JP3924508B2 - データ伝送回路及び半導体集積回路 - Google Patents

データ伝送回路及び半導体集積回路 Download PDF

Info

Publication number
JP3924508B2
JP3924508B2 JP2002212042A JP2002212042A JP3924508B2 JP 3924508 B2 JP3924508 B2 JP 3924508B2 JP 2002212042 A JP2002212042 A JP 2002212042A JP 2002212042 A JP2002212042 A JP 2002212042A JP 3924508 B2 JP3924508 B2 JP 3924508B2
Authority
JP
Japan
Prior art keywords
data
input
buffer
output
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002212042A
Other languages
English (en)
Other versions
JP2004056546A (ja
Inventor
正 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2002212042A priority Critical patent/JP3924508B2/ja
Priority to US10/622,498 priority patent/US7368951B2/en
Priority to KR10-2003-0049788A priority patent/KR100524237B1/ko
Publication of JP2004056546A publication Critical patent/JP2004056546A/ja
Application granted granted Critical
Publication of JP3924508B2 publication Critical patent/JP3924508B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0278Arrangements for impedance matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、データ伝送回路、半導体集積回路、及びデータ伝送方法に関し、特にデータが複数の伝送モードで入力されて出力するデータ伝送回路、半導体集積回路、及びデータ伝送方法に関する。
【0002】
【従来の技術】
従来、コンピュータ本体と周辺機器とを接続する際、シリアルインタフェース(Serial Interface)やパラレルインタフェース(Parallel Interface)などの周辺機器用のインタフェースを用いて接続される。また、複数の各種の周辺機器を1つにつなぐインタフェースとして、USB(Universal Serial Bus)やIEEE1394などのシリアルインタフェースが登場し、インタフェースを統一化し、共通化する方向がある。
【0003】
近年の情報化社会において、大容量のデータを高速に通信する必要性から、従来のUSB1.0規格(USB−IF:USB Implements Forumによる規格)などのUSB1.x規格に比べてデータ転送レートの大きなUSB2.0規格が開発されている。従来のUSB1.x規格では接続モードに最大データ転送レートが12Mbpsのフルスピード(Full Speed)モードと1.5Mbpsのロースピード(Low Speed)モードとがあるが、USB2.0規格においては、これらのモードを維持したまま、新たに最大データ転送レートが480Mbpsのハイスピード(High Speed)モードが加わり、より大容量のデータを高速に通信することを可能とする。
【0004】
このようなUSB2.0規格のような最大データ転送レートが480Mbpsの高速なデータ伝送を行う際、線路反射による伝送波形の劣化が生じる。そのため、出力バッファにより出力インピーダンスを伝送線路のインピーダンスと同じになるように高精度に制御する必要性が生じている。
【0005】
このような出力インピーダンス制御に関する技術として、例えば、「A 660 MB/s Interface Megacell Portable Circuit in 0.3μm-0.7μm CMOS ASIC」, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.31, NO.12, DECEMBER 1996には、トランジスタサイズを切り替えることで出力バッファの駆動能力を制御する技術が開示されている。この技術では、出力バッファの駆動能力を制御することにより、製造ばらつきや電源電圧、温度の変動に対して出力インピーダンスを調整して出力インピーダンスの最適化を行う。
【0006】
さらに、高速なデータ伝送を行う出力バッファは、波形の立ち上がり、立ち下がりでの急激な電圧変化により他の装置等にノイズ源が発生しないように波形をなまらせてスルーレート制御する。
【0007】
このような出力バッファによりスルーレート制御を行う技術として、例えば、「DESIGN GUIDE FOR A LOW SPEED BUFFER FOR THE UNIVERSAL SERIAL BUS」, Revision1.1 December, 1996 Intel Corporationに開示されているように、出力バッファの出力端子と最終段のトランジスタを駆動する信号線の間にフィードバック容量を配置する技術が提案されている。この技術によれば、出力信号の急激な変化を妨げるように制御し、フィードバック容量により波形の立ち上がりと立ち下がりを最適化してデータ伝送が行われる。
【0008】
これらの従来技術の手法をCMOSプッシュプル型定電圧ドライバタイプの出力バッファに適用された場合について、図3及び図4を参照して説明する。また、図3に示すバッファ回路は、USB1.0規格でデータを転送するバッファ回路を示す。
【0009】
図3に示すように、従来技術における入力バッファは、Hiレベルを出力するメインバッファ101(以下、Hメインバッファ101と略す)、Lowレベルを出力するメインバッファ102(以下、Lメインバッファ102と略す)、駆動トランジスタを選択するインピーダンス制御端子103a、103b、〜、103c、103d、Lowレベル側伝達回路104(以下、L伝達回路104と略す)、Hiレベル側伝達回路105(以下、H伝達回路105と略す)とを備える。さらに、入力バッファは、メインバッファを駆動するプリバッファ106、出力PAD107とプリバッファ106との間に接続されるフィードバック容量108、データ入力端子109を備えている。
【0010】
Lメインバッファ102は、出力PAD107と接地線110との間に、複数のNchトランジスタ111a、111b、〜、111c、111dを接続した構成となっている。
【0011】
Nchトランジスタ111a、111b、〜、111c、111dのそれぞれのサイズは、インピーダンス制御端子103a、103b、〜、103c、103dと組み合わされ、制御範囲や制御幅等を考慮して最適な出力インピーダンスが実現できるように構成される。一例として、各Nchトランジスタ111a、111b、〜、111c、111dのインピーダンス値がそれぞれ異なるように重み付けをして最適な出力インピーダンスが実現できるように構成される。
【0012】
L伝達回路104は、インピーダンス制御信号毎に構成されるとともに、Lメインバッファ102のNchトランジスタ毎に構成される。例えば、インピーダンス制御端子103aにインピーダンス制御信号が入力される場合、L伝達回路104は、Lメインバッファ102のNchトランジスタ111aのゲート電極を接地する接地線110にクランプできるように構成される。
【0013】
L伝達回路104のトランスミッションゲート112aは、インピーダンス制御端子103aに入力されるインピーダンス制御信号により制御される。そして、このトランスミッションゲート112aを介して、プリバッファ106がLメインバッファ102のNchトランジスタ111aに接続される。
【0014】
また、クランプNchトランジスタ114aは、インピーダンス制御端子103aからのインピーダンス制御信号をインバータ113aで反転した制御信号により制御される。このNchトランジスタ114aで、Lメインバッファ102のNchトランジスタ111aのゲート電極が接地線110にクランプされている。
【0015】
Hメインバッファ101は、Lメインバッファと同様に構成され、出力PAD107と電源線115との間に、Lメインバッファ102のNchトランジスタ111a、111b、〜、111c、111dを相補的に置き換えた複数のPchトランジスタ(図示せず)を接続した構造となっている。
【0016】
H伝達回路105は、L伝達回路104と同様に構成され、インピーダンス制御信号毎に構成されるとともに、Hメインバッファ101のPchトランジスタ毎に構成される。そして、各インピーダンス制御端子にインピーダンス制御信号が入力される場合、H伝達回路105は、Hメインバッファ101のPchトランジスタのゲート電極を電源線115にクランプできるように構成される。
【0017】
また、プリバッファ106はインバータにより構成され、フィードバック容量108は容量素子により構成される。プリバッファ106は、データ入力端子109から入力されたデータ信号を反転させ、L伝達回路104やH伝達回路105のトランスミッションゲートに入力する。フィードバック容量108は、プリバッファ106と出力PAD107との間に配置されて出力PAD107からの出力信号の急激な変化を抑制する。
【0018】
このように構成される従来技術における入力バッファの動作について図3及び図4を参照して説明する。データ伝送を行う場合、データの出力インピーダンスの値が所望の値となるように最適化された制御コードが、インピーダンス制御信号として、インピーダンス制御端子103a、103b、〜、103c、103dに入力される。この制御コードは、Hi論理又はLow論理で与えることができ、電圧のデジタルな高低としてインピーダンス制御端子に入力される。
【0019】
インピーダンス制御端子103aに入力されるインピーダンス制御信号がHi論理を有する場合、L伝達回路104は、トランスミッションゲート112aを開く。これにより、プリバッファ106の出力電圧によって、プリバッファ106でデータを反転させた信号がLメインバッファ102のNchトランジスタ111aに送られ、当該駆動するトランジスタ111aが選択される。
【0020】
これに対して、インピーダンス制御端子103aに入力されるインピーダンス制御信号がLow論理を有する場合、L伝達回路104は、トランスミッションゲート112aを閉じる。これにより、プリバッファ106の出力電圧が遮断される。それとともに、L伝達回路104のクランプNchトランジスタ114aがオン状態となり、Lメインバッファ102のNchトランジスタ111aのゲート電極が接地線110の接地電位に固定される。そして、Lメインバッファ102のNchトランジスタ111aをオフ状態とすることにより、Lメインバッファ102のNchトランジスタ111aが駆動トランジスタとして選択されないようになる。
【0021】
H伝達回路105は、L伝達回路104と同様に動作を行う。インピーダンス制御端子103aに入力されるインピーダンス制御信号がLow論理を有する場合、H伝達回路105は、Hメインバッファ101のPchトランジスタを駆動トランジスタとして選択する。これに対して、インピーダンス制御端子103aに入力されるインピーダンス制御信号がHi論理を有する場合、H伝達回路105は、Hメインバッファ101のPchトランジスタを駆動トランジスタとして選択しない。
【0022】
このように、データ入力端子109がLowレベルの時には、インバータ106がHiレベルを出力し、出力PAD107に接地レベルを出力する。他方、データ入力端子109がHiレベルの時には、インバータ106がLowレベルを出力し、出力PAD107に電源電圧レベルを出力する。データ入力端子109のレベルに応じて出力PAD107のレベルを制御し、製造ばらつきや電源電圧、温度の変動に対して出力インピーダンスを調整して出力インピーダンスの最適化を行う。
【0023】
さらに、出力PAD107からデータが出力される際、出力PAD107とプリバッファ106との間に配置されたフィードバック容量108により出力波形のスルーレートが制御されて出力波形の立ち上がり・立下りが最適化される。
【0024】
しかしながら、当該入力バッファにおいては、出力インピーダンスは、Hメインバッファ101又はLメインバッファ102の各トランジスタ(Pchトランジスタ、Nchトランジスタ)を選択し、トランジスタのサイズを変更することにより制御が行われる。そのため、駆動トランジスタを切り替えて選択することにより、駆動トランジスタのサイズが変化し、トランジスタのゲート電極容量が変化する。
【0025】
さらに、当該比較例においては、出力波形のスルーレートは、プリバッファ106の負荷容量により制御され、予め最適化したフィードバック容量108とHメインバッファ101やLメインバッファ102で選択されたトランジスタのゲート電極容量とを足し合わせた容量により制御される。
【0026】
このようなことから、出力波形のスルーレートの最適化がフィードバック容量108により行われるにもかかわらず、出力インピーダンスを制御するためにプリバッファ106の付加容量が変化すると、出力インピーダンスの制御を行うことができたとして出力波形のスルーレートを最適化することができなくなる。
【0027】
また逆に、出力波形のスルーレートの最適化を行う際には、出力インピーダンスを制御することができず、出力インピーダンスとスルーレートとの両者を制御することができない。
【0028】
図4に示すように、各インピーダンス制御端子に入力される制御コードに同期して出力PAD107が出力される。各インピーダンス制御端子にCODE−Aを入力すると、データ入力端子109には制御コードに同期してデータが入力される。これにより、上述の動作に基づいて出力PAD107にデータが出力される。また同様に、各インピーダンス制御端子にCODE−Bを入力すると、データ入力端子109には制御コードに同期してデータが入力される。これにより、上述の動作に基づいて出力PAD107にデータが出力される。
【0029】
ところが、トランジスタが使用温度の時間的な変動の影響を受けると、トランジスタの物理的特性変化により、トランジスタに駆動電流が流れすぎる。これにより、出力PAD107に出力されるデータの出力インピーダンスが低下する。この場合、例えば、図4に示すように、出力インピーダンスを制御するインピーダンス制御コードをCODE−AからCODE−Bに途中で変更して出力インピーダンスの低下を補正することができる。このとき、Hメインバッファ101やLメインバッファ102の駆動するトランジスタの本数を減らし、出力インピーダンスの低下が補正される。しかし、トランジスタの本数を減らすと、プリバッファ106の出力につながる負荷容量が小さくなる。そのため、図6に示すように、フィードバック容量108が充分ではなくなり、インピーダンス制御コードを変更した後の出力PAD107の出力波形が急峻になる。
【0030】
さらに、半導体の製造ばらつきに対して出力インピーダンス制御を行う場合、製造ばらつきに対するトランジスタの特性変動と容量素子の特性変動は、必ずしも一致しているわけではない。そのため、製造ばらつきに対して出力インピーダンスが一定となるように制御コードを調整すると、制御コード毎にプリバッファ出力につながる負荷容量が異なってしまう。これにより、制御コード毎に、出力波形のスルーレートが変動してしまうという問題があった。
【0031】
他方、出力インピーダンス制御と同様に、複数の単位容量をアレイ化してフィードバック容量108を切り替えることにより、出力スルーレート制御できるようにすると、フィードバック容量108と駆動トランジスタのゲート電極容量とで、バイアス電圧依存による容量の見え方が等価ではないので、制御が非常に困難になる。
【0032】
また、仮にフィードバック容量108もアレイ化して制御できたとしても、半導体集積回路内で構成する容量素子は、トランジスタサイズや、配線寸法に比較して大きな面積が必要になる。その上、インピーダンス制御回路とは別にフィードバック容量制御のための回路が独自に必要になる。そのため、回路構成が複雑になり、すなわちレイアウト面積が増大し、さらには半導体集積回路装置のトータルコストが増加するという問題がある。
【0033】
特に、このような種々の問題は、高速なデータ伝送行うUSB2.0規格では、出力インピーダンスとスルーレートの両者の制御が困難となる。そのため、データの伝送経路での減衰等が発生し、良好な状態でデータを伝送することができない。
【0034】
【発明が解決しようとする課題】
このように、従来のデータ伝送回路、半導体集積回路、データ伝送方法では、出力インピーダンスと出力波形のスルーレートとを同時に制御することができないため、データを良好な状態で伝送することが困難であるという問題点があった。
【0035】
本発明は、このような問題点を解決するためになされたもので、良好な状態でデータを伝送することができるデータ伝送回路、半導体集積回路、及びデータ伝送方法を提供することを目的とする。
【0036】
【課題を解決するための手段】
本発明にかかるデータ伝送回路は、少なくとも高速度データと低速度データが入力され、入力されたデータのインピーダンスを制御するデータ伝送回路であって、入力されたデータを安定化させ、出力する定電流ドライバと、インピーダンスを制御する制御信号に応じて複数のスイッチング素子を切り換えることによりインピーダンスを制御するメインバッファと、前記メインバッファと同様の複数のスイッチング素子を備えたダミーバッファと、前記メインバッファのスイッチング素子の切り換えに応じて前記ダミーバッファのスイッチング素子を相補的に切り換えるとともに、前記制御信号のメインバッファへの入力を選択信号に応じて制御する選択手段(例えば、本発明の実施の形態における選択回路28、30)と、高速度データが入力された場合には、前記定電流ドライバに当該高速度データを出力するとともに、前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力し、低速度データが入力された場合には、当該低速度データに応じて前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力する伝送切替回路とを備えたものである。このような構成により、データの伝送モードに応じて良好な状態でデータを伝送することができる。
【0037】
さらに、本発明にかかるデータ伝送回路では、前記入力されたデータのスルーレートを調整するフィードバック容量を有するものである。これにより、データのスルーレートを精度良く制御して良好な状態でデータを伝送することができる。
【0038】
さらにまた、本発明にかかるデータ伝送回路では、前記入力されたデータを一時記憶するプリバッファを有するものである。これにより、データのインピーダンスを容易に制御することができる。
【0039】
そして、本発明にかかるデータ伝送回路では、前記入力されるデータ及び前記出力データは、論理的に二つの状態を有し、該論理的に二つの状態に対応して、メインバッファ、ダミーバッファ、及び選択手段を二組備え、高速度データが入力された場合には、前記伝送切替回路が、一方の前記メインバッファへ前記制御信号を入力させるための選択信号を前記選択手段に出力し低速度データが入力された場合には、前記伝送切替回路が、出力データの論理的に二つの状態に応じて、いずれか一方の前記メインバッファへ前記制御信号を入力させるための選択信号を前記選択手段に出力するものである。このような構成により、データの伝送モードに応じて良好な状態でデータを確実に伝送することができる。
【0040】
また、本発明にかかるデータ伝送回路では、前記出力データは、ユニバーサル・シリアル・バスを介して出力され、当該ユニバーサル・シリアル・バスは、USB2.0規格またはこれ以上の上位規格である。これにより、高速データ伝送においても、良好な状態でデータを伝送することができる。
【0041】
本発明にかかる半導体集積回路は、少なくとも高速度データと低速度データが入力され、入力されたデータのインピーダンスを制御する半導体集積回路であって、入力されたデータを安定化させ、出力する定電流ドライバと、インピーダンスを制御する制御信号に応じて複数のスイッチング素子を切り換えることによりインピーダンスを制御するメインバッファと、前記メインバッファと同様の複数のスイッチング素子を備えたダミーバッファと、前記メインバッファのスイッチング素子の切り換えに応じて前記ダミーバッファのスイッチング素子を相補的に切り換えるとともに、前記制御信号のメインバッファへの入力を選択信号に応じて制御する選択手段(例えば、本発明の実施の形態における選択回路28、30)と、高速度データが入力された場合には、前記定電流ドライバに当該高速度データを出力するとともに、前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力し、低速度データが入力された場合には、当該低速度データに応じて前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力する伝送切替回路とを備えたものである。このような構成により、データの伝送モードに応じて良好な状態でデータを伝送することができる。
【0042】
本発明にかかるデータ伝送方法は、少なくとも高速度データと低速度データが入力され、入力されたデータのインピーダンスを制御するデータ伝送方法であって、インピーダンスを制御する制御信号に応じて複数のスイッチング素子を切り換えることによりインピーダンスを制御するメインバッファの前記スイッチング素子の切り換えに応じて、前記メインバッファと同様の複数のスイッチング素子を備えたダミーバッファのスイッチング素子を相補的に切り換えるステップと、前記制御信号のメインバッファへの入力を選択信号に応じて制御するステップと、高速度データが入力された場合には、入力されたデータを安定化させて出力する定電流ドライバに当該高速度データを出力するとともに、前記制御信号を前記メインバッファへ入力させるための選択信号を出力し、低速度データが入力された場合には、当該低速度データに応じて前記制御信号を前記メインバッファへ入力させるための選択信号を出力するステップとを備えたものである。このような方法により、データの伝送モードに応じて良好な状態でデータを伝送することができる。
【0043】
さらに、本発明にかかるデータ伝送方法は、前記入力されたデータのスルーレートを調整するものである。これにより、データのスルーレートを精度良く制御して良好な状態でデータを伝送することができる。
【0044】
そして、本発明にかかるデータ伝送方法は、前記入力されるデータ及び前記出力データは、論理的に二つの状態を有し、該論理的に二つの状態に対応して、二組のメインバッファ及びダミーバッファを選択するステップを有し、該選択ステップでは、高速度データが入力された場合には、一方の前記メインバッファへ前記制御信号を入力させるための選択信号を出力し低速度データが入力された場合には、出力データの論理的に二つの状態に応じて、いずれか一方の前記メインバッファへ前記制御信号を入力させるための選択信号を出力するものである。これにより、データの伝送モードに応じて良好な状態でデータを確実に伝送することができる。
【0045】
【発明の実施の形態】
以下、本発明の実施の形態について図を参照しながら説明する。
【0046】
まず、本発明の実施の形態におけるデータ伝送回路の構成について、図1を用いて説明する。図1は、本実施形態のデータ伝送回路の一構成例を示す模式図である。また、図1においては、CMOSプッシュプル型定電圧ドライバタイプの出力バッファ回路に適用された場合を示す。なお、図1において、本発明にかかるデータ伝送回路の要部を示す。またなお、個々にPch又はNchのトランジスタを用いて説明するが、これらのトランジスタを相互に入れ替えても良い。
【0047】
図1に示すように、本実施形態のデータ伝送回路は、Hiレベルを出力するメインバッファ回路11(以下、Hメインバッファ11と略す)、Hメインバッファ11に対するダミーバッファ回路29(以下、Hダミーバッファ29と略す)、Lowレベルを出力するメインバッファ回路12(以下、Lメインバッファ12と略す)、Lメインバッファ12に対するダミーバッファ回路27(以下、Lダミーバッファ27と略す)を備える。
【0048】
さらに、本実施形態のデータ伝送回路は、Hメインバッファ11とHダミーバッファ29とを切り替えるHiレベル側選択回路30(以下、H選択回路30と略す)、Lメインバッファ12とLダミーバッファ27とを切り替えるLowレベル側選択回路28(以下、L選択回路28と略す)を備え、各選択回路28、30には、駆動トランジスタを選択するインピーダンス制御端子が13a、13b、〜、13c、13dが設けられている。
【0049】
また、本実施形態のデータ伝送回路は、メインバッファを駆動するプリバッファ16、出力PAD17とプリバッファ16との間に接続されるフィードバック容量18を備えている。なお、本実施形態のデータ伝送回路においては、フィードバック容量18を設けることなく、出力データのスルーレート制御をメインバッファ回路11、12及びダミーバッファ回路27、29を用いて行っても良い。
【0050】
またさらに、本実施形態のデータ伝送回路は、定電流ドライバ36、高速度データ伝送と低速度データ伝送とを切り替える伝送切替回路39(以下、これをH/L伝送切替回路39)、抵抗素子38を備える。
【0051】
Lメインバッファ12は、出力PAD17と接地線20との間に、複数のNchトランジスタ21a、21b、〜、21c、21dを接続した構成となっている。
【0052】
Nchトランジスタ21a、21b、〜、21c、21dのそれぞれのサイズは、インピーダンス制御端子13a、13b、〜、13c、13dと組み合わされ、制御範囲や制御幅等を考慮して最適な出力インピーダンスが実現できるように構成される。一例として、各Nchトランジスタ21a、21b、〜、21c、21dのサイズに重み付けをして最適な出力インピーダンスが実現できるように構成される。
【0053】
Lダミーバッファ27は、Lメインバッファ12と同様に構成され、接地線20と接地線20との間に、複数のNchトランジスタ26a、26b、〜、26c、26dを接続した構成となっている。
【0054】
このNchトランジスタ26a、26b、〜、26c、26dは、Nchトランジスタ21a、21b、〜、21c、21dのサイズと略同一のサイズのトランジスタとすることができる。
【0055】
L選択回路28は、Lメインバッファ12に接続されるトランスミッションゲート22及びクランプNchトランジスタ24、Lダミーバッファ27に接続されるダミー用トランスミッションゲート31及びダミー用クランプNchトランジスタ32、インバータ23を有する。
【0056】
L選択回路28は、インピーダンス制御信号毎に構成されるとともに、Lメインバッファ12のNchトランジスタ毎に構成される。例えば、インピーダンス制御端子13aにインピーダンス制御信号が入力される場合、L選択回路28は、Lメインバッファ12のNchトランジスタ21aのゲート電極を接地する接地線20にクランプできるように構成される。
【0057】
L選択回路28のトランスミッションゲート22は、インピーダンス制御端子13aに入力されるインピーダンス制御信号により制御される。そして、このトランスミッションゲート22を介して、プリバッファ16がLメインバッファ12のNchトランジスタ21aに接続される。また、クランプNchトランジスタ24は、インピーダンス制御端子13aからのインピーダンス制御信号をインバータ23で反転した制御信号により制御される。このNchトランジスタ24で、Lメインバッファ12のNchトランジスタ21aのゲート電極が接地線20にクランプされている。
【0058】
さらに、本実施形態のデータ伝送回路では、L選択回路28は、インピーダンス制御信号毎に構成されるとともに、Lダミーバッファ27のNchトランジスタ毎に構成される。例えば、インピーダンス制御端子13aにインピーダンス制御信号が入力される場合、L選択回路28は、Lダミーバッファ27のNchトランジスタ26aのゲート電極を接地する接地線20にクランプできるように構成される。
【0059】
L選択回路28のダミー用トランスミッションゲート31は、インピーダンス制御端子13aに入力されるインピーダンス制御信号により制御される。そして、このダミー用トランスミッションゲート31を介して、プリバッファ16がLダミーバッファ27のNchトランジスタ26aに接続される。また、ダミー用クランプNchトランジスタ32は、インピーダンス制御端子13aからのインピーダンス制御信号をインバータ23で反転した制御信号により制御される。このダミー用クランプNchトランジスタ32で、Lダミーバッファ27のNchトランジスタ26aのゲート電極が接地線20にクランプされている。
【0060】
L選択回路28のトランスミッションゲート22とダミー用トランスミッションゲート31とは、インピーダンス制御信号により相互に接続/遮断が選択される。これにより、プリバッファ16からの入力は、Lメインバッファ12又はLダミーバッファ27に常に接続されている。そのため、プリバッファ16からLメインバッファ12又はLダミーバッファ27のNchトランジスタのゲート電極容量を一定とすることができ、プリバッファ16の負荷容量を一定とすることができる。
【0061】
H選択回路30は、L選択回路28と同様に構成され、インピーダンス制御信号毎に構成されるとともに、Hメインバッファ11のPchトランジスタ毎に構成される。そして、各インピーダンス制御端子にインピーダンス制御信号が入力される場合、H選択回路30は、Hメインバッファ11のPchトランジスタのゲート電極を電源線25にクランプできるように構成される。
【0062】
さらに、H選択回路30は、L選択回路28と同様に構成され、インピーダンス制御信号毎に構成されるとともに、Hダミーバッファ29のPchトランジスタ毎に構成される。各インピーダンス制御端子にインピーダンス制御信号が入力される場合、H選択回路30は、Hダミーバッファ29のPchトランジスタのゲート電極を電源線25にクランプできるように構成される。
【0063】
H選択回路30のトランスミッションゲートとダミー用トランスミッションゲートとは、L選択回路28と同様に、インピーダンス制御信号により相互に接続/遮断が選択される。これにより、プリバッファ16からの入力は、Hメインバッファ11又はHダミーバッファ29に常に接続されている。そのため、プリバッファ16からHメインバッファ11又はHダミーバッファ29のPchトランジスタのゲート電極容量を一定とすることができ、プリバッファ16の負荷容量を一定とすることができる。
【0064】
また、プリバッファ16はインバータにより構成され、フィードバック容量18は容量素子により構成される。プリバッファ16は、入力されたデータ信号を反転させ、L選択回路28やH選択回路30のトランスミッションゲートに入力する。フィードバック容量18は、プリバッファ16と出力PAD17との間に配置されて出力PAD17からの出力信号の急激な変化を抑制する。
【0065】
図1に示すように、定電流ドライバ36は、定電流源35、Pchトランジスタ34を有する。定電流源35は、一方をPchトランジスタ34と直列に接続され、他方を電源線25と接続されている。Pchトランジスタ34のソース又はドレインは出力PAD17に接続され、ゲート電極はH/L伝送切替回路39に接続されている。また、出力ノード37には抵抗素子38が接続され、Lメインバッファ12とともにインピーダンス制御を行う。
【0066】
H/L伝送切替回路39には、伝送データの伝送速度を切り替える伝送速度切替端子404とデータが入力されるデータ入力端子41が設けられている。さらに、H/L伝送切替回路39は、高速度でデータを伝送する際にデータが入力される高速度データ入力端子33、低速度でデータを伝送する際にデータが入力される低速度データ入力端子19を備える。また、高速度データ入力端子33はPchトランジスタ34に接続され、低速度データ入力端子19は、プリバッファ16に接続されている。
【0067】
次に、本実施形態のデータ伝送回路の動作について、図1及び図2を参照して説明する。図2は本実施形態のデータ伝送回路の動作に関するタイミングチャートを示す。本実施形態の動作を説明するに際して、データを高速度で伝送する場合(高速度伝送)、データを低速度で伝送する場合(低速度伝送)の順に説明する。
【0068】
また、データ伝送を行う場合、データの出力インピーダンスの値が所望の値となるように最適化された制御コードが、インピーダンス制御信号として、インピーダンス制御端子13a、13b、〜、13c、13dに入力される。この制御コードは、Hi論理又はLow論理で与えることができる。
【0069】
データを高速度で伝送する場合、伝送速度切替端子40から伝送速度を制御する伝送速度制御信号が入力され、高速度の伝送モードに設定される。これにより、データ入力端子41からデータが入力されると、データは高速度データ入力端子33から出力され、Pchトランジスタ34へと伝送される。
【0070】
高速度伝送の場合、図1において伝送速度切替端子40には、低速度データ入力端子19がLow論理に固定されるように伝送速度制御信号が入力される。これにより、低速度データ入力端子19を常にLow論理に固定することができる。低速度データ入力端子19をLow論理に固定すると、伝送速度制御信号が選択信号としてLメインバッファ12及びLダミーバッファ27に入力され、Lメインバッファ12及びLダミーバッファ27がオン状態となる。そして、Lメインバッファ12を終端抵抗として機能させ、Lメインバッファ12においてインピーダンスが発生する。
【0071】
低速度データ入力端子19がLow論理に固定されると、Lメインバッファ12及びLダミーバッファ27がオン状態となると同時に、Hiレベルを出力するHメインバッファ11及びHダミーバッファ29のPchトランジスタがオフ状態となる。これにより、出力ノード37は電源線25と遮断され、出力ノード37に電源電圧が加わらないようになる。
【0072】
Hiレベルを出力するHメインバッファ11及びHダミーバッファ29のPchトランジスタがオフ状態となるため、出力PAD17と接地線20との間の終端抵抗の抵抗値は、Lメインバッファ12のNchトランジスタ21a、21b、〜、21c、21dのオン抵抗の組み合わせと抵抗素子38とにより定まる。これにより、出力PAD17と接地線20との間の終端抵抗の抵抗値は、Lメインバッファ12のNchトランジスタ21a、21b、〜、21c、21dのオン抵抗の組み合わせと抵抗素子38とを最適化することにより、最適化することができる。
【0073】
また、Lメインバッファ回路12のNchトランジスタ21a、21b、〜、21c、21dは終端抵抗として機能するのに対して、Lダミーバッファ27のNchトランジスタ26a、26b、〜、26c、26dは、この終端抵抗のインピーダンスが安定するように補助する。後述の低伝送の場合に示すように、低速度データ入力端子19がLow論理に固定されると、インピーダンス制御端子13a、13b、〜、13c、13dに制御コードが入力されると、Lメインバッファ12のNchトランジスタとLダミーバッファ27のNchトランジスタとのいずれか一方が選択される。
【0074】
すなわち、例えば、Lメインバッファ回路12のNchトランジスタ21aが選択されると、Lダミーバッファ26aのNchトランジスタ26aが選択されないようになる。また逆に、制御コードにより、Lメインバッファ12のNchトランジスタ21aが選択されないときには、Lダミーバッファ26aのNchトランジスタ26aが選択される。そのため、後述するように、出力PAD17と接地線20との間の終端抵抗を安定させることができる。そして、一般には、フィードバック容量18の容量に比べてLメインバッファ12のNchトランジスタ21a、21b、〜、21c、21dの容量が大きいため、Lメインバッファ12のNchトランジスタの容量を最適化し、フィードバック容量18の容量により、インピーダンスの精度を高め、安定で且つ精度良く高速度伝送時に出力データのインピーダンスの制御行うことができる。
【0075】
定電流ドライバ36の定電流源35は一定の電流を流す。データ入力端子41から伝送データが入力されると、伝送データは高速度データ入力端子33から出力される。そして、Pchトランジスタ34のゲート電極へと入力される。伝送データがHi論理を示す場合にPchトランジスタが開き、Low論理を示す場合にPchトランジスタは閉じる。これにより、Pchトランジスタ34のオン/オフに従って一定の電流が流れる。そして、この一定電流と、Lメインバッファ12のNchトランジスタと抵抗素子38とのインピーダンスにより、高速度のデータ伝送を行う。
【0076】
このように、定電流源35により安定した一定の電流により高速度データ伝送が行われる。さらに、LメインバッファのNchトランジスタ21a、21b、〜、21c、21dのインピーダンスがLダミーバッファ27のNchトランジスタの26a、26b、〜、26c、26dにより安定化し、一定のインピーダンスを有する終端抵抗として機能する。そのため、高速度で伝送されるデータの出力電圧は一定の安定した電圧値を有する。これにより、高速度伝送データの振幅を安定させ、良好な状態で伝送を行うことができる。
【0077】
また、高速度伝送データの振幅を安定させることができるため、本実施形態のデータ伝送回路は、定電流ドライバ回路として機能させることができる。
【0078】
データを低速度で伝送する場合、伝送速度切替端子70から伝送速度を制御する伝送速度制御信号が入力され、低速度の伝送モードに設定される。これにより、データ入力端子41からデータが入力されると、データは低速度データ入力端子19から出力され、プリバッファ16へと伝送される。
【0079】
低速度伝送の場合、図1において伝送速度切替端子40には、高速度データ入力端子33がHi論理となるように伝送速度制御信号入力される。これにより、高速度データ入力端子33を常にHi論理に固定することができる。高速度データ入力端子33をHi論理に固定すると、伝送速度制御信号が選択信号として定電流ドライバ36に入力され、Pchトランジスタ34がオフ状態となる。そして、定電流源35が切り離されて定電流ドライバ36が駆動しない。そのため、定電流ドライバ36を出力ノード37から分離することができる。これにより、以下に説明するように、低速度データ入力端子19で定電圧ドライバのメインバッファ11、12を相補的にオン/オフ状態とし、電源電圧と接地電圧を信号レベルとして出力PAD17から低速度伝送データを出力することができる。
【0080】
一例として、インピーダンス制御端子13aに入力されるインピーダンス制御信号がHi論理を有する場合、L選択回路28は、トランスミッションゲート22を開く。これにより、プリバッファ16の出力電圧によって、プリバッファ16でデータを反転させた信号がLメインバッファ12のNchトランジスタ21aに送られ、当該駆動するトランジスタ21aが選択される。
【0081】
Lメインバッファ12のNchトランジスタ21aが選択されると、トランスミッションゲート22を介して、このNchトランジスタ21aのゲート電極にデータが入力される。このとき、データがLowレベルの場合にNchトランジスタ21aはゲートを開き、出力ノード37が接地線20にクランプする。これにより、出力PAD17より出力するデータの電位は接地線20の接地電位となる。
【0082】
また、データがHiレベルである場合、Nchトランジスタ21aはゲートを閉じるが、データがLowレベルの場合と同様に、Hメインバッファ11のPchトランジスタがゲートを開く。これにより、出力ノード37が電源線25にクランプし、出力PAD17より出力するデータの電位は電源線25の電源電位となる。
【0083】
制御コードの入力によりLメインバッファ12の駆動トランジスタ21aが選択されるとき、Lダミーバッファ27では駆動トランジスタは選択されることがない。Hi論理を有するインピーダンス制御信号がインピーダンス制御端子13aに入力されると、L選択回路28は、ダミー用トランスミッションゲート31を閉じる。これにより、プリバッファ16の出力電圧がLダミーバッファ27から遮断される。
【0084】
また、プリバッファ16の出力電圧がLダミーバッファ27から遮断されるとともに、L選択回路28のダミー用クランプNchトランジスタ32がオン状態となり、Lダミーバッファ27のNchトランジスタ26aのゲート電極が接地線20の接地電位に固定される。そして、Lダミーバッファ27のNchトランジスタをオフ状態となり、Lダミーバッファ27のNchトランジスタが駆動トランジスタとして選択されないようになる。
【0085】
これに対して、インピーダンス制御端子13aに入力されるインピーダンス制御信号がLow論理を有する場合、L選択回路28は、トランスミッションゲート22を閉じる。これにより、プリバッファ16の出力電圧がLメインバッファ12から遮断される。それとともに、L選択回路28のクランプNchトランジスタ24がオン状態となり、Lメインバッファ12のNchトランジスタ21aのゲート電極が接地線20の接地電位に固定される。そして、Lメインバッファ12のNchトランジスタ21aをオフ状態とすることにより、Lメインバッファ12のNchトランジスタ21aが駆動トランジスタとして選択されないようになる。
【0086】
制御コードの入力によりLメインバッファ12の駆動トランジスタ21aが選択されないのに対し、Lダミーバッファ27のNchトランジスタ26aが選択される。Hi論理を有するインピーダンス制御信号がインピーダンス制御端子13aに入力されると、L選択回路28は、ダミー用トランスミッションゲート31を開く。これにより、プリバッファ16の出力電圧がLダミーバッファ27のNchトランジスタ26aに至り、当該駆動するトランジスタ26aが選択される。
【0087】
このように、Lダミーバッファ27のNchトランジスタが選択される場合、プリバッファ16から見た容量(出力負荷容量)がLメインバッファ12のNchトランジスタ21a、21b、〜、21c、21dの全体の容量と、フィードバック容量18とを合わせた容量となる。そのため、Lメインバッファ12からNchトランジスタが選択された場合であっても、Lダミーバッファ27からNchトランジスタが選択された場合であっても、プリバッファ16の出力負荷容量は常に変化しない。これにより、安定してインピーダンスを制御することができ、それと同時にスルーレートを制御することができる。そして、出力PAD17から良好な状態でデータを出力することができる。
【0088】
また、Lメインバッファ12及びLダミーバッファ27のNchトランジスタは伝送データがLowレベルのときに駆動するため、これらのNchトランジスタが駆動する場合にはHメインバッファ11及びHダミーバッファ29は駆動していない。
【0089】
H選択回路30は、L選択回路28と同様に動作を行う。インピーダンス制御端子13aに入力されるインピーダンス制御信号がLow論理を有する場合、H選択回路30は、Hメインバッファ11のPchトランジスタを選択しない。それと同時に、H選択回路30は、Hダミーバッファ29のPchトランジスタを駆動トランジスタとして選択する。そして、インピーダンス制御端子13aに入力されるインピーダンス制御信号がHi論理を有する場合、H選択回路30は、Hメインバッファ11のPchトランジスタを駆動トランジスタとして選択する。それと同時に、H選択回路30は、Hダミーバッファ29のPchトランジスタを選択しない。
【0090】
このように本実施形態のデータ伝送装置は動作を行い、図2に示すように、各インピーダンス制御端子に入力される制御コードに同期して出力PAD17が出力される。一例として、Lメインバッファ12のNchトランジスタのオン抵抗を組み合わせと抵抗素子38とにより終端抵抗を最適化する抵抗値は50Ωとすることができる。
【0091】
各インピーダンス制御端子にCODE−AやCODE−Bの制御コードが入力される。例えば、使用温度の時間的な変動やトランジスタの物理的特性変化が発生すると、インピーダンス制御端子にCODE−Aが入力される状態からCODE−Bが入力される状態へと変わる。すると、これに同期して、Lメインバッファ12やHメインバッファ11で選択されるトランジスタが変わる。このとき、前述のように、プリバッファ16の出力負荷容量がメインバッファ11、12のトランジスタの全容量とフィードバック容量18とを合わせた容量となるため、インピーダンスを安定させることができ、それと同時にスルーレートの制御を行うことができる。
【0092】
高速度伝送を行う場合には、図2に示すように、伝送速度切替端子40には高速度伝送を行うための速度切替信号が入力される。またそれと同時に、データ入力端子41にデータが入力される。この場合、例えば、20mAの定電流源35を用いると、データ入力端子41に入力される伝送データに同期して、高速度データ入力端子33でPchトランジスタ34をオン/オフ状態とするができる。これにより、図2に示すように、伝送データに同期して端子電圧の1V/0Vを信号レベルとして出力PAD17から伝送データを高速度で出力することができる。このとき、端子電圧は、定電流源35からの定電流値、Lメインバッファ12のNchトランジスタのインピーダンスと抵抗素子38とを含む終端抵抗で決まる。
【0093】
低速度伝送を行う場合には、図2に示すように、伝送速度切替端子40には低速度伝送を行うための速度切替信号が入力される。またそれと同時に、データ入力端子41にデータが入力される。低速度伝送の場合、伝送データの信号レベルがHi又はLowに応じてHメインバッファ11及びHダミーバッファ29のPchトランジスタ、Lメインバッファ12及びLダミーバッファ27のNchトランジスタが相補的にオン/オフ状態にして駆動する。このとき、データ入力端子41に入力される伝送データに同期して相補的にオン/オフ状態となり、図2に示すように、例えば、電源電圧の3Vと接地電圧の0Vの信号レベルとして出力PAD17から伝送データを低速度で出力することができる。
【0094】
このように、インピーダンス制御端子に入力する制御コードの状態(Hiレベル又はLowレベル)によって、各メインバッファ11、12又は各ダミーバッファ29、30を選択し、プリバッファ16からの出力をメインバッファ11、12又はダミーバッファ29、30のトランジスタに入力する。そのため、インピーダンス制御コードが変化しても、プリバッファ16の出力負荷容量が変化しない。これにより、図2に示すように、制御コードが例えばCODE−AからCODE−Bに変化しても、その変化の前後で安定したスルーレート波形を有するデータ出力を出力PAD17から常に出力することできる。
【0095】
なお、選択回路28、30を設けることにより図3に示す従来例と比べてダミーバッファ27、29を制御するためのトランスミッションゲート(Lダミーバッファ27ではダミー用トランスミッションゲート31)が増加する。そのため、プリバッファ16の出力負荷容量が増えることのなるが、予めこの増加分を考慮してフィードバック容量18の値を最適化すれば良い。そして、このフィードバック容量18の値の最適化は容易に可能であり、安定したスルーレート波形を有するデータを常に出力するデータ伝送回路を容易に実現させることができる。
【0096】
以上のように、本実施形態のデータ伝送回路では、高速度・低速度でデータ伝送を行う場合にメインバッファ11、12により、インピーダンス制御を行うことができ、出力インピーダンスを最適化することができる。さらに、本実施形態のデータ伝送回路では、ダミーバッファ27、29により、プリバッファ16の出力負荷容量が変化することなく、伝送データのスルーレート制御を行うことができる。これにより、本実施形態のデータ伝送回路では、出力インピーダンス制御とスルーレート制御とを同時に行うことができる。そのため、出力インピーダンスを最適化しながらスルーレートを最適化することができ、伝送データを良好な状態で伝送経路へと出力することができる。
【0097】
また、本実施形態のデータ伝送回路では、インピーダンス制御コードに対応して出力バッファの出力インピーダンスを最適化しながら、フィードバック容量18によりスルーレートを最適化した波形を精度良く維持することができる。またさらに、インピーダンス制御端子に制御コードを入力することにより、インピーダンスの制御を行うため、伝送データの出力インピーダンスを容易に制御することができる。
【0098】
このように出力インピーダンスとスルーレートとを常に制御することができるため、トランジスタの使用温度による変動や物理的特性変化等の影響に左右されることなく、データの伝送を行うことができる。特に、高速度データ伝送を行う際に、伝送データの振幅を精度良く維持しながらデータ伝送行うデータ伝送回路を実現することが可能である。
【0099】
また、本実施形態のデータ伝送回路では、H/L伝送切替回路39により、高速度伝送と低速度伝送とを切り替える。そのため、伝送速度切替端子40に制御信号を入力して、高速度データ伝送と低速度データ伝送とを容易に切り替えることができる。
【0100】
またさらに、本実施形態におけるデータ伝送回路では、高速度伝送を行う場合、メインバッファ11、12のインピーダンスを安定して制御する。それとともに、定電流源35により安定した一定の電流を流し、Pchトランジスタ34のオン/オフ状態により出力データを生成する。そのため、高速度伝送の場合に安定した振幅を有する出力データを良好な状態で出力することができる。
【0101】
また、本実施形態のデータ伝送回路では、メインバッファ11、12のインピーダンスのサイズを変えたり、所望の重み付けを行ったりすること可能である。そのため、一般にはフィードバック容量18の容量より大きいメインバッファ11、12の容量を最適化し、プリバッファ16の出力負荷容量を調整するための容量としてフィードバック容量18を用いることができる。これにより、フィードバック容量18の素子サイズを大きくすることなく、フィードバック容量18によりプリバッファ16の出力負荷容量の最適化を調整し、伝送データのスルーレート制御の精度を向上させることができ、良好な状態でデータを伝送するデータ伝送回路を実現させることができる。
【0102】
このように、メインバッファ11、12のインピーダンスを制御し、定電流ドライバ36を用いて、高速度伝送では定電流ドライバとして動作し、低速度伝送では定電圧ドライバとして動作するデータ伝送回路を容易に構成することができる。
【0103】
なお、本実施形態のデータ伝送回路は、出力PAD17から、入力バッファを接続して、双方向バッファ構成としても良い。またなお、本実施形態のデータ伝送回路は、出力PAD17と反対の論理を出力するバッファを並列に用いて、差動バッファ構成としても良い。
【0104】
【発明の効果】
本発明によれば、良好な状態でデータを伝送することができるデータ伝送回路、半導体集積回路、及びデータ伝送方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるデータ伝送回路を示す模式図である。
【図2】本発明の実施の形態におけるデータ伝送を示すチャート図である。
【図3】従来例におけるデータ伝送回路を示す模式図である。
【図4】従来例におけるデータ伝送を示すチャート図である。
【符号の説明】
11 Hメインバッファ、 12 Lメインバッファ、 13a,13b,〜,13c,13d インピーダンス制御端子、 16 プリバッファ、 17 出力PAD、 18 フィードバック容量、 19 低速度データ入力端子、 20 接地線、 21a,21b,〜,21c,21d Nchトランジスタ、 22, トランスミッションゲート、 23 インバータ、 24a クランプNchトランジスタ、 25 電源線、 26a,26b,〜,26c,26dNchダミートランジスタ、 27 ダミーバッファ、 28 L選択回路、29 Hダミーバッファ、 30 H選択回路、 31 ダミー用トランスミッションゲート、 32a ダミー用クランプNchトランジスタ、 33 高速度データ入力端子、 34 Pchトランジスタ、 35 定電流源、 36定電流ドライバ、 37 出力ノード、 38 抵抗素子、 39 H/L伝送切替回路、 40 伝送速度切替端子、 41 伝送データ入力端子、 101 Hメインバッファ、 102 Lメインバッファ、 103a,103b,〜,103c,103d インピーダンス制御端子、 106 プリバッファ、107 出力PAD、 108 フィードバック容量、 109 データ入力端子、 110 接地線、 111a,111b,〜,111c,111d Nchトランジスタ、 112a, トランスミッションゲート、 113a インバータ、 114a クランプNchトランジスタ、 115 電源線、 104 L伝送回路、 105 H伝送回路

Claims (9)

  1. 少なくとも高速度データと低速度データが入力され、入力されたデータのインピーダンスを制御するデータ伝送回路であって、
    入力されたデータを安定化させ、出力する定電流ドライバと、
    インピーダンスを制御する制御信号に応じて複数のスイッチング素子を切り換えることによりインピーダンスを制御するメインバッファと、
    前記メインバッファと同様の複数のスイッチング素子を備えたダミーバッファと、
    前記メインバッファのスイッチング素子の切り換えに応じて前記ダミーバッファのスイッチング素子を相補的に切り換えるとともに、前記制御信号のメインバッファへの入力を選択信号に応じて制御する選択手段と、
    高速度データが入力された場合には、前記定電流ドライバに当該高速度データを出力するとともに、前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力し、低速度データが入力された場合には、当該低速度データに応じて前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力する伝送切替回路とを備えたデータ伝送回路。
  2. 前記入力されたデータのスルーレートを調整するフィードバック容量を有することを特徴とする請求項1記載のデータ伝送回路。
  3. 前記入力されたデータを一時記憶するプリバッファを有することを特徴とする請求項1又は2記載のデータ伝送回路。
  4. 前記入力されるデータ及び前記出力データは、論理的に二つの状態を有し、
    該論理的に二つの状態に対応して、メインバッファ、ダミーバッファ、及び選択手段を二組備え、
    高速度データが入力された場合には、前記伝送切替回路が、一方の前記メインバッファへ前記制御信号を入力させるための選択信号を前記選択手段に出力し
    低速度データが入力された場合には、前記伝送切替回路が、出力データの論理的に二つの状態に応じて、いずれか一方の前記メインバッファへ前記制御信号を入力させるための選択信号を前記選択手段に出力することを特徴とする請求項1乃至3のいずれかに記載のデータ伝送回路。
  5. 前記出力データは、ユニバーサル・シリアル・バスを介して出力され、当該ユニバーサル・シリアル・バスは、USB2.0規格またはこれ以上の上位規格であることを特徴とする請求項1乃至4のいずれかに記載のデータ伝送回路。
  6. 少なくとも高速度データと低速度データが入力され、入力されたデータのインピーダンスを制御する半導体集積回路であって、
    入力されたデータを安定化させ、出力する定電流ドライバと、
    インピーダンスを制御する制御信号に応じて複数のスイッチング素子を切り換えることによりインピーダンスを制御するメインバッファと、
    前記メインバッファと同様の複数のスイッチング素子を備えたダミーバッファと、
    前記メインバッファのスイッチング素子の切り換えに応じて前記ダミーバッファのスイッチング素子を相補的に切り換えるとともに、前記制御信号のメインバッファへの入力を選択信号に応じて制御する選択手段と、
    高速度データが入力された場合には、前記定電流ドライバに当該高速度データを出力するとともに、前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力し、低速度データが入力された場合には、当該低速度データに応じて前記制御信号を前記メインバッファへ入力させるための選択信号を前記選択手段に出力する伝送切替回路とを備えた半導体集積回路。
  7. 少なくとも高速度データと低速度データが入力され、入力されたデータのインピーダンスを制御するデータ伝送方法であって、
    インピーダンスを制御する制御信号に応じて複数のスイッチング素子を切り換えることによりインピーダンスを制御するメインバッファの前記スイッチング素子の切り換えに応じて、前記メインバッファと同様の複数のスイッチング素子を備えたダミーバッファのスイッチング素子を相補的に切り換えるステップと、
    前記制御信号のメインバッファへの入力を選択信号に応じて制御するステップと、
    高速度データが入力された場合には、入力されたデータを安定化させて出力する定電流ドライバに当該高速度データを出力するとともに、前記制御信号を前記メインバッファへ入力させるための選択信号を出力し、低速度データが入力された場合には、当該低速度データに応じて前記制御信号を前記メインバッファへ入力させるための選択信号を出力するステップとを備えたデータ伝送方法。
  8. 前記入力されたデータのスルーレートを調整することを特徴とする請求項7記載のデータ伝送方法。
  9. 前記入力されるデータ及び前記出力データは、論理的に二つの状態を有し、
    該論理的に二つの状態に対応して、二組のメインバッファ及びダミーバッファを選択するステップを有し、該選択ステップでは、
    高速度データが入力された場合には、一方の前記メインバッファへ前記制御信号を入力させるための選択信号を出力し
    低速度データが入力された場合には、出力データの論理的に二つの状態に応じて、いずれか一方の前記メインバッファへ前記制御信号を入力させるための選択信号を出力することを特徴とする請求項7又は8記載のデータ伝送方法。
JP2002212042A 2002-07-22 2002-07-22 データ伝送回路及び半導体集積回路 Expired - Fee Related JP3924508B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002212042A JP3924508B2 (ja) 2002-07-22 2002-07-22 データ伝送回路及び半導体集積回路
US10/622,498 US7368951B2 (en) 2002-07-22 2003-07-21 Data transmission circuit and data transmission method with two transmission modes
KR10-2003-0049788A KR100524237B1 (ko) 2002-07-22 2003-07-21 2 개의 전송 모드를 갖는 데이터 전송 회로 및 데이터전송 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212042A JP3924508B2 (ja) 2002-07-22 2002-07-22 データ伝送回路及び半導体集積回路

Publications (2)

Publication Number Publication Date
JP2004056546A JP2004056546A (ja) 2004-02-19
JP3924508B2 true JP3924508B2 (ja) 2007-06-06

Family

ID=31935081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212042A Expired - Fee Related JP3924508B2 (ja) 2002-07-22 2002-07-22 データ伝送回路及び半導体集積回路

Country Status (3)

Country Link
US (1) US7368951B2 (ja)
JP (1) JP3924508B2 (ja)
KR (1) KR100524237B1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582359B1 (ko) * 2004-03-03 2006-05-22 주식회사 하이닉스반도체 슬루 레이트가 제어된 반도체 소자의 출력 드라이버
US7679397B1 (en) * 2005-08-05 2010-03-16 Altera Corporation Techniques for precision biasing output driver for a calibrated on-chip termination circuit
US20070063738A1 (en) * 2005-09-16 2007-03-22 Fischer Timothy C CMOS logic circuitry
JP2008137637A (ja) * 2006-11-08 2008-06-19 Denso Corp エアバッグ故障診断装置
US8140224B2 (en) 2006-11-08 2012-03-20 Denso Corporation Diagnosis apparatus for passenger protection system
KR100943140B1 (ko) * 2006-11-14 2010-02-18 주식회사 하이닉스반도체 글로벌 입출력 라인의 제어장치 및 제어방법
KR100892337B1 (ko) 2007-08-29 2009-04-08 주식회사 하이닉스반도체 출력드라이버
KR101522641B1 (ko) * 2007-09-11 2015-05-26 삼성전자주식회사 고속 송수신을 위한 지그비 통신 장치 및 방법
US7576665B2 (en) * 2007-11-27 2009-08-18 Amx Llc System and method for receiving analog and digital input
JP5612249B2 (ja) * 2008-01-31 2014-10-22 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体記憶装置
US9407469B2 (en) * 2013-03-14 2016-08-02 Lattice Semiconductor Corporation Driving data of multiple protocols through a single set of pins
US10554234B2 (en) 2016-03-14 2020-02-04 Sony Corporation Transmission device, transmission method, and communication system
JP7168574B2 (ja) * 2017-11-02 2022-11-09 ソニーセミコンダクタソリューションズ株式会社 電子回路および電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100211771B1 (ko) * 1997-03-27 1999-08-02 윤종용 전류모드 양방향 입출력 버퍼
KR100295427B1 (ko) * 1999-04-14 2001-07-12 정명식 임피던스가 정합된 전류모드 양방향 입출력 버퍼
JP3721069B2 (ja) * 2000-11-08 2005-11-30 富士通株式会社 入出力インタフェース回路、入出力インタフェース、および入出力インタフェース回路を有する半導体装置

Also Published As

Publication number Publication date
KR100524237B1 (ko) 2005-10-26
JP2004056546A (ja) 2004-02-19
US20040151196A1 (en) 2004-08-05
KR20040010288A (ko) 2004-01-31
US7368951B2 (en) 2008-05-06

Similar Documents

Publication Publication Date Title
KR100491382B1 (ko) 버퍼 회로를 보상하는 슬루 레이트와 임피던스에 대한 방법 및 장치
US6642740B2 (en) Programmable termination circuit and method
KR100381987B1 (ko) 가변임피던스출력버퍼
US6836142B2 (en) Asymmetric bidirectional bus implemented using an I/O device with a digitally controlled impedance
JP3924508B2 (ja) データ伝送回路及び半導体集積回路
JP5053656B2 (ja) 半導体記憶装置のデータ出力ドライブ回路
US7969183B2 (en) Semiconductor device
US20020101278A1 (en) Digitally controlled impedance for I/O of an integrated circuit device
US6963218B1 (en) Bi-directional interface and communication link
JP5031258B2 (ja) 半導体装置におけるインピーダンス制御回路及びインピーダンス制御方法
EP0717527A2 (en) CMOS driver/receiver for simultaneous bidirectional transmission
US7495474B2 (en) Integrated circuit device and electronic instrument
US20140176234A1 (en) Apparatuses and methods of communicating differential serial signals including charge injection
US6483354B1 (en) PCI-X driver control
KR20010017170A (ko) 반도체 장치의 가변 임피던스 콘트롤회로 및 오프 칩 드라이버회로와 가변 임피던스 콘트롤 방법
US6373300B2 (en) Integrated circuit with multi-function controlled impedance output drivers
JPH11266150A (ja) 半導体装置
US20180004281A1 (en) Reception interface circuit and memory system including the same
US20090091358A1 (en) Compensated output buffer for improving slew control rate
JP2002152032A (ja) 出力回路および半導体集積回路
JP2003143000A (ja) 半導体装置
KR100342210B1 (ko) 제조 공정, 공급 전압, 및 온도에 무관한 프로그램가능한 에지속도 제어 기능을 지니는 트랜시버 드라이버
JPH11186896A (ja) 半導体装置
US20060061395A1 (en) Semiconductor integrated circuit
US20080111580A1 (en) Suppressing ringing in high speed CMOS output buffers driving transmission line load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees