JP3928775B2 - 集積化方位センサ - Google Patents

集積化方位センサ Download PDF

Info

Publication number
JP3928775B2
JP3928775B2 JP2001374890A JP2001374890A JP3928775B2 JP 3928775 B2 JP3928775 B2 JP 3928775B2 JP 2001374890 A JP2001374890 A JP 2001374890A JP 2001374890 A JP2001374890 A JP 2001374890A JP 3928775 B2 JP3928775 B2 JP 3928775B2
Authority
JP
Japan
Prior art keywords
magnetic
support
sensor
magnetic flux
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001374890A
Other languages
English (en)
Other versions
JP2003172633A (ja
Inventor
博文 福本
昌哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2001374890A priority Critical patent/JP3928775B2/ja
Publication of JP2003172633A publication Critical patent/JP2003172633A/ja
Application granted granted Critical
Publication of JP3928775B2 publication Critical patent/JP3928775B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気センサと加速度センサとを混載した複合センサに関し、特に、携帯機器に内蔵されるべく小型で、その携帯機器の姿勢および方位、すなわち重力および地磁気に対する角度を検出することができる集積化方位センサに関するものである。
【0002】
【従来の技術】
従来、姿勢を検出する姿勢検出装置として、特開平10−185608号公報に記載のものが知られている。この姿勢検出装置は、2軸の磁束を検出できる磁気センサと、2軸の加速度センサを用いた傾斜センサと、演算回路とで構成されている。
磁気センサ、傾斜センサ、および演算回路は、それぞれ独立した基板上に形成されており、これらの独立の各基板が別の基板上に配置されている。上記の磁気センサは、センサ表面に平行な(直交する2)方向の地磁気成分を検知することが可能である。
【0003】
しかし、赤道上に近い一部地域を除いて、地磁気ベクトルの方向は地表面に対して水平でなく俯角が存在するため、装置を傾いた状態で使用すると、正確な方位を検出することが不可能である。この不都合を解消するには、傾斜センサにより装置の傾きを検知し、磁気センサの出力信号を補正することにより、正確な地磁気方位の検知を行うことが可能となる。
一方、方位測定の機能を備えた小型の加速度センサとして、特開平11−160349号公報に記載のものが知られている。これは、加速度センサを構成する基板と同一の基板上に、その基板面に対して垂直な磁場を検出するホール素子を設けたものである。すなわち、ガラスからなる台座の上に、シリコンチップからなる重り部を可動自在に配置して加速度センサとし、その重り部の上にホール素子を配置したものである。
【0004】
特開平10−185608号公報に記載の姿勢検出装置では、磁気センサとしてフラックスゲートセンサを使用している。また、特開平11−160349号公報に記載のものでは、磁気センサとしてインジウムアンチモン、ガリウム砒素などからなるホール素子を使用している。
【0005】
【発明が解決しようとする課題】
しかし、特開平10−185608号公報に記載の姿勢検出装置では、磁気センサと傾斜角センサとを独立の基板にそれぞれ形成し、その独立の各基板を組立てるようにしている。このため、その姿勢検出装置を携帯機器のような小型の機器に搭載する場合には、大きすぎるという不都合がある。
ところで、特開平10−185608号公報に記載のフラックスゲートセンサは、センサ表面に平行な方向の磁気成分を検出する(1軸あるいは)2軸の磁気センサであり、センサ表面に垂直な方向の磁気成分を検出することができない。
【0006】
前記公報には、傾斜センサの出力を使って、フラックスゲートセンサの2軸の地磁気成分をもとに補正計算を行い、地磁気方位すなわち地磁気の水平成分を求める方法として、大きく分けて2通りの補正計算方法が記載されている。
前半では、地磁気の鉛直方向成分を0と見なして補正計算をしている。しかしながら、赤道上に近い極限られた地域を除いて、地磁気には鉛直方向成分が存在し、通常日本国内では地磁気の俯角が35度〜60度の範囲にわたることが知られている。したがって、地磁気の鉛直方向成分を0と仮定する前半の補正法を適用すると、本来求めるべき地磁気の水平成分の方向、すなわち地磁気方位とは異なる結果しか得られない。
【0007】
一方、後半では、地磁気の鉛直方向成分を一定値と見なして補正計算をしている。地磁気の鉛直方向成分は場所によって異なるため、この方法では、測定する場所が変化するたびに、毎回最初に姿勢検出装置を鉛直に立てて、地磁気の鉛直成分を測定するという複雑な操作を必要としている。また、この方法は姿勢検出装置が大きく傾き、フラックスゲートセンサの表面が鉛直に近い状態では、測定結果に大きな測定誤差を生じるという問題がある。
【0008】
傾斜角の検出では、特開平10−185608号公報に記載のように、2軸の加速度センサにより検出可能である。しかし、この場合には、各軸の加速度センサは、重力加速度の余弦成分を検知することになるため、傾斜角が大きくなると誤差が生じやすい。このため、地磁気の場合と同様に検出方向の加速度成分を正確に検知する必要があり、感度などの温度特性の補償が必要となる。
地磁気方位とは水平方向の地磁気ベクトルの向きであるから、使用する条件、例えば傾きなどを水平に限定したとしても、少なくとも2軸の磁気センサが必要であることはいうまでもない。
【0009】
特開平11−160349号公報に記載のものでは、インジウムアンチモン、ガリウム砒素などからなるホール素子を加速度センサを構成する重り部の上に設けている。一般に、ホール素子は感受面に対して垂直方向すなわち1軸の磁束密度しか検知することができないため、そのような構成では、正確な方位を知ることは不可能である。
また、前記公報には、ホール素子を用いて2軸以上の磁束密度を検知する方法について、全く記載がなく、たとえ傾斜センサの出力を利用したとしても地磁気の水平成分の方向を補正計算することができない。
【0010】
そこで、本発明の目的は、上記の点に鑑み、方位検出および姿勢検出が可能であって、携帯機器に搭載できるようにした小型の集積化方位センサを提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決して本発明の目的を達成するために、請求項1〜請求項12に記載の発明は、以下のように構成した。
すなわち、請求項1に記載の発明は、地磁気を検出する少なくとも3軸の磁気センサと、重力加速度を検出する2軸以上の加速度センサと、前記磁気センサからの出力信号および前記加速度センサからの出力信号を処理する信号処理部とを備え、前記加速度センサは、シリコン基板からなり固定された支持体と、シリコン基板からなる重り部と、この重り部を可動自在に前記支持体に支持させる梁と、を少なくとも備え、前記磁気センサおよび前記信号処理部を、前記支持体上および前記重り部上のいずれか一方に配置し、または前記支持体上と前記重り部上に分散配置するようにしたことを特徴とするものである。
【0012】
請求項2に記載の発明は、請求項1に記載の集積化方位センサにおいて、前記磁気センサは、前記支持体上または前記重り部上の所定位置に配置され、前記支持体または前記重り部の表面に沿う方向の磁束を収束する磁気収束板と、前記支持体または前記重り部の表面側であって、前記磁気収束板の所定の端部の近傍に配置され、その各端部の近傍に広がる磁束をそれぞれ検出する少なくとも3つのホール素子と、を備えたことを特徴とするものである。
【0013】
請求項3に記載の発明は、請求項2に記載の集積化方位センサにおいて、前記磁気センサは、前記支持体上または前記重り部上であって、その所定位置に配置される第1の磁気収束板と、前記支持体上または前記重り部上であって、前記第1の磁気収束板の周囲の外周方向に所定間隔をおいて配置される複数の第2の磁気収束板と、前記支持体または前記重り部の表面側であって、前記第1の磁気収束板と前記各第2の磁気収束板とが隣接し合う各近傍に、その近傍に広がる磁束をそれぞれ検出する複数のホール素子と、を備えたことを特徴とするものである。
【0014】
請求項4に記載の発明は、請求項1に記載の集積化方位センサにおいて、前記磁気センサは、前記支持体上または前記重り部上であって、その所定の中心部を挟んで第1の方向に対向して配置され、その第1の方向に磁束を収束する第1の磁気収束板と、前記支持体上または前記重り部上であって、前記中心部を挟んで第1の方向と直交する第2の方向に対向して配置され、その第2の方向に磁束を収束する第2の磁気収束板と、前記支持体または前記重り部の表面側であって、前記第1および第2の磁気収束板の前記中心部側の各端部の近傍に、その近傍に広がる磁束をそれぞれ検出するホール素子と、を備えたことを特徴とするものである。
【0015】
請求項5に記載の発明は、請求項1に記載の集積化方位センサにおいて、前記磁気センサは、前記支持体上または前記重り部上であって、その所定位置に配置される十字形状の磁気収束板と、前記支持体または前記重り部の表面側であって、前記磁気収束板の各端部の近傍に、その近傍に広がる磁束をそれぞれ検出するホール素子と、を備えたことを特徴とするものである。
請求項6に記載の発明は、請求項2乃至請求項5のいずれかに記載の集積化方位センサにおいて、前記磁気収束板は、軟磁性材料からなる薄板により構成されることを特徴とするものである。
【0016】
請求項7に記載の発明は、請求項1乃至請求項6のいずれかに記載の集積化方位センサにおいて、前記加速度センサ部は、中央に中空部を有して固定された支持体と、この支持体の中空部内に配置される重り部と、この重り部を可動自在に前記支持体に支持させる肉厚の薄い複数の梁と、を備え、前記重り部の上に前記磁気センサを配置するようにしたことを特徴とするものである。
請求項8に記載の発明は、請求項1乃至請求項6のいずれかに記載の集積化方位センサにおいて、前記加速度センサ部は、固定された支持体と、この支持体を囲うように配置される重り部と、この重り部を可動自在に前記支持体に支持させる肉厚の薄い複数の梁と、を備え、前記重り部の上に前記磁気センサを配置するようにしたことを特徴とするものである。
【0017】
請求項9に記載の発明は、請求項7または請求項8に記載の集積化方位センサにおいて、前記各梁は、その両端の応力集中部に応力検知素子としてピエゾ抵抗素子を備えていることを特徴とするものである。
請求項10に記載の発明は、請求項7または請求項8に記載の集積化方位センサにおいて、前記各梁は、その両端の応力集中部に応力検知素子としてMOSトランジスタを備えていることを特徴とするものである。
【0018】
請求項11に記載の発明は、請求項1乃至請求項6のいずれかに記載の集積化方位センサにおいて、前記加速度センサ部は、
前記支持体、前記重り部、および前記複数の梁の他に、前記重り部の上側に前記支持体と固定され、重り部が可動できる空間を有するケースをさらに備え、
前記重り部の表面の所定位置に可動電極を設けるとともに、前記ケースの裏面側であって前記可動電極に対向する位置に固定電極を設け、静電容量型の加速度センサを形成するようにしたことを特徴とするものである。
【0019】
請求項12に記載の発明は、請求項11に記載の集積化方位センサにおいて、前記磁気収束板と前記可動電極は、同一の軟磁性材料からなることを特徴とするものである。
このような構成からなる本発明によれば、地磁気と重力加速度に基づいた方位を検出することが可能であって、携帯機器などに搭載できる小型の集積化方位センサを実現できる。
【0020】
また、請求項3に記載の発明などでは、磁気収束板の配置個数を増やすことができるので、その磁気収束板による磁束の収束効果を高めることができ、磁気センサの感度を上げることができる。また、この場合には、ホール素子の配置個数が増加できるので、各ホール素子からの出力電圧を演算後の出力を大きくすることができるという利点がある。
さらに、請求項4や請求項5に記載の発明では、磁気収束板を細長い形状にすることができる。このため、磁気収束板の反磁界係数が小さくなり、磁気収束板が配置される基板に対して水平方向の磁束の収束効果を高め、磁気センサの感度を上げることができる。
【0021】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
(第1実施形態)
図1は、本発明の第1実施形態の外観構造を示し、その一部を破断した斜視図である。
この第1実施形態に係る集積化方位センサは、図1に示すように、重力加速度を検出する3軸の加速度センサ3と、地磁気を検出する少なくとも3軸の磁気センサ4と、加速度センサ3からの加速度情報および磁気センサ4からの磁気情報を後述のように演算処理して方位角を求める信号処理部である演算処理部6と、を備えたものである。
【0022】
加速度センサ3は、ガラス台5に固定される支持体8と、重り部7と、この重り部7を可動自在に支持体8に支持させる梁31〜38などから構成される。この構成については、後述する。
さらに、加速度センサ3を構成する重り部7上の所定位置には、図1に示すように、加速度センサ3に対してその規模が小さな磁気センサ4および演算処理部6がそれぞれ配置されている。
【0023】
このように、この第1実施形態に係る方位角センサは、加速度センサ3を構成する重り部7の一部に、加速度センサ3よりもその規模が小さな磁気センサ4および演算処理部6を組み込むようにし、全体として小型化を図るようにしたものである。
次に、加速度センサ3の構成について説明する。
ここで、加速度センサ3は、本発明の出願人により国際出願され、すでに国際公開された国際公開公報(国際公開番号:WO00/79288 A1)に記載の加速度センサとその構成が同様である。このため、以下では、第1実施形態の説明に必要な範囲で、その構成等を説明する。
【0024】
すなわち、この加速度センサ3は、図1に示すように、ガラス基板5上に形成され、そのガラス基板5上の中央に、四角錐台からなりその上下を逆にした重り部7が可動自在に配置されている。
この重り部7の周囲には、所定の間隔をおいて四角形の枠からなる支持体8がその重り部7を囲うように配置されるとともに、その支持体8はガラス基板5に固定されている。重り部7は、肉厚の薄い梁31〜38により支持体8に可動自在に支持されるとともに、その各梁31〜38は、その長さ方向が重り部7の各辺に沿うように配置されている。
【0025】
支持体8、重り部7、および梁31〜38は、シリコン基板を素材にして形成されている。
梁31、32は、図示のように、その長さ方向が重り部7の上辺に沿うように配置され、その各一端は重り部7の上辺の中央部に共通に接続され、その各他端が支持体8の内周部の角部の近傍にそれぞれ接続されている。
同様に、梁33、34、梁35、36、および梁37、38は、図示のように、その長さ方向が重り部7の左辺、下辺、および右辺にそれぞれ沿うように配置され、その各梁の一端は重り部7の対応する辺の中央部に共通に接続され、その各他端は支持体8の内周部の対応する角部の近傍にそれぞれ接続されている。
【0026】
従って、支持体8の内周部の4つの各角部には、図1に示すような4つの空間39が形成されることになる。
梁31、32の応力集中部である両端には、応力検出素子21、22、23、24が配置されている。同様に、梁33、34、梁35、36、および梁37、38の各両端には、応力検出素子21〜24がそれぞれ配置されている。応力検出素子21〜24としては、ピエゾ抵抗素子、MOSトランジスタなどが使用される。
【0027】
このような構成からなる加速度センサ3では、加速度が作用すると、重り部7には、その加速度の方向とは反対方向に慣性力が働き、応力検出素子21〜24の部分に応力が生じる。16箇所に配置された応力検出素子21〜24の出力信号を使用して所定の演算をすることにより、3次元空間における加速度ベクトルを得ることができる。なお、この動作の詳細は、上記の国際公開公報に記載されているので、ここではその説明は省略する。
【0028】
加速度センサ3には、常に重力加速度が作用しているため、その求めた加速度ベクトルに基づき、後述のように、地表水平面に対する基板面(重り部7)の傾きを得ることできる。
また、応力検出素子21〜24は、同一基板上に同時に形成されるため、特性のばらつきが小さく、応力検出素子21〜24の感度の温度係数は同様に変化する。従って、加速度ベクトルの3成分の相対値は温度が変化しても一定であり、地表水平面に対する基板面の傾きを精度良く得ることができる。
【0029】
次に、磁気センサ4の構成の詳細について、図2を参照して説明する。図2(A)は磁気センサ4の平面図であり、図2(B)は同図(A)のA−A線の断面図である。
磁気センサ4は、図2に示すように、シリコン基板からなる重り部7の表面に形成されている。すなわち、重り部7の表面の所定の4カ所の位置に、ホール素子41〜44が形成されている。このホール素子41〜44の形成は、CMOS回路を形成する従来の方法により、演算処理部6と同時に行う。
【0030】
ホール素子41とホール素子42とは、図2(A)に示すように、重り部7の表面のX軸方向に対向して配置されている。また、ホール素子43とホール素子44とは、重り部7の表面のY軸方向に対向して配置されている。このため、ホール素子41、42の配置方向と、ホール素子43、44の配置方向とは直交するようになっている。
重り部7およびホール素子41〜44の表面には、絶縁層51が形成され、この絶縁層51の表面に磁気収束板45が配置されている。磁気収束板45は、例えば軟磁性材料からなる円板状の薄板で構成される。磁気収束板45は、その中心がホール素子41、42とホール素子43、44との配置が直交する位置になるように配置されている。そして、磁気収束板45は、配置されたときに、磁気収束板45の外周端部の近傍が、ホール素子41〜44と対向するようになっている。
【0031】
このような構成により、磁気収束板45は、その磁気収束板45に平行な磁束を収束するようになっている。
次に、このような構成からなる磁気センサ4の動作について、図2を参照して説明する。
まず、X軸方向の磁束について説明する。図2(B)に示すように、X軸方向の磁束Bxは、磁気収束板45によりX軸方向に収束されるが、磁気収束板45の端部ではその磁束がZ軸方向に拡がり、ホール素子41、42では磁束のZ軸方向の成分が現われる。
【0032】
このとき、ホール素子41とホール素子42での磁束のZ軸方向の成分は逆向きであるので、ホール素子41の出力とホール素子42の出力の差分をとれば、X軸方向の磁束密度を検出することができる。
なお、このとき、外部からZ軸方向の磁束が加わっても、ホール素子41の出力とホール素子42の出力の差分をとるので、キャンセルされる。Y軸方向の磁束については、磁気収束板45で収束されても、ホール素子41、42の位置ではZ軸方向の成分としては現われない。
【0033】
Y軸方向の磁束密度は、X軸方向の磁束密度と同様の原理により、ホール素子43、44により検出できる。
Z軸方向の磁束密度は、ホール素子41〜44の各出力の和をとることにより検出できる。このとき、外部から加わるX軸方向の磁束については、ホール素子41の出力とホール素子42の出力の和をとることによりキャンセルされる。同様に、外部から加わるY軸方向の磁束については、ホール素子43の出力とホール素子44の出力の和をとることによりキャンセルされる。
【0034】
以上の説明を数式を用いて表すと、以下のようになる。
すなわち、ホール素子41、42、43、44の出力電圧をVh41、Vh42、Vh43、Vh44とすると、演算後のX軸方向、Y軸方向、およびZ軸方向の出力はDx、Dy、Dzは、次のようになる。
Dx=Vh41−Vh42
Dy=Vh43−Vh44
Dz=Vh41+Vh42+Vh43+Vh44
以上のように,磁気センサ4は、3次元空間における磁束ベクトルを検知することができる。
【0035】
また、磁気センサ4は、同一シリコン基板上に同時に形成される複数のホール素子41〜44で構成されている。そのため、ホール素子41〜44は、特性のばらつきが小さく、感度の温度特性は同様に変化する。従って、地磁気ベクトルの3成分の相対値は温度が変化しても一定であり、地磁気の方向を精度良く検知することができる。
次に、上記のように構成される加速度センサ3の出力信号と、磁気センサ4の出力信号とを演算処理する演算処理部6の構成について、図3のブロック図を参照して説明する。
【0036】
この演算処理部6は、図3に示すように、A/D変換部115と、補正計算部116と、補正値記憶部117と、方位角計算部118とを備え、これらがシリコン基板からなる重り部7上に集積回路化されている。
A/D変換部115は、加速度センサ3の出力信号Ka、Kb、Kcと、磁気センサ4の出力信号Dx、Dy、Dzとがアナログ信号であるので、これらのアナログ信号をデジタル信号(デジタル値)に変換するものである。
【0037】
補正値記憶部117は、磁気センサ4のX軸、Y軸、およびZ軸の出力信号Dx、Dy、Dzのオフセット値Lx、Ly、Lzと感度比Gx、Gy、Gzを記憶するとともに、加速度センサ3のX軸、Y軸、およびZ軸の出力信号Ka、Kb、Kcのオフセット値Mx、My、Mzと感度比Hx、Hy、Hzを記憶するメモリである。
このように、補正値記憶部117に補正用の各データを記憶するのは、磁気センサ4の出力信号Dx、Dy、Dz、および加速度センサ3の出力信号Ka、Kb、Kcに、オフセットなどがあり、これを補正するためである。
【0038】
補正計算部116は、補正値記憶部117に記憶されるオフセット値Lx、Ly、Lzと感度比Gx、Gy、Gzを用いることにより、磁気センサ4の出力信号Dx、Dy、Dzを補正し、地磁気の各軸成分に比例した値α、β、γだけを求め、これらを方位角計算部118に出力するようになっている。
また、補正計算部116は、補正値記憶部117に記憶されるオフセット値Mx、My、Mzと感度比Hx、Hy、Hzを用いることにより、加速度センサ3の出力信号Ka、Kb、Kcを補正し、重力に対する2軸の傾きφ、ηを求め、これらを方位角計算部118に出力するようになっている。
【0039】
方位角計算部118は、補正計算部116で補正後の地磁気の3軸データα、β、γと、重力に対する2軸の傾きφ、ηとを用いることにより、後述のように、方位角θを算出するものである。
次に、このような構成からなる演算処理部6において、方位角計算部118が方位角θを算出するアルゴリズムの一例について、以下に説明する。
ここで、方位角計算部118には、感度とオフセットが補正された3軸の地磁気データα、β、γ、および重力に対する2軸の傾きφ、ηが、補正計算部116から入力されるものとする。
【0040】
図4は、方位角θを算出する場合の地磁気ベクトルと回転軸の関係を示す図である。
図4において、地磁気ベクトル(x、y、z)に対応してTMx軸を設定し、このTMx軸に直交する2軸をTMy軸、TMz軸とする。
また、この第1実施形態を携帯端末110に搭載して用いる場合において、地磁気ベクトル(x、y、z)に対する携帯端末110の方位をθ、俯角をδとする。さらに、携帯端末110は、水平面から長手方向に角度φ、短手方向に角度ηだけ傾いているものとする。
【0041】
そして、俯角δを補正するために、TMy軸の周りに、−δだけ回転させ、この回転後の軸をHX、HY、HZとする。
次に、HZ軸の周りに、角度θだけ回転させ、この回転後の軸をM1x、M1y、M1zとする。
次に、M1y軸の周りに、−φだけ回転させ、この回転後の軸をM2x、M2y、M2zとし、さらに、M2x軸の周りに、−ηだけ回転させる。
【0042】
これらの回転により、地磁気ベクトル(x、y、z)と磁気センサ4からの 出力(α、β、γ)との間には、以下の(1)式が成り立つ。
【0043】
【数1】
Figure 0003928775
【0044】
そして、磁気ベクトル(x,y,z)=(1、0、0)の関係により、磁気センサからの出力(α、β、γ)を求めると、以下の(2)式が得られる。
【0045】
【数2】
Figure 0003928775
【0046】
次に、(2)式のαの式を変形すると、以下の(3)式が得られる。
【0047】
【数3】
Figure 0003928775
【0048】
次に、(3)式を(2)式のβ、γの式に代入すると、以下の(4)、(5)式が得られる。
【0049】
【数4】
Figure 0003928775
【0050】
次に、(4)、(5)式からcos(δ)を求めると、以下の(6)式が得られる。
【0051】
【数5】
Figure 0003928775
【0052】
次に、(6)式を変形して方位角θを求めると、以下に示す(7)式が得られる。
【0053】
【数6】
Figure 0003928775
【0054】
このように、3軸の地磁気データα、β、γ、および重力に対する2軸の傾きデータφ、ηを用いることにより、俯角δを用いることなく、方位角θを算出することができる。
以上説明したように、この第1実施形態では、加速度センサ3を構成する重り部7の一部に、磁気センサ4および演算処理部6を組み込むようにした。このため、全体として小型化を図ることができる。
【0055】
また、この第1実施形態では、応力検出素子21〜24が、同一基板上に同時に形成されるため、特性のばらつきが小さく、応力検出素子21〜24の感度の温度係数は同様に変化する。従って、加速度ベクトルの3成分の相対値は温度が変化しても一定であり、地表水平面に対する基板面の傾きを精度良く得ることができる。
さらに、この第1実施形態では、磁気センサ4が、同一シリコン基板上に同時に形成される複数のホール素子41〜44で構成されている。そのため、ホール素子41〜44は、特性のばらつきが小さく、感度の温度特性は同様に変化する。従って、地磁気ベクトルの3成分の相対値は温度が変化しても一定であり、地磁気の方向を精度良く検知することができる。
【0056】
さらにまた、この第1実施形態では、静止しているときには、加速度ベクトルおよび磁束ベクトルは変化しない。一方、動いているときには、加速度ベクトルおよび磁束ベクトルは変化する。従って、この第1実施形態を携帯機器に内蔵する場合には、加速度ベクトルおよび磁束ベクトルの変化を検知することにより、携帯機器を使用していない状態、すなわち、静止状態を検知でき、静止状態において不必要な電気回路を止めることにより消費電流を低減できる。
【0057】
なお、この第1実施形態では、加速度センサ3を構成する重り部7の一部に、磁気センサ4および演算処理部6を組み込むようにした。しかし、磁気センサ4と演算処理部6は、加速度センサ3を構成する支持体8に配置するようにしても良いし、または加速度センサ3を構成する重り部7と支持体8とに分散して配置するようにしても良い。このような考え方は、後述の各実施形態においても同様に適用できる。
【0058】
なおまた、この第1実施形態では、重り部7上などにおいて、応力検出素子21〜24からの出力信号と、磁気センサ4の出力信号とが、演算処理部6に供給されるように適宜手段で電気的に接続され、かつ、その演算処理部6の演算処理結果が外部に出力できるようになっている。
(第2実施形態)
この第2実施形態は、その基本的な構成を第1実施形態と同様とし、その磁気センサ4(図2参照)を、図5に示すような磁気センサ4Aに置き換えたものである。従って、以下では、磁気センサ4Aの構成についてのみ説明する。
【0059】
図5は、磁気センサ4Aの構成を示す図であり、図5(A)はその磁気センサ4Aの平面図であり、図5(B)は同図(A)のB−B線の断面図である。
この磁気センサ4Aは、図5に示すように、シリコン基板からなる重り部7上の所定位置に、例えば円形の薄板からなる磁気収束板65を配置している。さらに、この磁気収束板65から所定間隔をおいた周囲には、その磁気収束板65の外周方向に所定間隔をおいて、例えば円形の薄板からなる4つの磁気収束板66〜69を配置するようにしている。磁気収束板65〜69は、例えば軟磁性材料からなる。
【0060】
さらに、詳述すると、磁気収束板65の左右に、所定間隔をおいて2つの磁気収束板66、67を配置するとともに、磁気収束板65の前後に、所定間隔をおいて2つの磁気収束板68、69を配置するようにした。従って、磁気収束板67、65、66は所定間隔をおいてX軸方向に配置され、磁気収束板68、65、69は所定間隔をおいてY軸方向に配置されている。
重り部7の表面領域のうち、磁気収束板65と磁気収束板66、67、68、69が隣接する領域の近傍であって、磁気収束板65と磁気収束板66、67、68、69が対向し合う各端部の下部側には、ホール素子61a、61b、62a、62b、63a、63b、64a、64bがそれぞれ配置されている。
【0061】
すなわち、図5に示すように、磁気収束板65と磁気収束板66とが対向し合う各端部の位置であって、その位置の下側近傍の重り部7の表面に、ホール素子61a、61bが配置されている。また、磁気収束板65と磁気収束板67とが対向し合う各端部の位置であって、その位置の下側近傍の重り部7の表面に、ホール素子62a、62bが配置されている。従って、ホール素子61a、61b、62a、62bの配列方向は、X軸方向となる。
【0062】
さらに、磁気収束板65と磁気収束板68とが対向し合う各端部の位置であって、その位置の下側近傍の重り部7の表面に、ホール素子63a、63bが配置されている。また、磁気収束板65と磁気収束板69とが対向し合う各端部の位置であって、その位置の下側近傍の重り部7の表面に、ホール素子64a、64bが配置されている。従って、ホール素子63a、63b、64a、64bの配列方向は、Y軸方向となる。
【0063】
次に、このような構成からなる磁気センサ4Aの動作について、図5を参照して説明する。
いま、X軸方向に外部から磁場が加わると、磁束は磁気収束板67、65、66で収束される。この収束された磁束は、磁気収束板65と磁気収束板67との間、および磁気収束板65と磁気収束板66との間には隙間が存在する。このため、その収束された磁束は、その隙間の領域で、図5(B)に示すようにZ軸方向に拡がる。
【0064】
このとき、磁束のZ軸方向の成分は、ホール素子61a、62bでは同じであり、これらに対してホール素子61b、62aではホール素子61a、62bとは逆向きで同じである。従って、ホール素子61aの出力電圧とホール素子62bの出力電圧との和と、ホール素子61bの出力電圧とホール素子62aの出力電圧との和を求め、その両者の差分をとることにより、X軸方向の磁束密度を求めることができる。
【0065】
なお、Y軸方向の外部磁場に対しては、ホール素子61a、61b、62a、62bの位置ではZ軸方向の成分は現れない。Z軸方向の外部磁場に対しては、ホール素子61a、61b、62a、62bの出力電圧は全て同じであり、演算後のX軸方向の出力には現れない。
Y軸方向の磁束密度の検出は、ホール素子63a、63b、64a、64bの出力電圧を、X軸方向の場合と同様に演算することにより行うことができる。
【0066】
Z軸方向の磁束密度の検出は、全てのホール素子61a、61b、62a、62b、63a、63b、64a、64bの出力電圧の和を取ることにより行う。このとき、X軸方向およびY軸方向の外部磁場に対しては、ホール素子61a、61bなど、一対となるホール素子の出力電圧が逆方向であるので、これらの和を取ることにより出力はゼロとなる。
以上の説明を数式を用いて表すと、以下のようになる。
【0067】
すなわち、ホール素子61a、61b、62a、62b、63a、63b、64a、64bの出力電圧をVh61a、Vh61b、Vh62a、Vh62b、Vh63a、Vh63b、Vh64a、Vh64bとすると、演算後のX軸方向、Y軸方向、およびZ軸方向の出力はDx、Dy、Dzは、次のようになる。
Dx=Vh61a−Vh61b−Vh62a+Vh62b
Dy=Vh63a−Vh63b−Vh64a+Vh64b
Dz=Vh61a+Vh61b+Vh62a+Vh62b+Vh63a+Vh63b+Vh64a+Vh64b
以上のように、この第2実施形態の磁気センサ4Aは、第1実施形態の磁気センサ4に比べて、図5に示すように磁気収束板の配置個数を増加できる。このため、その磁気収束板による磁束の収束効果を高めることができ、磁気センサの感度を上げることができる。
【0068】
また、この場合には、磁気センサ4Aを構成するホール素子の配置個数を増やすことができるので、各ホール素子からの出力電圧を演算後の出力を大きくすることができるという利点がある。
なお、磁気センサ4Aは、加速度センサ3の一部に組み込んで使用するようにしたが、独立に構成して汎用的に使用するようにしても良い。これは、後述の磁気センサについても同様である。
(第3実施形態)
この第3実施形態は、その基本的な構成を第1実施形態と同様とし、その磁気センサ4(図2参照)を、図6に示すような磁気センサ4Bに置き換えたものである。従って、以下では、磁気センサ4Bの構成についてのみ説明する。
【0069】
図6は、磁気センサ4Bの構成を示す図であり、図6(A)はその磁気センサ4Bの平面図であり、図6(B)は同図(A)のC−C線の断面図である。
この磁気センサ4Bは、図6に示すように、シリコン基板からなる重り部7上の所定位置に所定の大きさの中心部80を設け、この中心部80の左右に中心部80を挟んで磁気収束板76と磁気収束板77とを配置するとともに、その中心部80の前後に中心部80を挟んで磁気収束板78と磁気収束板79とを配置するようにしたものである。
【0070】
すなわち、磁気収束板76と磁束収束板77は、その中心部80を挟み、X軸方向に対向して配置されている。また、磁気収束板78と磁束収束板79は、その中心部80を挟み、Y軸方向に対向して配置されている。磁気収束板76〜79は、重り部7上に絶縁層51を介在してそれぞれ配置されている。
図6に示すように、重り部7の表面領域のうち、磁気収束板76〜79の中心部80側の各端部の近傍であって、その各下部側には、ホール素子71〜74がそれぞれ配置されている。
【0071】
次に、このような構成からなる磁気センサ4Bの動作について、図6を参照して説明する。
いま、X軸方向に外部から磁場が加わると、磁束は磁気収束板76、77で収束される。この収束された磁束は、磁気収束板76と磁気収束板77との間には隙間が存在する。このため、その収束された磁束は、その隙間の領域で、図6(B)に示すようにZ軸方向に拡がる。
【0072】
このとき、磁束のZ軸方向の成分は、ホール素子71とホール素子72では逆向きである。従って、ホール素子71の出力電圧と、ホール素子72の出力電圧との差分をとることにより、X軸方向の磁束密度を求めることができる。
なお、このとき、Y軸方向の外部磁場に対しては、ホール素子71、72の位置ではZ軸成分は現れない。Z軸方向の外部磁場に対しては、ホール素子71、72、73、74の出力電圧は全て同じであり、演算後のX軸方向の出力には現れない。
【0073】
Y軸方向の磁束密度の検出は、ホール素子73、74の出力電圧を、X軸方向の場合と同様に演算することにより行うことができる。
Z軸方向の磁束密度の検出は、全てのホール素子71〜74の出力電圧の和を取ることにより行う。このとき、X軸方向およびY軸方向の外部磁場に対しては、ホール素子71とホール素子72、ホール素子73とホール素子74の出力はそれぞれ逆方向であるので、これらの和を取ることにより出力はゼロとなる。
【0074】
以上の説明を数式を用いて表すと、以下のようになる。
すなわち、ホール素子71、72、73、74の出力電圧をVh71、Vh72、Vh73、Vh74とすると、演算後のX軸方向、Y軸方向、およびZ軸方向の出力はDx、Dy、Dzは、次のようになる。
Dx=Vh71−Vh72
Dy=Vh73−Vh74
Dz=Vh71+Vh72+Vh73+Vh74
以上のように、この第3実施形態の磁気センサ4Bでは、磁気収束板76〜79を細長い形状にしたので、磁気収束板の反磁界係数が小さくなり、磁気収束板が配置される基板に対して水平方向の磁束の収束効果を高め、磁気センサの感度を上げることができる。
(第4実施形態)
この第4実施形態は、その基本的な構成を第1実施形態と同様とし、その磁気センサ4(図2参照)を、図7に示すような磁気センサ4Cに置き換えたものである。従って、以下では、磁気センサ4Cの構成についてのみ説明する。
【0075】
図7は、磁気センサ4Cの構成を示す図であり、図7(A)はその磁気センサ4Cの平面図であり、図7(B)は同図(A)のD−D線の断面図である。
この磁気センサ4Cは、図7に示すように、シリコン基板からなる重り部7上の所定位置に、十字形状であって軟磁性材料からなる磁気収束板85を配置したものである。磁気収束板85は、全体が薄板状からなり、X軸方向の部分とY軸方向の部分とが直交するようになっている。磁気収束板85は、重り部7上に絶縁層51を介在してそれぞれ配置されている。
【0076】
図7に示すように、重り部7の表面領域のうち、磁気収束板85のX軸方向およびY軸方向の各部分の各端部の近傍であって、その各下部側には、ホール素子81〜84がそれぞれ配置されている。
次に、このような構成からなる磁気センサ4Cの動作について、図7を参照して説明する。
いま、X軸方向に外部から磁場が加わった場合、磁束は磁気収束板85のうちのX軸方向の部分により収束される。この収束された磁束は、図7(B)に示すように、磁気収束板85のX軸方向の部分の端部ではZ軸方向に拡がる。
【0077】
このとき、磁束のZ軸方向の成分は、ホール素子81とホール素子82では逆向きである。従って、ホール素子81の出力電圧と、ホール素子82の出力電圧との差分をとることにより、X軸方向の磁束密度を求めることができる。
なお、このとき、Y軸方向の外部磁場に対しては、ホール素子81、82の位置ではZ軸成分は現れない。Z軸方向の外部磁場に対しては、ホール素子81、82、83、84の出力電圧は全て同じであり、演算後のX軸方向の出力には現れない。
【0078】
Y軸方向の磁束密度の検出は、ホール素子83、84の出力電圧を、X軸方向の場合と同様に演算することにより行うことができる。
Z軸方向の磁束密度の検出は、全てのホール素子81〜84の出力電圧の和を取ることにより行う。このとき、X軸方向およびY軸方向の外部磁場に対しては、ホール素子81とホール素子82、ホール素子83とホール素子84の出力はそれぞれ逆方向であるので、これらの和を取ることにより出力はゼロとなる。
【0079】
以上の説明を数式を用いて表すと、以下のようになる。
すなわち、ホール素子81、82、83、84の出力電圧をVh81、Vh82、Vh83、Vh84とすると、演算後のX軸方向、Y軸方向、およびZ軸方向の出力はDx、Dy、Dzは、次のようになる。
Dx=Vh81−Vh82
Dy=Vh83−Vh84
Dz=Vh81+Vh82+Vh83+Vh84
(第5実施形態)
この第5実施形態は、第1実施形態の加速度センサ3を、図8に示すような加速度センサ3Aに置き換えたものである。
【0080】
加速度センサ3Aは、図8に示すように、支持体1を中央に配置するとともに、その支持体1の周囲に重り部2を配置するようにしたものである。すなわち、図1に示す加速度センサ3の重り部7の位置に支持体1を配置するとともに、その加速度センサ3の支持体8の位置に重り部2を配置し、その配置を入れ替えるようにしたものである。
加速度センサ3Aは、ガラス台5に固定される支持体1と、重り部2と、この重り部2を可動自在に支持体1に支持させる梁11〜18などから構成され、この構成については後述する。
【0081】
さらに、加速度センサ3Aを構成する重り部2上の所定位置と支持体1上の所定位置とには、加速度センサ3Aに対してその規模が小さな磁気センサ4と演算処理部6とが分散して配置されている。
このように、この第5実施形態に係る方位角センサは、加速度センサ3Aを構成する重り部2の一部と支持体1の一部に、加速度サンサ3Aよりもその規模が小さな磁気センサ4と演算処理部6とをそれぞれ組み込み、全体として小型化を図るようにしたものである。
【0082】
次に、加速度センサ3Aの構成について説明する。
ここで、加速度センサ3Aは、上述の国際公開公報に記載の加速度センサとその構成が同様である。このため、以下では、第5実施形態の説明に必要な範囲で説明する。
すなわち、この加速度センサ3Aは、図8に示すように、ガラス基板5上に形成され、そのガラス基板5上の中央に、四角錐台からなりその上下を逆にした支持体1が固定されている。この支持体1の周囲には、所定の間隔をおいて四角形の枠からなる重り部2がその支持体1を囲うように配置されている。
【0083】
重り部2は、肉厚の薄い梁11〜18により支持体1に可動自在に支持されるとともに、その各梁11〜18は、その長さ方向が支持体1の各辺に沿うように配置されている。支持体1、重り部2、および梁11〜18は、シリコンの基板を素材にして形成されている。
梁11、12は、図示のように、その長さ方向が支持体1の上辺に沿うように配置され、その各一端は支持体1の上辺の中央部に共通に接続され、その各他端は重り部2の内周部の角部(隅の部分)にそれぞれ接続されている。
【0084】
同様に、梁13、14、梁15、16、および梁17、18は、図示のように、その長さ方向が支持体1の左辺、下辺、および右辺にそれぞれ沿うように配置され、その各梁の一端は支持体1の対応する辺の中央部に共通に接続され、その各他端は重り部2の内周部の対応する角部にそれぞれ接続されている。
梁11、12の応力集中部である両端には、応力検出素子21、22、23、24が配置されている。同様に、梁13、14、梁15、16、および梁17、18の各両端には、応力検出素子21〜24がそれぞれ配置されている。応力検出素子21〜24としては、ピエゾ抵抗素子、MOSトランジスタなどが使用される。
【0085】
このような構成からなる加速度センサ3Aでは、加速度が作用すると、重り部2には、その加速度の方向とは反対方向に慣性力が働き、応力検出素子21〜24の部分に応力が生じる。16箇所に配置された応力検出素子21〜24の出力信号を使用して所定の演算をすることにより、3次元空間における加速度ベクトルを得ることができる。なお、この動作の詳細は、上述の国際公開公報に詳細に記載されているので、ここではその説明は省略する。
【0086】
なお、この第5実施形態では、加速度センサ3Aの出力信号が第1実施形態の加速度センサ3の出力信号と同様であり、磁気センサ4が第1実施形態と同様に構成される。このため、加速度センサ3Aの出力信号と、磁気センサ4の出力信号とを、図3に示す演算処理部6で第1実施形態の場合と同様に演算処理することができる。
また、この第5実施形態では、磁気センサ4を上述の他の磁気センサ4A、4B、4Cに置き換えるようにしても良い。
【0087】
なお、この第5実施形態では、図8に示すように、磁気センサ4と信号処理部6とが、重り部2と支持体1とに分散した配置されている。しかし、磁気センサ4と信号処理部6を、重り部2または支持体1のいずれか一方に配置するようにしても良い。
(第6実施形態)
図9は、第6実施形態のカバーを外した状態の斜視図であり、図10は図9のの中央の断面図であって、カバーを付けた状態のものである。
【0088】
この第6実施形態は、第1実施形態の加速度センサ3(図1を参照)を、図9および図10に示すような静電容量型の加速度センサ3Bに置き換えたものである。
加速度センサ3Bは、ガラス台91上に固定される支持体93、重り部92、この重り部92を可動自在に支持体93に支持させる梁101〜108、カバー94、可動電極95〜98、および固定電極125、126などから後述のように構成される。さらに、加速度センサ3Bを構成する重り部92上の所定位置と支持体93上の所定位置とには、磁気センサ4と演算処理部6とが分散して配置されている。
【0089】
このように、この第6実施形態に係る方位角センサは、加速度センサ3Bを構成する重り部92の一部と支持体93の一部に、磁気センサ4と演算処理部6とをそれぞれ組み込み、全体として小型化を図るようにしたものである。
次に、加速度センサ3Bの構成について説明する。
この加速度センサ3Bは、図9および図10に示すように、ガラス基板91上に形成され、そのガラス基板91上の中央に、四角錐台からなりその上下を逆にした重り部92が可動自在に配置されている。
【0090】
この重り部92の周囲には、所定の間隔をおいて四角形の枠からなり支持体93がその重り部92を囲うように配置されるとともに、その支持体93はガラス基板91に固定されている。重り部92は、肉厚の薄い梁101〜108により支持体93に可動自在に支持されるとともに、その各梁101〜108は、その長さ方向が重り部92の各辺に沿うように配置されている。
支持体93、重り部92、および梁101〜108は、シリコン基板を素材にして形成されている。
【0091】
梁101、102は、図示のように、その長さ方向が重り部92の上辺に沿うように配置され、その各一端は重り部92の上辺の中央部に共通に接続され、その各他端が支持体93の内周部の角部の近傍にそれぞれ接続されている。
同様に、梁103、104、梁105、106、および梁107、108は、図示のように、その長さ方向が重り部92の左辺、下辺、および右辺にそれぞれ沿うように配置され、その各梁の一端は重り部92の対応する辺の中央部に共通に接続され、その各他端は支持体93の内周部の対応する角部の近傍にそれぞれ接続されている。
【0092】
従って、支持体93の内周部の4つの各角部には、図9に示すような4つの空間109が形成されることになる。
重り部92上の四隅には、図9に示すように、コンデンサを形成するための可動電極95、96、97、98がそれぞれ配置されている。また、重り部92上の中央部には、磁気センサ4を構成する磁気収束板45が配置されている。可動電極95〜98と磁気収束板45とは、同一の軟磁性材料からなる薄板で構成されている。
【0093】
支持体93の上には、図10に示すように、シリコン基板からなるカバー94が設けられている。そして、そのカバー94の裏面側(内側)と、重り部92の上面側とが対向するようになっている。さらに、カバー94は、その裏面側に、重り部92が可動できる空間を有している。
また、カバー94の裏面側(内側)であって、重り部92上の可動電極95、96と対向する位置には、その可動電極95、96との間でコンデンサを形成するための固定電極125、126がそれぞれ配置されている。同様に、カバー94の裏面側であって、可動電極97、98と対向する位置には、その可動電極97、98との間でコンデンサを形成するための2つの固定電極(図示せず)がそれぞれ配置されている。
【0094】
次に、この加速度センサ3Bにより、X軸方向、Y軸方向、およびZ軸方向の加速度をそれぞれ求める原理について、図9乃至図11を参照して説明する。
この加速度センサ3Bに加速度が作用すると、重り部92にはその加速度とは反対方向に慣性力が働き、カバー94に対して重り部92の位置が変化する。
いま、可動電極96と固定電極126で構成されるコンデンサの静電容量をCx1、可動電極97とこれと対応する固定電極(図示せず)とで構成されるコンデンサの静電容量をCx2とする。さらに、可動電極95と固定電極125で構成されるコンデンサの静電容量をCy1、可動電極98とこれに対応する固定電極(図示せず)とで構成されるコンデンサの静電容量をCy2とする。
【0095】
これらの静電容量を容量−電圧変換器により電圧に変換し、その変換電圧に基づいてX軸方向、Y軸方向、およびZ軸方向の加速度をそれぞれ求めるようになっている。
すなわち、図11のX軸方向に加速度が加わった場合には、重り部7がその加速度に応じて傾き、静電容量Cx1は増加し、静電容量Cx2は減少する。従って、X軸方向の加速度を求める第1の加速度検出回路(図示せず)は、静電容量Cx1と静電容量Cx2との差分をとることによりX軸方向の加速度信号を得るようになっている。
【0096】
このとき、Y軸方向またはZ軸方向の加速度が加わった場合には、静電容量Cx1と静電容量Cx2の変化量は同じであり、これらの差分を取る第1の加速度検出回路からは加速度信号は出力されない。
同様に、Y軸方向の加速度を求める第2の加速度検出回路(図示せず)は、静電容量Cy1と静電容量Cy2との差分を取ることにより、Y軸方向の加速度信号を得るようになっている。
【0097】
また、Z軸方向の加速度を求める第3の加速度検出回路(図示せず)は、静電容量Cx1,Cx2、Cy1、Cy2の和を取ることにより、Z軸方向の加速度信号を得るようになっている。
なお、この第6実施形態では、加速度センサ3Bの出力信号が第1実施形態の加速度センサ3の出力信号と実質的に同様であり、磁気センサ4が第1実施形態と同様に構成される。このため、加速度センサ3Bの出力信号と、磁気センサ4の出力信号とを、図3に示す演算処理部6で第1実施形態の場合と同様に演算処理することができる。
【0098】
また、この第6実施形態では、磁気センサ4を上述の他の磁気センサ4A、4B、4Cに置き換えるようにしても良い。
【0099】
【発明の効果】
以上説明したように、本発明によれば、地磁気と重力加速度に基づいた方位を検出することが可能であって、携帯機器などに搭載できる小型で低価格の集積化方位センサを実現できる。
また、本発明において、磁気収束板の配置個数を増やす場合には、その磁気収束板による磁束の収束効果を高めることができ、磁気センサの感度を上げることができる。この場合には、磁気センサを構成するホール素子の配置個数を増やすことができるので、各ホール素子からの出力電圧を演算後の出力を大きくすることができるという利点がある。
【0100】
さらにまた、本発明において、磁気収束板を細長い形状にする場合には、磁気収束板の反磁界係数が小さくなり、磁気収束板が配置される基板に対して水平方向の磁束の収束効果を高め、磁気センサの感度を上げることができる。
【図面の簡単な説明】
【図1】本発明の集積化方位センサの第1実施形態の外観構成を示す斜視図である。
【図2】第1実施形態に搭載される磁気センサの構成を示す図であり、(A)はその平面図、(B)は(A)のA−A線の断面図である。
【図3】第1実施形態における演算処理部の構成を示すブロック図である。
【図4】第1実施形態における地磁気ベクトルと回転軸の関係を示す図である。
【図5】第2実施形態の磁気センサの構成を示す図であり、(A)はその平面図、(B)は(A)のB−B線の断面図である。
【図6】第3実施形態の磁気センサの構成を示す図であり、(A)はその平面図、(B)は(A)のC−C線の断面図である。
【図7】第4実施形態の磁気センサの構成を示す図であり、(A)はその平面図、(B)は(A)のD−D線の断面図である。
【図8】本発明の集積化方位センサの第5実施形態の外観構成を示す斜視図である。
【図9】本発明の集積化方位センサの第6実施形態の外観構成であって、カバーを外した状態の斜視図である。
【図10】図9の中央の断面図であり、カバーを付けた状態のものである。
【図11】図9の平面図である。
【符号の説明】
1、8、93 支持体
2、7、92 重り部
3、3A、3B 加速度センサ
4、4A〜4C 磁気センサ
5、91 ガラス台
6 演算処理部(信号処理部)
11〜18 梁
21〜24 応力検出素子
31〜38 梁
41〜44 ホール素子
45 磁気収束板
65〜69 磁気収束板
61a、61b、62a、62b ホール素子
63a、63b、64a、64b ホール素子
76〜79 磁気収束板
71〜74 ホール素子
85 磁気収束板
81〜84 ホール素子
94 カバー
95〜98 可動電極
101〜108 梁
125、126 固定電極
115 A/D変換部
116 補正計算部
117 補正値記憶部
118 方位角計算部

Claims (12)

  1. 地磁気を検出する少なくとも3軸の磁気センサと、
    重力加速度を検出する2軸以上の加速度センサと、
    前記磁気センサからの出力信号および前記加速度センサからの出力信号を処理する信号処理部とを備え、
    前記加速度センサは、シリコン基板からなり固定された支持体と、シリコン基板からなる重り部と、この重り部を可動自在に前記支持体に支持させる梁と、を少なくとも備え、
    前記磁気センサおよび前記信号処理部を、前記支持体上および前記重り部上のいずれか一方に配置し、または前記支持体上と前記重り部上に分散配置するようにしたことを特徴とする集積化方位センサ。
  2. 前記磁気センサは、
    前記支持体上または前記重り部上の所定位置に配置され、前記支持体または前記重り部の表面に沿う方向の磁束を収束する磁気収束板と、
    前記支持体または前記重り部の表面側であって、前記磁気収束板の所定の端部の近傍に配置され、その各端部の近傍に広がる磁束をそれぞれ検出する少なくとも3つのホール素子と、
    を備えたことを特徴とする請求項1に記載の集積化方位センサ。
  3. 前記磁気センサは、
    前記支持体上または前記重り部上であって、その所定位置に配置される第1の磁気収束板と、
    前記支持体上または前記重り部上であって、前記第1の磁気収束板の周囲の外周方向に所定間隔をおいて配置される複数の第2の磁気収束板と、
    前記支持体または前記重り部の表面側であって、前記第1の磁気収束板と前記各第2の磁気収束板とが隣接し合う各近傍に、その近傍に広がる磁束をそれぞれ検出する複数のホール素子と、
    を備えたことを特徴とする請求項1に記載の集積化方位センサ。
  4. 前記磁気センサは、
    前記支持体上または前記重り部上であって、その所定の中心部を挟んで第1の方向に対向して配置され、その第1の方向に磁束を収束する第1の磁気収束板と、
    前記支持体上または前記重り部上であって、前記中心部を挟んで第1の方向と直交する第2の方向に対向して配置され、その第2の方向に磁束を収束する第2の磁気収束板と、
    前記支持体または前記重り部の表面側であって、前記第1および第2の磁気収束板の前記中心部側の各端部の近傍に、その近傍に広がる磁束をそれぞれ検出するホール素子と、
    を備えたことを特徴とする請求項1に記載の集積化方位センサ。
  5. 前記磁気センサは、
    前記支持体上または前記重り部上であって、その所定位置に配置される十字形状の磁気収束板と、
    前記支持体または前記重り部の表面側であって、前記磁気収束板の各端部の近傍に、その近傍に広がる磁束をそれぞれ検出するホール素子と、
    を備えたことを特徴とする請求項1に記載の集積化方位センサ。
  6. 前記磁気収束板は、軟磁性材料からなる薄板により構成されることを特徴とする請求項2乃至請求項5のいずれかに記載の集積化方位センサ。
  7. 前記加速度センサ部は、
    中央に中空部を有して固定された支持体と、
    この支持体の中空部内に配置される重り部と、
    この重り部を可動自在に前記支持体に支持させる肉厚の薄い複数の梁と、を備え、
    前記重り部の上に前記磁気センサを配置するようにしたことを特徴とする請求項1乃至請求項6のいずれかに記載の集積化方位センサ。
  8. 前記加速度センサ部は、
    固定された支持体と、
    この支持体を囲うように配置される重り部と、
    この重り部を可動自在に前記支持体に支持させる肉厚の薄い複数の梁と、を備え、
    前記重り部の上に前記磁気センサを配置するようにしたことを特徴とする請求項1乃至請求項6のいずれかに記載の集積化方位センサ。
  9. 前記各梁は、その両端の応力集中部に応力検知素子としてピエゾ抵抗素子を備えていることを特徴とする請求項7または請求項8に記載の集積化方位センサ。
  10. 前記各梁は、その両端の応力集中部に応力検知素子としてMOSトランジスタを備えていることを特徴とする請求項7または請求項8に記載の集積化方位センサ。
  11. 前記加速度センサ部は、
    前記支持体、前記重り部、および前記複数の梁の他に、前記重り部の上側に前記支持体と固定され、重り部が可動できる空間を有するケースをさらに備え、
    前記重り部の表面の所定位置に可動電極を設けるとともに、前記ケースの裏面側であって前記可動電極に対向する位置に固定電極を設け、静電容量型の加速度センサを形成するようにしたことを特徴とする請求項1乃至請求項6のいずれかに記載の集積化方位センサ。
  12. 前記磁気収束板と前記可動電極は、同一の軟磁性材料からなることを特徴とする請求項11に記載の集積化方位センサ。
JP2001374890A 2001-12-07 2001-12-07 集積化方位センサ Expired - Fee Related JP3928775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374890A JP3928775B2 (ja) 2001-12-07 2001-12-07 集積化方位センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374890A JP3928775B2 (ja) 2001-12-07 2001-12-07 集積化方位センサ

Publications (2)

Publication Number Publication Date
JP2003172633A JP2003172633A (ja) 2003-06-20
JP3928775B2 true JP3928775B2 (ja) 2007-06-13

Family

ID=19183369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374890A Expired - Fee Related JP3928775B2 (ja) 2001-12-07 2001-12-07 集積化方位センサ

Country Status (1)

Country Link
JP (1) JP3928775B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724305B1 (ko) * 2004-05-17 2007-06-04 아이치 세이코우 가부시키가이샤 소형 자세 검지 센서, 및 이 소형 자세 검지 센서를 탑재한휴대 전화
JP2005331549A (ja) * 2004-05-18 2005-12-02 Konica Minolta Photo Imaging Inc 手振れ補正装置および位置検出装置
JP4487710B2 (ja) 2004-09-28 2010-06-23 ヤマハ株式会社 センサ及び同センサを用いた物理量の測定方法
WO2006041180A1 (ja) * 2004-10-15 2006-04-20 Intellectual Property Bank Corp. 姿勢センサー付電子タグを用いた構造物組立法および構造物組立装置、構造物保守のためのデータ記憶装置
CN1892179A (zh) 2005-07-01 2007-01-10 雅马哈株式会社 用于检测方位角和倾角的设备和方法、程序、及便携式终端装置
JPWO2007020702A1 (ja) * 2005-08-18 2009-02-19 株式会社シーアンドエヌ センサ装置
JP2007093448A (ja) 2005-09-29 2007-04-12 Aichi Steel Works Ltd モーションセンサ及びこれを用いた携帯電話機
WO2007148450A1 (ja) * 2006-06-22 2007-12-27 Alps Electric Co., Ltd. 加速度及び磁気方位検出用複合センサ並びに加速度及び磁気方位検出装置
KR100884389B1 (ko) 2006-08-31 2009-02-17 주식회사 아모센스 3축 홀 센서 및 그의 제조방법
US7923996B2 (en) * 2008-02-26 2011-04-12 Allegro Microsystems, Inc. Magnetic field sensor with automatic sensitivity adjustment
JP5363934B2 (ja) * 2009-10-01 2013-12-11 住友ゴム工業株式会社 タイヤに作用する力の推定方法、及びそれに用いるタイヤとタイヤホイールとの組立体。
KR101132263B1 (ko) 2010-01-08 2012-04-02 주식회사 이노칩테크놀로지 가속도 센싱 조립체와 그 제작 방법
JP5190134B2 (ja) * 2011-06-02 2013-04-24 旭化成エレクトロニクス株式会社 角速度検出方法及びその装置
CN103267520B (zh) * 2013-05-21 2016-09-14 江苏多维科技有限公司 一种三轴数字指南针

Also Published As

Publication number Publication date
JP2003172633A (ja) 2003-06-20

Similar Documents

Publication Publication Date Title
JP3982611B2 (ja) 集積化方位センサ
JP3928775B2 (ja) 集積化方位センサ
US8001839B2 (en) Sensor unit
US6378381B1 (en) Sensor using capacitance element
KR101300576B1 (ko) 물리량 센서 및 전자 기기
US7500406B2 (en) Multiaxial sensor
EP0497289B1 (en) A capacitive angular acceleration sensor
TWI225154B (en) Acceleration measuring apparatus with calibration function
WO2006035505A1 (ja) 磁気センサの制御方法、制御装置、および携帯端末装置
US7178398B2 (en) Coplanar proofmasses employable to sense acceleration along three axes
CN107771287B (zh) Mems传感器
KR100771458B1 (ko) 경사도 센서 및 경사 검출 방법
US20210293538A1 (en) Magnetic Sensor Device, Method of Manufacturing the Sensor Device, and Rotational Operation Mechanism
JP2004093552A (ja) 加速度検出装置
JP2021032801A (ja) 慣性センサーユニット、電子機器、及び移動体
JP4370432B2 (ja) 角加速度センサ
JPH0243293B2 (ja)
JP3332283B2 (ja) 多軸加速度センサ
JPH11248737A (ja) 静電容量型多軸加速度センサ
JP4056591B2 (ja) 加速度センサ
JP4125059B2 (ja) 多軸傾斜検出装置
JPH06160166A (ja) 振動計
JPH11248741A (ja) 静電容量型多軸加速度センサ
JP7215702B1 (ja) 磁界ベクトルセンサ
WO2023188653A1 (ja) 加速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Ref document number: 3928775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees