酸、王水など)を投入し、その後、この酸の入った陽極酸化処理槽を利用して、白金電極(図示せず)を負極、下部電極8を正極として、定電流を流し多孔質多結晶シリコン層を酸化することにより下部電極8に重なる部位に酸化した多孔質多結晶シリコン層よりなるドリフト部6aが形成され、図1(e)に示すような構造が得られる。ここにおいて、ドリフト部6aの間に介在している多結晶シリコン層3が分離部6bを構成するから、ドリフト部6aおよび分離部6bを有する強電界ドリフト層6が形成されている。なお、本実施形態では、陽極酸化処理の条件として、陽極酸化処理の期間、多結晶シリコン層3の表面に照射する光パワーを一定、電流密度を一定としたが、この条件は適宜変更してもよい(例えば、電流密度を変化させてもよい)。
【0043】
強電界ドリフト層6を形成した後は、強電界ドリフト層6上に所定膜厚(例えば、15nm)の金薄膜からなる表面電極7を例えばメタルマスクを用いて蒸着法によって形成し、次に、パッド27,28を形成することによって図1(f)に示す構成の電界放射型電子源10が得られる。なお、本実施形態では、表面電極7の膜厚を15nmとしてあるが、この膜厚は特に限定するものではなく、強電界ドリフト層6を通ってきた電子がトンネルできる膜厚であればよい。また、本実施形態では、表面電極7となる導電性薄膜を蒸着により形成しているが、導電性薄膜の形成方法は蒸着に限定されるものではなく、例えばスパッタ法を用いてもよい。
【0044】
しかして、上述の製造方法によれば、下部電極8の形成にあたって、絶縁性基板11上に形成したレジスト層20へ下部電極8のパターンに対応し且つ絶縁性基板11に近づくほど開口幅が徐々に大きくなるテーパ状の開口断面の溝21を開口し、次に、絶縁性基板11の上記一表面側の全面に導電性層18を成膜し、その後、リフトオフによりレジスト層20およびレジスト層20上の導電性層18を除去することにより絶縁性基板11上にパターニングされた導電性層18よりなる断面台形状の下部電極8を形成しているので、絶縁性基板11としてガラス基板を用いることにより大面積化および低コスト化を図ることができ、しかも強電界ドリフト層6の厚さを比較的薄くしても強電界ドリフト層6の表面においてドリフト部6aと分離部6bとの間に急峻な段差が形成されるのを防ぐことができ、表面電極7の断線や表面電極7と下部電極8との間の短絡を防止することができるから、大面積化が可能で、電子放出量が高く且つ表面電極7の断線や表面電極7と下部電極8との間の短絡を防止することが可能な電界放射型電子源10を提供することができる。
【0045】
また、上述の製造方法で製造された電界放射型電子源10は、上記従来の電界放射型電子源10’、10”と同様に、電子放出特性の真空度依存性が小さく且つ電子放出時にポッピング現象が発生せず安定して電子を放出することができる。
【0046】
ところで、上述の製造方法では、導電性層18をスパッタ法により成膜しているが、導電性層18の成膜法はスパッタ法に限らず、真空蒸着法や電子ビーム蒸着法などの成膜法によって成膜してもよい。これらの成膜法の場合にも粒子(ここでは蒸着原子)の飛来する向きと絶縁性基板11の向きとを、絶縁性基板11の上記一表面上であって溝21の周壁21b近傍に粒子が入り込み且つ絶縁性基板11の上記一表面上に断面台形状の導電性層18が形成されるように時間経過に伴って相対的に変化させることにより、真空蒸着法や電子ビーム蒸着法などのように蒸発源が点源に近似できるような成膜法を採用し且つ絶縁性基板11を大面積化しても絶縁性基板11の上記一表面上に断面台形状の導電性層18を形成することができ、下部電極8の材料として採用できる材料の選択肢を広げることができる。
【0047】
また、導電性層18の成膜にあたってプラズマを利用した成膜法(例えば、スパッタ法、プラズマCVD法など)を用いる場合には、粒子(ラジカル、イオン、原料ガス分子など)の飛来する向きと絶縁性基板11の向きとを時間経過に伴って相対的に変化させなくても絶縁性基板11の上記一表面上に断面台形状の導電性層18(つまり、下部電極8)を形成することができ、粒子の飛来する向きと絶縁性基板11の向きとを相対的に変化させるための駆動機構などを設けなくてよいから、導電性層18を成膜する成膜装置の構成が簡単になるとともに成膜装置の故障が少なくなり、結果的に低コスト化を図ることが可能になる。
【0048】
【発明の効果】
請求項1の発明は、基板と、基板の一表面上に列設された複数の下部電極と、各下部電極の表面側に各下部電極にそれぞれ重なる形で形成された複数の酸化若しくは窒化した多孔質半導体層よりなるドリフト部およびドリフト部の間を埋める分離部を有する強電界ドリフト層と、強電界ドリフト層上において下部電極に交差する方向に列設された複数の表面電極とを備え、表面電極を下部電極に対して正極として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、下部電極の形成にあたっては、基板の前記一表面上の全面にレジスト層を形成した後、レジスト層へ下部電極のパターンに対応し且つ基板に近づくほど開口幅が徐々に大きくなるテーパ状の開口断面の溝を開口し、次に、基板の前記一表面側の全面に導電性層を成膜し、その後、リフトオフによりレジスト層およびレジスト層上の導電性層を除去することにより基板の前記一表面上にパターニングされた導電性層よりなる断面台形状の下部電極を形成することを特徴とし、基板の前記一表面上に形成したレジスト層へ下部電極のパターンに対応し且つ基板に近づくほど開口幅が徐々に大きくなるテーパ状の開口断面の溝を開口し、次に、基板の前記一表面側の全面に導電性層を成膜し、その後、リフトオフによりレジスト層およびレジスト層上の導電性層を除去することにより基板の前記一表面上にパターニングされた導電性層よりなる断面台形状の下部電極を形成しているので、基板としてガラス基板を用いることにより大面積化を図ることができ、しかも強電界ドリフト層の厚さを比較的薄くしても強電界ドリフト層の表面においてドリフト部の表面と分離部の表面との間に急峻な段差が形成されるのを防ぐことができ、表面電極の断線や表面電極と下部電極との間の短絡を防止することができるから、大面積化が可能で、電子放出量が高く且つ表面電極の断線や表面電極と下部電極との間の短絡を防止することが可能な電界放射型電子源を提供することができるという効果がある。
【0049】
請求項2の発明は、請求項1の発明において、前記導電性層の成膜にあたっては、粒子の飛来する向きと前記基板の向きとを、前記基板の前記一表面上であって前記溝の周壁近傍に粒子が入り込み且つ前記基板の前記一表面上に断面台形状の導電性層が形成されるように時間経過に伴って相対的に変化させるので、真空蒸着法や電子ビーム蒸着法などのように蒸発源が点源に近似できるような成膜法を採用し且つ前記基板を大面積化しても前記基板の前記一表面上に断面台形状の導電性層を形成することができ、下部電極の材料として採用できる材料の選択肢を広げることができるという効果がある。
【0050】
請求項3の発明は、請求項1の発明において、前記導電性層の成膜にあたっては、前記基板の前記一表面上であって前記溝の周壁近傍に粒子が入り込み且つ前記基板の前記一表面上に断面台形状の導電性層が形成されるようにプラズマを利用した成膜法を用いるので、前記基板を大面積化しても前記基板の前記一表面上に断面台形状の導電性層を形成することができ、請求項2の発明のように粒子の飛来する向きと基板の向きとを時間経過に伴って相対的に変化させる必要がないから、導電性層を成膜する成膜装置の構成が簡単になるとともに成膜装置の故障が少なくなり、結果的に低コスト化を図ることができるという効果がある。
【図面の簡単な説明】
【図1】実施形態の製造方法を説明するための主要工程断面図である。
【図2】同上の電界放射型電子源の一部破断した概略斜視図である。
【図3】従来例を示す概略断面図である。
【図4】同上の動作説明図である。
【図5】同上の動作説明図である。
【図6】他の従来例を示す概略断面図である。
【図7】同上の動作説明図である。
【図8】同上を応用したディスプレイの概略構成図である。
【図9】図8のディスプレイに用いる電界放射型電子源の製造方法を説明するための主要工程断面図である。
【図10】同上の要部説明図である。
【符号の説明】
3 多結晶シリコン層
6 強電界ドリフト層
6a ドリフト部
6b 分離部
7 表面電極
8 下部電極
10 電界放射型電子源
11 絶縁性基板
20 レジスト層
21 溝
21b 周壁

Claims (3)

  1. 基板と、基板の一表面上に列設された複数の下部電極と、各下部電極の表面側に各下部電極にそれぞれ重なる形で形成された複数の酸化若しくは窒化した多孔質半導体層よりなるドリフト部およびドリフト部の間を埋める分離部を有する強電界ドリフト層と、強電界ドリフト層上において下部電極に交差する方向に列設された複数の表面電極とを備え、表面電極を下部電極に対して正極として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、下部電極の形成にあたっては、基板の前記一表面上の全面にレジスト層を形成した後、レジスト層へ下部電極のパターンに対応し且つ基板に近づくほど開口幅が徐々に大きくなるテーパ状の開口断面の溝を開口し、次に、基板の前記一表面側の全面に導電性層を成膜し、その後、リフトオフによりレジスト層およびレジスト層上の導電性層を除去することにより基板の前記一表面上にパターニングされた導電性層よりなる断面台形状の下部電極を形成することを特徴とする電界放射型電子源の製造方法。
  2. 前記導電性層の成膜にあたっては、粒子の飛来する向きと前記基板の向きとを、前記基板の前記一表面上であって前記溝の周壁近傍に粒子が入り込み且つ前記基板の前記一表面上に断面台形状の導電性層が形成されるように時間経過に伴って相対的に変化させることを特徴とする請求項1記載の電界放射型電子源の製造方法。
  3. 前記導電性層の成膜にあたっては、前記基板の前記一表面上であって前記溝の周壁近傍に粒子が入り込み且つ前記基板の前記一表面上に断面台形状の導電性層が形成されるようにプラズマを利用した成膜法を用いることを特徴とする請求項1記載の電界放射型電子源の製造方法。
JP2000326273A 2000-10-26 2000-10-26 電界放射型電子源の製造方法 Expired - Fee Related JP3985445B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326273A JP3985445B2 (ja) 2000-10-26 2000-10-26 電界放射型電子源の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326273A JP3985445B2 (ja) 2000-10-26 2000-10-26 電界放射型電子源の製造方法

Publications (2)

Publication Number Publication Date
JP2002134008A JP2002134008A (ja) 2002-05-10
JP3985445B2 true JP3985445B2 (ja) 2007-10-03

Family

ID=18803489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326273A Expired - Fee Related JP3985445B2 (ja) 2000-10-26 2000-10-26 電界放射型電子源の製造方法

Country Status (1)

Country Link
JP (1) JP3985445B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892730B2 (ja) * 2006-12-16 2012-03-07 国立大学法人大阪大学 プラズマディスプレイパネルおよびその製造方法

Also Published As

Publication number Publication date
JP2002134008A (ja) 2002-05-10

Similar Documents

Publication Publication Date Title
JP4611228B2 (ja) 電界電子放出装置およびその製造方法
KR100486951B1 (ko) 전계방사형 전자원
JP3985445B2 (ja) 電界放射型電子源の製造方法
JP3788228B2 (ja) 電界放射型電子源
JP4120398B2 (ja) 電界放射型電子源の製造方法
JP3687522B2 (ja) 電界放射型電子源
JP3539305B2 (ja) 電界放射型電子源およびその製造方法
JP3508652B2 (ja) 電界放射型電子源およびその製造方法
JP3084272B2 (ja) 電界放射型電子源
JP3589172B2 (ja) 電界放射型電子源
JP3669291B2 (ja) 電界放射型電子源の製造方法
JP3487230B2 (ja) 電界放射型電子源およびその製造方法およびディスプレイ装置
JP4023312B2 (ja) 電界放射型電子源の製造方法
JP3721976B2 (ja) 電界放射型電子源の製造方法
JP3687520B2 (ja) 電界放射型電子源およびその製造方法
JP3603682B2 (ja) 電界放射型電子源
JP2002150926A (ja) 電界放射型電子源およびその製造方法
JP4120397B2 (ja) 電界放射型電子源の製造方法
JP3480464B2 (ja) 電界放射型電子源の製造方法
JP3767275B2 (ja) 電界放射型電子源およびその製造方法
JP4433857B2 (ja) 電界放射型電子源
JP4306070B2 (ja) 電界放射型電子源
JP4241766B2 (ja) 照明ランプ用冷電子放出素子
JP3648599B2 (ja) 電界放射型電子源の製造方法
JP3945049B2 (ja) 冷電子放出素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees