JP3923082B2 - クロック制御電流供給回路 - Google Patents

クロック制御電流供給回路 Download PDF

Info

Publication number
JP3923082B2
JP3923082B2 JP51304897A JP51304897A JP3923082B2 JP 3923082 B2 JP3923082 B2 JP 3923082B2 JP 51304897 A JP51304897 A JP 51304897A JP 51304897 A JP51304897 A JP 51304897A JP 3923082 B2 JP3923082 B2 JP 3923082B2
Authority
JP
Japan
Prior art keywords
voltage
load
clock
current supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51304897A
Other languages
English (en)
Other versions
JPH11511588A (ja
Inventor
ボルホ ローター
プライス カール−ハインリヒ
エッケルト クラウス
ケルン ロベルト
デッカー ゲルハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH11511588A publication Critical patent/JPH11511588A/ja
Application granted granted Critical
Publication of JP3923082B2 publication Critical patent/JP3923082B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2886Static converters especially adapted therefor; Control thereof comprising a controllable preconditioner, e.g. a booster
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/382Controlling the intensity of light during the transitional start-up phase
    • H05B41/388Controlling the intensity of light during the transitional start-up phase for a transition from glow to arc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

従来の技術
本発明は請求項1の上位概念に記載された、電力負荷とは別個に、一時的負荷を有するクロック制御電流供給回路であって、
変成器と、スイッチ素子と、制御装置とを含むDC/DCコンバータを有し、
前記スイッチ素子は、前記DC/DCコンバータを直流電圧源と接続し、
前記制御装置は出力側に存在する負荷状態に依存して前記スイッチ素子に対する切替信号を形成し、
電力負荷としてのガス放電ランプのエネルギー供給に用いられる形式のクロック制御電流供給回路に関する。
DE4231968.4A1にはクロック制御される電流供給回路が記載されており、この電流供給回路の出力側には、電力負荷、例えばガス放電ランプに依存せず少なくとも一時的に作用する負荷が接続されてる。この構成はDC/DCコンバータを有し、このコンバータはスイッチ素子を介して直流電圧源と接続されている。スイッチ素子に対する切替信号は制御装置によって、出力側に設けられた負荷の状態に依存して生成される。この公知の電流供給回路では、出力側でただ1つの電圧しか得られない。負荷がガス放電ランプの場合はこれを点弧するために、駆動電圧に対して格段に高い点弧電圧が必要である。この電圧は公知の電流供給回路では、例えば相応の点弧パルスを特別に設けられた変成器によって入力結合することにより生成されている。公知の電流供給回路によれば、平滑コンデンサにおいて所定の電圧に達した後、点弧回路が点弧パルスを送出する。このことは、出力電圧を高められた値にまで昇圧しなければならないことを意味する。この公知の電流供給回路では、切り替え可能な負荷に平滑コンデンサが後置接続されている。このコンデンサに蓄積されたエネルギーは、点弧過程を開始した後、点弧過程を確実に終了させるために短時間必要なエネルギーをまかなうには不十分である。少なくとも一時的に作用する変成器負荷の負荷によって変成器が電流的に負荷され、誘導的に二次コイルに蓄積されたエネルギーが点弧の後、ランプの高められた電力需要をカバーするために生成される。少なくとも一時的に作用する変換器負荷はこの公知の構成では、点弧の後それが完全に終了するまで作用する。
本発明ではそのようなことはない。本発明では点弧時ではなく、一時的に作用する変換器負荷の効率の点で本当に重要な期間で作用する。
発明の利点
請求項1に記載された本発明の、電力負荷とは別個に、一的負荷を有するクロック制御電流供給回路は、電力負荷としてのガス放電ランプのエネルギー供給のためのものであり、2つの電圧を生成できるという利点を有する。これら2つの電圧は制御され、これら2つの電圧の電圧差は点弧供給電圧の生成に対して十分であり、その際に必要な定格電圧の迅速な形成を保証する。このことを安価に実現することができる。
本発明によればこのことは基本的に次のようにして達成される。すなわち、DC/DCコンバータの変成器は、極性と大きさの異なる第1と第2の電圧を第1と第2の出力側から取り出せるように構成されており、
前記第1の電圧は、前記スイッチ素子を前記切替信号により接続することにより上昇され、かつ前記一時的負荷を該第1の電圧の第1の出力側に接続することによって低下され、
当該第1の電圧は電力負荷の給電に用いられ、
前記第2の電圧は、前記一時的負荷を接続するためのスイッチ手段をオン・オフすることによって上昇されるように構成するのである。
ガス放電ランプおよびその点弧装置のエネルギー供給のための本発明のクロック制御電流供給回路の有利な適用では以下のことが重要である。点弧装置の内部回路構成のため、この点弧装置は正常な機能を保証するために非常に公差の狭い、例えば460Vの供給電圧を必要とする。この供給電圧が点弧装置に印加されると、短時間で点弧電圧が形成される。ランプの点弧までの点弧装置に起因する僅かな負荷(これはアイドル時に類似の特性である)によって、変換器は非常に僅かに負荷される。供給電圧が例えば前記の460Vの定格値に達するまでの所定の時間が経過する。本発明で使用される一的負荷が変換器になれば、この時間は許容できないほど長く、例えば20msになってしまう。この時間だけ本来の点弧過程が延長される。変換器を一的負荷によって負荷することにより、始めから変換器が高められたクロックで強制駆動され、供給電圧が迅速に形成される。この本発明の手段によってこの形成時間が格段に短縮される。実施例ではこの形成時間を5ms以下の値に短縮することができる。
従属請求項に記載された手段によって請求項1に記載の電流供給回路の有利な改善および発展形態が可能である。
本発明の有利な実施例では、実際値を検出するための負荷は分圧器であり、その分圧端子は制御回路に導かれている。第1の制御電圧に接続可能な一的負荷を他方の第2の電圧の制御に使用することにより、とくに安価な解決手段が得られる。
この有利な実施例の択一的実施例では、第2の電圧を昇圧制御する手段が得られる。ここでは分圧器に対して並列に、抵抗とトランジスタの直列回路が配置されている。このトランジスタは、分圧器から取り出される第2の電圧の瞬時値が目標値を上回るとき制御回路によって導通切り替えされる。これによりこの電圧を有利には両方向で制御することができる。
本発明のこの構成の有利な実施例では、分圧器は、一時的負荷のオン・オフのデューティ比により電圧の両方向制御が可能であるように選定されている。
本発明の有利な実施例では、一時的負荷が可変抵抗によってオン・オフされる。
本発明のこの構成の有利な実施例では、一時的負荷がオーム抵抗とトランジスタの直列回路からなる。このトランジスタは時点制御の形態でオン・オフ制御されるか、またはパルス幅変調信号によりパルス幅に相応して導通の長さが調整される。
本発明の別の有利な実施例では、一時的負荷が可変抵抗、例えばFETトランジスタのドレイン−ソース抵抗からなり、この抵抗の値はゲート−ソース電圧の値に依存する。
別の有利な実施例によれば、制御電圧の制御のためにマイクロコントローラが設けられ、このマイクロコントローラがDC/DCコンバータのスイッチ素子を制御する。
本発明のとくに有利な構成によれば、電力負荷が完全に投入接続され、動作状態になった後、2つの電圧のうち制御されない方の電圧または比較的に高い絶対値を有する方の電圧が遮断される。この実施例はとくにガス放電ランプのエネルギー供給に使用する際、重要である。そこでは点弧のために、点弧装置に対する供給電圧の一部として、点弧装置に十分な電圧を提供するために付加的電圧が必要だからである。これに対して他方の、通常は絶対値が比較的低く制御される方の電圧は駆動電圧として使用される。
有利には本発明のクロック制御電流供給回路は高圧ガス放電ランプのエネルギー供給のための制御装置で使用される。この場合この回路装置は自動車の前照灯に配置される。
図面
本発明を図面に示された実施例に基づいて、以下詳細に説明する。
図1は、本発明の第1実施例の基本回路図であ
図2は、本発明の第2の実施例の基本回路図であり、両方の電圧が制御される。
図3は、図2の実施例の改善形態であり、ここでは昇圧制御を行うことができる。
図4は、一的負荷を実現するための概略図である。
実施例の説明
図1には本発明の第1実施例の基本回路図が示されている。DC/DCコンバータ10は変成器11を有している。コンバータ10はスイッチ素子12を介して直流電圧源13と接続されている。制御装置は切替信号15をスイッチ素子12に送出し、コンバータ10をクロック制御する。スイッチ素子12,例えばトランジスタ、有利にはFETトランジスタは、直流電圧源13の電圧,例えば自動車のバッテリーを変成器11の一次巻線に印加する。
コンバータ10の変成器11は2つの二次巻線17と18を有しており、それぞれ1つのブロックダイオード19または20を介して出力端子21,22に2つの電圧U−とU+が発生するように構成されている。これの2つの電圧U−とU+は異なる大きさおよび異なる極性を有している。ここでは例えば比較的に大きな二次巻線18に相応する比較的に大きな電圧U+が平滑コンデンサ24に形成され、このコンデンサから出力端子22に出力される。ここでブロックダイオード20は、コンデンサ24が所属の二次巻線18を介して放電するのを阻止する。同じようにして比較的小さい二次巻線17に相応して値の比較的小さい、反対極性の電圧U−が平滑コンデンサ25に形成され、ここから出力端子21に出力される。ブロックダイオード19は、コンデンサ25が所属の二次巻線17を介して放電するのを阻止するように接続されている。変成器11のそれぞれの巻線16,17,18のそれぞれの巻線始端部が黒点によって示されている。従ってアース電位が変成器11の2つの逆相二次巻線17と18の接続点に接続されたこの構成では、コンデンサ24の電圧が正であり、コンデンサ25の電圧が負である。
負電圧U−の電圧制御は、一次側でスイッチ素子12を制御装置14により相応に制御することによって行われる。この制御のために、負電圧U−の値が線路27を介して取り出され、制御装置14に供給される。この制御装置は出力側21の負荷状態に相応して、コンバータのクロック制御のための切替信号をスイッチ素子12によって生成する。出力端子21での負荷が小さい場合、コンバータ10の変換クロックは低い。電圧U−が所定の閾値より低下すると、制御装置はさらに多くの切替信号15を送出し、これによりコンバータ10は比較的に高い周波数でクロック制御される。
制御電圧U−の出力端子21とアース電位端子26との間には、一的負荷が設けられている。この負荷は図1に示された実施例では、オーム抵抗28とスイッチ29の直列回路からなる。偽スイッチは有利にはトランジスタにより実現することができ、このトランジスタには制御線路30を介して、制御装置14により形成された切替信号が供給される。これによりスイッチ29の閉成によって一時的負荷が接続され、スイッチ29の開放によって一時的負荷が遮断される。
的負荷は接続された状態で作用し、これによりコンバータ10が電流的に負荷されるか、または出力端子21の電流負荷に加えてさらに負荷される。このことはまた電圧U−を低下させる。これにより下方閾値に達したときコンバータ10は制御装置によって昇圧のためさらに高い周波数でクロック制御される。コンバータのクロック周波数を高めることによって平滑コンデンサ24も非常に高速に充電される。これにより第2の正の電圧U+が出力側22で格段に高速に所望の値で得られる。この値は実質的に、一次巻線16と所属の二次巻線18との巻線比と、直流電圧源13で使用できる電圧によって定められる。
本発明の電流供給回路の有利な適用に相応して、この電流供給回路をガス放電ランプ、例えば高圧ガス放電ランプの駆動に使用する。このようなランプは大きな電力負荷を意味する。まずランプは、光アークを発生させるために比較的に高い点弧電圧を必要とする。そのために点弧器が設けられている。この点弧器は供給回路に対して負荷的には実質的にアイドル時と同じであり、この高い点弧電圧を点弧供給電圧から発生する。例えば460Vの高い供給電圧を点弧器に対してもたらすために、U−とU+の両方の電圧の加算を用いると非常に有利である。さらにランプは所定の駆動電圧を必要とする。この駆動電圧は約150Vまでになることがある。このために例えば定格値−150Vの制御電圧U−が形成される。前記の電力負荷、すなわちガス放電ランプが同様に有利には自動車の前照灯に使用されるなら、このランプの光は非常に高速に使用できる状態にならなければならないことが理解されよう。このことから必要な点弧供給電圧を、供給回路の投入接続後、非常に高速に形成しなければならない。この時点で制御装置14により投入接続される一的負荷によって、コンバータ10は最初から電流的に負荷される。このことは電力負荷自体が負荷を必要としないか、または非常に小さな負荷しか必要としない場合でも当てはまる。このことはコンバータ10のクロックが高速であり、ひいては出力側22の第2の電圧U+に対する平滑コンデンサ24と、出力側21の駆動電圧を形成する電圧U−に対する第1のコンデンサが非常に高速に充電されることを意味する。これによって必要な点弧電圧が出力端子21と22の間で非常に高速に使用できるようになり、この点弧電圧から2つの部分電圧が形成される。
電力負荷としてのガス放電ランプを点弧した後、部分電圧としての第2の電圧U+(補助電圧と称することもできる)は必要なくなる。駆動は制御第1電圧U−によって維持される。従って不必要な負荷を回避するために、一時的負荷はスイッチ29の開放によって遮断され、抵抗28はコンバータ10を負荷しなくなる。
図1に示された本発明のクロック制御電流供給回路の基本実施例により安価な実現が可能になり、僅かな構成素子が必要なだけである。一時的に作用するコンバータ負荷を遮断することによって、すなわち電力負荷が駆動状態にあるとき、言い替えればガス放電ランプが燃焼しているときは、付加的損失は生じない。点弧に必要な点弧供給電圧が迅速に形成され、1つの駆動電圧U−を制御するだけでよい。
本発明のクロック制御電流供給回路の適用では、例えば高圧ガス放電ランプの形態のガス放電ランプが出力端子21と22に直接接続されない。通常は図2の実施例に示すように、Hブリッジ回路200が挿入される。このHブリッジ回路200は有利にはFETトランジスタをスイッチ201〜204として有する。このFETトランジスタは過電圧に対して脆弱であり、従ってこれから保護しなければならない。図1の構成では、投入接続とランプの有効な点弧との間で、場合によっては、第2の電圧U+だけが大きくなって出力端子間の電圧差が許容過電圧を越えてしまうことがある。この電圧差は2つの部分電圧U−とU+の値から合成され、U−によっても過度に高い値になることがある。しかしこのU−は制御されているので、Hブリッジ200に過電圧が発生しないようにするためには、ここでは第2の電圧U+を制限すればよい。
図2に示された本発明の別の実施例は、電圧U+を制限するために負荷回路が設けられている。この負荷回路は例えば抵抗205と206からなる分圧器の形態を有しており、この分圧器は出力端子22とアース電位26との間に接続され、所属の出力側22を負荷する。分圧された電圧の取り出しは2つの抵抗205と206の間で線路207を介して行われる。取り出された電圧は入力として、制御回路として用いられるマイクロコントローラ208に供給される。マイクロコントローラは例えばデジタル出力信号を線路209に形成し、この出力信号は信号変換器251に供給される。この信号変換器251はここから線路230にスイッチ29に対する制御信号を形成する。このスイッチは閉成時に抵抗28を一時的負荷としてDC/DCコンバータ210に接続する。スイッチ29の開放時には線路230上の相応の信号によって抵抗28はコンバータ210から分離されている。信号変換器251は補助抵抗252を介して電圧U−と接続されている。
図2の実施例中、図1の実施例と同じ構成部に対しては同じ符号が付されている。図2の実施例については、異なる手段、構成部、機能および作用だけを説明する。
電圧U−を制御するために図2の実施例では、コンパレータ260が設けられている。コンパレータには入力として線路261に閾値としての比較電圧が供給される。線路227では、分圧器の接続点から取り出された電圧U−の実際値がコンパレータ260に供給される。分圧器は2つの抵抗262および263からなり、これらは直列に電圧U−と基準電圧源264との間に接続されている。基準電圧は例えば5Vとすることができる。コンパレータ260による比較電圧261とU−の瞬時値との比較結果は出力側265を介して制御装置214に供給される。この制御装置はクロック信号を線路15上にコンバータ210に対して生成する。
平滑コンデンサ24と出力側22との間にはスイッチ270が設けられている。このスイッチは線路271上の信号によってマイクロコントローラ208からオン・オフ制御される。このスイッチ270により本発明のこの実施例では制御された第2電圧U+が必要でなくなるとこれが出力側22から分離される。このことは有利な適用例の場合、ガス放電ランプが点弧され、高い点弧電圧を必要としなくなる場合を意味する。この場合出力端子22にはアース電位26が印加される。ここでは安全性の理由から、カソードが出力端子22に、アノードがアース電位26に接続されたダイオード272が設けられている。このような構成が必要なのは、他方の出力端子21には負の電圧U−が印加され、この負の電圧が駆動電圧としてHブリッジ回路に、そしてそこから電力負荷、有利には高圧放電ランプに出力されるからである。
図2の実施例では、出力端子21と22にHブリッジ回路200が接続されている。このHブリッジ回路はその2つのスイッチ201と203の間に電力負荷接続端子222を有し、2つのスイッチ202と204の間に電力負荷端子221を有する。これら電力負荷端子221と222との間に出力電圧Uaが発生する。この出力電圧は2つの部分電圧U−とU+の和であり、図示しない点弧装置に供給され、別の場合には駆動電圧U−がガス放電ランプに供給される。
図2の実施例の作用をまとめて説明する。電圧U+が過度に大きくならないようにするため、この電圧は抵抗205と206から形成される分圧器によって負荷される。負荷によって電圧が必要な閾値に達しない場合は、マイクロコントローラ208はスイッチ29を介して抵抗28を一時的に作用するコンバータ負荷として追加する。このことによって電圧U−は低下し、従ってコンパレータ260を用いた制御によってコンバータ210のクロックが逓昇される。このことによって電圧U−が再び目標値まで上昇するだけでなく、コンバータ210の二次側へのエネルギー伝達が増えることにより電圧U+も上昇する。U+の目標値を上回ると、一時的負荷がスイッチ29の開放によって遮断される。コンバータ210は比較的に低いクロックで制御され、電圧U+は低下する。
図2の実施例の利点は、電圧U+の制御が非常に実現されることであり、必要な付加的コストや付加的構成素子も僅かである。部分電圧に高速に到達するために設けられている一的負荷が第2の電圧U+の制御のためにも使用される。
ここに説明した部分電圧U+の制御は上昇制御とも称することができる。なぜなら、目標値に到達するためにそれぞれ一時的負荷28がクロッキングの上昇と、ひいてはU+の電圧上昇に用いられるからである。図3には、図2の変形回路構成が示されている。この実施例は下降制御に対するものである。コンバータ210からブロックダイオード20を介してクロッキングされたエネルギーは平滑コンデンサ24を充電する。このコンデンサはスイッチ270に前置接続されている。スイッチ270には別のコンデンサ350が配置されている。このコンデンサは、線路271の信号(この信号はマイクロコントローラ208により生成される)によるスイッチ270の閉成の際に電荷、およびひいてはコンデンサ24の電圧を引き取り、別のバッファコンデンサまたは平滑コンデンサとして作用する。下降制御の際には、スイッチ270のオン・オフ前後の電圧が所望の閾値よりも高いことが前提である。電圧U+の実際値はすでに説明したように、分圧器205,206から線路207を介して取り出される。この分圧器に並列に抵抗351とトランジスタ352の直列回路が配置されている。抵抗351は比較的低抵抗であり、約10〜100kΩである。トランジスタ352のベースはマイクロコントローラ353から線路353を介して制御される。トランジスタ352が適切なデューティ比で制御されればU+が負荷され、下方に制御される。言い替えればこの構成によって、コンデンサ24と350の出力電圧が下降制御に対する閾値より上にあるとき、分圧器205,206のタップ取り出し電圧の値が低下される。
図4には、一時的負荷に対する実施例が示されている。この負荷はDC/DCコンバータ10ないしは210に接続することができる。一時的負荷として抵抗28は、スイッチ29として作用するトランジスタ429によりアース電位26と電圧U−との間で接続または遮断される。制御のためにデジタル信号400がツェナーダイオード401と抵抗402を介してトランジスタ429のベース403に供給される。このデジタル信号はマイクロコントローラ208から到来し、パルス状に示されている。有利なデューティ比は約1/4が“オン”、3/4が“オフ”である。これはデジタル信号400に実線パルスと破線パルスの組み合わせで示されている。数値例によればこの比は、図2の実施例のように抵抗205に対する値が約500kΩであり、抵抗206に対する値が約7.5kΩであるときに達成される。
一時的負荷の実現の際には、前に説明した手段以外のものも選択できる。例えばトランジスタ429を2点制御の形態でそれぞれ完全に導通または遮断することも可能である。これにより抵抗28は完全に接続されるか、または完全に遮断される。さらにトランジスタをパルス幅変調信号により選択されたパルス幅に相応して時間を変えて導通制御することもできる。この場合は導通制御の時間に応じて抵抗28はコンバータ10ないしは210のクロッキングに作用する。別の実現手段では、可変抵抗を一的負荷として設ける。このことはFETトランジスタのドレイン−ソース抵抗によって実現することができる。この抵抗の値はゲート−ソース電圧の値に依存する。
本発明により、簡単な手段によって2つの電圧を、負荷状態が非常に異なり、投入接続後非常に高速にその負荷状態が発生する電力負荷に対して供給することができる。このことはとくに、十分に高い点弧供給電圧を高速に生成するための点弧装置の給電に使用する場合、および高圧ガス放電ランプの駆動電圧制御に対して非常に重要である。

Claims (11)

  1. 電力負荷とは別個に、一時的負荷(28)を有するクロック制御電流供給回路であって、
    変成器(11)と、スイッチ素子(12)と、制御装置(14,214)とを含むDC/DCコンバータ(10,210)を有し、
    前記スイッチ素子(12)は、前記DC/DCコンバータ(10,210)を直流電圧源(13)と接続し、
    前記制御装置(14,214)は出力側に存在する負荷状態に依存して前記スイッチ素子(12)に対する切替信号(15)を形成し、
    力負荷としてのガス放電ランプのエネルギー供給に用いられる形式のクロック制御電流供給回路において、
    DC/DCコンバータ(10,210)の変成器(11)は、極性と大きさの異なる第1と第2の電圧(U+,U−)を第1と第2の出力側(21,22)から取り出せるように構成されており、
    前記第1の電圧(U−)は、前記スイッチ素子(12)を前記切替信号(15)により接続することにより上昇され、かつ前記一時的負荷(28)を該第1の電圧(U−)の第1の出力側(21)に接続することによって低下され、
    当該第1の電圧(U−)は電力負荷の給電に用いられ、
    前記第2の電圧(U+)は、前記一時的負荷(28)を接続するためのスイッチ手段(29)をオン・オフすることによって上昇される、
    ことを特徴とするクロック制御電流供給回路。
  2. 前記第2の電圧(U)には実際値を検出するために負荷が加えられ、
    検出された値は制御回路(208)に供給され、
    該制御回路(208)は、該第2の電圧(U)の検出された値に依存して、前記一時的負荷(28)を接続するためのスイッチ手段(29)をオン・オフする、請求項1記載のクロック制御電流供給回路。
  3. 前記実際値を検出するための負荷は分圧器(205,206)により形成されており、
    該分圧器の分圧タップ端子(207)は制御回路(208)に接続されている、請求項2記載のクロック制御電流供給回路。
  4. 分圧器(205,206)に対し並列に、抵抗(351)とトランジスタ(352)の直列回路が配置されており、
    該トランジスタは、分圧器(205,206)から取り出される第2の電圧(U+)の実際値が目標値を越えるとき、制御回路(208)によって導通切り替えされる、請求項3記載のクロック制御電流供給回路。
  5. 分圧器(205,206)は、前記一時的負荷(28)のオン・オフのデューティ比により電圧を両方向で制御可能であるように選定されている、請求項3または4記載のクロック制御電流供給回路。
  6. 前記一時的負荷(28)は可変抵抗により接続または遮断される、請求項1から5までのいずれか1項記載のクロック制御電流回路。
  7. 前記一時的負荷は、オーム抵抗(28)とトランジスタ(429)との直列回路からなり、
    該トランジスタは、2点制御の形態でオン・オフ制御されるか、またはパルス幅変調信号によりパルス幅に相応する長さで導通制御される、請求項6記載のクロック制御電流回路。
  8. 前記一時的負荷(28)は可変負荷抵抗からなり、
    該可変負荷抵抗はFETトランジスタのドレイン−ソース抵抗であり、抵抗値はゲート−ソース電圧の値に依存する、請求項6記載のクロック制御電流供給回路。
  9. 制御される電圧(U−、またはU−,U+)を制御するためにマイクロコントローラ(208)が設けられており、
    該マイクロコントローラはDC/DCコンバータ(10,210)のスイッチ素子(12)を制御する、請求項1から8までのいずれか1項記載のクロック制御電流供給回路。
  10. 電力負荷が完全に投入接続され、運転状態になった後、第1および第2の電圧のうち制御されない方の電圧または比較的に値の高い方の電圧(U+)がスイッチ(270)により遮断される、請求項1から9までのいずれか1項記載のクロック制御電流回路。
  11. 高圧ガス放電ランプのエネルギー供給のための制御装置に使用され、該放電ランプは自動車の前照灯に配置されるものである、請求項1から10までのいずれか1項記載のクロック制御電流供給回路。
JP51304897A 1995-09-28 1996-06-28 クロック制御電流供給回路 Expired - Fee Related JP3923082B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19536064A DE19536064A1 (de) 1995-09-28 1995-09-28 Getaktete Stromversorgungsschaltung mit einer von einem Verbraucher unabhängigen, zumindest zeitweise wirksamen Last
DE19536064.8 1995-09-28
PCT/DE1996/001153 WO1997012500A1 (de) 1995-09-28 1996-06-28 Getaktete stromversorgungsschaltung mit einer von einem verbraucher unabhängigen, zumindest zeitweise wirksamen last

Publications (2)

Publication Number Publication Date
JPH11511588A JPH11511588A (ja) 1999-10-05
JP3923082B2 true JP3923082B2 (ja) 2007-05-30

Family

ID=7773406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51304897A Expired - Fee Related JP3923082B2 (ja) 1995-09-28 1996-06-28 クロック制御電流供給回路

Country Status (6)

Country Link
US (1) US6005302A (ja)
EP (1) EP0852895B1 (ja)
JP (1) JP3923082B2 (ja)
KR (1) KR19990063794A (ja)
DE (2) DE19536064A1 (ja)
WO (1) WO1997012500A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19702687C1 (de) * 1997-01-25 1998-08-06 Bosch Gmbh Robert Anordnung zum Schutz gegen Übertemperatur eines Steuergeräts für Gasentladungslampen
DE19732098A1 (de) * 1997-07-25 1999-01-28 Bosch Gmbh Robert Steuerschaltung für einen Gleichstrommotor
IT1305660B1 (it) * 1998-02-16 2001-05-15 Zeltron Spa Alimentatore elettrico perfezionato
WO2000014862A1 (en) * 1998-09-07 2000-03-16 Koninklijke Philips Electronics N.V. Circuit arrangement
JP3806279B2 (ja) * 2000-01-20 2006-08-09 株式会社小糸製作所 放電灯点灯回路
AT411506B (de) * 2000-10-02 2004-01-26 Siemens Ag Oesterreich Schaltwandler
US20210380060A1 (en) * 2020-06-04 2021-12-09 Veoneer Us, Inc. Sensor communication discrete control considering emc compliance for restraint control module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180994A (ja) * 1983-03-30 1984-10-15 東芝ライテック株式会社 放電灯点灯装置
US4586119A (en) * 1984-04-16 1986-04-29 Itt Corporation Off-line switching mode power supply
DE3508895A1 (de) * 1985-03-13 1986-09-18 ANT Nachrichtentechnik GmbH, 7150 Backnang Gleichspannungswandler mit mehreren geregelten ausgaengen
DE3604716A1 (de) * 1986-02-14 1987-08-20 Nixdorf Computer Ag Schaltungsanordnung zur steuerung des laengsschaltgliedes eines getakteten stromversorgungsgeraets
DE3633518A1 (de) * 1986-10-02 1988-04-14 Philips Patentverwaltung Getakteter gleichspannungswandler
DE3923710A1 (de) * 1989-07-18 1991-01-24 Philips Patentverwaltung Stromversorgungseinrichtung mit gleichspannungsueberwachungsschaltung
DE4231968A1 (de) * 1992-09-24 1994-03-31 Bosch Gmbh Robert Getaktete Stromversorgungsschaltung
DE4342590A1 (de) * 1993-12-14 1995-06-22 Bosch Gmbh Robert Getaktete Stromversorgung
DE4424800A1 (de) * 1994-07-14 1996-01-18 Philips Patentverwaltung Schaltungsanordnung zum Liefern von Speisespannungen

Also Published As

Publication number Publication date
DE59601786D1 (de) 1999-06-02
KR19990063794A (ko) 1999-07-26
EP0852895A1 (de) 1998-07-15
DE19536064A1 (de) 1997-04-03
US6005302A (en) 1999-12-21
WO1997012500A1 (de) 1997-04-03
EP0852895B1 (de) 1999-04-28
JPH11511588A (ja) 1999-10-05

Similar Documents

Publication Publication Date Title
US5142203A (en) Lighting circuit for high-pressure discharge lamp for vehicles
US5151631A (en) Lighting circuit for vehicular discharge lamp
EP1286574B1 (en) Ballast with efficient filament preheating and lamp fault detection
JPH10270188A (ja) 高圧放電ランプの点灯回路
JPH09274993A (ja) 放電灯点灯回路
US20160201637A1 (en) Ignition device
JP3923082B2 (ja) クロック制御電流供給回路
US6720676B2 (en) In-vehicle electric power supply apparatus
US7170235B2 (en) Circuit arrangement with a separate resonant igniter for a high-pressure discharge lamp
JP6803278B2 (ja) 点火装置
JP2001006890A (ja) 放電灯点灯回路
JP3059084B2 (ja) 内燃機関点火制御装置
US9863391B2 (en) Ignition device
US6392363B1 (en) Starter for a gas discharge lamp, especially a high pressure gas discharge lamp for automobile headlights
US6191540B1 (en) Devices for powering a motor vehicle headlight discharge lamp
JP2004140886A (ja) スイッチングレギュレータ回路、及び車両用灯具
JPH10511538A (ja) 電流供給回路
JPH11508401A (ja) 回路集成装置
EP1087643B1 (en) Lamp lighting control circuit
JP2700934B2 (ja) 車輌用放電灯の点灯回路
JP4000621B2 (ja) 車両用負荷駆動装置
JP3634062B2 (ja) スイッチモード電源のスタートアップ保護回路
JPH11329777A (ja) 放電灯装置
US6621237B2 (en) Gas-discharge lamp lighting apparatus with optimized circuit configuration
US6515432B2 (en) Circuit device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060303

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees