JP3977518B2 - 静電誘導半導体装置 - Google Patents

静電誘導半導体装置 Download PDF

Info

Publication number
JP3977518B2
JP3977518B2 JP21640998A JP21640998A JP3977518B2 JP 3977518 B2 JP3977518 B2 JP 3977518B2 JP 21640998 A JP21640998 A JP 21640998A JP 21640998 A JP21640998 A JP 21640998A JP 3977518 B2 JP3977518 B2 JP 3977518B2
Authority
JP
Japan
Prior art keywords
region
recess
conductivity type
gate
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21640998A
Other languages
English (en)
Other versions
JP2000031483A (ja
Inventor
勝則 浅野
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP21640998A priority Critical patent/JP3977518B2/ja
Publication of JP2000031483A publication Critical patent/JP2000031483A/ja
Application granted granted Critical
Publication of JP3977518B2 publication Critical patent/JP3977518B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高耐圧を有し、大電流を制御する静電誘導半導体装置の構造に関する。
【0002】
【従来の技術】
半導体装置の一種の静電誘導トランジスタは、半導体基板の一方の面にソース領域を備えるとともに、他方の面にドレイン領域を備え、かつ、ソース領域とドレイン領域の間に電流通路となる高比抵抗領域を備えている。高比抵抗領域を流れる電流は、ゲート領域に加える電圧をコントロールすることにより、オン、オフされる。
【0003】
図13は、従来の静電誘導トランジスタの基本構成を示すもので、高不純物濃度n型のソース領域100と高不純物濃度n型のドレイン領域101を備え、両領域の間に低不純物濃度n型のドリフト領域102を備えている。さらに高不純物濃度n型のソース領域100から低不純物濃度n型のドリフト領域102に堀込まれたリセス構造の底部に高不純物濃度p型のゲート領域103を備え、ゲート領域103の働きによりドレイン11とソース12の間を流れる電流がオン、オフされる。上記のようなリセス構造の静電誘導トランジスタは、対向する2個のゲート領域103の間の距離(以下、ゲート間隔という)を狭くすることにより、高耐圧化がはかられる。この静電誘導トランジスタのオフ状態では、ゲートGとソースS間に逆バイアス電圧を加えることにより、空乏層は主に低不純物濃度n型ドリフト領域102とゲート領域103の間のpn接合からドリフト領域102にのびる。対向する2つのゲート領域103の間で、ソースSとドレインD間の電流が流れるチャネル領域105に、図13のように空乏層106が広がり、ソースSとドレインD間の電流を遮断する。オン状態では、ゲートGとソースS間に順バイアス電圧を加えることにより、図14のように空乏層106が縮小し、チャネル領域105を導通状態にする。
【0004】
【発明が解決しようとする課題】
静電誘導トランジスタを高耐圧にするためには、空乏層106がチャネル領域105内に拡大し、対向する2つのゲート領域103から広がる空乏層106を相互につながりやすくするためにゲート間隔を狭くする必要がある。図13のように両空乏層106がつながった状態をピンチオフという。一方、オン電圧を低くするためには、電流の通路であるゲート間隔を広くする必要がある。したがって、耐圧とオン電圧のかね合いにより、ゲート間隔を決定する。シリコン(Si)の静電誘導トランジスタの場合、5kVの耐圧を実現するために、不純物濃度が1013cm-3程度の低不純物濃度n型のドリフト領域102を用い、電圧増幅率を100とした場合、ゲートGとソースS間に印加する電圧は−50Vとなり、ゲート間隔を2.5μm以下とする必要がある。
【0005】
炭化ケイ素(以下SiCと記す)の静電誘導トランジスタの場合、不純物濃度Nの平方根に比例する臨界電界Emaxは、Siの場合の10倍である。従ってSiCの場合不純物濃度Nを、Siの場合の100倍にすることができ、その結果としてオン電圧を低くすることができる。この場合、空乏層が広がる範囲は、Siのものの1/10になるため、チャネル領域105をピンチオフにするためには、半導体装置のセグメント幅(図13において、左端から右端までの長さ)をSiの場合の1/10以下にしてゲート間隔を狭くする必要がある。このため超微細加工が必要となり、実際上製造することは困難である。また、ゲート間隔のみを極端に狭くするとチャネル領域の抵抗が大幅に大きくなり、オン電圧も大幅に高くなる。ゲート間隔を変えないで、ゲート電圧を高くすることにより、チャネル領域をピンチオフにすることもできる。しかしSiCの場合は不純物濃度Nが高いため、ゲート電圧をSiの場合の100倍以上にする必要がある。ゲート電圧を高くすると、電流の遮断特性が大幅に悪化し現実的でない。また、空乏層106が広がりやすいように不純物濃度を低くすると、ドリフト領域102の比抵抗が大きくなり、SiCを用いた静電誘導トランジスタの利点であるオン抵抗が低いという特徴が犠牲となる。
【0006】
本発明は、超微細加工が不要で、電圧増幅率が大きく、かつ低いゲート電圧で高耐圧を実現できるとともに、オン電圧が低く、高い信頼性を有する静電誘導半導体装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の静電誘導半導体装置では、高不純物濃度の第1の導電型のドレイン領域の上に低不純物濃度の第1の導電型のドリフト領域を形成し、そのドリフト領域内のチャネル領域に第2の導電型の埋込ゲートを形成する。こうして、チャネル領域を狭くする。さらにドリフト領域の端部領域に形成した凹部の側壁に絶縁膜を介してゲート電極を形成することにより、ゲートをMOS構造にする。
【0008】
チャネル領域が狭いので、ゲート−ソース間に低い逆バイアス電圧を加えた場合でも、第二導電型の埋込ゲート領域とMOSの電界効果による空乏層または反転層から、それぞれ第一導電型ドリフト領域に空乏層が伸び、ピンチオフとなる。これにより、ソース−ドレイン間の耐電圧が大きくなり、高い電圧が印加されても電流を遮断することができる。また、ゲート−ソース間に順バイアス電圧を加えると、MOSの電界効果による電子の蓄積により電子が絶縁膜の下に集まり、チャネル領域が狭くても、オン抵抗が低減され、オン電圧(オン状態での電圧降下)を低くできる。また、ゲートの順バイアス電圧をビルトイン電圧以下にすることにより、ゲートには空乏層の容量を充電する分の電流しか流れないので、ゲートの駆動電力を低く抑えることができる。また、ゲート電圧をビルトイン電圧以上にすることにより、少ないキャリアの注入で伝導度変調をおこさせ、さらに低いオン抵抗、及び低いオン電圧を実現できる。さらに、絶縁膜上にゲート電極を形成するので、凹部の側壁に付着するイオン等の影響をなくすことができ、高い信頼性を実現できる。
【0009】
【発明の実施の形態】
以下、本発明の実施例を図1から図12を参照して説明する。
【0010】
《第1実施例》
図1は、本発明の第1実施例の耐圧5kVの静電誘導トランジスタの1個分の素子であるセグメントの断面図である。図の実施例では、ドレイン領域1とドリフト領域2からなる静電誘導トランジスタの単位セグメントの中央は導通領域として一段高くなっており、その両側に一段低いトレンチ領域が設けられている。セグメント幅Wは7μm、紙面に垂直な方向の奥行きは1mmである。その他の構造諸元は以下のとおりである。高不純物濃度n型のドレイン領域1の厚さは約400μm、低不純物濃度n型ドリフト領域2の厚さは約60μm、セグメントの両側に設けられた凹部のトレンチ10の深さは約1.5μmである。トレンチ10の半分の幅は約1.5μm、ゲート絶縁膜21の厚さは約0.2μm、リセスゲート4の深さは約1μmである。本実施例では、ゲート電極13とソース電極12はストライプ状であるが、その形状は例えば円形や四角形等であってもかまわない。
【0011】
本実施例の静電誘導トランジスタの製作方法の一例を、以下に説明する。最初にドレイン領域1として機能する1018から1020atm/cm3の高不純物濃度のn型炭化ケイ素(SiC)基板を用意し、この一方の主面上に1014から1016atm/cm3のSiC低不純物濃度n型のドリフト領域2を気相成長法等により形成する。次に、1018atm/cm3程度のp型の埋込ゲート領域5をイオン打ち込み等により形成する。さらにその上に1014から1016atm/cm3のSiC 低不純物濃度n型のドリフト領域2を気相成長法等により形成する。ドリフト領域2の上に1019atm/cm3程度のn+領域のソース領域3を窒素、りん等のイオン打ち込み等により形成する。次に、基板を異方性エッチングして、図1に示すようにトレンチ10を形成する。トレンチ10の底に深さ約1μmのp型リセスゲート領域4をホウ素、アルミニウム等のイオン打ち込み等により形成する。続いて、トレンチ内壁にSiO2のゲート絶縁膜21を形成した後、トレンチ10の底部のSiO2のゲート絶縁膜を一部取り除き、Al等の金属膜により、ゲート電極13を形成する。セグメントの奥行き方向(図1の紙面のたとえば紙の後ろの方)で埋込ゲート領域5の一部分を露出させ、露出した埋込ゲート領域5に電極Gを接続してソース電極12側に取り出す。最後に、アルミニウム、ニッケル等でソース電極3の表面の一部分にソース電極12を形成し、かつドレイン領域1の表面にドレイン電極11を形成して完成する。
【0012】
この静電誘導トランジスタの耐圧は、ゲート電圧として−20Vを印加したとき、約6kVであった。また、オン抵抗は35mΩcm2であった。
【0013】
本実施例のSiC静電誘導トランジスタでは、ドレイン電極11の電位がソース電極12の電位より高く、かつリセスゲート4および埋込ゲート5のゲート電位が同電位でかつソース電極12の電位よりも低くなるようにする。ゲート電位が高い場合、たとえば−3Vから−10V程度では、MOSの電界効果による空乏層と、p型埋込ゲート領域からの空乏層とにより、埋込ゲート領域5とトレンチ10の側壁10Aとの間の幅の狭いチャネル部20をピンチオフにすることができる。ゲート電圧が低い場合、たとえば−13V程度かそれ以下では、MOSの電界効果によるp型の反転層およびp型埋込ゲート領域5から、低不純物濃度n型ドリフト領域2に空乏層がのび、チャネル部20をピンチオフにすることができる。その結果、ソースSとドレインD間の電流を遮断できる。図2は、ゲート電圧をパラメータとした、電圧−電流特性図で、横軸はソース−ドレイン間の電圧Vdsを示し、縦軸はドレイン−ソース間の漏れ電流Idを示す。ゲート電圧を負にして逆バイアスを大きくすると、図2のように耐圧は大きくなるが、−15V以上に逆バイアスを大きくしても耐圧はそれほど変わらない。
【0014】
トレンチ側壁10Aの絶縁膜21上にゲート電極13がない場合は、MOSの電界効果がないために、耐圧は本実施例の半分の約3kVとなる。したがって、埋込ゲート領域5を備えた静電誘導トランジスタにMOSの電界効果を加えることにより、耐圧を約2倍にできる。また、ドレイン電極11の電位がソース電極12の電位より高く、リセスゲート4および埋込ゲート5の電位がソース電極の電位よりも高くなるようにゲート電圧を印加すると、リセスゲート領域4および埋込ゲート領域5と、低不純物濃度n型のドリフト領域2との間の空乏層が縮小して、オン抵抗が低減する。さらに、トレンチ10の側壁10Aと埋込ゲート5との間の領域であるチャネル部20の幅が狭いにもかかわらず、MOSの電界効果による電子の蓄積によりチャネル部20の抵抗が低いので、オン抵抗を低くできる。
【0015】
図3は、セグメント幅Wを、左端を原点として右方への距離で横軸に示し、縦軸に電子密度を示したグラフである。トレンチ領域と導通領域の間の幅の狭いチャネル部20近傍において電子密度が大幅に高くなっていることがわかる。ゲート電圧を大きくすれば、空乏層が縮小して、さらに電子が蓄積されるために、図4のように電流を流す時のオン電圧を低下できる。特に1kV程度以下の耐圧の素子でオン電圧の低減が顕著である。例えば、1kV耐圧の素子の場合、ドリフト領域2の抵抗が6kV耐圧の素子に比べ約1/6になるが、チャネル部20の抵抗のチャネル抵抗は変わらない。このため、全抵抗に占めるチャネル抵抗の割合は、従来の静電誘導トランジスタの場合は50%以上になるが、本実施例の構造では、MOSの電界効果による電子の蓄積により、チャネル抵抗は非常に小さくなり、素子の抵抗はドリフト領域2の抵抗で決まるので、オン電圧は50%以上低減する。さらに低耐圧の素子の場合は、本実施例の構造にすることにより、オン電圧の低減割合が増加する。また、ゲート電圧をビルトイン電圧(立ち上がり電圧)以下にすることにより、ゲート電圧を供給するゲート回路(図示省略)には空乏層を形成するために必要な電流しか流れないので、駆動電力を低減することができる。また、ゲート電圧をビルトイン電圧以上にすることにより、少ないキャリアの注入で伝導度変調をおこさせ、さらにオン抵抗を低くし、またオン電圧を低くすることができる。また、トレンチ10の側壁10Aにゲート電極13を形成するので、トレンチ10の側壁10Aにイオン等が付着することはなく、それによる影響をなくすことができ、高い信頼性を実現できる。
【0016】
《第2実施例》
図5は、本発明の第2実施例の静電誘導トランジスタの断面図である。図において、埋込ゲート領域5Aはソース領域3と同一の面から低不純物濃度n型ドリフト領域2の中へ広がるように形成される。ゲート電極13Aは埋込ゲート領域5Aの直上に形成される。その他の構成は図1の静電誘導型トランジスタと同じである。埋込ゲート領域5Aをホウ素等のイオン打ち込み法等で形成した後に、高不純物濃度n型ソース領域3をイオン打ち込み法等で形成する。イオン打ち込みで表面のゲート電極13Aに接続するように埋込ゲート領域5Aを形成できることから、製造プロセスが簡単になる。上記の構造にすることにより、ゲート抵抗が大幅に低減するので、駆動電力をさらに低減することができる。
【0017】
《第3実施例》
図6は、本発明の第3実施例の静電誘導トランジスタの断面図である。図6に示す本実施例では、ソース領域3の図において左右方向の幅を、埋込ゲート領域5の幅より狭くした点が、図1の第1実施例の静電誘導トランジスタと異なる。その他の構成は図1の静電誘導トランジスタと同じである。この構造により、前記の各実施例の作用効果に加えて、以下の作用効果を有する。すなわち、ゲート13と埋込ゲート5に逆バイアス電圧を印加して、ドレインDとソースS間の電流をブロックする際に、埋込ゲート5の領域からトレンチ10の側面10Aに沿った方向のみでなく、埋込ゲート5のソース領域3の近傍にも空乏層が広がる。その結果漏れ電流を大幅に低減することができ、さらに、高耐圧性を改善できる。また、オン時のMOSの電界効果により、トレンチ10の側壁10Aに沿うドリフト層2内のチャネル部に電子が蓄積されチャネル部20の抵抗が低くなる。そのためチャネル部20が長くなったことによるオン電圧への影響はほとんどない。
【0018】
《第4実施例》
図7は、本発明の第4実施例の静電誘導トランジスタの断面図である。図7に示す構成では、2個の埋込ゲート領域5B、5Cがドリフト層2の上部に形成されている。すなわち図1における埋込ゲート領域5を2つの埋込ゲート領域5B、5Cに分割した構造を有する。その他の構成は図1に示すものと同じである。この構造により、ゲート13に順バイアス電圧を印加したとき、トレンチ10の側壁10Aに沿うチャネル部20を電流が流れるとともに、埋込ゲート領域5Bと5Cとの間にも電流が流れる。このため、ソースSとドレインD間の抵抗が更に低くなり、オン電圧をさらに20%程度低減できる。また、ゲート13に逆バイアス電圧を印加すると、分割した埋込ゲート領域5Bと5Cとの間にも空乏層が広がるため、分割しない場合と同等の耐圧を実現できる。
【0019】
《第5実施例》
図8は、本発明の第5実施例の静電誘導サイリスタの断面図である。本実施例では、図1における高不純物濃度n型基板によるドレイン領域1のかわりに、高不純物濃度p型基板によるアノード領域6を設けることにより静電誘導サイリスタを構成している。ゲート13及び埋込ゲート領域5に20V程度の逆バイアス電圧を印加することにより、アノードAとカソードKの間の順方向および逆方向の電流をブロックすることができる。また、ゲート13及び埋込ゲート領域5に2.5V程度の順バイアス電圧を印加することにより、静電誘導効果によりキャリアが流れる状態になり、高不純物濃度p型のアノード領域6から正孔が注入される。この正孔と高不純物濃度n型のカソード領域7からの電子による伝導度変調により、低不純物濃度n型のドレイン領域2の抵抗が大幅に低くなるとともに、MOS電界効果により電子が蓄積されたチャネル部を電流が流れ、したがって低いオン電圧を実現できる。さらに、ゲート13と埋込ゲート領域5にビルトイン電圧以上の電圧を印加することにより、サイリスタとして働くセグメント中央部をオンさせ、大電流領域で低いオン電圧を実現できる。例えば、300A/cm2で3.3Vのオン電圧を実現できる。本実施例の埋込ゲート領域5を図5や図7の実施例の構造とした場合でも、ゲート抵抗やオン電圧をさらに低減することができる。また、図6の第3実施例のように、埋込ゲート領域5より小さいソース領域3を形成した場合でも、漏れ電流の低減や高耐圧化が図れる。
【0020】
《第6実施例》
図9は、本発明の第6実施例の静電誘導トランジスタの断面図である。図において、トレンチ10のゲート13の全面が絶縁膜21により絶縁されている。トレンチ10の底部のドリフト領域2内に、図1に示すリセスゲート領域4が設けられていない。その他の構成は図1に示すものと同じである。この構造においても、図1の静電誘導トランジスタと同様の効果があるが、さらに、トレンチ10のゲート13がドレイン領域2から絶縁されているので、ゲート13の駆動電力は約50%に低減できる。
【0021】
《第7実施例》
図10は、本発明の第7実施例の静電誘導トランジスタの断面図である。図において、トレンチ10の底部のドレイン領域2内に高不純物濃度p型領域4Aを設けている。その他の構成は図9のものと同じである。この構造により、前記第6実施例の効果に加えて、トレンチ10の底部の絶縁膜21の電界を緩和できるので、静電誘導トランジスタの信頼性を高めることができる。上記の電界は、特にトレンチ10のコーナー部で高くなっているので、p型領域4Aは、トレンチ側壁10Aの位置より極度に離すと電界緩和効果が損なわれる。そのため、p型領域4Aの内側端が、所定の範囲、例えばトレンチ側壁10Aを基準に、埋め込みゲート5の方へ少なくとも0.5μm程度突出した位置から、前記側壁10Aの位置から埋め込みゲート領域5とは反対方向に少なくとも1μm程度後退した位置との間にくるように設けるのが望ましい。
【0022】
《第8実施例》
図11は、本発明の第8実施例の静電誘導トランジスタの断面図である。埋め込みゲート5をトレンチ10の底面を含む面の近傍から、ドレイン領域1に向かう方向に1μm程度の範囲の中央領域に設けている。トレンチ側壁10Aと埋め込みゲート5の距離は0.2〜1μm程度である。高い電圧増幅率と低いオン電圧の両方を実現するには、0.5μm程度が望ましい。他の構造諸元は、第1の実施例と同様である。
本実施例の静電誘導トランジスタの製作方法の一例を、以下に説明する。ドレイン領域1とドリフト領域2を形成する工程は、第1の実施例と同じである。ドリフト領域2を形成した後、1018atm/cm3程度のp型の埋め込みゲート領域5とリセスゲート領域4をイオン打ち込み等により形成する。さらにその上に、1014から1016atm/cm3のSiC低不純物濃度n型のドリフト領域2を気相成長法等により形成する。ドリフト領域2の上に1019atm/cm3程度のn+領域のソース領域3を窒素、りん等のイオン打ち込み等により形成する。次に、基板を異方向性エッチングして、図11に示すように、リセスゲート領域に達するトレンチ10を形成する。絶縁膜21、ゲート電極13、ソース電極12及びドレイン電極11の形成方法は第1実施例と同様である。埋め込みゲート領域5とリセスゲート領域4を、同一平面で形成する場合は、セグメントの奥行き方向で、両ゲート領域を図示を省略したp型の領域で接続すれば、同電位にすることができる。その結果、埋め込みゲート領域用の電極Gを取り出す必要がなくなり、構造及びプロセスがより簡単になる。
【0023】
本実施例では、埋め込みゲート領域5とリセスゲート領域4を同時あるいは順次形成できるので、プロセスがより簡単になる。また、埋め込みゲート領域5とリセスゲート領域4は、ドレイン電極11からほぼ同じ距離に形成されるので、高耐圧を実現しやすく、本実施例では7kVの耐圧が得られた。オン抵抗は第一実施例の35mΩcm2より大きくなることはなかった。
【0024】
《第9実施例》
図12は、本発明の第9実施例の静電誘導トランジスタの断面図である。図において、ドリフト領域2に形成したトレンチ10のトレンチ側壁10Aの一部分及びトレンチ10の底面にアルミニウムやニッケル等により、ショットキー障壁をもつゲート電極13を設けている。このゲート電極13は、ドリフト領域2と接する面では、ショットキー障壁をもち整流性を示すが、リセスゲート領域4と接する面では、オーミック性を示す。ゲートにソース電圧より低い電圧を印加すると、リセスゲート領域4から空乏層が広がるほか、ゲート電極13とドリフト領域2との接触面からも空乏層がのび、ソースとドレイン間の電流を遮断する。また、ゲートにソース電圧より高い電圧を印加すると、立ち上がり電圧より低い電圧では、MOSの電界効果と同様の蓄積効果により、電子が蓄積するため、オン電圧を低くできる。さらに、ゲートに立ち上がり電圧より高い電圧を印加すると、ゲート電極13のショットキー部及びリセスゲート領域4からキャリアの注入が起こり、伝導度変調によりさらにオン電圧が低下する。
【0025】
以上、9つの実施例を説明したが、本発明はさらに多くの適用範囲あるいは派生構造をカバーするものである。
【0026】
前記各実施例では、SiCを用いた素子の場合のみを述べたが、本発明はシリコン、ガリウムヒ素等の他の半導体材料を用いた素子にも適用できる。特に、ダイヤモンド、ガリウムナイトライドなどのワイドギャップ半導体材料を用いた素子に有効である。
【0027】
前記各実施例では低不純物濃度のドリフト領域がn型の素子の場合について述べたが、ドリフト領域がp型の素子の場合には、n型領域をp型領域に、p型領域をn型領域に置き変えることにより、本発明の構成を適用できる。
【0028】
【発明の効果】
以上各実施例の説明から明らかなように、、本発明の静電誘導トランジスタ及び静電誘導サイリスタは、埋込ゲート領域およびトレンチの側壁に絶縁膜を介してゲート電極を設けることにより、超微細加工を必要とせず、低いゲート電圧でソース−ドレイン間の大電圧をブロッキングでき、電圧増幅率を向上できる。さらに、ゲートに順バイアス電圧を印加することにより、MOSゲートの下に蓄積層が形成されるため、チャネル部の幅が狭くてもオン電圧を低くできる。さらに、低いゲート電圧でMOSゲートの下に蓄積層を形成できるため、駆動電力を低く抑えることができる。トレンチ側壁にゲート電極を形成するので、トレンチ側壁に付着するイオン等の影響をなくすことができ、信頼性の向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1実施例の静電誘導トランジスタの断面図
【図2】第1実施例の静電誘導トランジスタのOFF時の、ゲート電圧をパラメータとした電圧−電流特性図
【図3】第1実施例の静電誘導トランジスタのON時の電子密度を示すグラフ
【図4】第1実施例の静電誘導トランジスタのON時の、ゲート電圧をパラメータとした電圧−電流特性図
【図5】本発明の第2実施例の、埋込ゲート領域5を、ソース領域3と同じ面から低不純物濃度n型ドリフト領域へ広がるように形成した静電誘導トランジスタの断面図
【図6】本発明の第3実施例のソース領域の幅を埋込ゲート領域の幅より狭くした静電誘導トランジスタの断面図
【図7】本発明の第4実施例の、埋込ゲート領域を横方向に2分割した静電誘導トランジスタの断面図
【図8】本発明の第5実施例の高不純物濃度のP型基板を用いた静電誘導サイリスタの断面図
【図9】本発明の第6実施例の、トレンチ部のゲートを絶縁膜により絶縁した静電誘導トランジスタの断面図
【図10】本発明の第7実施例の、トレンチ底部に高不純物濃度P型領域を設けた静電誘導トランジスタの断面図
【図11】本発明の第8実施例の静電誘導トランジスタの断面図
【図12】本発明の第9実施例の静電誘導トランジスタの断面図
【図13】従来の静電誘導トランジスタのOFF時の空乏層を示す断面図
【図14】従来の静電誘導トランジスタのON時の空乏層を示す断面図
【符号の説明】
1 ドレイン領域
2 ドリフト領域
3 ソース領域
4 リセスゲート領域
4A p型領域
5、5A、5B、5C 埋込ゲート領域
6 アノード領域
7 カソード領域
10 トレンチ
10A トレンチ側壁
11 ドレイン電極
12 ソース電極
13、13A ゲート電極
14 アノード電極
15 カソード電極
20 チャネル部
21 絶縁膜

Claims (13)

  1. 高不純物濃度の第1の導電型のドレイン領域の上に形成した、低不純物濃度の第1の導電型のドリフト領域、
    前記ドレイン領域の、前記ドリフト領域に接する面の反対面に形成したドレイン電極、
    前記ドリフト領域内の、前記ドレイン領域に接する面の反対面の近傍の中央領域に形成した第2の導電型の埋込ゲート領域、
    前記ドリフト領域の、前記ドレイン領域に接する面の前記反対面に形成した第1の導電型のソース領域、
    前記ソース領域の表面の一部分に形成したソース電極、
    前記ドリフト領域の前記反対面の端部領域に形成した凹部の底部において、前記ドリフト領域内に形成した第2の導電型のリセスゲート領域、
    前記凹部の底面の一部分、凹部の側面及び前記ソース領域の表面に形成した絶縁膜、及び
    前記絶縁膜の表面、及び前記凹部のリセスゲート領域の表面に形成したゲート電極、
    を備える静電誘導半導体装置。
  2. 前記埋込ゲート領域は前記ソース領域を貫通してゲート電極に接続されていることを特徴とする請求項1記載の静電誘導半導体装置。
  3. 前記ソース領域の面積が、前記埋込ゲート領域の面積より小さいことを特徴とする請求項1記載の静電誘導半導体装置。
  4. 前記ドリフト領域内の、前記ドレイン領域に接する面の反対面の近傍に少なくとも2個の第2の導電型の埋込ゲート領域を形成したことを特徴とする請求項1記載の静電誘導半導体装置。
  5. 高不純物濃度の第2の導電型のアノード領域の上に形成した、低不純物濃度の第1の導電型のドリフト領域、
    前記アノード領域の、前記ドリフト領域に接する面の反対面に形成したアノード電極、
    前記ドリフト領域の、前記アノード領域に接する面の反対面の近傍の中央領域に形成した第2の導電型の埋込ゲート領域、
    前記ドリフト領域の、前記アノード領域に接する面の前記反対面に形成した第1の導電型のカソード領域、
    前記カソード領域の表面の一部分に形成したカソード電極、
    前記ドリフト領域の前記反対面の端部領域に形成した凹部の底部において、前記ドリフト領域内に形成した第2の導電型のリセスゲート領域、
    前記凹部の底面の一部分、凹部の側面及び前記カソード領域の表面に形成した絶縁膜、及び
    前記絶縁膜の表面及び前記凹部のリセスゲート領域の表面に形成したゲート電極、
    を備える静電誘導半導体装置。
  6. 高不純物濃度の第1の導電型のドレイン領域の上に形成した、低不純物濃度の第1の導電型のドリフト領域、
    前記ドレイン領域の、前記ドリフト領域に接する面の反対面に形成したドレイン電極、
    前記ドリフト領域内の、前記ドレイン領域に接する面の反対面の近傍の中央領域に形成した第2の導電型の埋込ゲート領域、
    前記ドリフト領域の、前記ドレイン領域に接する面の前記反対面に形成した第1の導電型のソース領域、
    前記ソース領域の表面の一部分に形成したソース電極、
    前記ドリフト領域の前記反対面の端部領域に形成した凹部の底面及び側面、及びソース領域の表面に形成した絶縁膜、及び
    前記絶縁膜の表面に形成したゲート電極、
    を備える静電誘導半導体装置。
  7. 前記凹部の底部の、前記ドリフト領域内に形成した第2の導電型の領域を備える請求項6記載の静電誘導半導体装置。
  8. 前記ドレイン領域は炭化ケイ素であることを特徴とする請求項1、5又は6記載の静電誘導半導体装置。
  9. 前記埋め込みゲート領域を、前記凹部の底面を含む面の近傍から前記ドレイン領域に向かう方向の所定の範囲内における前記のドリフト領域内に形成したことを特徴とする請求項1、5又は6記載の静電誘導半導体装置。
  10. 高不純物濃度の第1の導電型のドレイン領域の上に形成した、低不純物濃度の第1の導電型のドリフト領域、
    前記ドレイン領域の、前記ドリフト領域に接する面の反対面に形成したドレイン電極、
    前記ドリフト領域内の、前記ドレイン領域に接する面の反対面の近傍の中央領域に形成した第2の導電型の埋込ゲート領域、
    前記ドリフト領域の、前記ドレイン領域に接する面の前記反対面に形成した第1の導電型のソース領域、
    前記ソース領域の表面の一部分に形成したソース電極、
    前記ドリフト領域の前記反対面の端部領域に形成した凹部の底部において、前記ドリフト領域内に形成した第2の導電型のリセスゲート領域、
    前記凹部の側面の一部分のみ及び前記ソース領域の上面に形成した絶縁膜、及び
    前記凹部の底面及び前記凹部の側面の他の一部分に形成したゲート電極、
    を備える静電誘導半導体装置。
  11. 前記リセスゲート領域を、前記リセスゲート領域の内側端が、前記凹部の側面位置から埋め込みゲート領域の方へ少なくとも0.5μm突出した位置と、前記側面位置から前記埋め込みゲート領域とは反対の方向へ少なくとも1.0μm後退した位置との間にくるように、前記凹部の底部のドリフト領域内に形成したことを特徴とする請求項1、5、6、又は9記載の静電誘導半導体装置。
  12. 高不純物濃度の第1の導電型の炭化ケイ素基板の第1の主面に低不純物濃度の第1の導電型のドリフト領域を形成するステップ、
    前記ドリフト領域内の、前記基板に接する面の反対面の近傍の中央領域に第2の導電型の埋込ゲート領域を形成するステップ、
    前記第2の導電型の埋込ゲート領域の上に、低不純物濃度の第1の導電型のドリフト領域を形成するステップ、
    前記ドリフト領域の上に第1の導電型のソース領域を形成するステップ、
    前記ドリフト領域の前記反対面の端部領域に凹部を形成するステップ、
    前記凹部の底部において、前記ドリフト領域内に第2の導電型のリセスゲート領域を形成するステップ、
    前記凹部の底面の一部分、凹部の側面及び前記ソース領域の表面に絶縁膜を形成するステップ、
    前記絶縁膜の表面及び前記凹部のリセスゲート領域の表面にゲート電極を形成するステップ、
    前記SiC基板の第2の主面にドレイン電極を形成するステップ、及び
    前記ソース領域の表面の一部分にソース電極を形成するステップ、
    を備える静電誘導半導体装置の製造方法。
  13. 高不純物濃度の第2の導電型の炭化ケイ素基板の第1の主面に低不純物濃度の第1の導電型のドリフト領域を形成するステップ、
    前記ドリフト領域内の、前記基板に接する面の反対面の近傍の中央領域に、第2の導電型の埋込ゲート領域を形成するステップ、
    前記埋込ゲート領域の上に前記第1の導電型のドリフト領域を形成するステップ、
    前記ドリフト領域の、前記アノード領域に接する面の前記反対面に第1の導電型のカソード領域を形成するステップ、
    前記ドリフト領域の前記反対面の端部領域に凹部を形成するステップ、
    前記ドリフト領域の前記反対面の端部領域に形成した凹部の底部において、前記ドリフト領域内に第2の導電型のリセスゲート領域を形成するステップ、
    前記凹部の底面の一部分、凹部の側面及び前記カソード領域の表面に絶縁膜を形成するステップ、
    前記絶縁膜の表面、及び前記凹部のリセスゲート領域の表面にゲート電極を形成するステップ、
    前記SiC基板の第2の主面にアノード電極を形成するステップ、及び
    前記カソード領域の表面の一部分にカソード電極を形成するステップ、
    を備える静電誘導半導体装置の製造方法。
JP21640998A 1998-07-14 1998-07-14 静電誘導半導体装置 Expired - Fee Related JP3977518B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21640998A JP3977518B2 (ja) 1998-07-14 1998-07-14 静電誘導半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21640998A JP3977518B2 (ja) 1998-07-14 1998-07-14 静電誘導半導体装置

Publications (2)

Publication Number Publication Date
JP2000031483A JP2000031483A (ja) 2000-01-28
JP3977518B2 true JP3977518B2 (ja) 2007-09-19

Family

ID=16688118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21640998A Expired - Fee Related JP3977518B2 (ja) 1998-07-14 1998-07-14 静電誘導半導体装置

Country Status (1)

Country Link
JP (1) JP3977518B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541489B2 (ja) * 2000-04-06 2010-09-08 三菱電機株式会社 半導体装置及びその製造方法
JP3916874B2 (ja) * 2001-02-06 2007-05-23 関西電力株式会社 半導体装置
JP4288907B2 (ja) 2001-08-29 2009-07-01 株式会社デンソー 炭化珪素半導体装置及びその製造方法
KR100873604B1 (ko) 2007-06-12 2008-12-11 한국전기연구원 탄화규소 접합전계효과 트랜지스터의 제작방법
JP4900212B2 (ja) * 2007-11-30 2012-03-21 株式会社デンソー 炭化珪素半導体装置とその製造方法
CN102751284B (zh) * 2011-07-28 2015-08-26 李思敏 集成二极管的槽形栅多晶硅结构的联栅晶体管
WO2023067997A1 (ja) * 2021-10-20 2023-04-27 新電元工業株式会社 サイリスタ及びその製造方法

Also Published As

Publication number Publication date
JP2000031483A (ja) 2000-01-28

Similar Documents

Publication Publication Date Title
JP4011848B2 (ja) 高耐電圧半導体装置
JP2606404B2 (ja) 半導体装置
US6452231B1 (en) Semiconductor device
US7915617B2 (en) Semiconductor device
EP0224269B1 (en) Lateral insulated gate transistor with improved latch up immunity
US6201279B1 (en) Semiconductor component having a small forward voltage and high blocking ability
US5430315A (en) Bi-directional power trench MOS field effect transistor having low on-state resistance and low leakage current
US6462377B2 (en) Insulated gate field effect device
JP4132011B2 (ja) 電界効果半導体装置
US7615802B2 (en) Semiconductor structure comprising a highly doped conductive channel region and method for producing a semiconductor structure
JP2005510059A (ja) 電界効果トランジスタ半導体デバイス
JPH09283754A (ja) 高耐圧半導体装置
JP2004134597A (ja) 半導体素子
JPH10209432A (ja) 半導体デバイスの改良
EP0615292A1 (en) Insulated gate bipolar transistor
JP3998454B2 (ja) 電力用半導体装置
US20150357450A1 (en) Charge reservoir igbt top structure
JP2004319974A (ja) 半導体装置及び半導体装置の製造方法
JP3977518B2 (ja) 静電誘導半導体装置
JP4237086B2 (ja) 電圧制御型半導体装置
US6900506B1 (en) Method and structure for a high voltage junction field effect transistor
JP2002076370A (ja) 超接合ショットキーダイオード
JP2023553358A (ja) フィンfetパワー半導体デバイス
JPH07335868A (ja) 半導体装置
JP2941405B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees