JP3889729B2 - 光増幅器 - Google Patents

光増幅器 Download PDF

Info

Publication number
JP3889729B2
JP3889729B2 JP2003205405A JP2003205405A JP3889729B2 JP 3889729 B2 JP3889729 B2 JP 3889729B2 JP 2003205405 A JP2003205405 A JP 2003205405A JP 2003205405 A JP2003205405 A JP 2003205405A JP 3889729 B2 JP3889729 B2 JP 3889729B2
Authority
JP
Japan
Prior art keywords
light
phase
optical
signal light
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003205405A
Other languages
English (en)
Other versions
JP2004006943A (ja
Inventor
亙 今宿
篤 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003205405A priority Critical patent/JP3889729B2/ja
Publication of JP2004006943A publication Critical patent/JP2004006943A/ja
Application granted granted Critical
Publication of JP3889729B2 publication Critical patent/JP3889729B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号光のパルス波形および信号対雑音比(以下、S/Nという)を改善しながら光増幅を行う光増幅器に関する。
【0002】
【従来の技術】
従来の光伝送システムでは、光信号を電気信号に変換し、ディジタル信号を識別した後に光信号を再生する識別再生光中継器が用いられていた。この識別再生光中継器では、光信号を電気信号に変換する電子部品の応答速度に制限があるので、10Gbit/s 以上の大容量光伝送システムに適用することが困難であった。
【0003】
この問題を解決する増幅手段として、エルビウムやプラセオジム等の希土類元素を添加した光ファイバに励起光を入射して信号光を増幅するファイバレーザ増幅器や、半導体レーザ増幅器がある。また、光信号処理回路においても、光分岐損失や光回路の減衰を補償する手段として半導体レーザ増幅器を用いることが検討されている。いずれの場合でも、媒質中の電子状態を反転分布状態にさせ、誘導放出により信号光を増幅する構成になっている。
【0004】
このようなファイバレーザ増幅器や半導体レーザ増幅器は、信号光を光のままで増幅することができるので、識別再生光中継器で問題になっていた電気的な処理速度の制限が存在しない。加えて、機器構成も比較的単純である利点を有する。しかし、劣化した信号光パルス波形を整形する機能はもっていない。また、不可避的かつランダムに発生する自然放出光が信号成分とは全く無関係に混入されるので、信号光のS/Nが増幅前後で少なくとも3dB低下する。これらは、ディジタル信号伝送時における伝送符号誤り率の上昇につながり、伝送品質を低下させる要因になっている。
【0005】
この伝送限界を打開する手段として、位相感応光増幅器 ( Phase Sensitive Amplifier :PSA)が検討されている。この位相感応光増幅器は、伝送ファイバの分散の影響による劣化した信号光パルス波形を整形する機能を有する。さらに、自然放出光は出力されず、増幅前後で信号光のS/Nを劣化させず同一に保つことが原理的に可能である。
【0006】
【発明が解決しようとする課題】
ところで、光増幅器によるS/Nの劣化がなくても、現実の光伝送系や光信号処理系では、光ファイバや光素子による信号光の減衰によりS/Nが劣化する。したがって、今後はS/Nの劣化が生じないだけでなく、さらにS/Nの劣化を補償する光増幅器が望まれる。
【0007】
本発明は、光処理型で高速動作が可能であり、入力信号光のS/Nを改善することができる光増幅器を提供することを目的とする。
【0008】
【課題を解決するための手段】
(信号光パルス波形を整形する光増幅器…参考例)
位相感応光増幅器は、入力信号光のうち励起光と同位相成分を増幅し、直交位相成分を減衰させる機能を有するものであり、例えば光ファイバ型非線形ループミラー(以下、NOLMという。)が用いられる( M.E.Marhic and C.H.Hsia, 1991年エレクトロニクス・レターズ,27号,210 頁に記載)。
【0009】
入力信号光ES は、一般にコサイン成分とサイン成分に分解され、
S =E1 cosφS +iE2 sinφS
=a1 +ia2 …(1)
と表される。ここで、φS は入力信号光ES と励起光EP の位相差であり、コサイン成分は励起光と同位相、サイン成分は励起光と直交位相の関係になっている。位相感応光増幅器は、入力信号光のうち励起光と同位相成分a1 を増幅し、直交位相成分a2 を減衰させる。すなわち、出力信号光の同位相成分をb1 、直交位相成分をb2 、利得をGとすると、
1 =G1/2 1 …(2)
2 =G-1/22 …(3)
が満足される。位相感応光増幅器の利得と、入力信号光と励起光の位相差φS の関係を図5に示す。
【0010】
このような位相感応光増幅器に、伝送路ファイバの分散の影響を受けてチャーピングを起こした信号光パルスを入力すると、信号光パルス波形のピークと裾では光位相が変化しており、利得が異なることになる。ここで、信号光パルスのピーク位相と励起光位相が同期するように制御すると、図6に示すように信号光パルスのピークのみが増幅され、信号光パルスの裾は逆に減衰されて出力信号光のパルス幅が狭くなる。すなわち、波形劣化の補償が可能になる。
【0011】
図1は、光増幅器の第1の基本構成を示す。
図において、本光増幅器は、位相感応光増幅部12と、励起光源13と、励起光位相制御部14と、光分岐部15−1〜15−3とにより構成され、位相感応光増幅部12の出力信号光の平均光強度が最大になるように励起光位相を制御する。すなわち、励起光源13は、光分岐部15−1で分岐された入力信号光の位相に同期するように励起光位相が制御される。励起光位相制御部14は、光分岐部15−2で分岐された出力信号光の一部を狭帯域の検波器で検波し、検波電流が最大になるように励起光位相を制御する。なお、励起光位相制御部14は、励起光源13の出力側で励起光の位相を制御する構成の他に、励起光源13の位相を直接制御する構成としてもよい。その結果、位相感応光増幅部12では、信号光パルスのピーク位相と励起光位相が同期するように制御され、上記の原理に基づいて信号光パルスが波形整形される。
【0012】
図2は、光増幅器の第2の基本構成を示す。
図において、本光増幅器は、位相感応光増幅部12と、励起光源13と、励起光位相制御部14−1,14−2と、光分岐部15−1,15−2とにより構成され、位相感応光増幅部12の出力信号光の平均光強度が最大になるように励起光位相を制御する。すなわち、励起光位相制御部14−1は、光分岐部15−1で分岐された入力信号光と励起光の位相差が0になるように励起光源13の位相を制御する。励起光位相制御部14−2では、光分岐部15−2で分岐された出力信号光の一部を狭帯域の検波器で検波し、検波電流が最大になるように励起光位相を制御する。なお、励起光位相制御部14は、励起光源13の出力側で励起光の位相を制御する構成の他に、励起光源13の位相を直接制御する構成としてもよい。その結果、位相感応光増幅部12では、信号光パルスのピーク位相と励起光位相が同期するように制御され、上記の原理に基づいて信号光パルスが波形整形される。
【0013】
図3は、光増幅器の第3の基本構成を示す。
図において、本光増幅器は、図1の構成に信号光瞬時強度検出部16を加え、位相感応光増幅部12の出力信号光の平均ピーク強度が最大になるように励起光位相を制御する。すなわち、信号光瞬時強度検出部16は、光分岐部15−2で分岐された出力信号光のパルスピークのみを検波し、励起光位相制御部14はその検波電流が最大になるように励起光位相を制御する。その結果、位相感応光増幅部12では、信号光パルスのピーク位相と励起光位相が同期するように制御され、上記の原理に基づいて信号光パルスが波形整形される。
【0014】
図4は、光増幅器の第4の基本構成を示す。
図において、本光増幅器は、図2の構成に信号光瞬時強度検出部16を加え、位相感応光増幅部12の出力信号光の平均ピーク強度が最大になるように励起光位相を制御する。すなわち、信号光瞬時強度検出部16は、光分岐部15−2で分岐された出力信号光のパルスピークのみを検波し、励起光位相制御部14−2はその検波電流が最大になるように励起光位相を制御する。その結果、位相感応光増幅部12では、信号光パルスのピーク位相と励起光位相が同期するように制御され、上記の原理に基づいて信号光パルスが波形整形される。
【0015】
(入力信号光のS/Nを改善する光増幅器…請求項1)
図7は、請求項1の光増幅器の基本構成および動作原理を示す。図において、本光増幅器は、光位相偏移手段21と位相感応光増幅手段22が縦続に接続された構成である。光位相偏移手段21は、強度変調された信号光を入力し、その光強度に比例して光位相偏移した信号光を出力する。位相感応光増幅手段22は光位相偏移した信号光を入力し、その光位相偏移量に応じて“0”または“1”の2値の光強度の信号光を出力する。
【0016】
本発明の光増幅器は、理想的には図8に示すように、入力信号光強度PS に対して閾値動作する入出力特性を有するものが要求される。閾値レベルPthより大きな強度を有する信号光が入力された場合には、出力信号光強度PO が得られる。一方、閾値レベルPthより小さな強度を有する信号光が入力された場合には、出力信号光強度が0となる。その結果、信号光の強度雑音は除去され、S/Nが改善される。
【0017】
以下、光位相偏移手段21および位相感応光増幅手段22により、図8に示す閾値動作に近い入出力特性が得られる原理について説明する。
【0018】
まず、光位相偏移手段21の動作原理について説明する。光位相偏移手段21は、光強度に比例して物質中の屈折率が変化する光カー効果を利用するものであり、例えば石英ファイバなどの光カー媒質が用いられる(請求項3)。
【0019】
入力信号光強度PS と光位相偏移手段21の屈折率n(p) は、非線形屈折率の影響により、
n(p) =n0 +n2S/S …(4)
の関係がある。Sは入力信号光の有効断面積である。したがって、入力信号光強度PS に対する屈折率変動δnは、
δn=n2S/S …(5)
となる。ここで、光位相偏移手段21の長さをL、入力信号光の角周波数をω、光速をcとすると、入力信号光の光強度変化に対する光位相偏移量δφは、
δφ=γLPS …(6)
γ=n2ω/(cS) …(7)
となる。この関係により、光位相偏移手段21では、入力信号光に対してその光強度に比例した光位相偏移を起こす。
【0020】
位相感応光増幅手段22は、上述したように、入力信号光のうち励起光と同位相成分a1 のみを増幅し、直交位相成分a2 を減衰させる。
【0021】
図9は、位相感応光増幅部12の構成例を示す(請求項4)。
図9(a) はNOLMによる構成例を示す。図において、入力信号光ES (強度PSS≒PS ) と励起光EP(強度PP)は光カプラ31で合波され、ループ状に接続された光ファイバ32に2分岐され、再度光カプラ31で合波される。出力信号光EO は光カプラ31から出力され、光サーキュレータ33を介して入力信号光ES と分離される。
【0022】
図9(b) は光カー媒質を用いたマッハツェンダ干渉計による構成例を示す。図において、入力信号光ES (強度PSS≒PS )と励起光EP(強度PP)はビームスプリッタ34−1で2分岐され、それぞれ光カー媒質35−1,35−2を通過し、ビームスプリッタ34−2で合波され、その一方のポートに出力信号光E0 が得られる。
【0023】
ここで、出力信号光EO の強度PO は、
O =PSScos2(Δφ/2)+PP sin2(Δφ/2)
−2(PSSP)1/2 sin(Δφ/2)cos(Δφ/2) sinφS …(8)
Δφ=−4π(L/λ)n2(PSSP)1/2 cosφS …(9)
となる。この関係より、位相感応光増幅手段22の入出力信号光の関係が定まる。入力信号光ES と励起光EP の位相差φS をパラメータとしたときの入力信号光強度PSSと出力信号光強度PO の関係を図10に示す。
【0024】
入力信号光強度PSSが十分に小さいときの入力信号光ES と励起光EP の位相差をφb とすると、式(6) より位相感応光増幅手段22に入力される入力信号光ES と励起光EP の位相差φS は、
φS =φb +γPS L …(10)
となる。ただし、γは非線形光学定数であり、式(7) で定義される。
【0025】
ここで、式(10)のφb を位相感応光増幅手段22での利得が最小値となる光位相差以下にとる。さらに、マーク時の信号光強度による光位相偏移手段21での位相偏移により、位相感応光増幅手段22で位相差φS が最大利得を与える位相差よりも小さくなるように光位相偏移手段21の相互作用量γLを選択する。光位相偏移手段21の作用により、入力信号光強度PS の増大に伴い位相感応光増幅手段22の入力信号光ES と励起光EP の位相差φS が変化する。したがって、光位相偏移手段21と位相感応光増幅手段22により構成される本発明の光増幅器において、入力信号光強度PS と出力信号光強度PO の関係は図11のようになる。
【0026】
これは、図8に示す閾値動作に近い入出力特性を示している。すなわち、入力信号光が強度変調されている場合には、強度雑音を伴うマーク信号は出力信号光強度a(“1”)に収束し、スペース信号は出力信号光強度が十分に小さいb(“0”)に収束する。これにより、強度雑音が除去され、S/Nを改善することができる。
【0027】
図12は、位相感応光増幅部12の他の構成例を示す(請求項5)。
図において、入力信号光ES (強度PSS,周波数ωS )と励起光EP(強度PP ,周波数2ωS )は、ダイクロックミラー36−1を介して縮退パラメトリック結晶37に入力される。縮退パラメトリック結晶37から出力される周波数ωS (=2ωS−ωS)の信号光EO と励起光EP は、ダイクロックミラー36−2で分離される。このような構成では、励起光の周波数入力信号光の周波数の2倍に設定する必要があるが、定性的には図10,図11に示す入出力特性が得られる。
【0028】
(入力信号光のS/Nを改善する光増幅器…請求項2)
図13は、請求項2の光増幅器の基本構成および動作原理を示す。
図において、第1の位相感応光増幅手段22−1と、光位相偏移手段21と、第2の位相感応光増幅手段22−2が縦続に接続される。第1の位相感応光増幅手段22−1は、強度変調された信号光を入力し、その位相雑音を強度雑音に変換して位相一定の信号光を出力する。光位相偏移手段21は、位相一定の信号光を入力し、その光強度に比例して光位相偏移した信号光を出力する。第2の位相感応光増幅手段22−2は、光位相偏移した信号光を入力し、その光位相偏移量に応じて“0”または“1”の2値の光強度の信号光を出力する。
【0029】
光位相偏移手段21と第2の位相感応光増幅手段22−2の機能は、図7に示す請求項1の光増幅器のものと同じである。ここでは、入力信号光が大きな位相雑音を有する場合でも対応できるようにしたものである。第1の位相感応光増幅手段22−1は、図14に示すように光位相に依存した利得を与えるので、入力信号光の位相雑音は出力側で強度雑音に変換される。一方、第1の位相感応光増幅手段22−1の出力信号光の位相は、位相雑音が少ない励起光と同一になり、入力信号光の位相雑音が抑圧される。すなわち、第1の位相感応光増幅手段22−1では、入力信号光の位相雑音を除去し、これらを強度雑音に変換して光位相偏移手段21に送出する。
【0030】
(光増幅中継伝送システム…参考例)
図15は、光増幅中継伝送システムの基本構成を示す。図において、光増幅中継伝送システムは、強度変調された信号光を送出する光送信器41、光ファイバ伝送路42、光増幅中継器43、受信した信号光を復調する光受信器44により構成される。ここで、光ファイバ伝送路42を光位相偏移手段21を構成する光カー媒質と見なし、光増幅中継器43を位相感応光増幅手段22とすると、図7に示す請求項1の光増幅器と機能的には同一の構成となる。ただし、光位相偏移手段21、すなわち光ファイバ伝送路42における損失が無視できないので、光送信器41と光ファイバ伝送路42のパラメータを適当に設定する必要がある。
【0031】
光送信器41から送信される信号光のマーク時の平均光強度をP0 〔W〕、光ファイバ伝送路42の非線形係数をγ〔W-1km-1〕、損失をα〔km-1〕、区間長をL〔km〕とする。光ファイバ伝送路42における信号光の位相回転量φは、式(6) の代わりに、
【0032】
【数1】
Figure 0003889729
【0033】
で与えられる。
図16は、光ファイバ伝送路における信号光の位相回転量を示す。ここで、光増幅中継器43の出力は次の光ファイバ伝送路42への入力信号光強度となるので、P0 をパラメータとしている。光ファイバ伝送路42の損失α(0.2dB/km)があるので、伝送距離が短い領域では距離に比例して位相回転が増加するが、約50kmを越えた領域では一定である。すなわち、50kmを越えた領域では距離に関係なく信号光強度に比例した位相回転が生じている。
【0034】
位相感応光増幅手段22は、図5に示すように、入力信号光と励起光の位相差φS がmπ(mは整数)ならば利得Gで増幅し、(m+1/2)πならば1/Gで減衰させる。したがって、符号がスペースの場合(信号光強度が0に近い場合)に、位相感応光増幅手段22の入力信号光の位相が(m+1/2)πの近傍になるように設定する。また、信号光の平均光強度P0 および励起光強度を調整することにより、符号がマークの場合に位相感応光増幅手段22の入力信号光の位相がmπの近傍でmπより少し大きくなるように設定する。すなわち、光送信器41および光ファイバ伝送路42の各パラメータが
π/4<{1−exp(αL)}P0γL/α<π (ラジアン)
となるように設定する。これにより、光ファイバ伝送路42(光位相偏移手段21)と光増幅中継器43(位相感応光増幅手段22)の総合入出力特性として、図8に近い関係が得られる。
【0035】
図17は、光増幅中継伝送システムの入出力特性を示す。本入出力特性は、光ファイバ伝送路42の区間長Lが 100km、中継利得が20dB、マーク時の平均光強度P0 が32mWのときに、光ファイバ伝送路42の入力信号光強度と、光増幅中継器43の出力信号光強度の関係について計算したものである。また、2段構成および3段構成の入出力特性も示す。伝搬段数の増加に伴い、非線形な入出力特性が階段状になって疑似識別的な効果が強調され、“0”または“1”の2値の光強度の信号光が出力されることがわかる。
【0036】
ここで、従来の光増幅中継伝送システムの符号誤り特性について説明する。
図18は、従来の光増幅中継伝送システムの構成を示す。図において、強度変調された信号光を送出する光送信器51、光ファイバ伝送路52、光増幅中継器53、受信した信号光を復調する光受信器54により構成される。光増幅中継器53は、光ファイバ伝送路52の損失Lを利得G0 で補う構成である。すなわち、
0 ・L=1 …(12)
である。
【0037】
一般に、レーザ増幅器は入力信号光強度が増加すると利得が減少する利得飽和特性を示す。利得飽和の回復時間(入力光が消滅し、飽和により減少した利得が元の値に復帰するまでの時間)は、エルビウム添加光ファイバでほぼ10ミリ秒と長いので、1Mbit/s 以上の変調速度を有する入力信号光に対しては、光増幅中継器53の利得は図19に示すように一定と見なしてよい。すなわち、マーク時(信号1,平均光強度xm )の入力信号光に対しても、スペース時(信号0,平均光強度xS )に対しても同一の利得で増幅する。したがって、信号成分に重畳した雑音成分も信号同様に線形に増幅され、伝搬に伴って累積する。初段の増幅器以降、増幅器の出力光のSN比は増幅器の段数kに反比例して劣化する。
【0038】
符号誤り率BERは、SN比の劣化に応じて増加する。k段目の光増幅中継器53の出力光のSN比を(S/N)k、光送信器51の出力光のSN比を(S/N)0、光増幅中継器53の雑音指数をFとすると、符号誤り率BERk は、
【0039】
【数2】
Figure 0003889729
【0040】
と表される。光増幅中継器の段数と符号誤り率の関係を図20に示す。ここでは、(S/N)0=56dB、L=1/G0 =−20dB、F=3dBとした。すなわち、初段の光増幅中継器の入力信号光のSN比は36dBとなる。段数の増加に伴い急速に符号誤り率が増加していることがわかる。符号誤り率が10-13 以下を許容すると、光増幅中継器の段数は10段に制限される。
【0041】
次に、光増幅中継伝送システムの符号誤り特性について説明する。
本システムにおける光増幅中継器(図15、43)は、信号光強度による利得飽和特性と吸収飽和特性を有する。ここで、吸収飽和特性とは、信号光強度が0に近いとき(スペース時の入力信号光強度の近傍)は利得がG0 (=1/L)よりも小さく、信号光強度が大きくなるにつれて利得がGに近づく特性である。利得飽和特性とは、信号光強度が大きくなる(マーク時の平均光強度程度)と利得が減少する特性である。したがって、吸収飽和特性と利得飽和特性とを有する光増幅中継器の入出力特性は、図21の実線Aで示される特性となる。横軸(x)は入力信号光強度、縦軸(y)は出力信号光強度である。
【0042】
光増幅中継器(位相感応光増幅手段)では、利得回復時間および吸収回復時間は信号帯域幅の逆数よりも短いので、入力信号光の瞬時値に追随して図のように利得が変化すると考えてよい。マーク時の平均光強度xm における利得はG0 =1/Lに設定されている。したがって、図中破線で示すy=G0 xの直線と増幅器の入出力特性を示す曲線の交点は、(xm , ym )以外に(RLm,RLm)がある。この2点で示される入力信号光は、損失Lの伝送路と利得Gの中継器の連鎖を損失も利得もなく定常的に伝搬する。入力信号光強度がRLmよりも小さい場合には、利得がG0 よりも小さいために次段の光増幅中継器の入力信号光強度はRLmよりも小さくなる。これを繰り返して数段後には光強度は0に収束する。一方、出力信号光強度がRLmとなるxm 以上の入力信号光強度をRHmとすると、入力信号光強度がRLmからRHmまでの場合には、数段後にxm に収束する。例えば、入力信号光強度とその5中継後の出力信号光強度の関係は、図21の実線Bで示される特性となる。したがって、出力信号光のSN比は、光増幅中継器の段数に関係なく一定の値を維持することができる。
【0043】
このとき、全区間の符号誤り率は、中継区間数の増加に対して線形に増加する。すなわち、1中継区間での符号誤り率をER1とすると、k段の中継後の符号誤り率ER
R =k・ER1 …(14)
となる。なお、1中継区間での符号誤り率ER1は、次のように定めることができる。図21において、出力信号光強度が一定と見なせる入力信号光強度の範囲をxL からxH とする。初段の光増幅中継器の入力信号光強度がマーク時にその範囲に収まったとき、出力信号光の雑音状態は光送信器の出力光と同等のSN比を有している。したがって、初段の入力信号光がxL からxH の範囲以外となるビットの確率をもって、図21に示すように1中継区間の符号誤り率ER1とすればよい。このとき、ER1
【0044】
【数3】
Figure 0003889729
【0045】
と表される。ただし、簡単のために
L =(1−r)xm 、 xH =(1+r)xm …(16)
とした。r=0.12、0.13、0.14としたときの符号誤り率を図20に示す。従来の符号誤り率の計算例と同様に、初段の光増幅中継器の入力信号光のSN比を36dB、r=0.13とすると、1中継区間の符号誤り率ER1は10-15 となる。したがって、式(15)より、符号誤り率が10-13 以下であるとする制限では、光増幅中継器の段数は 100段まで許容され、従来方式の約10倍の伝送可能距離に拡大することができる。
【0046】
【発明の実施の形態】
図22は、光増幅器の第1の参考例を示す。
図において、入力信号光は光カプラ61−1で2分岐され、その一方が光サーキュレータ62を介して位相感応光増幅部12として用いられるNOLM63に入力され、他方が励起レーザ光源64に入力される。励起レーザ光源64から出力される励起光は、入力信号光の位相と同期させる光路長調整器65を介してNOLM63に入力され、入力信号光と合波される。NOLM63の光サーキュレータ62から出力される出力信号光は、光カプラ61−2でその一部が分岐される。その出力信号光の一部はフォトダイオード66で検波され、制御回路67で処理して光路長調整器65にフィードバックされる。
【0047】
本参考例では、NOLM63に入力する励起光の位相を入力信号光の平均位相に同期させるために、入力信号光の一部を分岐して励起レーザ光源64に注入して注入同期させている。光路長調整器65は、制御回路67で出力信号光の強度変化をモニタし、出力信号光の時間平均光強度が最大になるように制御される。
【0048】
図23は、光増幅器の第2の参考例を示す。
図において、入力信号光は光サーキュレータ62を通過し、光カプラ61−1で2分岐され、その一方が位相感応光増幅部12として用いられるNOLM63に入力され、他方がフォトダイオード66−1に入力される。励起レーザ光源64から出力される励起光は、光カプラ61−2で2分岐され、その一方が光位相変調器68を介してNOLM63に入力され、他方がフォトダイオード66−1に入力される。フォトダイオード66−1には入力信号光および励起光が入力され検波される。制御回路67−1は、入力信号光と励起光の位相差が0になるように励起レーザ光源64の位相を制御する。NOLM63の光サーキュレータ62から出力される出力信号光は、光カプラ61−3でその一部が分岐される。その出力信号光の一部はフォトダイオード66−2で検波され、制御回路67−2で処理して光位相変調器68にフィードバックされる。
【0049】
本参考例では、NOLM63に入力する励起光の位相を入力信号光の平均位相に同期させるために、入力信号光と励起光の位相差をモニタする構成になっている。光位相変調器68は、制御回路67−2で出力信号光の強度変化をモニタし、出力信号光の時間平均光強度が最大になるように制御される。なお、制御回路67−1,67−2が共に励起レーザ光源64の位相を制御する構成としてもよい。
【0050】
図24は、光増幅器の第3の参考例を示す。
本実施形態の特徴は、出力信号光の平均ピーク強度が最大になるように励起光位相を制御するところにある。出力信号光の平均ピーク強度は、SHG結晶69、タイミング抽出回路70、短パルス光源71、フォトダイオード66−2、制御回路67−2により観測される。すなわち、光カプラ61−3で分岐された出力信号光と、短パルス光源71から出力される短光パルスをSHG結晶69に入力してSHG相関をとり、フォトダイオード66−2で検波し、制御回路67−2で処理して光位相変調器68にフィードバックされる。一方、タイミング抽出回路70は、出力信号光のタイミングを抽出し、信号光パルスピークと同時に短パルス光源71から短光パルスをSHG結晶69に入力するように制御する。その他の構成は、第2の実施形態と同様である。
【0051】
(光増幅器の第1の実施形態…請求項1,4)
図25は、本発明の光増幅器の第1の実施形態を示す。
図において、入力信号光は光カプラ61−1で2分岐され、その一方が光位相偏移手段21として用いられる光カー媒質72に入力され、他方が励起レーザ光源64に入力される。光カー媒質72の出力光は、位相感応光増幅部12として用いられるNOLM63に入力される。励起レーザ光源64から出力される励起光は、入力信号光の位相と同期させる光路長調整器65を介してNOLM63に入力される。NOLM63の光サーキュレータ62から出力される出力信号光は、光カプラ61−2でその一部が分岐される。その出力信号光の一部はフォトダイオード66で検波され、制御回路67で処理して光路長調整器65にフィードバックされる。
【0052】
本実施形態では、NOLM63に入力する励起光の位相を入力信号光の平均位相に同期させるために、入力信号光の一部を分岐して励起レーザ光源64に注入して注入同期させている。また、熱膨張の影響を受けて、光カー媒質72の長さが数kHz程度の速さで変動する。これを補償するために、制御回路67は出力信号光の強度変化をモニタして光路長調整器65を調整し、NOLM63に入力される励起光の位相を制御する。
【0053】
(光増幅器の第2の実施形態…請求項2,4)
図26は、本発明の光増幅器の第2の実施形態を示す。
図において、入力信号光は光カプラ61−2で2分岐され、その一方が第1の位相感応光増幅手段22−1として用いられるNOLM63−1に入力され、他方が励起レーザ光源64に入力される。励起レーザ光源64から出力される励起光は光カプラ61−2で2分岐され、その一方が光路長調整器65−1を介してNOLM63−1に入力される。NOLM63−1の光サーキュレータ62−1から出力される信号光は、光カプラ61−3でその一部が分岐される。その出力信号光の一部はフォトダイオード66−1で検波され、制御回路67−1で処理して光路長調整器65−1にフィードバックされる。
【0054】
光カプラ61−3で分岐された出力信号光の残りは光カー媒質72に入力される。光カー媒質72の出力光は、第2の位相感応光増幅手段22−2として用いられるNOLM63−2に入力される。光カプラ61−2で分岐された励起光は、光路長調整器65−2を介してNOLM63−2に入力される。NOLM63−2の光サーキュレータ62−2から出力される出力信号光は、光カプラ61−4でその一部が分岐される。その出力信号光の一部はフォトダイオード66−2で検波され、制御回路67−2で処理して光路長調整器65−2にフィードバックされる。
【0055】
本実施形態では、NOLM63−1,63−2に入力する励起光の位相を入力信号光の平均位相に同期させるために、入力信号光の一部を分岐して励起レーザ光源64に注入して注入同期させている。励起レーザ光源64とNOLM63−1との間にある光路長調整器65−1、および励起レーザ光源64とNOLM63−2との間にある光路長調整器65−2は、ファイバ熱膨張による入力信号光と励起光の位相差の変化を補償するものであり、それぞれ制御回路67−1,67−2で出力信号光の強度変化をモニタして制御される。
【0056】
(光増幅中継伝送システムの構成例)
図27は、光増幅中継伝送システムの構成例を示す。
図において、光送信器41は、光源81と、送信データにより光源81から出力されるCW光の強度を変調する光変調器82とにより構成される。光送信器41から出力された信号光は、光ファイバ伝送路42を介して光増幅中継器43に伝送される。ここで、光ファイバ伝送路42は、信号光の伝送に用いられるだけでなく、図7に示す光位相偏移手段21として用い、光増幅中継器43を位相感応光増幅手段22として用いることにより、S/Nを改善する光増幅器の縦続接続とみなすことができる。そして、最終的に光受信器44まで伝送される。
【0057】
なお、図では位相感応光増幅手段22として、光増幅器の第1の参考例(図22)のものを示すが、その他の実施形態の光増幅器を用いてもよい。ただし、本光増幅中継伝送システムでは、光位相偏移手段21としての光ファイバ伝送路42を通過した信号光が位相感応光増幅手段22としての光増幅中継器43に入力されるので、狭帯域の位相同期回路を用いて平均値で位相同期をとる構成とする。
【0058】
【実施例】
光増幅器の第1および第2の参考例において、入力信号光波長は光伝送に有利な1.55μmとする。NOLM63には、有効コア断面積S=50〔μm2 〕,非線形光学定数n2 = 2.67×10-20〔m2/W〕の分散シフト単一モード光ファイバを用い、長さL=2〔km〕とする。励起光強度を2〔W〕とすると、20dB程度の光利得が得られる。また、信号光の位相雑音に励起光位相が追随できるように、 100MHz程度の帯域をもつ位相同期回路を用いる。フォトダイオード、光ファイバの熱変動による光路長の微小な変動(〜数kHz)を補償できるように、十kHz程度の検波帯域を有するものとする。
【0059】
光増幅器の第3の参考例において、SHG結晶69としてAANP結晶を用いる。短パルス光源71から出力された短光パルスのパルス幅は、信号光のパルス幅の1/10程度であり、プリスケール位相同期技術を用いて出力信号光パルス列に同期してAANP結晶に入力する。フォトダイオード、光ファイバの熱変動による光路長の微小な変動(〜数kHz)を補償できるように、十kHz程度の検波帯域を有するものとする。
【0060】
光増幅器の第1の実施形態において、入力信号光波長は光伝送に有利な1.55μmとする。光カー媒質72には石英ファイバを用いる。石英ファイバの諸元は、有効コア断面積S=50〔μm2 〕,非線形光学定数n2 =2.67×10-20 〔m2 /W〕の分散シフト単一モード光ファイバを用い、長さL=6〔km〕とする。式(6),(7) より入力信号光強度PS=150〔mW〕のときに 1.8〔rad 〕の位相偏移が得られる。励起光強度PP =4〔W〕とする。NOLM63の光ファイバには、光カー媒質と同様の諸元をもつ石英ファイバを用い、相互作用長を1〔km〕とする。
【0061】
以上の構成および諸元により、入力信号光がマークのときには出力信号光強度が4〔W〕となる。このときの入出力特性は図28のようになる。なお、式(9) におけるバイアス位相φb を0.45π〔rad 〕とした。この結果、十分なS/Nの回復が得られることがわかる。
【0062】
光増幅器の第2の実施形態において、入力信号光波長および光カー媒質72の諸元は第1の実施形態のものと同様とする。励起光強度PP =6〔W〕とし、その内の2〔W〕をNOLM63−1に入力し、4〔W〕をNOLM23−2に入力する。励起光位相の制御系の応答速度は、熱膨張によるNOLMの長さの変化に十分に追随でき、かつ最大で数MHzの線幅を有する信号光の位相変化に追随できるようにする。NOLM63−1の光ファイバとして2〔km〕の石英ファイバを用いる。
【0063】
NOLM63−1に入力する信号光ピーク強度を 1.5〔mW〕とすると、20〔dB〕の利得が得られる。その結果、NOLM63−1で増幅された信号光のピーク強度は 150〔mW〕となる。NOLM63−1の出力信号光の位相は励起光位相と同期しており、入力信号光の位相雑音が強度雑音に変換されている。このときの入出力特性は、図29のようになる。図中には、入力信号光の位相偏移φd =0.2, 0, -0.2に対する出力信号光強度の変化についても示されている。このように、微小な位相雑音が入力信号光に付加されていても、マーク時の出力信号光強度に大きな変化は見られない。マーク時利得は30〔dB〕であり、十分なSN比の回復が得られることがわかる。
【0064】
光増幅中継伝送システムの構成例において、光送信器41の光源81は、発振線幅1MHz、波長1.55μmのCW光を出力する。光位相偏移手段21として機能する光ファイバ伝送路42は、実効断面積S=50×10-8〔cm2 〕,非線形光学定数n2 = 3.3×10-16〔cm2/W〕の零分散シフトファイバを用いる。この非線形係数γは2.6 W-1km-1、損失は 0.2dB/kmである。ファイバ損失は、 100kmの間隔に配置された位相感応光増幅器を用いた光増幅中継器43で補償される。この光増幅中継器43における入力信号光のマーク時の利得を20dBに設定し、励起光との位相同期を実現すると、図28に示す閾値特性を有する入出力特性が得られる。ここで用いられる光位相同期回路の帯域幅は、従来の光ホモダイン検波の理論と実験より10MHz程度で十分である。
【0065】
【発明の効果】
以上説明したように、本発明の光増幅器は、入力信号光を電気信号に変換することなく、入力信号光の波形整形と強度雑音を抑圧することができる。したがって、本発明の光増幅器を光増幅中継伝送システムに導入することにより、光信号のままで連続的に長距離光伝送を行うことができる。また、光信号のままで信号再生を行うことができるので、大容量伝送にも適用することができる。
【図面の簡単な説明】
【図1】光増幅器の第1の基本構成を示すブロック図。
【図2】光増幅器の第2の基本構成を示すブロック図。
【図3】光増幅器の第3の基本構成を示すブロック図。
【図4】光増幅器の第4の基本構成を示すブロック図。
【図5】位相感応光増幅器の利得特性を示す図。
【図6】位相感応光増幅器の波形整形原理を示す図。
【図7】請求項1の光増幅器の基本構成および動作原理を示す図。
【図8】請求項1の光増幅器の理想的な入出力特性を示す図。
【図9】位相感応光増幅部12の構成例を示す図。
【図10】位相感応光増幅部の入出力特性を示す図。
【図11】本発明の光増幅器の入出力特性を示す図。
【図12】位相感応光増幅部12の他の構成例を示す図。
【図13】請求項2の光増幅器の基本構成および動作原理を示す図。
【図14】第1の位相感応光増幅手段22−1の動作原理を示す図。
【図15】光増幅中継伝送システムの基本構成を示す図。
【図16】光ファイバ伝送路における信号光の位相回転量を示す図。
【図17】光増幅中継伝送システムの入出力特性を示す図。
【図18】従来の光増幅中継伝送システムの構成を示す図。
【図19】光増幅中継器53の利得を示す図。
【図20】光増幅中継器の段数と符号誤り率の関係を示す図。
【図21】本発明における光増幅中継器の入出力特性を示す図。
【図22】光増幅器の第1の参考例を示す図。
【図23】光増幅器の第2の参考例を示す図。
【図24】光増幅器の第3の参考例を示す図。
【図25】本発明の光増幅器の第1の実施形態を示す図。
【図26】本発明の光増幅器の第2の実施形態を示す図。
【図27】光増幅中継伝送システムの構成例を示す図。
【図28】第1の実施形態の入出力特性を示す図。
【図29】第2の実施形態の入出力特性を示す図。
【符号の説明】
12 位相感応光増幅部
13 励起光源
14 励起光位相制御部
15 光分岐部
16 信号光瞬時強度検出部
21 光位相偏移手段
22 位相感応光増幅手段
31 光カプラ
32 光ファイバ
33 光サーキュレータ
34 ビームスプリッタ
35 光カー媒質
36 ダイクロックミラー
37 縮退パラメトリック結晶
41,51 光送信器
42,52 光ファイバ伝送路
43,53 光増幅中継器
44,54 光受信器
61 光カプラ
62 光サーキュレータ
63 光ファイバ型非線形ループミラー(NOLM)
64 励起レーザ光源
65 光路長調整器
66 フォトダイオード
67 制御回路
68 光位相変調器
69 SHG結晶
70 タイミング抽出回路
71 短パルス光源
72 光カー媒質

Claims (5)

  1. 強度変調された信号光を入力して2分岐する分岐手段と、
    前記分岐手段で分岐された一方の信号光の位相に同期した励起光を出力する励起光源と、
    前記分岐手段で分岐された他方の信号光を入力し、その光強度に比例して光位相偏移した信号光を出力する光位相偏移手段と、
    前記励起光源が出力する励起光と前記光位相偏移手段が出力する光位相偏移した信号光とを入力し、前記励起光に対する前記光位相偏移手段が出力した信号光の光位相偏移量に応じて“0”または“1”の2値の光強度の信号光を出力する位相感応光増幅手段と、
    前記位相感応光増幅手段が出力する信号光の強度変化をモニタし、そのモニタ結果に応じて前記位相感応光増幅手段の出力信号光の平均光強度が最大になるように励起光の位相を制御し、前記励起光の位相と前記位相感応光増幅手段に入力する信号光の位相を同期させる光位相同期手段と を備えたことを特徴とする光増幅器。
  2. 強度変調された信号光を入力して2分岐する第1の分岐手段と、
    前記分岐手段で分岐された一方の信号光の位相に同期した励起光を出力する励起光源と、
    前記励起光源が出力する励起光を2分岐する第2の分岐手段と、
    前記第1の分岐手段で分岐された他方の信号光と前記第2の分岐手段で分岐された一方の励起光とを入力し、当該信号光の位相雑音を強度雑音に変換して位相一定の信号光を出力する第1の位相感応光増幅手段と、
    前記第1の位相感応光増幅手段が出力する前記位相一定の信号光を入力し、その光強度に比例して光位相偏移した信号光を出力する光位相偏移手段と、
    前記第2の分岐手段で分岐された他方の励起光と前記光位相偏移手段が出力する光位相偏移した信号光とを入力し、前記他方の励起光に対する前記光位相偏移手段が出力した信号光の光位相偏移量に応じて“0”または“1”の2値の光強度の信号光を出力する第2の位相感応光増幅手段と、
    前記第1の位相感応光増幅手段の出力する信号光の強度変化をモニタし、そのモニタ結果に応じて前記第1の位相感応光増幅手段の出力信号光の平均光強度が最大になるように励起光の位相を制御し、前記励起光の位相と前記第1の位相感応光増幅手段に入力する信号光の位相を同期させる第1の光位相同期手段と 前記第2の位相感応光増幅手段の出力する信号光の強度変化をモニタし、そのモニタ結果に応じて前記第2の位相感応光増幅手段の出力信号光の平均光強度が最大になるように励起光の位相を制御し、前記励起光の位相と前記第2の位相感応光増幅手段に入力する信号光の位相を同期させる第2の光位相同期手段と を備えたことを特徴とする光増幅器。
  3. 光位相偏移手段は、光カー媒質を用いた構成であることを特徴とする請求項1または請求項2に記載の光増幅器。
  4. 位相感応光増幅手段は、光ファイバ型非線形ループミラーまたは光カー媒質を含むマッハツェンダ干渉計を用いた構成であることを特徴とする請求項1または請求項2に記載の光増幅器。
  5. 位相感応光増幅手段は、縮退パラメトリック媒質を用いた構成であることを特徴とする請求項1または請求項2に記載の光増幅器。
JP2003205405A 1995-12-13 2003-08-01 光増幅器 Expired - Fee Related JP3889729B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205405A JP3889729B2 (ja) 1995-12-13 2003-08-01 光増幅器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32486995 1995-12-13
JP2003205405A JP3889729B2 (ja) 1995-12-13 2003-08-01 光増幅器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17968096A Division JP3473811B2 (ja) 1995-12-13 1996-07-09 光増幅器および光増幅中継伝送システム

Publications (2)

Publication Number Publication Date
JP2004006943A JP2004006943A (ja) 2004-01-08
JP3889729B2 true JP3889729B2 (ja) 2007-03-07

Family

ID=30445544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205405A Expired - Fee Related JP3889729B2 (ja) 1995-12-13 2003-08-01 光増幅器

Country Status (1)

Country Link
JP (1) JP3889729B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626309B2 (ja) * 2005-01-12 2011-02-09 住友電気工業株式会社 信号品質情報装置、信号品質評価方法、光信号評価システムおよび光伝送システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233429A (ja) * 1988-03-14 1989-09-19 Nippon Telegr & Teleph Corp <Ntt> 光タッピング装置
JP2892516B2 (ja) * 1990-02-26 1999-05-17 日本電信電話株式会社 非線形光ファイバ及び非線形光学装置
JP2501484B2 (ja) * 1990-08-13 1996-05-29 日本電信電話株式会社 波長安定化レ―ザ装置
JPH05289138A (ja) * 1992-04-10 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> 光位相同期回路および光位相同期受信機
JPH06118467A (ja) * 1992-10-02 1994-04-28 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JPH0735947A (ja) * 1993-06-25 1995-02-07 Mitsubishi Electric Corp 光波長フィルタ
JPH07168217A (ja) * 1993-12-16 1995-07-04 Nec Corp 光/光 2×2 スイッチ
JP3314797B2 (ja) * 1994-02-23 2002-08-12 日本電信電話株式会社 光相関検出回路および光クロック位相同期ループ回路
JP3276094B2 (ja) * 1994-04-19 2002-04-22 日本電信電話株式会社 モード同期レーザ装置

Also Published As

Publication number Publication date
JP2004006943A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3858451B2 (ja) 制御信号重畳装置
US5892608A (en) Optical receiver device for dark soliton lightwave
EP0507508B1 (en) Polarization multiplexing with solitons
JP3766462B2 (ja) ソリトンに対して同期変調を行うことによってソリトン光信号を再生するためのインライン再生装置
JPH08204636A (ja) 光通信システム
EP0901245B1 (en) Optical decision circuit and use thereof
JP2001069080A (ja) 光ファイバ伝送のための方法、光デバイス及びシステム
WO1994000897A1 (en) Optical transmission system
JPH0798464A (ja) 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
CA2147402A1 (en) System and method for simultaneously compensating chromatic dispersion and self phase modulation in optical fibers
JPH1078595A (ja) 波長変換装置、光演算装置及び光パルス位相検出回路
JPH077471A (ja) 光増幅伝送システム
JP3473811B2 (ja) 光増幅器および光増幅中継伝送システム
AU670282B2 (en) Optical clock recovery
US6239893B1 (en) Very high data rate soliton regenerator
JP3889729B2 (ja) 光増幅器
US20040018020A1 (en) All-optical regenerator for retiming, reshaping and retransmitting an optical signal
JP2014207578A (ja) 光増幅装置
JP3914222B2 (ja) 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
JP3556657B2 (ja) 位相共役光学の光システムへの適用
JP3495036B2 (ja) 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
JP3640950B2 (ja) 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
JP2716049B2 (ja) 光ソリトンパルス伝送方法
JP4235724B2 (ja) 光波干渉方法
GB2110498A (en) Laser telecommunications system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061130

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees