JP3959920B2 - レーザダイオード駆動回路 - Google Patents

レーザダイオード駆動回路 Download PDF

Info

Publication number
JP3959920B2
JP3959920B2 JP2000045000A JP2000045000A JP3959920B2 JP 3959920 B2 JP3959920 B2 JP 3959920B2 JP 2000045000 A JP2000045000 A JP 2000045000A JP 2000045000 A JP2000045000 A JP 2000045000A JP 3959920 B2 JP3959920 B2 JP 3959920B2
Authority
JP
Japan
Prior art keywords
current
laser diode
switch means
current source
offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000045000A
Other languages
English (en)
Other versions
JP2001237489A (ja
Inventor
信昭 辻
国人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2000045000A priority Critical patent/JP3959920B2/ja
Priority to TW090103809A priority patent/TW477095B/zh
Priority to US09/789,975 priority patent/US6826215B2/en
Publication of JP2001237489A publication Critical patent/JP2001237489A/ja
Application granted granted Critical
Publication of JP3959920B2 publication Critical patent/JP3959920B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信、レーザプリンタ、CD(Compact Disc)、DVD(Digital Versatile Disc)等の記録/再生等に用いられる光源としてのレーザダイオードを駆動するレーザダイオード駆動回路に関する。
【0002】
【従来の技術】
光通信、レーザプリンタ、CD、DVD等の記録/再生等に用いられる光源としてレーザダイオードに用いる場合にレーザダイオードに流すパルス電流は数10mA〜数100mAと大電流であり、しかも高速に(具体的には、1nsec以下の立ち上がり及び立ち下がり時間で)スイッチングする状態で使用される。従来のレーザダイオード駆動回路における主要部の構成例を図16及び図17に示す。図16に示す従来のレーザダイオード駆動回路はレーザダイオードにスイッチング素子を介して電流源を接続し、スイッチング素子を駆動することにより、所望のパルス電流をレーザダイオードに供給するものである。
【0003】
また、図18に示す従来のレーザダイオード駆動回路は、第1の電流源をレーザダイオードのアノードに直接、接続し、かつ第1の電流源とレーザダイオードとの接続点にスイッチング素子を介して第1の出力電流値が異なる電流吸い込み用の第2の電流源及び擬似負荷の直列回路を接続してなり、スイッチング素子を駆動することにより、レーザダイオードにパルス電流を流すようにしたものである。
【0004】
【発明が解決しようとする課題】
図16及び図18に示した従来のレーザダイオード駆動回路について具体的に説明する。図16において、レーザダイオード駆動回路における主要部は、レーザダイオード102に100mAの電流を供給する電流源100と、レーザダイオード102のアノードと電流源100との間に設けられたスイッチング素子として機能するNMOSトランジスタ101とを有している。
【0005】
上記構成において、NMOSトランジスタ101のゲートには例えば、図17(A)に示すよう100MHzのパルス電圧信号が入力され、NMOSトランジスタ101はスイッチングされる。この結果、ノードOUT1にはパルス高が100mAの電流パルスが発生し、レーザダイオードに流れ込む(図17(B))。
ところが、電流源100とNMOSトランジスタ101との接続点であるノードN1における電位が、NMOSトランジスタ101がオフ状態になった時点で電源電圧Vdd付近のレベルまで上昇してしまうために、次にNMOSトランジスタ101がオン状態になる際に、ノードN1における電位が、電源電圧Vdd付近のレベルから直ぐには低下しない(図17(C))。この結果、NMOSトランジスタ101のゲートに入力されるパルス電圧信号(図17(A))に対し、ノードOUT1に発生する電流パルスは図17(B)に示すように高速に応答せず、パルス電流波形がなまってしまうという問題が有った。
【0006】
また、図18に示す従来のレーザダイオード駆動回路の主要部は、レーザダイオード201に100mAの電流を供給する第1の電流源200と、第1の電流源200とレーザダイオード201の接続点とドレインが接続されるスイッチング素子としてのNMOSトランジスタ202と、該NMOSトランジスタ202のソースと接続され第1の出力電流値が異なる電流吸い込み用の第2の電流源203(出力電流は50mA)と、該第2の電流源203と接続される擬似負荷204とを有している。
【0007】
上記構成において、NMOSトランジスタ202のゲートには例えば、図19(A)に示すように100MHzのパルス電圧信号が入力され、NMOSトランジスタ202はスイッチングされる。この結果、NMOSトランジスタ202がオンの期間には第1の電流源200から電流吸い込み用の第2の電流源203側に50mAの電流I2が流れ込み、この電流I2は擬似負荷204に流れる。これと同時にレーザダイオード201には第1の電流源200から50mAの電流I1が流れる。
一方、NMOSトランジスタ202がオフの期間には第2の電流源203側に流れる電流I2は0mAとなり、第1の電流源200からレーザダイオード201に流れる電流I1は100mAとなる(図19(B)、(C))。
【0008】
この場合にNMOSトランジスタ202がオン状態からオフ状態に変化すると、ノードOUT2の電位は接地電位(0V)になるので、再度NMOSトランジスタ202がオン状態になるとき、直ぐに擬似負荷204に50mAの電流が流れない。このために、NMOSトランジスタ202のゲートに入力されるパルス電圧信号(図19(A))に対し、レーザダイオード201に流れ込む電流I1は、高速応答できず、パルス電流波形がなまってしまうという問題が有った。
本発明はこのような事情に鑑みてなされたものであり、レーザダイオードに高速のパルス電流を供給することができるレーザダイオード駆動回路を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、前記オフセット電流に重畳する電流を供給する第2の電流源と、前記第2の電流源と前記レーザダイオードのアノード側との間に設けられ第1の電圧パルス信号により駆動される第1のスイッチ手段と、前記第2の電流源と前記第1のスイッチ手段との接続点と擬似負荷との間に設けられ前記第1の電圧パルス信号とは逆相の第2の電圧パルス信号により駆動される第2のスイッチ手段とを有し、前記第1のスイッチ手段と第2のスイッチ手段は相補的にスイッチング動作することを特徴とする。
【0010】
請求項1に記載の発明によれば、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、前記オフセット電流に重畳する電流を供給する第2の電流源と、前記第2の電流源と前記レーザダイオードのアノード側との間に設けられ第1の電圧パルス信号により駆動される第1のスイッチ手段と、前記第2の電流源と前記第1のスイッチ手段との接続点と擬似負荷との間に設けられ前記第1の電圧パルス信号とは逆相の第2の電圧パルス信号により駆動される第2のスイッチ手段とを有し、前記第1のスイッチ手段と第2のスイッチ手段は相補的にスイッチング動作するようにしたので、第2の電流源と前記第1のスイッチ手段との接続点には常に一定電流が流れるために前記第2の電流源と第1のスイッチ手段との接続点における電位は変動せず、第1の電流源により供給されるオフセット電流のレベルに第2の電流源により供給される電流を第1のスイッチ手段によりスイッチングすることにより得られる電流パルスを重畳した高速のパルス電流をレーザダイオードに供給することができる。
【0013】
また、請求項に記載の発明は、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、前記オフセット電流に重畳する電流を供給する2以上の第2の電流源とを有し、前記2以上の第2の電流源の各々の出力端と、前記レーザダイオードのアノード側との間に第1のスイッチ手段が各々接続され、前記2以上の第2の電流源の各々の出力端と前記第1のスイッチ手段との接続点と、擬似負荷との間に第2のスイッチ手段が各々接続され、前記レーザダイオードに供給する電流が、少なくとも前記オフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御することを特徴とする。
【0014】
請求項に記載の発明によれば、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、前記オフセット電流に重畳する電流を供給する2以上の第2の電流源とを有し、前記2以上の第2の電流源の各々の出力端と、前記レーザダイオードのアノード側との間に第1のスイッチ手段が各々接続され、前記2以上の第2の電流源の各々の出力端と前記第1のスイッチ手段との接続点と、擬似負荷との間に第2のスイッチ手段が各々接続され、前記レーザダイオードに供給する電流が、少なくとも前記オフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御するようにしたので、前記2以上の第2の電流源の各々の出力端と前記第1、第2のスイッチ手段との接続点である各ノードには常に定電流が流れるために電圧変動がなく、それ故レーザダイオードに供給する電流を、少なくとも前記オフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように制御することができる。
【0015】
また、請求項に記載の発明は、請求項に記載のレーザダイオード駆動回路において、前記レーザダイオードに供給する電流が、前記オフセット電流のレベルに更に、前記2以上の第2の電流源のうちのいずれかにより1または複数のオフセット電流を重畳し、該重畳により加算されたオフセット電流のレベルを基準にしてパルス電流信号を重畳するように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御することを特徴とする
【0016】
請求項に記載の発明によれば、請求項に記載のレーザダイオード駆動回路において、前記レーザダイオードに供給する電流が、前記オフセット電流のレベルに更に、前記2以上の第2の電流源のうちのいずれかにより1または複数のオフセット電流を重畳し、該重畳により加算されたオフセット電流のレベルを基準にしてパルス電流信号を重畳するように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御するようにしたので、請求項に記載の発明による効果に加えて、レーザダイオードに供給する電流を、オフセット電流を可変にし、かつこのオフセット電流にパルス電流信号を重畳するように制御することができる。
【0017】
また、請求項に記載の発明は、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、第1の電流源より出力電流値が小さい電流を供給する第2の電流源と、第2の電流源の出力電流を吸い込む第1のトランジスタと該第1のトランジスタにより駆動される第2のトランジスタとを有するカレントミラー回路と、前記第2のトランジスタと、前記第1の電流源の出力端と前記レーザダイオードのアノードとの接続点との間に設けられたスイッチ手段とを有することを特徴とする。
【0018】
請求項に記載の発明によれば、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、第1の電流源より出力電流値が小さい電流を供給する第2の電流源と、第2の電流源の出力電流を吸い込む第1のトランジスタと該第1のトランジスタにより駆動される第2のトランジスタとを有するカレントミラー回路と、前記第2のトランジスタと、前記第1の電流源の出力端と前記レーザダイオードのアノードとの接続点との間に設けられたスイッチ手段とを有するので、前記第1の電流源の出力端と前記レーザダイオードのアノードとの接続点には常に定電流が流れ、このノードにおける電位は変動せず、それ故前記第1の電流源により供給されるオフセット電流を基準としてスイッチ手段により第1の電流源の出力電流から所定の電流量を断続的にカレントミラー回路側に分流することにより得られる高速のパルス電流をレーザダイオードに供給することができる。
【0019】
また、請求項に記載の発明は、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、第1の電流源より出力電流値が小さい電流を供給する第2の電流源と、第2の電流源の出力電流を吸い込む第1のトランジスタと該第1のトランジスタにより駆動される第2のトランジスタとを有するカレントミラー回路と、前記第2の電流源の出力端と前記第1のトランジスタとの間に設けられた第1のスイッチ手段と、前記第2の電流源の出力端と前記第2のトランジスタとの間に設けられた第2のスイッチ手段とを有し、前記第1の電流源の出力端を前記第2のスイッチ手段と前記第2のトランジスタとの接続点に接続すると共に、前記第1、第2のスイッチ手段が相補的にスイッチング動作するように該第1、第2のスイッチ手段を駆動制御することを特徴とする。
【0020】
請求項に記載の発明によれば、レーザダイオードに対し第1の電流源によりオフセット電流を常時、供給し、第1、第2のスイッチ手段及びカレントミラー回路の動作により上記オフセット電流に第2の電流源から出力される電流を重畳し、または上記オフセット電流から第2の電流源から出力される電流の電流値に等しい電流をカレントミラー回路側に分流させるようにしたので、高速のパルス電流をレーザダイオードに供給することができると共に、レーザダイオードに供給する電流を、中心の電流値を固定した状態で振幅を変化させることができる。
【0021】
また、請求項に記載の発明は、請求項に記載のレーザダイオード駆動回路において、前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に、前記第2の電流源の出力端と、前記第1のスイッチ手段及び第2のスイッチ手段との間に設けられ該第1のスイッチ手段及び第2のスイッチ手段への電流供給を遮断する第3のスイッチ手段と、前記カレントミラー回路を構成する第1、第2のトランジスタを強制的にオフ状態にする第4のスイッチ手段を有することを特徴とする。
【0022】
請求項に記載の発明によれば、請求項に記載のレーザダイオード駆動回路において、前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に、前記第2の電流源の出力端と、前記第1のスイッチ手段及び第2のスイッチ手段との間に設けられ該第1のスイッチ手段及び第2のスイッチ手段への電流供給を遮断する第3のスイッチ手段と、前記カレントミラー回路を構成する第1、第2のトランジスタを強制的にオフ状態にする第4のスイッチ手段とを設けたので、請求項に記載された発明により得られる効果に加えて、レーザダイオードに供給する電流を第1の電流源から出力されるオフセット電流のみに制限する際にカレントミラー回路の動作の影響を高速に断つことができる。
【0023】
また、請求項に記載の発明は、請求項に記載のレーザダイオード駆動回路において、前記第2の電流源の出力端と擬似負荷との間に接続される第5のスイッチ手段を有し、前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に前記第5のスイッチ手段をオン状態とし、前記第2の電流源の出力電流を前記擬似負荷に流出させることを特徴とする。
【0024】
請求項に記載の発明によれば、請求項に記載のレーザダイオード駆動回路において、前記第2の電流源の出力端と擬似負荷との間に接続される第4のスイッチ手段を有し、前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に前記第4のスイッチ手段をオン状態とし、前記第2の電流源の出力電流を前記擬似負荷に流出するようにしたので、前記第2の電流源と、前記第1及び第2のスイッチ手段との接続点には常に定電流が流れるので、この接続点における電位は変動せず、それ故レーザダイオードに供給する電流を第1の電流源から出力されるオフセット電流のみに制限する動作状態から、第1、第2のスイッチ手段及びカレントミラー回路の動作により上記オフセット電流に第2の電流源から出力される電流を重畳し、または上記オフセット電流から第2の電流源から出力される電流の電流値に等しい電流をカレントミラー回路側に分流させることによりパルス電流を発生する動作状態に移行する際に高速に応答することができる。
【0025】
また、請求項に記載の発明は、請求項1乃至のいずれかに記載のレーザダイオード駆動回路において、前記各スイッチ手段及び前記各トランジスタはMOSトランジスタで形成されることを特徴とする。
【0026】
請求項に記載の発明によれば、請求項1乃至のいずれかに記載のレーザダイオード駆動回路において、前記各スイッチ手段及び前記各トランジスタはMOSトランジスタで形成するようにしたので、CMOS半導体集積回路上に請求項1乃至のいずれかに記載のレーザダイオード駆動回路を形成することができる。
【0027】
【発明の実施の形態】
本発明の実施の形態を図面を参照して詳細に説明する。本発明の第1の実施の形態に係るレーザダイオード駆動回路の構成を図1に示す。同図において、本実施の形態に係るレーザダイオード駆動回路は、レーザダイオード13に電流を供給する電流源10と、電流源10とレーザダイオード13との間に設けられ第1の電圧パルス信号SW1により駆動される第1のスイッチ手段としてのNMOSトランジスタ11と、電流源10とNMOSトランジスタ11との接続点(ノード)N1と擬似負荷14との間に設けられ第1の電圧パルス信号SW1とは逆相の第2の電圧パルス信号SW1’により駆動される第2のスイッチ手段としてのNMOSトランジスタ12とを有している。
【0028】
電流源10の一端は電源電圧Vddの電源ラインに接続され、出力端はNMOSトランジスタ11、12のドレインに接続されている。NMOSトランジスタ11のソースはレーザダイオード13のアノードに接続され、レーザダイオード13のカソードは接地されている。NMOSトランジスタ12のソースはレーザダイオード13と略等しい直流抵抗を有する擬似負荷14を介して接地されている。
尚、電流源10の出力電流は100mAであり、ノードOUT1はそれぞれ、NMOSトランジスタ11とレーザダイオード13との接続点、ノードOUT2はNMOSトランジスタ12と擬似負荷14との接続点である。
【0029】
上記構成において、図2(A)、(B)に示すように、NMOSトランジスタ11のゲートに第1の電圧パルス信号SW1が、またNMOSトランジスタ12のゲートに第1の電圧パルス信号SW1と逆相の第2の電圧パルス信号SW1’が入力されると、NMOSトランジスタ11、12は第1の電圧パルス信号SW1、第2の電圧パルス信号SW1’により交互にスイッチングされ、レーザダイオード13と擬似負荷14に交互に電流源10より100mAのパルス電流が供給される(図2(C)、(D))。
【0030】
この場合にNMOSトランジスタ11、12のいずれか一方は、必ずオン状態になるので、ノードN1には常に100mAの定電流が流れ、ノードN1における電位は変動しない(図2(E))。したがって、NMOSトランジスタ11、12は第1の電圧パルス信号SW1、第2の電圧パルス信号SW1’により相補的に、かつ高速にスイッチングされ、NMOSトランジスタ11のオン、オフ動作によりノードOUT1に高速のパルス電流が発生し、レーザダイオード13にこの高速のパルス電流を供給することができる。
【0031】
このように本発明の第1の実施の形態に係るレーザダイオード駆動回路によれば、レーザダイオード13に電流を供給する電流源10と、電流源10とレーザダイオード13との間に設けられ第1の電圧パルス信号により駆動される第1のスイッチ手段としてのNMOSトランジスタ11と、電流源10とNMOSトランジスタ11との接続点N1と擬似負荷14との間に設けられ第1の電圧パルス信号とは逆相の第2の電圧パルス信号により駆動される第2のスイッチ手段としてのNMOSトランジスタ12とを有するので、ノードN1には常に一定電流が流れるためにノードN1における電位は変動せず、レーザダイオード13に高速のパルス電流を供給することができる。
【0032】
次に、本発明の第2の実施の形態に係るレーザダイオード駆動回路の構成を図3に示す。同図において、本実施の形態に係るレーザダイオード駆動回路は、カソード側が接地されたレーザダイオード24のアノード側と接続され該レーザダイオード24にオフセット電流を供給する第1の電流源20と、上記オフセット電流に重畳する電流を供給する第2の電流源21と、第2の電流源21とレーザダイオード24のアノード側との間に設けられ第1の電圧パルス信号により駆動される第1のスイッチ手段としてのNMOSトランジスタ22と、第2の電流源21と第1のスイッチ手段としてのNMOSトランジスタ22との接続点であるノードN1と擬似負荷25との間に設けられ第1の電圧パルス信号とは逆相の第2の電圧パルス信号により駆動される第2のスイッチ手段としてのNMOSトランジスタ23とを有している。
【0033】
電流源20、21の一端は電源電圧Vddの電源ラインに接続され、電流源20の出力端はレーザダイオード24のアノードに接続されている。NMOSトランジスタ22、23のドレインは電流源21の出力端に接続され、NMOSトランジスタ22のソースはレーザダイオード24のアノードに接続されている。
また、NMOSトランジスタ23のソースは擬似負荷25を介して接地されている。なお、電流源20の出力電流は100mAであり、電流源21の出力電流は50mAである。ノードOUT1はNMOSトランジスタ22とレーザダイオード24と接続点、ノードOUT2はNMOSトランジスタ23と擬似負荷25との接続点である。
【0034】
上記構成において、図4(A)、(B)に示すように、NMOSトランジスタ22のゲートに第1の電圧パルス信号SW1が、またNMOSトランジスタ23のゲートに第1の電圧パルス信号SW1と逆相の第2の電圧パルス信号SW1’が入力されると、NMOSトランジスタ22、23は第1の電圧パルス信号SW1、第2の電圧パルス信号SW1’により交互に、すなわち相補的にスイッチングされる。レーザダイオード24には常時、電流源20より100mAの電流が供給されるために、この電流がオフセット電流となる。このオフセット電流に、NMOSトランジスタ22のスイッチングによりNMOSトランジスタ22がオンとなる期間のみ電流源21から50mAの出力電流が重畳された電流I1(図4(C))がレーザダイオード24に供給される。
【0035】
本実施の形態において、NMOSトランジスタ22、23のうちのいずれか一方は、必ずオン状態となるように駆動されるので、ノードN1には常に50mAの定電流が流れ、ノードN1における電位は変動しない。
このように、本発明の第2実施の形態に係るレーザダイオード駆動回路によれば、電流源21(第2の電流源)とNMOSトランジスタ22(第1のスイッチ手段)との接続点であるノードN1には常に一定電流が流れるためにノードN1における電位は変動せず、電流源20(第1の電流源)により供給される100mAのオフセット電流のレベルに電流源21により供給される50mAの電流をNMOSトランジスタ22によりスイッチングすることにより得られる電流パルスを重畳した高速のパルス電流をレーザダイオードに供給することができる。
【0036】
次に、本発明の第3の実施の形態に係るレーザダイオード駆動回路の構成を図5に示す。同図において、本実施の形態に係るレーザダイオード駆動回路は、カソード側が接地されたレーザダイオード37のアノード側と接続されレーザダイオード37にオフセット電流を供給する第1の電流源としての電流源30と、上記オフセット電流に重畳する電流を供給する2以上の(本実施の形態では2つの)第2の電流源としての電流源31、32とを有している。
【0037】
また、電流源31、32の各々の出力端とレーザダイオード37のアノード側との間に第1のスイッチ手段としてのNMOSトランジスタ33、35が接続され、、電流源31、32の各々の出力端と前記第1のスイッチ手段としてのNMOSトランジスタ33、35との接続点N1、N2と擬似負荷38との間にそれぞれ、第2のスイッチ手段としてのNMOSトランジスタ34、36とが接続されている。
電流源30、31、32の一端は電源電圧Vddの電源ラインに接続され、電流源31、32の出力端はそれぞれ、NMOSトランジスタ33、35のドレインに接続され、NMOSトランジスタ33、35のソースはレーザダイオード37のアノードに接続されている。
【0038】
また、電流源30、31、32の出力端はNMOSトランジスタ34、36のドレインに接続され、NMOSトランジスタ34、36のソースは擬似負荷38を介して接地されている。本実施の形態では、電流源30の出力電流は100mA、電流源31の出力電流は50mA、電流源32の出力電流は100mAである。なお、擬似負荷38は、レーザダイオード37と略、等しい直流抵抗を有している。
NMOSトランジスタ33、34のゲートには相互に逆相の電圧パルス信号SW1、SW1’が印加され、またNMOSトランジスタ35、36のゲートには相互に逆相の電圧パルス信号SW2、SW2’が印加されるようになっている。
【0039】
上記構成において、図6の下方に示すように時系列的に各区間T1〜T4で電圧パルス信号SW1、SW2を動作させるものとする。ここで、「SW1がOFF」とはNMOSトランジスタ33をオフさせるローレベルの信号SW1がゲートに入力されることを、「SW1がON」とはNMOSトランジスタ33をオンさせるハイレベルの信号SW1がゲートに入力されることを、「SW1がON/OFF」とはNMOSトランジスタ33をオン/オフさせるようにハイレベルの信号とローレベルの信号が交互にゲートに印加されるように電圧パルス信号SW1が供給されることを、それぞれ意味している。NMOSトランジスタ35を駆動する信号SW2についても同様である。
【0040】
図6に示すように、期間T1では信号SW1、SW2としてローレベルの信号がNMOSトランジスタ33、35のゲートに入力され、この時NMOSトランジスタ34、36のゲートに入力される信号SW1’、SW2’はハイレベルとなる。この結果、NMOSトランジスタ33、35はオフ状態、NMOSトランジスタ34、36はオン状態となるため期間T1では電流源31、32の出力電流はノードOUT2を通り、擬似負荷38に流入する。したがって、レーザダイオード37には電流源30の出力電流100mAのオフセット電流のみが駆動電流I1として供給される。
【0041】
次いで、期間T2では信号SW1がON/OFF、信号SW2がOFFとなる、すなわち、NMOSトランジスタ33、34が相補的に交互にスイッチングされると共に、NMOSトランジスタ35はオフ状態となり、かつNMOSトランジスタ36がオン状態となる。この結果、電流源32の出力電流(100mA)は擬似負荷38に流れ、レーザダイオード37には電流源30から出力される100mAのオフセット電流に、電流源31の出力電流をNMOSトランジスタ33、34のスイッチングにより得られる振幅が50mAのパルス電流を重畳した駆動電流I1がレーザダイオード37に供給される。
【0042】
更に、期間T3では、信号SW1がON、信号SW2がON/OFFとなる、すなわち、NMOSトランジスタ33がオン状態、NMOSトランジスタ34がオフ状態となり、かつNMOSトランジスタ35,36が相補的に交互にスイッチングされる状態となる。この結果、電流源30、31の出力電流がレーザダイオード37に150mAのオフセット電流として供給され、このオフセット電流に、電流源32の出力電流をNMOSトランジスタ35、36のスイッチングにより得られる振幅が100mAのパルス電流を重畳した駆動電流I1がレーザダイオード37に供給される。
【0043】
次に、期間T4では、信号SW1がOFF、信号SW2がON/OFFとなる、すなわち、NMOSトランジスタ33がオフ状態、NMOSトランジスタ34がオン状態となり、かつNMOSトランジスタ35,36が相補的に交互にスイッチングされる状態となる。この結果、電流源30の出力電流がレーザダイオード37に100mAのオフセット電流として供給され、このオフセット電流に、電流源32の出力電流をNMOSトランジスタ35、36のスイッチングにより得られる振幅が100mAのパルス電流を重畳した駆動電流I1がレーザダイオード37に供給される。
【0044】
本実施の形態に係るレーザダイオード駆動回路では、電流源31、32の出力端におけるノードN1、N2にはそれぞれ常に、定電流が流れているので各ノードN1、N2における電位に変動はなく、それ故、NMOSトランジスタ33、34、またはNMOSトランジスタ35、36を相補的にスイッチングすることにより高速のパルス電流をレーザダイオード37のアノードが接続されるノードOUT1に供給することができる。
【0045】
このように本実施の形態に係るレーザダイオード駆動回路によれば、レーザダイオード37に供給する駆動電流が、少なくとも第1の電流源としての電流源30により供給されるオフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように2以上の第2の電流源としての電流源31、32の各々の出力端に接続されるNMOSトランジスタ33〜36を駆動制御するようにしたので、オフセット電流に振幅が可変で高速のパルス電流を重畳した駆動電流をレーザダイオードに供給することができる。
【0046】
更に、本実施の形態に係るレーザダイオード駆動回路によれば、レーザダイオードに供給する電流が、第1の電流源としての電流源30により供給される第1のオフセット電流のレベルに更に、第2のオフセット電流を重畳し、該重畳により加算されたオフセット電流のレベルを基準にしてパルス電流信号を重畳するように2以上の第2の電流源としての電流源31、32の各々の出力端に接続される第1、第2のスイッチ手段としてのNMOSトランジスタ33〜36を駆動制御するようにしたので、レーザダイオードに供給する電流を、オフセット電流のレベルを可変にし、かつこのオフセット電流に高速のパルス電流信号を重畳するように制御することができる。
【0047】
次に、本発明の第3の実施の形態に係るレーザダイオード駆動回路をCD―RW(CD−Rewritable)等の記録/再生装置に適用した具体的回路の構成例を図7に示す。同図においてこのレーザダイオード駆動回路は、カソード側が接地されたレーザダイオード52のアノード側とNMOSトランジスタ50を介して接続され、かつ擬似負荷53とNMOSトランジスタ51を介して接続され、通常はレーザダイオード52にオフセット電流を供給する電流源40と、オフセット電流に重畳する電流を供給する複数の電流源41、42、43とを有している。
【0048】
複数の電流源41〜43の各々の出力端とレーザダイオード52のアノードとの間に、第1のスイッチ手段としてのNMOSトランジスタ44、46、48がそれぞれ、接続されており、電流源41〜43の各々の出力端とNMOSトランジスタ44、46、48との接続点であるノードN1〜N3と擬似負荷53との間にそれぞれ、第2のスイッチ手段としてのNMOSトランジスタ45、47、49が接続されている。電流源40、41,42、43の出力電流源はそれぞれ、100mA、200mA、50mA、50mAである。
【0049】
図7に示すレーザダイオード駆動回路では、データの書込み、読み出し、消去の各動作において、レーザダイオード52に供給する電流のうち、オフセット電流、あるいはこのオフセット電流に重畳するパルス電流の振幅は異なるため、各動作に適合するように各NMOSトランジスタ44〜51を制御する電圧パルス信号SW1〜SW4及びその反転信号SW1’〜SW4’が各NMOSトランジスタ50のゲートに供給される。
【0050】
以下、図7に示すレーザダイオード駆動回路の動作を図8に示すタイミングチャートに基づいて説明する。図8において、下方に示すようにデータの読み出しが行われる期間T11では、NMOSトランジスタ44のゲートに供給される電圧パルス信号SW1はOFF、すなわちローレベルに固定され、電圧パルス信号SW2はON/OFF、すなわちNMOSトランジスタ46をオン/オフさせるようにハイレベルの信号とローレベルの信号が交互にゲートに印加されるようにNMOSトランジスタ46に供給される。さらに、電圧パルス信号SW3はOFF、すなわちローレベルに固定され、電圧パルス信号SW3はON、すなわち、ハイレベルに固定される。さらに、信号SW4はオン状態となる。
【0051】
この結果、期間T11では、NMOSトランジスタ44、48、51がオフ状態、NMOSトランジスタ45、49、50がオン状態にそれぞれ固定され、NMOSトランジスタ46、47が交互に相補的にオン/オフ状態となる。したがって、レーザダイオード52には、電流源40の出力電流(100mA)がオフセット電流として供給され、電流源41、43の出力電流は擬似負荷53に流れ込む。
また、これと同時に電流源42の出力電流(50mA)は、NMOSトランジスタ46,47が相補的にスイッチングされるために、このスイッチングにより得られる振幅50mAのパルス電流がレーザダイオード52に供給される。したがって、レーザダイオード52には、100mAのオフセット電流に振幅50mAのパルス電流が重畳された駆動電流I1がレーザダイオード52に供給されることとなる。
【0052】
次に、データの消去が行われる期間T12では、電圧パルス信号SW1はON、すなわちハイレベルに固定され、電圧パルス信号SW2、SW4はOFF、すなわちローレベルに固定され、電圧パルス信号SW3は、ON/OFF、すなわちNMOSトランジスタ48をオン/オフさせるようにハイレベルの信号とローレベルの信号が交互にゲートに印加されるようにNMOSトランジスタ48に供給される。この結果、期間T12では、NMOSトランジスタ44、47、51がオン状態、NMOSトランジスタ45、46、50がオフ状態にそれぞれ固定され、NMOSトランジスタ48、49が交互に相補的にオン/オフ状態となる。
【0053】
したがって、レーザダイオード52には、電流源41の出力電流(200mA)がオフセット電流として供給され、電流源40、42の出力電流は擬似負荷53に流れ込む。
また、これと同時に電流源43の出力電流(50mA)は、NMOSトランジスタ48,49が相補的にスイッチングされるために、このスイッチングにより得られる振幅50mAのパルス電流がレーザダイオード52に供給される。したがって、レーザダイオード52には、200mAのオフセット電流に振幅50mAのパルス電流が重畳された駆動電流I1がレーザダイオード52に供給されることとなる。
【0054】
更に、データの書込みが行われる期間T13では、電圧パルス信号SW1がON/OFF、すなわちNMOSトランジスタ44をオン/オフし、ハイレベルの信号とローレベルの信号が交互にゲートに印加されるようにNMOSトランジスタ48に供給される。また、電圧パルス信号SW2、SW3はOFF、すなわちローレベルに固定され、電圧パルス信号SW4はON、すなわちハイレベルに固定される。この結果、期間T13では、NMOSトランジスタ47、49、50がオン状態、NMOSトランジスタ46、48、51がオフ状態にそれぞれ固定され、NMOSトランジスタ44、45が交互に相補的にオン/オフ状態となる。
【0055】
したがって、レーザダイオード52には、電流源40の出力電流(100mA)がオフセット電流として供給され、電流源42、43の出力電流は擬似負荷53に流れ込む。
また、これと同時に電流源41の出力電流(200mA)は、NMOSトランジスタ44,45が相補的にスイッチングされるために、このスイッチングにより得られる振幅200mAのパルス電流がレーザダイオード52に供給される。したがって、レーザダイオード52には、100mAのオフセット電流に振幅200mAのパルス電流が重畳された駆動電流I1がレーザダイオード52に供給されることとなる。
上記各動作において、ノードN1〜N4には常に、定電流が流れるので、これらのノードにおける電圧変動はなく、既述した第3の実施の形態と同様に高速のパルス電流をレーザダイオード52に供給することができる。
【0056】
次に、本発明の第4の実施の形態に係るレーザダイオード駆動回路の構成を図9に示す。同図において、本実施の形態に係るレーザダイオード駆動回路は、カソード側が接地されたレーザダイオード62のアノード側と接続されレーザダイオード62にオフセット電流を供給する第1の電流源としての電流源60と、電流源60とは出力電流値が異なる電流を供給する第2の電流としての電流源61と、電流源61の出力電流を吸い込む第1のトランジスタとしてのNMOSトランジスタ63とNMOSトランジスタ63により駆動される第2のトランジスタとしてのNMOSトランジスタ64とを有するカレントミラー回路と、NMOSトランジスタ64と、電流源60の出力端とレーザダイオード62のアノードとの接続点であるノードOUT1との間に設けられたスイッチ手段としてのNMOSトランジスタ65とを有している。
【0057】
電流源60、61の出力電流は、それぞれ100mA、50mAであり、NMOSトランジスタ63、64のチャネル幅は等しいものとする。また、NMOSトランジスタ65は、図10(A)に示す電圧パルス信号SW1によりスイッチング制御される。
上記構成において、図10(A)に示す電圧パルス信号SW1がローレベルの期間ではNMOSトランジスタ65はオフ状態にあり、レーザダイオード62には、電流源60の出力電流(100mA)のすべてが駆動電流I1として供給される。
【0058】
一方、電圧パルス信号SW1がハイレベルの期間では、NMOSトランジスタ65はオン状態となる。このときNMOSトランジスタ63には電流源61より定電流I3(50mA)が供給され、吸い込まれる。NMOSトランジスタ63、64のチャネル幅は等しいのでNMOSトランジスタ64にも50mAの電流I2が電流源60よりNMOSトランジスタ65を介して流れ込む。この結果、NMOSトランジスタ65がオン状態の期間では、レーザダイオード62には電流源60より50mAの電流が駆動電流I1として供給されることとなる。したがって、NMOSトランジスタ65の電圧パルス信号SW1によるスイッチング動作に応じてレーザダイオード62には図10(B)に示すような駆動電流I1が供給される。
【0059】
本実施の形態に係るレーザダイオード駆動回路によれば、ノードOUT1には常に100mAの定電流が流れるので、ノードOUT1における電圧変動は生じず、また、NMOSトランジスタ63、64より構成されるカレントミラー回路の応答が速いので、第1の電流源としての電流源60より供給されるオフセット電流(100mA)を基準としてNMOSトランジスタ65をスイッチングすることにより電流源60の出力電流から所定の電流量(50mA)を断続的にカレントミラー回路側に分流することにより得られる高速のパルス電流をレーザダイオードに供給することができる。
【0060】
次に、本発明の第5の実施の形態に係るレーザダイオード駆動回路の構成を図11に示す。同図において、本実施の形態に係るレーザダイオード駆動回路は、カソード側が接地されたレーザダイオード72のアノード側と接続されレーザダイオード72にオフセット電流を供給する第1の電流源としての電流源70と、第1の電流源とは出力電流値が異なる電流を供給する第2の電流源としての電流源71と、電流源71の出力電流を吸い込む第1のトランジスタとしてのNMOSトランジスタ73と、NMOSトランジスタ73により駆動される第2のトランジスタとしてのNMOSトランジスタ74とを有するカレントミラー回路と、電流源71の出力端とNMOSトランジスタ73との間に設けられた第1のスイッチ手段としてPMOSトランジスタ75と、電流源71の出力端とNMOSトランジスタ74との間に設けられた第2のスイッチ手段としてのPMOSトランジスタ76とを有している。
【0061】
電流源70、71の出力電流は、それぞれ100mA、50mAであり、NMOSトランジスタ73、74のチャネル幅は等しいものとする。
また、電流源70の出力端は、第2のスイッチ手段としてのPMOSトランジスタ76と、NMOSトランジスタ74との接続点であるノードN3に接続されており、第1、第2のスイッチ手段としてのPMOSトランジスタ76、75が相補的にスイッチング動作するように図12(A),(B)に示す電圧パルス信号SW1、SW1’により駆動制御される。
【0062】
上記構成において、図12(A)、(B)に示す電圧パルス信号SW1、SW1’によりPMOSトランジスタ76、75を駆動すると、図12(A)に示す電圧パルス信号SW1がローレベルの期間ではPMOSトランジスタ76はオン状態にあり、このとき電圧パルス信号SW1’はハイレベルとなるためにPMOSトランジスタ75はオフ状態となる。この結果、NMOSトランジスタ73、74もオフ状態となる。したがって、レーザダイオード72には電流源70より常時、100mAの電流が供給され、かつ電流源71よりPMOSトランジスタ76を介してレーザダイオード72に50mAの電流I2が供給されるので(図12(D))、結局電圧パルス信号SW1がローレベルの期間ではレーザダイオード72に150mAの駆動電流I1が供給される(図12(C))。
【0063】
一方、図12(A)に示す電圧パルス信号SW1がハイレベルの期間ではPMOSトランジスタ76はオフ状態にあり、このとき電圧パルス信号SW1’はローレベルとなるためにPMOSトランジスタ75はオン状態となる。このためにNMOSトランジスタ73、74は飽和領域で動作する。この結果、電流源71よりPMOSトランジスタ75を介してNMOSトランジスタ73に50mAの電流I4が吸い込まれ(図12(F))、これと同時に、NMOSトランジスタ73、74のチャネル幅は等しいために電流源70よりNMOSトランジスタ74に電流I4と同じ50mAの電流I3が流れ込む(図12(E))。
【0064】
したがって、電流源70の出力電流100mAのうち50mAの電流I3がカレントミラー回路側に分流するので、レーザダイオード72には50mAの駆動電流I1が供給されることとなる。
このように、本実施の形態に係るレーザダイオード駆動回路によれば、レーザダイオード72に対し第1の電流源としての電流源70によりオフセット電流を常時、供給し、第1、第2のスイッチ手段としてのPMOSトランジスタ75,76及びカレントミラー回路の動作により上記オフセット電流に第2の電流源としての電流源71から出力される電流を重畳し、または上記オフセット電流から電流源71から出力される電流の電流値に等しい電流をカレントミラー回路側に分流させるようにしたので、高速のパルス電流をレーザダイオードに供給することができると共に、レーザダイオードに供給する電流を、中心の電流値を固定した状態で振幅を変化させることができる。したがって、レーザダイオード駆動回路の設計及び調整が容易になるという効果もある。
【0065】
次に、本発明の第6の実施の形態に係るレーザダイオード駆動回路の構成を図13に示す。同図において、本実施の形態に係るレーザダイオード駆動回路が図11に示した第5の実施の形態に係るレーザダイオード駆動回路と構成上、異なるのは、レーザダイオード72に供給する電流を第1の電流源としての電流源70から出力されるオフセット電流のみに制限する際に、第2の電流源としての電流源71の出力端と、第1のスイッチ手段としてのPMOSトランジスタ75及び第2のスイッチ手段としてのPMOSトランジスタ76との間に設けられ該PMOSトランジスタ75、76への電流供給を遮断する第3のスイッチ手段としてのPMOSトランジスタ80と、カレントミラー回路を構成する第1、第2のトランジスタとしてのNMOSトランジスタ73、74を強制的にオフ状態にする第4のスイッチ手段としてのNMOSトランジスタ81とを付加した点であり、その他の構成は同一であるので、同一の要素には同一の符号を付して重複する説明は省略する。
【0066】
なお、PMOSトランジスタ80、NMOSトランジスタ81の各ゲートには通常動作時には、ローレベルとなり、NMOSトランジスタ73、74で構成されるカレントミラー回路及び第1、第2のスイッチ手段としてのPMOSトランジスタ75、76の動作の影響を断つ際にハイレベルとなる同一の制御信号SW3が入力されるようになっている。
【0067】
上記構成において、通常動作時には、すなわち制御信号SW3がローレベルの期間では、PMOSトランジスタ80はオン状態、NMOSトランジスタ81はオフ状態となり、この場合には図11に示す回路構成と同一になり、図12に示すように電圧パルス信号SW1、SW1’によりPMOSトランジスタ75、76が相補的にスイッチング動作することによりレーザダイオード72には、中心となる100mAの電流値を固定した状態で50mAの振幅で増減する駆動電流I1が供給されることとなる。
【0068】
一方、制御信号SW3がハイレベルの期間では、PMOSトランジスタ80はオフ状態、NMOSトランジスタ81はオン状態となる。この結果、NMOSトランジスタ73、74、PMOSトランジスタ75、76はオフ状態となり、電流源71からレーザダイオード72側に流れ込む電流I2、電流源71からNMOSトランジスタ73に流れ込む電流I4、電流源70からNMOSトランジスタ74に流れ込む電流I3は零となる。
【0069】
このように制御信号SW3がハイレベルの期間では、NMOSトランジスタ73、74で構成されるカレントミラー回路及び相補的にスイッチング動作する第1、第2のスイッチ手段としてのPMOSトランジスタ75、76の動作の影響を断つことができ、このとき、レーザダイオード72には電流源70より100mAの駆動電流が供給される。この場合にNMOSトランジスタ81をオン状態とすることによりカレントミラー回路を構成するNMOSトランジスタ73、74を高速にオン状態からオフ状態に遷移させることはできるが、PMOSトランジスタ80がオフ状態になることによりPMOSトランジスタ80のソース側電位が電源電圧Vddになるので、再度、通常動作に移行させる際に高速応答することができない。
【0070】
本実施の形態に係るレーザダイオード駆動回路によれば、レーザダイオード72に供給する電流を電流源70から出力されるオフセット電流のみに制限する際に、電流源71の出力端と、PMOSトランジスタ75及びPMOSトランジスタ76との間に設けられ該PMOSトランジスタ75、76への電流供給を遮断する第3のスイッチ手段としてのPMOSトランジスタ80と、カレントミラー回路を構成するNMOSトランジスタ73、74を強制的にオフ状態にする第4のスイッチ手段としてのNMOSトランジスタ81とを付加するようにしたので、第5の実施の形態により得られる効果に加えてレーザダイオード72に供給する電流を第1の電流源から出力されるオフセット電流に制限する際にカレントミラー回路の影響を高速に断つことができる。
【0071】
次に、本発明の第7の実施の形態に係るレーザダイオード駆動回路の構成を図14に示す。同図において、本実施の形態に係るレーザダイオード駆動回路が図11に示した第6の実施の形態に係るレーザダイオード駆動回路と構成上、異なるのは、第3のスイッチ手段としてのPMOSトランジスタ80を除去し、第2の電流源としての電流源71の出力端と擬似負荷91との間に接続される第5のスイッチ手段としてのPMOSトランジスタ90を設け、レーザダイオード72に供給する電流を電流源70(第1の電流源)から出力されるオフセット電流のみに制限する際にPMOSトランジスタ90をオン状態とし、電流源71(第2の電流源)の出力電流を擬似負荷91に流出させるようにした点であり、その他の構成、動作は図13示した第6の実施の形態に係るレーザダイオード駆動回路と同様であるので、重複する説明は省略する。
【0072】
上記構成において、電圧パルス信号SW1、SW1’によりPMOSトランジスタ75、76が相補的にスイッチング動作する通常動作時には、NMOSトランジスタ81のゲートに入力される制御信号SW3はローレベルであり、PMOSトランジスタ90のゲートに入力される制御信号SW4はハイレベルとなる(図15(A)、(B))。この状態下では図15(C)に示すようにレーザダイオード72には中心となる100mAの電流値を固定した状態で50mAの振幅で増減する駆動電流I1が供給される。
【0073】
その後、時刻tnで制御信号SW4がハイレベルからローレベルに、制御信号SW3がローレベルからハイレベルに変化すると共に、PMOSトランジスタ75、76のゲートに入力されていた電圧パルス信号SW1’、SW1がハイレベルの電位に固定されると、電流源71の出力電流はPMOSトランジスタ90を介して擬似負荷91にバイパスするように流出し、かつPMOSトランジスタ75、76、NMOSトランジスタ73、74はオフ状態となる。この結果、スイッチング手段としてのPMOSトランジスタ75、76及び、NMOSトランジスタ73、74により構成されるカレントミラー回路の動作の影響を高速に断つことができる。
【0074】
また、第2の電流源としての電流源71の出力端と、PMOSトランジスタ75、76、90のソースとの接続点であるノードN1には常に、50mAの定電流が流れているので、ノードN1における電圧変動は生じない。
したがって、本実施の形態に係るレーザダイオード駆動回路によれば、レーザダイオードに供給する電流を第1の電流源としての電流源70から出力されるオフセット電流のみに制限する動作状態から、第1、第2のスイッチ手段としてのPMOSトランジスタ75、76及びカレントミラー回路を構成するNMOSトランジスタ73、74の動作により上記オフセット電流に第2の電流源としての電流源71から出力される電流を重畳し、または上記オフセット電流から電流源71から出力される電流の電流値に等しい電流をカレントミラー回路側に分流させることによりパルス電流を発生する動作状態に遷移する際に高速に応答することができる。
【0075】
【発明の効果】
以上に説明したように、請求項1に記載の発明によれば、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、前記オフセット電流に重畳する電流を供給する第2の電流源と、前記第2の電流源と前記レーザダイオードのアノード側との間に設けられ第1の電圧パルス信号により駆動される第1のスイッチ手段と、前記第2の電流源と前記第1のスイッチ手段との接続点と擬似負荷との間に設けられ前記第1の電圧パルス信号とは逆相の第2の電圧パルス信号により駆動される第2のスイッチ手段とを有し、前記第1のスイッチ手段と第2のスイッチ手段は相補的にスイッチング動作するようにしたので、第2の電流源と前記第1のスイッチ手段との接続点には常に一定電流が流れるために前記第2の電流源と第1のスイッチ手段との接続点における電位は変動せず、第1の電流源により供給されるオフセット電流のレベルに第2の電流源により供給される電流を第1のスイッチ手段によりスイッチングすることにより得られる電流パルスを重畳した高速のパルス電流をレーザダイオードに供給することができる。
【0077】
請求項に記載の発明によれば、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、前記オフセット電流に重畳する電流を供給する2以上の第2の電流源とを有し、前記2以上の第2の電流源の各々の出力端と、前記レーザダイオードのアノード側との間に第1のスイッチ手段が各々接続され、前記2以上の第2の電流源の各々の出力端と前記第1のスイッチ手段との接続点と、擬似負荷との間に第2のスイッチ手段が各々接続され、前記レーザダイオードに供給する電流が、少なくとも前記オフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御するようにしたので、前記2以上の第2の電流源の各々の出力端と前記第1、第2のスイッチ手段との接続点である各ノードには常に定電流が流れるために電圧変動がなく、それ故レーザダイオードに供給する電流を、少なくとも前記オフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように制御することができる。
【0078】
請求項に記載の発明によれば、請求項3に記載のレーザダイオード駆動回路において、前記レーザダイオードに供給する電流が、前記オフセット電流のレベルに更に、前記2以上の第2の電流源のうちのいずれかにより1または複数のオフセット電流を重畳し、該重畳により加算されたオフセット電流のレベルを基準にしてパルス電流信号を重畳するように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御するようにしたので、請求項に記載の発明による効果に加えて、レーザダイオードに供給する電流を、オフセット電流を可変にし、かつこのオフセット電流にパルス電流信号を重畳するように制御することができる。
【0079】
請求項に記載の発明によれば、カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、第1の電流源より出力電流値が小さい電流を供給する第2の電流源と、第2の電流源の出力電流を吸い込む第1のトランジスタと該第1のトランジスタにより駆動される第2のトランジスタとを有するカレントミラー回路と、前記第2のトランジスタと、前記第1の電流源の出力端と前記レーザダイオードのアノードとの接続点との間に設けられたスイッチ手段とを有するので、前記第1の電流源の出力端と前記レーザダイオードのアノードとの接続点には常に定電流が流れ、このノードにおける電位は変動せず、それ故前記第1の電流源により供給されるオフセット電流を基準としてスイッチ手段により第1の電流源の出力電流から所定の電流量を断続的にカレントミラー回路側に分流することにより得られる高速のパルス電流をレーザダイオードに供給することができる。
【0080】
請求項5に記載の発明によれば、レーザダイオードに対し第1の電流源によりオフセット電流を常時、供給し、第1、第2のスイッチ手段及びカレントミラー回路の動作により上記オフセット電流に第2の電流源から出力される電流を重畳し、または上記オフセット電流から第2の電流源から出力される電流の電流値に等しい電流をカレントミラー回路側に分流させるようにしたので、高速のパルス電流をレーザダイオードに供給することができると共に、レーザダイオードに供給する電流を、中心の電流値を固定した状態で振幅を変化させることができる。
【0081】
請求項に記載の発明によれば、請求項に記載のレーザダイオード駆動回路において、前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に、前記第2の電流源の出力端と、前記第1のスイッチ手段及び第2のスイッチ手段との間に設けられ該第1のスイッチ手段及び第2のスイッチ手段への電流供給を遮断する第3のスイッチ手段と、前記カレントミラー回路を構成する第1、第2のトランジスタを強制的にオフ状態にする第4のスイッチ手段とを設けたので、請求項に記載された発明により得られる効果に加えて、レーザダイオードに供給する電流を第1の電流源から出力されるオフセット電流のみに制限する際にカレントミラー回路の動作の影響を高速に断つことができる。
【0082】
請求項に記載の発明によれば、請求項に記載のレーザダイオード駆動回路において、前記第2の電流源の出力端と擬似負荷との間に接続される第4のスイッチ手段を有し、前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に前記第4のスイッチ手段をオン状態とし、前記第2の電流源の出力電流を前記擬似負荷に流出するようにしたので、前記第2の電流源と、前記第1及び第2のスイッチ手段との接続点には常に定電流が流れるので、この接続点における電位は変動せず、それ故レーザダイオードに供給する電流を第1の電流源から出力されるオフセット電流のみに制限する動作状態から、第1、第2のスイッチ手段及びカレントミラー回路の動作により上記オフセット電流に第2の電流源から出力される電流を重畳し、または上記オフセット電流から第2の電流源から出力される電流の電流値に等しい電流をカレントミラー回路側に分流させることによりパルス電流を発生する動作状態に移行する際に高速に応答することができる。
【0083】
請求項に記載の発明によれば、請求項1乃至のいずれかに記載のレーザダイオード駆動回路において、前記各スイッチ手段及び前記各トランジスタはMOSトランジスタで形成するようにしたので、CMOS半導体集積回路上に請求項1乃至のいずれかに記載のレーザダイオード駆動回路を形成することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図2】 図1に示したレーザダイオード駆動回路の各部の動作状態を示すタイミングチャート。
【図3】 本発明の第2の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図4】 図3に示したレーザダイオード駆動回路の各部の動作状態を示すタイミングチャート。
【図5】 本発明の第3の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図6】 図5に示したレーザダイオード駆動回路におけるスイッチング素子の制御信号とレーザダイオードに供給される駆動電流の変化状態との関係を示すタイミングチャート。
【図7】 本発明の第3の実施の形態に係るレーザダイオード駆動回路の具体的構成例を示す回路図。
【図8】 図7に示したレーザダイオード駆動回路におけるスイッチング素子の制御信号とレーザダイオードに供給される電流の変化状態との関係を示すタイミングチャート。
【図9】 本発明の第4の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図10】 図9に示したレーザダイオード駆動回路におけるスイッチング素子の制御信号とレーザダイオードに供給される駆動電流の変化状態との関係を示すタイミングチャート。
【図11】 本発明の第5の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図12】 図11に示したレーザダイオード駆動回路の各部の動作状態を示すタイミングチャート。
【図13】 本発明の第6の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図14】 本発明の第7の実施の形態に係るレーザダイオード駆動回路の構成を示す回路図。
【図15】 図14に示したレーザダイオード駆動回路における各スイッチング素子の動作状態とレーザダイオードに供給される駆動電流との関係を示すタイミングチャート。
【図16】 従来のレーザダイオード駆動回路の主要部の構成例を示す回路図。
【図17】 図16に示したレーザダイオード駆動回路の各部の動作状態を示すタイミングチャート。
【図18】 従来のレーザダイオード駆動回路の主要部の他の構成例を示す回路図。
【図19】 図18に示したレーザダイオード駆動回路の各部の動作状態を示すタイミングチャート。
【符号の説明】
10、20、21、30〜32 電流源
11、12、22、23、33〜36 NMOSトランジスタ
13、24、37 レーザダイオード
14、25、38 擬似負荷

Claims (8)

  1. カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、
    前記オフセット電流に重畳する電流を供給する第2の電流源と、
    前記第2の電流源と前記レーザダイオードのアノード側との間に設けられ第1の電圧パルス信号により駆動される第1のスイッチ手段と、
    前記第2の電流源と前記第1のスイッチ手段との接続点と擬似負荷との間に設けられ前記第1の電圧パルス信号とは逆相の第2の電圧パルス信号により駆動される第2のスイッチ手段とを有し、
    前記第1のスイッチ手段と第2のスイッチ手段は相補的にスイッチング動作することを特徴とするレーザダイオード駆動回路。
  2. カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、
    前記オフセット電流に重畳する電流を供給する2以上の第2の電流源とを有し、
    前記2以上の第2の電流源の各々の出力端と、前記レーザダイオードのアノード側との間に第1のスイッチ手段が各々接続され、
    前記2以上の第2の電流源の各々の出力端と前記第1のスイッチ手段との接続点と、擬似負荷との間に第2のスイッチ手段が各々接続され、
    前記レーザダイオードに供給する電流が、少なくとも前記オフセット電流のレベルを基準としてパルス電流信号を重畳し、かつ該パルス電流信号の振幅が可変となるように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御することを特徴とするレーザダイオード駆動回路。
  3. 前記レーザダイオードに供給する電流が、前記オフセット電流のレベルに更に、前記2以上の第2の電流源のうちのいずれかにより1または複数のオフセット電流を重畳し、該重畳により加算されたオフセット電流のレベルを基準にしてパルス電流信号を重畳するように前記2以上の第2の電流源の各々の出力端に接続される第1、第2のスイッチ手段を駆動制御することを特徴とする請求項2に記載のレーザダイオード駆動回路。
  4. カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、
    第1の電流源より出力電流値が小さい電流を供給する第2の電流源と、
    第2の電流源の出力電流を吸い込む第1のトランジスタと該第1のトランジスタにより駆動される第2のトランジスタとを有するカレントミラー回路と、
    前記第2のトランジスタと、前記第1の電流源の出力端と前記レーザダイオードのアノードとの接続点との間に設けられたスイッチ手段と、
    を有することを特徴とするレーザダイオード駆動回路。
  5. カソード側が接地されたレーザダイオードのアノード側と接続され該レーザダイオードにオフセット電流を供給する第1の電流源と、
    第1の電流源より出力電流値が小さい電流を供給する第2の電流源と、
    第2の電流源の出力電流を吸い込む第1のトランジスタと該第1のトランジスタにより駆動される第2のトランジスタとを有するカレントミラー回路と、
    前記第2の電流源の出力端と前記第1のトランジスタとの間に設けられた第1のスイッチ手段と、
    前記第2の電流源の出力端と前記第2のトランジスタとの間に設けられた第2のスイッチ手段とを有し、
    前記第1の電流源の出力端を前記第2のスイッチ手段と前記第2のトランジスタとの接続点に接続すると共に、前記第1、第2のスイッチ手段が相補的にスイッチング動作するように該第1、第2のスイッチ手段を駆動制御することを特徴とするレーザダイオード駆動回路。
  6. 前記レーザダイオードに供給する電流を前記第1の電流源から出力さ れるオフセット電流のみに制限する際に、前記第2の電流源の出力端と、前記第1のスイッチ手段及び第2のスイッチ手段との間に設けられ該第1のスイッチ手段及び第2のスイッチ手段への電流供給を遮断する第3のスイッチ手段と、
    前記カレントミラー回路を構成する第1、第2のトランジスタを強制的にオフ状態にする第4のスイッチ手段と、
    を有することを特徴とする請求項5に記載のレーザダイオード駆動回路。
  7. 前記第2の電流源の出力端と擬似負荷との間に接続される第5のスイッチ手段を有し、
    前記レーザダイオードに供給する電流を前記第1の電流源から出力されるオフセット電流のみに制限する際に前記第5のスイッチ手段をオン状態とし、
    前記第2の電流源の出力電流を前記擬似負荷に流出させることを特徴とする請求項6に記載のレーザダイオード駆動回路。
  8. 前記各スイッチ手段及び前記各トランジスタはMOSトランジスタで形成されることを特徴とする請求項1乃至7のいずれかに記載のレーザダイオード駆動回路。
JP2000045000A 2000-02-22 2000-02-22 レーザダイオード駆動回路 Expired - Fee Related JP3959920B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000045000A JP3959920B2 (ja) 2000-02-22 2000-02-22 レーザダイオード駆動回路
TW090103809A TW477095B (en) 2000-02-22 2001-02-20 Laser diode driving circuit
US09/789,975 US6826215B2 (en) 2000-02-22 2001-02-21 Laser diode driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045000A JP3959920B2 (ja) 2000-02-22 2000-02-22 レーザダイオード駆動回路

Publications (2)

Publication Number Publication Date
JP2001237489A JP2001237489A (ja) 2001-08-31
JP3959920B2 true JP3959920B2 (ja) 2007-08-15

Family

ID=18567667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045000A Expired - Fee Related JP3959920B2 (ja) 2000-02-22 2000-02-22 レーザダイオード駆動回路

Country Status (3)

Country Link
US (1) US6826215B2 (ja)
JP (1) JP3959920B2 (ja)
TW (1) TW477095B (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352786B2 (en) * 2001-03-05 2008-04-01 Fuji Xerox Co., Ltd. Apparatus for driving light emitting element and system for driving light emitting element
JP4123791B2 (ja) * 2001-03-05 2008-07-23 富士ゼロックス株式会社 発光素子駆動装置および発光素子駆動システム
JP3905734B2 (ja) * 2001-10-02 2007-04-18 浜松ホトニクス株式会社 発光素子駆動回路
JP3908971B2 (ja) * 2001-10-11 2007-04-25 浜松ホトニクス株式会社 発光素子駆動回路
JP3988469B2 (ja) 2002-01-25 2007-10-10 ソニー株式会社 半導体レーザ駆動回路
JP3947495B2 (ja) * 2003-06-02 2007-07-18 ローム株式会社 モールド型半導体レーザ
JP2005026410A (ja) * 2003-07-01 2005-01-27 Ricoh Co Ltd 半導体レーザ駆動装置
DE10358957A1 (de) * 2003-12-15 2005-07-07 Deutsche Thomson-Brandt Gmbh Kompatibler optischer Abtaster mit verbessertem Lasermodulator für Aufzeichnungs- oder Wiedergabegeräte optischer Aufzeichnungsträger
US7170335B2 (en) * 2004-03-08 2007-01-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Driver circuit for driving a light source of an optical pointing device
US7372882B2 (en) * 2004-04-28 2008-05-13 Renesas Technology Corp. Driving circuit for and semiconductor device for driving laser diode
CN100521415C (zh) * 2004-12-22 2009-07-29 松下电器产业株式会社 光发送电路
US7400662B2 (en) * 2005-01-26 2008-07-15 Avago Technologies Fiber Ip Pte Ltd Calibration of laser systems
US7468998B2 (en) * 2005-03-25 2008-12-23 Pavilion Integration Corporation Radio frequency modulation of variable degree and automatic power control using external photodiode sensor for low-noise lasers of various wavelengths
EP1819021B1 (en) * 2006-02-14 2018-06-20 Finder S.P.A. Method and device for monitoring polyphase lines and for detecting phase losses based on the phase angle between phase-to-phase voltages
JP2008004706A (ja) * 2006-06-21 2008-01-10 Mitsumi Electric Co Ltd 発光ダイオード駆動回路
JP5778059B2 (ja) * 2012-03-12 2015-09-16 古河電気工業株式会社 発光素子駆動装置
CN202797600U (zh) * 2012-09-13 2013-03-13 常州华达科捷光电仪器有限公司 一种激光模组控制电路
JP2015076581A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 光送信回路、光送信装置、および、光伝送システム
CN104596970B (zh) * 2014-12-30 2017-03-22 南京大学 一种中红外激光气体传感检测装置及方法
TWI575829B (zh) * 2015-11-25 2017-03-21 財團法人工業技術研究院 加快雷射二極體發光的控制方法
CN109326954B (zh) * 2017-07-31 2024-01-26 科大国盾量子技术股份有限公司 一种用于量子通信单光子源的激光器高速驱动模块
CN109257848A (zh) * 2018-10-22 2019-01-22 上海炬佑智能科技有限公司 光源驱动电路、光源驱动方法以及飞行时间测距传感器
JP2020088020A (ja) * 2018-11-16 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 検出回路、駆動回路および発光装置
CN113056851B (zh) * 2018-11-27 2024-02-13 索尼半导体解决方案公司 驱动装置和发光装置
CN112217571B (zh) * 2019-07-09 2022-02-22 博通集成电路(上海)股份有限公司 Cmos单管红外收发器
US10840907B1 (en) 2019-11-19 2020-11-17 Honeywell International Inc. Source-coupled logic with reference controlled inputs
WO2021190574A1 (zh) * 2020-03-24 2021-09-30 深圳市中科创激光技术有限公司 激光光源控制系统及其控制方法
CN117394135A (zh) * 2022-07-05 2024-01-12 深圳市速腾聚创科技有限公司 激光二极管驱动电路及激光雷达

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139761A (ja) 1984-07-31 1986-02-25 Toshiba Electric Equip Corp インタ−ホンシステム
JPH04283978A (ja) 1991-03-13 1992-10-08 Fujitsu Ltd レーザダイオード駆動回路
JPH05190949A (ja) * 1992-01-13 1993-07-30 Rohm Co Ltd レ−ザ−ダイオ−ド駆動回路
JPH0734491A (ja) 1993-07-20 1995-02-03 Hitachi Constr Mach Co Ltd 建設機械のフィルタ目詰り検出装置
US5798658A (en) * 1995-06-15 1998-08-25 Werking; Paul M. Source-coupled logic with reference controlled inputs
JP3636411B2 (ja) 1997-03-19 2005-04-06 富士通株式会社 レーザーダイオードの駆動回路および駆動方法
JPH11208017A (ja) * 1998-01-30 1999-08-03 Canon Inc 発光素子駆動装置

Also Published As

Publication number Publication date
US20030189961A1 (en) 2003-10-09
US6826215B2 (en) 2004-11-30
TW477095B (en) 2002-02-21
JP2001237489A (ja) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3959920B2 (ja) レーザダイオード駆動回路
JP2005191036A (ja) 発光素子駆動回路、デジタルアナログ変換器及び電流駆動回路
JP2647014B2 (ja) BiCMOS論理回路
US6252450B1 (en) Circuit and method for writing to a memory disk
US6429987B1 (en) High speed inductor current driver with minimum overshoot
JP2932722B2 (ja) 電流駆動回路
US20070253313A1 (en) Laser driver, method for driving laser, and recording/reading equipment
US20070116075A1 (en) Laser diode driver
US6201421B1 (en) Write current driving circuit
JP2006033864A (ja) 電流駆動回路、及び電流駆動回路の動作方法
JP2000182203A (ja) ハ―ドディスク・ドライブ書込みヘッドの調節可能なライタ―・オ―バ―シュ―ト
JP2001156385A (ja) レーザ駆動装置
JP4641219B2 (ja) 出力バッファ回路
US5379208A (en) High speed driving circuit for magnetic head effective against flyback pulse
JP3410084B2 (ja) 電圧トランスレータ
KR19980024898A (ko) 로우 바이어스 전압 기입 드라이버
JP2002358604A (ja) 磁気信号検出ヘッドの電流バイアス回路
JP2001084505A (ja) 電流ドライバ回路
JP3579290B2 (ja) 磁気ヘッド駆動回路および磁気記録装置
JP4794156B2 (ja) 長いホールド時間のサンプル・アンド・ホールド回路
JP2004111984A (ja) レーザ駆動装置
US6867936B2 (en) Driving circuit for a magnetic head and magnetic recording apparatus
US5812011A (en) Current switching circuit formed in an integrated semiconductor circuit
JP4837585B2 (ja) 受光回路
JP3831197B2 (ja) レーザ駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees