JP3888350B2 - 演算増幅器及びこれを用いた駆動回路 - Google Patents

演算増幅器及びこれを用いた駆動回路 Download PDF

Info

Publication number
JP3888350B2
JP3888350B2 JP2003412269A JP2003412269A JP3888350B2 JP 3888350 B2 JP3888350 B2 JP 3888350B2 JP 2003412269 A JP2003412269 A JP 2003412269A JP 2003412269 A JP2003412269 A JP 2003412269A JP 3888350 B2 JP3888350 B2 JP 3888350B2
Authority
JP
Japan
Prior art keywords
transistor
current
output node
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003412269A
Other languages
English (en)
Other versions
JP2005175811A (ja
Inventor
和広 前川
克彦 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003412269A priority Critical patent/JP3888350B2/ja
Priority to US11/008,818 priority patent/US7116171B2/en
Publication of JP2005175811A publication Critical patent/JP2005175811A/ja
Application granted granted Critical
Publication of JP3888350B2 publication Critical patent/JP3888350B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45237Complementary long tailed pairs having parallel inputs and being supplied in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

本発明は、演算増幅器及びこれを用いた駆動回路に関する。
従来より、携帯電話機などの電子機器に用いられる液晶パネル(電気光学装置)として、単純マトリクス方式の液晶パネルと、薄膜トランジスタ(Thin Film Transistor:以下、TFTと略す)などのスイッチング素子を用いたアクティブマトリクス方式の液晶パネルとが知られている。
単純マトリクス方式は、アクティブマトリクス方式に比べて低消費電力化が容易であるという利点がある反面、多色化や動画表示が難しいという不利点がある。一方、アクティブマトリクス方式は、多色化や動画表示に適しているという利点がある反面、低消費電力化が難しいという不利点がある。
そして、近年、携帯電話機などの携帯型電子機器では、高品質な画像の提供のために、多色化、動画表示への要望が強まっている。このため、これまで用いられてきた単純マトリクス方式の液晶パネルに代えて、アクティブマトリクス方式の液晶パネルが用いられるようになってきた。
さて、アクティブマトリクス方式の液晶パネルでは、液晶パネルのデータ線を駆動するデータ線駆動回路の中に、出力バッファとして機能する演算増幅器(オペアンプ)を設けることが望ましい。
図13に、公知の演算増幅器の構成を示す。
この演算増幅器では、p型トランジスタM7、M8、n型トランジスタM5、M6、及び電流源CSbを含むp型差動入力回路によりn型駆動トランジスタM10を制御する。またp型トランジスタM1、M2、n型トランジスタM3、M4、及び電流源CSaを含むn型差動入力回路によりp型駆動トランジスタM9を制御する。
n型差動入力回路に着目して、入力信号Vinの電圧が出力信号Voutの電圧より大きい場合を考える。この場合、n型トランジスタM4のインピーダンスがn型トランジスタM3より大きくなるため、p型トランジスタM2、M1のゲート電圧が上昇し、p型トランジスタM1のインピーダンスが大きくなる。そのため、p型駆動トランジスタM9のゲート電圧が下降し、p型駆動トランジスタM9はオンする方向に向かう。
p型差動入力回路に着目すると、入力信号Vinの電圧が出力信号Voutの電圧より大きい場合、p型トランジスタM8のインピーダンスがp型トランジスタM7のインピーダンスより小さくなるため、n型トランジスタM5、M6のゲート電圧が上昇し、n型トランジスタM5のインピーダンスが小さくなる。そのため、n型駆動トランジスタM10のゲート電圧が下降し、n型駆動トランジスタM10がオフする方向に向かう。
このように、入力信号Vinの電圧が出力信号Voutの電圧より大きい場合は、出力信号Voutの電圧が大きくなる方向にp型駆動トランジスタM9、n型駆動トランジスタM10が動作する。なお、入力信号Vinの電圧が出力信号Voutの電圧より小さい場合は、上述と逆の動作を行う。以上のような動作の結果、演算増幅器では、入力信号Vinの電圧と出力信号Voutの電圧とがほぼ等しくなる平衡状態に移行していく。
特開2003−157054号公報
しかしながら、p型差動入力回路では入力信号Vinがゲート電圧としてp型トランジスタM7に供給され、n型差動入力回路では入力信号Vinがゲート電圧としてn型トランジスタM3に供給される。そのため、図14に示すように、入力信号Vinが、高電位側の電源電圧VDD〜VDD−|Vthp|(Vthpは、p型トランジスタM7の閾値電圧)の範囲R1と、低電位側の電源電圧VSS〜VSS+Vthn(Vthnは、n型トランジスタM3の閾値電圧)の範囲R2では、入力信号Vinの電圧と出力信号Voutの電圧とを等しくできない入力不感帯となる。これは、低電位側の電源電圧VSS〜VSS+Vthnの範囲R2では、n型トランジスタM3がオフ状態のままであるためn型差動入力回路が動作せず、高電位側の電源電圧VDD〜VDD−|Vthp|の範囲R1では、p型トランジスタM7がオフ状態のままであるためp型差動入力回路が動作しないからである。
例えば液晶表示パネルを、最大5ボルト振幅(Vin)の階調電圧を64階調で駆動する場合を考える。この場合、各階調に応じた階調電圧を発生させるために5ボルト振幅を狭くすると階調表現に不都合が生じる。そこで、p型トランジスタの閾値電圧Vthp及びn型トランジスタの閾値電圧Vthnのばらつきを考慮して約1.9ボルトのオフセットを設けて、最大約6.9ボルト振幅(VDD)の階調電圧を発生させていた。従って、データ線駆動回路の電源系が5ボルトのとき、約6.9ボルト振幅の階調電圧を発生させるために昇圧回路を設ける必要があった。昇圧回路としてチャージポンプ回路を採用する場合、昇圧用トランジスタや昇圧用コンデンサが更に必要となる上に、高電圧を考慮したレイアウトが必要となり、チップ面積の増大、実装上のコスト高、消費電力の増大を招いていた。特に、ロジック用電源としての5ボルト系の製造プロセスでは不十分であるため、7ボルト以上の高耐圧のトランジスタを用いる必要があり、製造プロセスのコスト高も招いていた。
更に、図13に示す構成の演算増幅器では、入力不感帯の入力信号Vinが入力されたとき、p型駆動トランジスタM9及びn型駆動トランジスタM10を制御できなくなり、貫通電流を抑える制御ができなかった。そのため、回路の安定性が悪くなり、消費電力が増大するという問題があった。
本発明は以上のような技術的課題に鑑みてなされたものであり、その目的とするところは、低コストかつ低消費電力で、駆動能力が高い演算増幅器及びこれを用いた駆動回路を提供することにある。
上記課題を解決するために本発明は、各トランジスタのソースが第1の電流源(CS1)に接続されると共に、入力信号(Vin)及び出力信号(Vout)が各トランジスタのゲートに入力される第1の導電型の第1の差動トランジスタ対(PT1、PT2)と、前記第1の差動トランジスタ対の各トランジスタのドレイン電流を生成する第1のカレントミラー回路(CM1)とを有する第1の導電型差動増幅回路(100)と、各トランジスタのソースが第2の電流源(CS2)に接続されると共に、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第2の導電型の第2の差動トランジスタ対(NT3、NT4)と、前記第2の差動トランジスタ対の各トランジスタのドレイン電流を生成する第2のカレントミラー回路(CM2)とを有する第2の導電型差動増幅回路(110)と、前記入力信号(Vin)及び前記出力信号(Vout)に基づいて、前記第1の差動トランジスタ対を構成する2つのトランジスタのドレインである第1の出力ノード(ND1)及び第1の反転出力ノード(NXD1)のうち少なくとも一方を駆動する第1の補助回路(130)と、前記入力信号(Vin)及び前記出力信号(Vout)に基づいて、前記第2の差動トランジスタ対を構成する2つのトランジスタのドレインである第2の出力ノード(ND2)及び第2の反転出力ノード(NXD2)のうち少なくとも一方を駆動する第2の補助回路(140)と、前記第1の出力ノード(ND1)の電圧に基づいてそのゲート電圧が制御される第2の導電型の第1の駆動トランジスタ(NTO1)と、そのドレインが前記第1の駆動トランジスタのドレインに接続され前記第2の出力ノード(ND2)の電圧に基づいてそのゲート電圧が制御される第1の導電型の第2の駆動トランジスタ(PTO1)とを有し、前記第1の駆動トランジスタ(NTO1)のドレインの電圧を前記出力信号(Vout)として出力する出力回路(120)とを含み、前記第1の差動トランジスタ対(PT1、PT2)を構成するトランジスタのうち前記入力信号(Vin)がゲートに入力されるトランジスタ(PT1)のゲート・ソース間の電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、前記第1の補助回路(130)が、前記第1の出力ノード(ND1)及び前記第1の反転出力ノード(NXD1)の少なくとも一方を駆動することで、前記第1の駆動トランジスタ(NTO1)のゲート電圧を制御し、前記第2の差動トランジスタ対(NT3、NT4)を構成するトランジスタのうち前記入力信号(Vin)がゲートに入力されるトランジスタ(NT3)のゲート・ソース間電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、前記第2の補助回路(140)が、前記第2の出力ノード(ND2)及び前記第2の反転出力ノード(NXD2)の少なくとも一方を駆動することで、前記第2の駆動トランジスタ(PTO1)のゲート電圧を制御する演算増幅器に関係する。
本発明では、演算増幅器が、第1の導電型差動増幅回路と第2の導電型差動増幅回路とを含み、入力信号及び出力信号が、それぞれ異なる導電型の差動トランジスタ対に入力される。各差動トランジスタ対を構成するトランジスタが電流源に接続されると共に、各トランジスタのドレイン電流がカレントミラー回路によって生成される。そして出力回路が、各差動増幅回路の出力ノードの電圧に基づいて出力信号を出力する。
第1及び第2の差動トランジスタ対が動作する範囲の入力信号が入力された場合には、第1及び第2の導電型差動増幅回路がそれぞれ入力信号及び出力信号の差動増幅を行って出力回路を構成する第1及び第2の駆動トランジスタのゲート電圧を制御する。
第1の差動トランジスタ対が動作し、かつ第2の差動トランジスタ対が動作しない範囲の入力信号が入力された場合には、第1の導電型差動増幅回路が入力信号及び出力信号の差動増幅を行って出力回路を構成する第1の駆動トランジスタのゲート電圧を制御する。一方、第2の導電型差動増幅回路の各ノードが不定となるため、第2の補助回路が、第2の導電型差動増幅回路の第2の出力ノード及び第2の反転出力ノードの少なくとも一方を駆動することで、第2の駆動トランジスタのゲート電圧を制御する。
第2の差動トランジスタ対が動作せず、かつ第1の差動トランジスタ対が動作する範囲の入力信号が入力された場合には、第2の導電型差動増幅回路が入力信号及び出力信号の差動増幅を行って出力回路を構成する第2の駆動トランジスタのゲート電圧を制御する。一方、第1の導電型差動増幅回路の各ノードが不定となるため、第1の補助回路が、第1の導電型差動増幅回路の第1の出力ノード及び第1の反転出力ノードの少なくとも一方を駆動することで、第1の駆動トランジスタのゲート電圧を制御する。
こうすることで、出力回路を構成する第1及び第2の駆動トランジスタのゲート電圧が制御できるようになり、入力信号が入力不感帯の範囲であることに起因する不要な貫通電流の発生を無くすことができる。そのため、高電位側の電源電圧と低電位側の電源電圧との間の電圧を振幅として、演算増幅器を形成できるようになるので、駆動能力を低下させることなく動作電圧を狭くでき、更に消費電力を削減できるようになる。これは、昇圧回路の実装や製造プロセスの低耐圧化を意味し、低コスト化を実現する。
なお、第1の差動トランジスタ対と第1の電流源との間、第2の差動トランジスタ対と第2の電流源との間、又は第1、第2の駆動トランジスタのドレイン間に、他の素子(例えばスイッチング素子等)を設けてもよい。
また本発明は、入力信号(Vin)及び出力信号(Vout)の差分を増幅する第1の導電型差動増幅回路(100)と、前記入力信号(Vin)及び前記出力信号(Vout)の差分を増幅する第2の導電型差動増幅回路(110)と、前記入力信号(Vin)及び前記出力信号(Vout)に基づいて、前記第1の導電型差動増幅回路の第1の出力ノード(ND1)及び第1の反転出力ノード(NXD1)のうち少なくとも一方を駆動する第1の補助回路(130)と、前記入力信号(Vin)及び前記出力信号(Vout)に基づいて、前記第2の導電型差動増幅回路の第2の出力ノード(ND2)及び第2の反転出力ノード(NXD2)のうち少なくとも一方を駆動する第2の補助回路(140)と、前記第1及び第2の出力ノード(ND1、ND2)の電圧に基づいて前記出力信号(Vout)を生成する出力回路(120)とを含み、前記第1の導電型差動増幅回路(100)が、一端に第1の電源電圧(VDD)が供給される第1の電流源(CS1)と、各トランジスタのソースが前記第1の電流源(CS1)の他端に接続され、各トランジスタのドレインがそれぞれ前記第1の出力ノード(ND1)及び前記第1の反転出力ノード(NXD1)に接続され、前記入力信号(Vin)及び前記出力信号(Vout)が各トランジスタのゲートに入力される第1の導電型の第1の差動トランジスタ対(PT1、PT2)と、ゲート同士が互いに接続された第2の導電型の第1のトランジスタ対(NT1、NT2)を有する第1のカレントミラー回路(CM1)とを含み、前記第1のトランジスタ対(NT1、NT2)を構成する各トランジスタのソースに第2の電源電圧(VSS)が供給され、該各トランジスタのドレインがそれぞれ前記第1の出力ノード(ND1)及び前記第1の反転出力ノード(NXD1)に接続され、前記第1のトランジスタ対(NT1、NT2)を構成するトランジスタのうち前記第1の反転出力ノード(NXD1)に接続されるトランジスタ(NT2)のドレイン及びゲートが接続され、前記第2の導電型差動増幅回路(110)が、一端に前記第2の電源電圧(VSS)が供給される第2の電流源(CS2)と、各トランジスタのソースが前記第2の電流源(CS2)の他端に接続され、各トランジスタのドレインがそれぞれ前記第2の出力ノード(ND2)及び前記第2の反転出力ノード(NXD2)に接続され、前記入力信号(Vin)及び前記出力信号(Vout)が各トランジスタのゲートに入力される第2の導電型の第2の差動トランジスタ対(NT3、NT4)と、ゲート同士が互いに接続された第1の導電型の第2のトランジスタ対(PT3、PT4)を有する第2のカレントミラー回路(CM2)とを含み、前記第2のトランジスタ対を構成する各トランジスタのソースに第1の電源電圧(VDD)が供給され、該各トランジスタのドレインがそれぞれ前記第2の出力ノード(ND2)及び前記第2の反転出力ノード(NXD2)に接続され、前記第2のトランジスタ対(PT3、PT4)を構成するトランジスタのうち前記第2の反転出力ノード(NXD2)に接続されるトランジスタのドレイン及びゲートが接続され、前記出力回路(120)が、前記第2の出力ノード(ND2)にそのゲートが接続された第1の導電型の第2の駆動トランジスタ(PTO1)と、前記第1の出力ノード(ND1)にそのゲートが接続され、前記第2の駆動トランジスタ(PTO1)のドレインにそのドレインが接続された第2の導電型の第1の駆動トランジスタ(NTO1)とを含み、該ドレインの電圧を前記出力信号(Vout)として出力し、前記第1の差動トランジスタ対(PT1、PT2)を構成するトランジスタのうち前記入力信号(Vin)がゲートに入力されるトランジスタ(PT1)のゲート・ソース間の電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、前記第1の補助回路(130)が、前記第1の出力ノード(ND1)及び前記第1の反転出力ノード(NXD1)の少なくとも一方を駆動することで、前記第1の駆動トランジスタ(NTO1)のゲート電圧を制御し、前記第2の差動トランジスタ対(NT3、NT4)を構成するトランジスタのうち前記入力信号(Vin)がゲートに入力されるトランジスタ(NT3)のゲート・ソース間の電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、前記第2の補助回路(140)が、前記第2の出力ノード(ND2)及び前記第2の反転出力ノード(NXD2)の少なくとも一方を駆動することで、前記第2の駆動トランジスタ(PTO1)のゲート電圧を制御する演算増幅器に関係する。
本発明においては、第1及び第2の差動トランジスタ対が動作する範囲の入力信号が入力された場合には、第1及び第2の導電型差動増幅回路がそれぞれ入力信号及び出力信号の差動増幅を行って出力回路を構成する第1及び第2の駆動トランジスタのゲート電圧を制御する。
第1の差動トランジスタ対が動作し、かつ第2の差動トランジスタ対が動作しない範囲の入力信号が入力された場合には、第1の導電型差動増幅回路が入力信号及び出力信号の差動増幅を行って出力回路を構成する第1の駆動トランジスタのゲート電圧を制御する。一方、第2の導電型差動増幅回路の各ノードが不定となるため、第2の補助回路が、第2の導電型差動増幅回路の第2の出力ノード及び第2の反転出力ノードの少なくとも一方を駆動することで、第2の駆動トランジスタのゲート電圧を制御する。
第2の差動トランジスタ対が動作し、かつ第1の差動トランジスタ対が動作しない範囲の入力信号が入力された場合には、第2の導電型差動増幅回路が入力信号及び出力信号の差動増幅を行って出力回路を構成する第2の駆動トランジスタのゲート電圧を制御する。一方、第1の導電型差動増幅回路の各ノードが不定となるため、第1の補助回路が、第1の導電型差動増幅回路の第1の出力ノード及び第1の反転出力ノードの少なくとも一方を駆動することで、第1の駆動トランジスタのゲート電圧を制御する。
こうすることで、出力回路を構成する第1及び第2の駆動トランジスタのゲート電圧が制御できるようになり、入力信号が入力不感帯の範囲であることに起因する不要な貫通電流の発生を無くすことができる。そのため、高電位側の電源電圧と低電位側の電源電圧との間の電圧を振幅として、演算増幅器を形成できるようになるので、駆動能力を低下させることなく動作電圧を狭くでき、更に消費電力を削減できるようになる。これは、昇圧回路の実装や製造プロセスの低耐圧化を意味し、低コスト化を実現する。
なお、第1の差動トランジスタ対と第1の電流源との間、第1の差動トランジスタ対の各トランジスタのドレインと第1の出力ノード又は第1の反転出力ノードとの間、第2の差動トランジスタ対と第2の電流源との間、第2の差動トランジスタ対の各トランジスタのドレインと第2の出力ノード又は第2の反転出力ノードとの間、第1、第2の駆動トランジスタのドレイン間、第1の出力ノードと第1の駆動トランジスタのゲートとの間、第2の出力ノードと第2の駆動トランジスタのゲートとの間に、他の素子(例えばスイッチング素子等)を設けてもよい。
また本発明に係る演算増幅器では、前記第1の補助回路が、各トランジスタのソースに前記第1の電源電圧(VDD)が供給され、各トランジスタのドレインがそれぞれ前記第1の出力ノード(ND1)及び前記第1の反転出力ノード(NXD1)に接続された第1の導電型の第1及び第2の電流駆動トランジスタ(PA1、PA2)と、前記入力信号(Vin)及び前記出力信号(Vout)に基づいて前記第1及び第2の電流駆動トランジスタ(PA1、PA2)のゲート電圧を制御する第1の電流制御回路(132)とを含み、前記第1の差動トランジスタ対(PT1、PT2)を構成するトランジスタのうち前記入力信号(Vin)がゲートに入力されるトランジスタ(PT1)のゲート・ソース間の電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、前記第1の電流制御回路(132)が、前記第1の出力ノード(ND1)及び前記第1の反転出力ノード(NXD1)の少なくとも一方を駆動するように前記第1及び第2の電流駆動トランジスタ(PA1、PA2)のゲート電圧を制御することができる。
本発明によれば、第1及び第2の電流駆動トランジスタのゲート電圧を制御することで、簡素な構成で、第1の出力ノード又は第1の反転出力ノードを駆動できるようになる。その結果、簡素な構成で、第1の駆動トランジスタのゲート電圧を制御できるようになる。
なお第1又は第2の電流駆動トランジスタのドレインと第1の出力ノード又は第1の反転出力ノードとの間に、他の素子(例えばスイッチング素子等)を設けてもよい。
また本発明に係る演算増幅器では、前記第2の補助回路(140)が、各トランジスタのソースに前記第2の電源電圧(VSS)が供給され、各トランジスタのドレインがそれぞれ前記第2の出力ノード(ND2)及び前記第2の反転出力ノード(NXD2)に接続された第2の導電型の第3及び第4の電流駆動トランジスタ(NA3、NA4)と、前記入力信号(Vin)及び前記出力信号(Vout)に基づいて前記第3及び第4の電流駆動トランジスタ(NA3、NA4)のゲート電圧を制御する第2の電流制御回路(142)とを含み、前記第2の差動トランジスタ対(NT3、NT4)を構成するトランジスタのうち前記入力信号(Vin)がゲートに入力されるトランジスタ(NT3)のゲート・ソース間の電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、前記第2の電流制御回路(142)が、前記第2の出力ノード(ND2)及び前記第2の反転出力ノード(NXD2)の少なくとも一方を駆動するように前記第3及び第4の電流駆動トランジスタ(NA3、NA4)のゲート電圧を制御することができる。
本発明によれば、第3及び第4の電流駆動トランジスタのゲート電圧を制御することで、簡素な構成で、第2の出力ノード又は第2の反転出力ノードを駆動できるようになる。その結果、簡素な構成で、第2の駆動トランジスタのゲート電圧を制御できるようになる。
なお第3又は第4の電流駆動トランジスタのドレインと第2の出力ノード又は第2の反転出力ノードとの間に、他の素子(例えばスイッチング素子等)を設けてもよい。
また本発明に係る演算増幅器では、前記第1の電流制御回路(132)が、一端に前記第2の電源電圧(VSS)が供給された第3の電流源(CS3)と、前記第3の電流源(CS3)の他端に各トランジスタのソースが接続され、前記入力信号(Vin)及び前記出力信号(Vout)が各トランジスタのゲートに入力される第2の導電型の第3の差動トランジスタ対(NS5、NS6)と、各トランジスタのソースに前記第1の電源電圧(VDD)が供給され、各トランジスタのドレインがそれぞれ前記第3の差動トランジスタ対(NS5、NS6)の各トランジスタのドレインに接続され、各トランジスタのゲート及びドレインが接続された第1の導電型の第5及び第6の電流駆動トランジスタ(PS5、PS6)とを含み、前記第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記入力信号(Vin)が入力されるトランジスタ(NS5)のドレインが前記第2の電流駆動トランジスタ(PA2)のゲートに接続され、前記第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記出力信号(Vout)が入力されるトランジスタ(NS6)のドレインが前記第1の電流駆動トランジスタ(PA1)のゲートに接続されてもよい。
本発明によれば、第1の差動トランジスタ対が動作しない範囲の入力信号が入力された場合に、第1の電流制御回路で制御される第1及び第2の電流駆動トランジスタにより、簡素な構成で、第1の出力ノード及び第1の反転出力ノードを補助的に駆動できるようになる。
なお、第3の差動トランジスタ対を構成する各トランジスタのソースと第3の電流源との間、第3の差動トランジスタ対を構成する各トランジスタのドレインと第5又は第6の電流駆動トランジスタのドレインとの間、又は第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに入力信号が入力されるトランジスタのドレインと第2の電流駆動トランジスタのゲートとの間、又は第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに出力信号が入力されるトランジスタのドレインと第1の電流駆動トランジスタのゲートとの間に、他の素子(例えばスイッチング素子等)を設けてもよい。
また本発明に係る演算増幅器では、前記第2の電流制御回路(142)が、一端に前記第1の電源電圧(VDD)が供給された第4の電流源(CS4)と、前記第4の電流源(CS4)の他端に各トランジスタのソースが接続され、前記入力信号(Vin)及び前記出力信号(Vout)が各トランジスタのゲートに入力される第1の導電型の第4の差動トランジスタ対(PS7、PS8)と、各トランジスタのソースに前記第2の電源電圧(VSS)が供給され、各トランジスタのドレインがそれぞれ前記第4の差動トランジスタ対(PS7、PS8)の各トランジスタのドレインに接続され、各トランジスタのゲート及びドレインが接続された第2の導電型の第7及び第8の電流駆動トランジスタ(NS7、NS8)とを含み、前記第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記入力信号(Vin)が入力されるトランジスタ(PS7)のドレインが前記第4の電流駆動トランジスタ(NA4)のゲートに接続され、前記第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記出力信号(Vout)が入力されるトランジスタ(PS8)のドレインが前記第3の電流駆動トランジスタ(NA3)のゲートに接続されてもよい。
本発明によれば、第2の差動トランジスタ対が動作しない範囲の入力信号が入力された場合に、第2の電流制御回路で制御される第3及び第4の電流駆動トランジスタにより、簡素な構成で、第2の出力ノード及び第2の反転出力ノードを補助的に駆動できるようになる。
なお、第4の差動トランジスタ対を構成する各トランジスタのソースと第4の電流源との間、第4の差動トランジスタ対を構成する各トランジスタのドレインと第7又は第8の電流駆動トランジスタのドレインとの間、又は第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに入力信号が入力されるトランジスタのドレインと第7の電流駆動トランジスタのゲートとの間、又は第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに出力信号が入力されるトランジスタのドレインと第8の電流駆動トランジスタのゲートとの間に、他の素子(例えばスイッチング素子等)を設けてもよい。
また本発明に係る演算増幅器では、前記第1及び第3の電流源(CS1、CS3)の動作時の電流値が等しく、かつ前記第2及び第4の電流源(CS2、CS4)の動作時の電流値が等しくてもよい。
本発明によれば、第1及び第2の駆動トランジスタのドレイン電流のバランスを維持できるようになるので、出力信号の立ち上がり又は立ち下がりを揃えることができ、その結果、出力を安定化させて発振しにくくすることができるようになる。
また本発明に係る演算増幅器では、前記第1〜第4の電流源(CS1〜CS4)の各電流源の動作時の電流値が等しくてもよい。
また本発明に係る演算増幅器では、前記第6の電流駆動トランジスタ(PS6)の電流駆動能力に対する前記第1の電流駆動トランジスタ(PA1)の電流駆動能力の比、前記第5の電流駆動トランジスタ(PS5)の電流駆動能力に対する前記第2の電流駆動トランジスタ(PA2)の電流駆動能力の比、前記第8の電流駆動トランジスタ(NS8)の電流駆動能力に対する前記第3の電流駆動トランジスタ(NA3)の電流駆動能力の比、及び前記第7の電流駆動トランジスタ(NS7)の電流駆動能力に対する前記第4の電流駆動トランジスタ(NA4)の電流駆動能力の比のうち少なくとも1つが、1より大きくてもよい。
本発明によれば、第1及び第2の補助回路の電流源の電流値を低減し、より低消費電力化を図ることができる。
また本発明は、複数の走査線と複数のデータ線と走査線及びデータ線により特定される画素電極とを有する電気光学装置を駆動するための駆動回路であって、データ線ごとに設けられる上記のいずれか記載の演算増幅器と、データ線ごとに設けられ、前記演算増幅器への入力信号としてデータ電圧を生成するデータ電圧生成回路とを含む駆動回路に関係する。
本発明によれば、駆動能力を低下させることなく、低コストで低消費電力化を実現する駆動回路を提供できる。
以下、本発明の実施の形態について図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成のすべてが本発明の必須構成要件であるとは限らない。
1. 液晶装置
図1に本実施形態の演算増幅器を適用した液晶装置のブロック図の例を示す。
この液晶装置510(広義には表示装置)は、表示パネル512(狭義にはLCD(Liquid Crystal Display)パネル)、データ線駆動回路520(狭義にはソースドライバ)、走査線駆動回路530(狭義にはゲートドライバ)、コントローラ540、電源回路542を含む。なお、液晶装置510にこれらのすべての回路ブロックを含める必要はなく、その一部の回路ブロックを省略する構成にしてもよい。
ここで表示パネル512(広義には電気光学装置)は、複数の走査線(狭義にはゲート線)と、複数のデータ線(狭義にはソース線と)と、走査線及びデータ線により特定される画素電極を含む。この場合、データ線に薄膜トランジスタTFT(Thin Film Transistor、広義にはスイッチング素子)を接続し、このTFTに画素電極を接続することで、アクティブマトリクス型の液晶装置を構成できる。
より具体的には、表示パネル512はアクティブマトリクス基板(例えばガラス基板)に形成される。このアクティブマトリクス基板には、図1のY方向に複数配列されそれぞれX方向に伸びる走査線G1〜GM(Mは2以上の自然数)と、X方向に複数配列されそれぞれY方向に伸びるデータ線S1〜SN(Nは2以上の自然数)とが配置されている。また、走査線GK(1≦K≦M、Kは自然数)とデータ線SL(1≦L≦N、Lは自然数)との交差点に対応する位置に、薄膜トランジスタTFTKL(広義にはスイッチング素子)が設けられている。
TFTKLのゲート電極は走査線GKに接続され、TFTKLのソース電極はデータ線SLに接続され、TFTKLのドレイン電極は画素電極PEKLに接続されている。この画素電極PEKLと、画素電極PEKLと液晶素子(広義には電気光学物質)を挟んで対向する対向電極VCOM(コモン電極)との間には、液晶容量CLKL(液晶素子)及び補助容量CSKLが形成されている。そして、TFTKL、画素電極PEKL等が形成されるアクティブマトリクス基板と、対向電極VCOMが形成される対向基板との間に液晶が封入され、画素電極PEKLと対向電極VCOMの間の印加電圧に応じて画素の透過率が変化するようになっている。
なお、対向電極VCOMに与えられる電圧は、電源回路542により生成される。また、対向電極VCOMを対向基板上に一面に形成せずに、各走査線に対応するように帯状に形成してもよい。
データ線駆動回路520は、画像データに基づいて表示パネル512のデータ線S1〜SNを駆動する。一方、走査線駆動回路530は、表示パネル512の走査線G1〜GMを順次走査駆動する。
コントローラ540は、図示しない中央処理装置(Central Processing Unit:CPU)等のホストにより設定された内容に従って、データ線駆動回路520、走査線駆動回路530及び電源回路542を制御する。
より具体的には、コントローラ540は、データ線駆動回路520及び走査線駆動回路530に対しては、例えば動作モードの設定や内部で生成した垂直同期信号や水平同期信号の供給を行い、電源回路542に対しては、対向電極VCOMの電圧の極性反転タイミングの制御を行う。
電源回路542は、外部から供給される基準電圧に基づいて、表示パネル512の駆動に必要な各種の電圧(階調電圧)や、対向電極VCOMの電圧を生成する。
なお、図1では、液晶装置510がコントローラ540を含む構成になっているが、コントローラ540を液晶装置510の外部に設けてもよい。或いは、コントローラ540と共にホストを液晶装置510に含めるようにしてもよい。また、データ線駆動回路520、走査線駆動回路530、コントローラ540、電源回路542の一部又は全部を表示パネル512上に形成してもよい。
1.1 データ線駆動回路
図2に、図1のデータ線駆動回路520の構成例を示す。
データ線駆動回路520(広義には、駆動回路)は、シフトレジスタ522、データラッチ524、ラインラッチ526、DAC528(デジタル・アナログ変換回路。広義にはデータ電圧生成回路)、出力バッファ529(演算増幅器)を含む。
シフトレジスタ522は、各データ線に対応して設けられ、順次接続された複数のフリップフロップを含む。このシフトレジスタ522は、クロック信号CLKに同期してイネーブル入出力信号EIOを保持すると、順次クロック信号CLKに同期して隣接するフリップフロップにイネーブル入出力信号EIOをシフトする。
データラッチ524には、コントローラ540から例えば18ビット(6ビット(階調データ)×3(RGB各色))単位で画像データ(DIO)が入力される。データラッチ524は、この画像データ(DIO)を、シフトレジスタ522の各フリップフロップで順次シフトされたイネーブル入出力信号EIOに同期してラッチする。
ラインラッチ526は、コントローラ540から供給される水平同期信号LPに同期して、データラッチ524でラッチされた1水平走査単位の画像データをラッチする。
DAC528は、各データ線に供給すべきアナログのデータ電圧を生成する。具体的にはDAC528は、ラインラッチ526からのデジタルの画像データに基づいて、図1の電源回路542からの階調電圧のいずれかを選択し、デジタルの画像データに対応するアナログのデータ電圧を出力する。
出力バッファ529は、DAC528からのデータ電圧をバッファリングしてデータ線に出力し、データ線を駆動する。具体的には、出力バッファ529は、各データ線毎に設けられたボルテージフォロワ接続の演算増幅器OPC1〜OPCNを含み、これらの各演算増幅器OPC1〜OPCNが、DAC528からのデータ電圧をインピーダンス変換して、各データ線に出力する。
なお、図2では、デジタルの画像データをデジタル・アナログ変換して、出力バッファ529を介してデータ線に出力する構成にしているが、アナログの映像信号をサンプル・ホールドして、出力バッファ529を介してデータ線に出力する構成にしてもよい。
1.2 走査線駆動回路
図3に、図1の走査線駆動回路530の構成例を示す。
走査線駆動回路530は、シフトレジスタ532、レベルシフタ534、出力バッファ536を含む。
シフトレジスタ532は、各走査線に対応して設けられ、順次接続された複数のフリップフロップを含む。このシフトレジスタ532は、クロック信号CLKに同期してイネーブル入出力信号EIOをフリップフロップに保持すると、順次クロック信号CLKに同期して隣接するフリップフロップにイネーブル入出力信号EIOをシフトする。ここで入力されるイネーブル入出力信号EIOは、コントローラ540から供給される垂直同期信号である。
レベルシフタ534は、シフトレジスタ532からの電圧のレベルを、表示パネル512の液晶素子とTFTのトランジスタ能力とに応じた電圧のレベルにシフトする。この電圧レベルとしては、例えば20V〜50Vの高い電圧レベルが必要になる。
出力バッファ536は、レベルシフタ534によってシフトされた走査電圧をバッファリングして走査線に出力し、走査線を駆動する。
2.演算増幅器
近年、表示画像の高精細化や表示パネルのサイズの拡大によって、表示パネルのデータ線の数が増加する傾向にある。表示パネルのデータ線の数が増加すると、隣接するデータ線間の距離が小さくなって配線容量が増えていく。従って、所定の時間内にデータ線を駆動するためには、駆動能力の高い演算増幅器を用いることが求められる。
ところが、演算増幅器の消費電力は大きく、上述のようにデータ線ごとに出力バッファとして演算増幅器が設けられる。そのため、駆動能力を低下させることなく、低消費電力化を実現する演算増幅器を提供することが求められる。
図13に示す演算増幅器は入力不感帯を有するため、約7ボルト振幅で動作させる必要がある上に、不感帯領域に入力電圧が入ると、貫通電流を抑える制御が不可能であり、低消費電力化を図ることができない。これに対し、本実施形態における演算増幅器は、以下に述べる構成を採用することで、入力不感帯をなくし、かつ貫通電流を確実に抑えるため大幅な低消費電力化を図ることができる。
図4に、本実施形態における演算増幅器の構成例を示す。
この演算増幅器は、p型(例えば第1の導電型)差動増幅回路100と、n型(例えば第2の導電型)差動増幅回路110と、出力回路120とを含む。p型差動増幅回路100、n型差動増幅回路110、及び出力回路120は、高電位側の電源電圧VDD(広義には第1の電源電圧)と低電位側の電源電圧VSS(広義には第2の電源電圧)との間の電圧を動作電圧とする。
p型差動増幅回路100は、入力信号Vin及び出力信号Voutの差分を増幅する。p型差動増幅回路100は、出力ノードND1(第1の出力ノード)及び反転出力ノードNXD1(第1の反転出力ノード)を有し、出力ノードND1及び反転出力ノードNXD1の間に入力信号Vin及び出力信号Voutの差分に対応した電圧を出力する。
このp型差動増幅回路100は、第1のカレントミラー回路CM1と、p型(第1の導電型)の第1の差動トランジスタ対を有する。第1の差動トランジスタ対は、p型金属酸化膜半導体(Metal Oxide Semiconductor:以下MOSと略す)トランジスタ(以下、MOSトランジスタを単にトランジスタと略す)PT1、PT2を含む。p型トランジスタPT1、PT2の各トランジスタのソースが第1の電流源CS1に接続されると共に、入力信号Vin及び出力信号Voutが各トランジスタのゲートに入力される。p型トランジスタPT1、PT2のドレイン電流は、第1のカレントミラー回路CM1によって生成される。p型トランジスタPT1のゲートに入力信号Vinが入力される。p型トランジスタPT2のゲートに出力信号Voutが入力される。p型トランジスタPT1のドレインが、出力ノードND1(第1の出力ノード)になる。p型トランジスタPT2のドレインが、反転出力ノードNXD1(第1の反転出力ノード)になる。
n型差動増幅回路110は、入力信号Vin及び出力信号Voutの差分を増幅する。n型差動増幅回路110は、出力ノードND2(第2の出力ノード)及び反転出力ノードNXD2(第2の反転出力ノード)を有し、出力ノードND2及び反転出力ノードNXD2の間に入力信号Vin及び出力信号Voutの差分に対応した電圧を出力する。
このn型差動増幅回路110は、第2のカレントミラー回路CM2と、n型(第2の導電型)の第2の差動トランジスタ対を含む。第2の差動トランジスタ対は、n型トランジスタNT3、NT4を含む。n型トランジスタNT3、NT4の各トランジスタのソースが第2の電流源CS2に接続されると共に、入力信号Vin及び出力信号Voutが各トランジスタのゲートに入力される。n型トランジスタNT3、NT4のドレイン電流は、第2のカレントミラー回路CM2によって生成される。n型トランジスタNT3のゲートに入力信号Vinが入力される。n型トランジスタNT4のゲートに出力信号Voutが入力される。n型トランジスタNT3のドレインが、出力ノードND2(第2の出力ノード)になる。n型トランジスタNT4のドレインが、反転出力ノードNXD2(第2の反転出力ノード)になる。
出力回路120は、p型差動増幅回路100の出力ノードND1(第1の出力ノード)の電圧とn型差動増幅回路110の出力ノードND2(第2の出力ノード)の電圧とに基づいて、出力信号Voutを生成する。
この出力回路120は、n型(第2の導電型)の第1の駆動トランジスタNTO1とp型(第1の導電型)の第2の駆動トランジスタPTO1とを含む。第1の駆動トランジスタNTO1のゲート(電圧)は、p型差動増幅回路100の出力ノードND1(第1の出力ノード)の電圧に基づいて制御される。第2の駆動トランジスタPTO1のゲート(電圧)は、n型差動増幅回路110の出力ノード(ND2)(第2の出力ノード)の電圧に基づいて制御される。第2の駆動トランジスタPTO1のドレインは、第1の駆動トランジスタNTO1のドレインに接続される。そして出力回路120は、第1の駆動トランジスタNTO1のドレインの電圧(第2の駆動トランジスタPTO1のドレインの電圧)を、出力信号Voutとして出力する。
更に本実施形態における演算増幅器は、第1及び第2の補助回路130、140を含むことで、入力不感帯をなくし、かつ貫通電流を抑える。この結果、動作電圧の範囲を不要に広げることなく、貫通電流を抑えて低消費電力化を実現する。
ここで、第1の補助回路130は、入力信号Vin及び出力信号Voutに基づいて、p型差動増幅回路100の出力ノードND1(第1の出力ノード)及び反転出力ノードNXD1(第1の反転出力ノード)のうち少なくとも一方を駆動する。また第2の補助回路130は、入力信号Vin及び出力信号Voutに基づいて、n型差動増幅回路110の出力ノードND2(第2の出力ノード)及び第2の反転出力ノード(NXD2)のうち少なくとも一方を駆動する。
そして、p型トランジスタPT1(第1の差動トランジスタ対を構成するトランジスタのうち入力信号Vinがゲートに入力されるトランジスタ)のゲート・ソース間(ゲートとソースとの間)の電圧の絶対値がp型トランジスタPT1の閾値電圧の絶対値より小さいとき、第1の補助回路130が、出力ノードND1(第1の出力ノード)及び反転出力ノードNXD1(第1の反転出力ノード)の少なくとも一方を駆動することで、第1の駆動トランジスタNTO1のゲート電圧を制御する。
更に、n型トランジスタNT3(第2の差動トランジスタ対を構成するトランジスタのうち入力信号Vinがゲートに入力されるトランジスタ)のゲート・ソース間の電圧の絶対値がn型トランジスタNT3の閾値電圧の絶対値より小さいとき、第2の補助回路140が、出力ノードND2(第2の出力ノード)及び反転出力ノードNXD2(第2の反転出力ノード)の少なくとも一方を駆動することで、第2の駆動トランジスタPTO1のゲート電圧を制御する。
図5に、図4に示す演算増幅器の動作説明図を示す。
ここで、高電位側の電源電圧をVDD、低電位側の電源電圧をVSS、入力信号の電圧をVin、p型トランジスタPT1の閾値電圧をVthp、n型トランジスタNT3の閾値電圧Vthnとする。
VDD≧Vin>VDD−|Vthp|では、p型トランジスタがオフ、n型トランジスタがオンとなる。ここでp型トランジスタがゲート電圧に応じてカットオフ領域、線形領域、又は飽和領域で動作する場合、p型トランジスタがオフとは、カットオフ領域であることを意味する。同様にn型トランジスタがゲート電圧に応じてカットオフ領域、線形領域、又は飽和領域で動作する場合、n型トランジスタがオンとは、線形領域又は飽和領域であることを意味する。従って、VDD≧Vin>VDD−|Vthp|では、p型差動増幅回路100は動作せず(オフ)、n型差動増幅回路110は動作する(オン)。そこで第1の補助回路130の動作をオン(出力ノードND1(第1の出力ノード)及び反転出力ノードNXD1(第1の反転出力ノード)の少なくとも一方を駆動させ)し、第2の補助回路140の動作をオフ(出力ノードND2(第2の出力ノード)及び反転出力ノードNXD1(第2の反転出力ノード)を駆動させない)する。このように、p型差動増幅回路100が動作しない範囲で、第1の補助回路130によりp型差動増幅回路100の出力ノードND1(反転出力ノードNXD1)を駆動することで、p型差動増幅回路100の第1の差動トランジスタ対の入力不感帯の範囲の入力信号Vinに対しても、出力ノードND1の電圧を不定状態にすることがなくなる。
VDD−|Vthp|≧Vin≧Vthn+VSSでは、p型トランジスタがオン、n型トランジスタがオンとなる。ここでp型トランジスタがゲート電圧に応じてカットオフ領域、線形領域、又は飽和領域で動作する場合、p型トランジスタがオンとは、線形領域又は飽和領域であることを意味する。従って、p型差動増幅回路100は動作し(オン)、n型差動増幅回路110も動作する(オン)。この場合、第1の補助回路130の動作をオン又はオフし、第2の補助回路140の動作をオン又はオフする。即ち、p型差動増幅回路100及びn型差動増幅回路110が動作するため、出力ノードND1、ND2が不定状態にならず、図13に示す構成の差動増幅器と同様に、出力回路120により出力信号Voutを出力する。従って、第1及び第2補助回路130、140を動作させてもよいし、動作させなくてもよい。図5では、動作をオンさせている。
Vthn+VSS>Vin≧VSSでは、p型トランジスタがオン、n型トランジスタがオフとなる。ここでn型トランジスタがゲート電圧に応じてカットオフ領域、線形領域、又は飽和領域で動作する場合、n型トランジスタがオフとは、カットオフ領域であることを意味する。従って、n型差動増幅回路110は動作せず(オフ)、p型差動増幅回路100は動作する(オン)。そこで第2の補助回路140の動作をオン(出力ノードND2(第2の出力ノード)及び反転出力ノードNXD2(第2の反転出力ノード)の少なくとも一方を駆動させ)し、第1の補助回路130の動作をオフする。このように、n型差動増幅回路110が動作しない範囲で、第2の補助回路140によりn型差動増幅回路110の出力ノードND2(反転出力ノードNXD2)を駆動することで、n型差動増幅回路110の第2の差動トランジスタ対の入力不感帯の範囲の入力信号Vinに対しても、出力ノードND2の電圧を不定状態にすることがなくなる。
以上のように第1及び第2の補助回路130、140により、出力回路120を構成する第1及び第2の駆動トランジスタNTO1、PTO1のゲート電圧が制御できるようになり、入力信号Vinが入力不感帯の範囲であることに起因する不要な貫通電流の発生を無くすことができる。しかも、入力信号Vinの入力不感帯を無くすことで、p型トランジスタの閾値電圧Vthp及びn型トランジスタの閾値電圧Vthnのばらつきを考慮して約1.9ボルトのオフセットを設ける必要がなくなる。そのため、高電位側の電源電圧VDDと低電位側の電源電圧VSSとの間の電圧を振幅として、演算増幅器を形成できるようになるので、駆動能力を低下させることなく動作電圧を狭くでき、更に消費電力を削減できるようになる。これは、昇圧回路の実装や製造プロセスの低耐圧化を意味し、低コスト化を実現する。
以下では、本実施形態における演算増幅器の詳細な構成例について説明する。
図4において、p型差動増幅回路100は、第1の電流源CS1と、上述の第1の差動トランジスタ対と、第1のカレントミラー回路CM1とを含む。第1の電流源CS1の一端に、高電位側の電源電圧VDD(第1の電源電圧)が供給される。第1の電流源CS1の他端に、上述の第1の差動トランジスタ対を構成するp型トランジスタPT1、PT2のソースが接続される。
第1のカレントミラー回路CM1は、ゲート同士が互いに接続されたn型(第2の導電型)の第1のトランジスタ対を含む。この第1のトランジスタ対は、n型トランジスタNT1、NT2を含む。n型トランジスタNT1、NT2の各トランジスタのソースに低電位側の電源電圧VSS(第2の電源電圧)が供給される。n型トランジスタNT1のドレインが出力ノードND1(第1の出力ノード)に接続される。n型トランジスタNT2のドレインが反転出力ノードNXD1(第1の反転出力ノード)に接続される。n型トランジスタNT2(第1の差動トランジスタ対を構成するトランジスタのうち反転出力ノードNXD1に接続されるトランジスタ)のドレイン及びゲートが接続される。
またn型差動増幅回路110は、第2の電流源CS2と、上述の第2の差動トランジスタ対と、第2のカレントミラー回路CM2とを含む。第2の電流源CS2の一端に、低電位側の電源電圧VSS(第2の電源電圧)が供給される。第2の電流源CS2の他端に、上述の第2の差動トランジスタ対を構成するn型トランジスタNT3、NT4のソースが接続される。
第2のカレントミラー回路CM2は、ゲート同士が互いに接続されたp型(第1の導電型)の第2のトランジスタ対を含む。この第2のトランジスタ対は、p型トランジスタPT3、PT4を含む。p型トランジスタPT3、PT4の各トランジスタのソースに高電位側の電源電圧VDD(第1の電源電圧)が供給される。p型トランジスタPT3のドレインが出力ノードND2(第2の出力ノード)に接続される。p型トランジスタPT4のドレインが反転出力ノードNXD2(第2の反転出力ノード)に接続される。p型トランジスタPT4(第2のトランジスタ対を構成するトランジスタのうち反転出力ノードNXD2に接続されるトランジスタ)のドレイン及びゲートが接続される。
また第1の補助回路130は、p型(第1の導電型)の第1及び第2の電流駆動トランジスタPA1、PA2と、第1の電流制御回路132とを含むことができる。第1及び第2の電流駆動トランジスタPA1、PA2の各トランジスタのソースに、高電位側の電源電圧VDD(第1の電源電圧)が供給される。第1の電流駆動トランジスタPA1のドレインは、出力ノードND1(第1の出力ノード)に接続される。第2の電流駆動トランジスタPA2のドレインは、反転出力ノードNXD1(第1の反転出力ノード)に接続される。
そして、第1の電流制御回路132が、入力信号Vin及び出力信号Voutに基づいて第1及び第2の電流駆動トランジスタPA1、PA2のゲート電圧を制御する。より具体的には、第1の差動トランジスタ対を構成するトランジスタのうち入力信号Vinがゲートに入力されるp型トランジスタPT1のゲート・ソース間の電圧(の絶対値)が該トランジスタの閾値電圧(の絶対値)より小さいとき、第1の電流制御回路132が、出力ノードND1(第1の出力ノード)及び反転出力ノードNXD1(第1の反転出力ノード)の少なくとも一方を駆動するように第1及び第2の電流駆動トランジスタPA1、PA2のゲート電圧を制御する。
また第2の補助回路140は、n型(第2の導電型)の第3及び第4の電流駆動トランジスタNA3、NA4と、第2の電流制御回路142とを含むことができる。第3及び第4の電流駆動トランジスタNA3、NA4の各トランジスタのソースに、低電位側の電源電圧VSS(第2の電源電圧)が供給される。第3の電流駆動トランジスタNA3のドレインは、出力ノードND2(第2の出力ノード)に接続される。第4の電流駆動トランジスタNA4のドレインは、反転出力ノードNXD2(第2の反転出力ノード)に接続される。
そして、第2の電流制御回路142が、入力信号Vin及び出力信号Voutに基づいて第3及び第4の電流駆動トランジスタNA3、NA4のゲート電圧を制御する。より具体的には、第2の差動トランジスタ対を構成するトランジスタのうち入力信号Vinがゲートに入力されるn型トランジスタNT3のゲート・ソース間の電圧の絶対値が該トランジスタの閾値電圧の絶対値より小さいとき、第2の電流制御回路142が、出力ノードND2(第2の出力ノード)及び反転出力ノードNXD2(第2の反転出力ノード)の少なくとも一方を駆動するように第3及び第4の電流駆動トランジスタNA3、NA4のゲート電圧を制御する。
図6に、第1の電流制御回路132の構成例を示す。但し、図4に示す演算増幅器と同一部分には同一符号を付し、適宜説明を省略する。
第1の電流制御回路132は、第3の電流源CS3と、n型(第2の導電型)の第3の差動トランジスタ対と、p型(第1の導電型)の第5及び第6の電流駆動トランジスタPS5、PS6とを含む。
第3の電流源CS3の一端に、低電位側の電源電圧VSS(第2の電源電圧)が供給される。
第3の差動トランジスタ対は、n型トランジスタNS5、NS6を含む。n型トランジスタNS5、NS6の各トランジスタのソースが、第3の電流源CS3の他端に接続される。n型トランジスタNS5のゲートに、入力信号Vinが入力される。n型トランジスタNS6のゲートに、出力信号Voutが入力される。
第5及び第6の電流駆動トランジスタPS5、PS6の各トランジスタのソースに、高電位側の電源電圧VDD(第1の電源電圧)が供給される。第5の電流駆動トランジスタPS5のドレインが、第3の差動トランジスタ対を構成するn型トランジスタNS5のドレインに接続される。第6の電流駆動トランジスタPS6のドレインが、第3の差動トランジスタ対を構成するn型トランジスタNS6のドレインに接続される。第5の電流駆動トランジスタPS5のゲート及びドレインが接続される。第6の電流駆動トランジスタPS6のゲート及びドレインが接続される。
そして、第3の差動トランジスタ対を構成するn型トランジスタNS5(第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに入力信号Vinが入力されるトランジスタ)のドレイン(或いは第5の電流駆動トランジスタPS5のドレイン)が、第2の電流駆動トランジスタPA2のゲートに接続される。また、第3の差動トランジスタ対を構成するn型トランジスタNS6(第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに出力信号Voutが入力されるトランジスタ)のドレイン(或いは第6の電流駆動トランジスタPS6のドレイン)が、第1の電流駆動トランジスタPA1のゲートに接続される。
即ち、第1及び第6の電流駆動トランジスタPA1、PS6は、カレントミラー回路を構成する。同様に、第2及び第5の電流駆動トランジスタPA2、PS5は、カレントミラー回路を構成する。
図7に、第2の電流制御回路142の構成例を示す。但し、図4に示す演算増幅器と同一部分には同一符号を付し、適宜説明を省略する。
第2の電流制御回路142は、第4の電流源CS4と、p型(第1の導電型)の第4の差動トランジスタ対と、n型(第2の導電型)の第7及び第8の電流駆動トランジスタNS7、NS8とを含む。
第4の電流源CS4の一端に、高電位側の電源電圧VDD(第1の電源電圧)が供給される。
第4の差動トランジスタ対は、p型トランジスタPS7、PS8を含む。p型トランジスタPS7、PS8の各トランジスタのソースが、第4の電流源CS4の他端に接続される。p型トランジスタPS7のゲートに、入力信号Vinが入力される。p型トランジスタPS8のゲートに、出力信号Voutが入力される。
第7及び第8の電流駆動トランジスタNS7、NS8の各トランジスタのソースに、低電位側の電源電圧VSS(第2の電源電圧)が供給される。第7の電流駆動トランジスタNS7のドレインが、第4の差動トランジスタ対を構成するp型トランジスタPS7のドレインに接続される。第8の電流駆動トランジスタNS8のドレインが、第4の差動トランジスタ対を構成するp型トランジスタPS8のドレインに接続される。第7の電流駆動トランジスタNS7のゲート及びドレインが接続される。第8の電流駆動トランジスタNS8のゲート及びドレインが接続される。
そして、第4の差動トランジスタ対を構成するp型トランジスタPS7(第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに入力信号Vinが入力されるトランジスタ)のドレイン(或いは第7の電流駆動トランジスタNS7のドレイン)が、第4の電流駆動トランジスタNA4のゲートに接続される。また、第4の差動トランジスタ対を構成するp型トランジスタPS8(第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに出力信号Voutが入力されるトランジスタ)のドレイン(或いは第8の電流駆動トランジスタNS8のドレイン)が、第3の電流駆動トランジスタNA3のゲートに接続される。
即ち、第3及び第8の電流駆動トランジスタNA3、NS8は、カレントミラー回路を構成する。同様に、第4及び第7の電流駆動トランジスタNA4、NS7は、カレントミラー回路を構成する。
次に、第1の補助回路130が図6に示す第1の電流制御回路132を有し、第2の補助回路140が図7に示す構成の第2の電流制御回路142を有するものとして、図4に示す構成の演算増幅器の動作について説明する。
まず、Vthn+VSS≧Vin>VSSのとき、p型差動増幅回路100は、p型トランジスタPT1がオンとなって適正な動作を行うが、n型差動増幅回路110は、n型トランジスタNT3が動作しないため、n型差動増幅回路110の各ノードの電圧は不定となる。
ここで第2の補助回路140に着目すると、p型トランジスタPS7がオンしてインピーダンスが小さくなるため、第4の電流駆動トランジスタNA4のゲート電圧が上がる。この結果、第4の電流駆動トランジスタNA4のインピーダンスが小さくなる。即ち、第4の電流駆動トランジスタNA4が反転出力ノードNXD2を駆動して電流を引き込み、反転出力ノードNXD2の電位が低くなる。この結果、p型トランジスタPT3のインピーダンスが小さくなって、出力ノードND2の電位が上がる。そして、出力回路120の第2の駆動トランジスタPTO1のインピーダンスが大きくなって、出力信号Voutの電位が下がる。これにより、p型トランジスタPS8のインピーダンスが小さくなって、第3の電流駆動トランジスタNA3のゲート電圧が上昇する。従って、第3の電流駆動トランジスタNA3のインピーダンスが小さくなり、出力ノードND2の電位が下がる。
こうして、p型トランジスタPT3のインピーダンスを小さくして出力ノードND2の電位を上げた結果がフィードバックされ、第3の電流駆動トランジスタNA3のインピーダンスを小さくして出力ノードND2の電位を下げる。この結果、入力信号Vinの電圧と出力信号Voutの電圧がほぼ等しくなる平衡状態になり、第2の駆動トランジスタPTO1のゲート電圧が最適なところに確定する。
次に、VDD≧Vin>VDD−|Vthp|のとき、上述の場合と逆に動作する。即ち、n型差動増幅回路110は、n型トランジスタNT3がオンとなって適正な動作を行うが、p型差動増幅回路100は、p型トランジスタPT1が動作しないため、p型差動増幅回路100の各ノードの電圧は不定となる。
ここで第1の補助回路130に着目すると、n型トランジスタNS5がオンしてインピーダンスが小さくなるため、第2の電流駆動トランジスタPA2のゲート電圧が下がる。この結果、第2の電流駆動トランジスタPA2のインピーダンスが小さくなる。即ち、第2の電流駆動トランジスタPA2が反転出力ノードNXD1を駆動して電流を供給し、反転出力ノードNXD1の電位が高くなる。この結果、n型トランジスタNT2のインピーダンスが小さくなって、出力ノードND1の電位が下がる。そして、出力回路120の第1の駆動トランジスタNTO1のインピーダンスが大きくなって、出力信号Voutの電位が上がる。これにより、n型トランジスタNS6のインピーダンスが小さくなって、第1の電流駆動トランジスタPA1のゲート電圧が下がる。従って、第1の電流駆動トランジスタPA1のインピーダンスが小さくなり、出力ノードND1の電位が上がる。
こうして、n型トランジスタNT2のインピーダンスを小さくして出力ノードND1の電位を下げた結果がフィードバックされ、第1の電流駆動トランジスタPA1のインピーダンスを小さくして出力ノードND1の電位を上げる。この結果、入力信号Vinの電圧と出力信号Voutの電圧がほぼ等しくなる平衡状態になり、第1の駆動トランジスタNTO1のゲート電圧が最適なところに確定する。
なおVDD−|Vthp|≧Vin≧Vthn+VSSでは、p型差動増幅回路100及びn型差動増幅回路110が動作し、出力ノードND1、ND2の電位が確定するため、第1及び第2の補助回路130、140を動作させなくても、入力信号Vinの電圧と出力信号Voutの電圧がほぼ等しくなる平衡状態になる。
図8に、p型差動増幅回路100及び第1の補助回路130のノードの電圧変化についてのシミュレーション結果を示す。図9に、n型差動増幅回路110及び第2の補助回路140のノードの電圧変化についてのシミュレーション結果を示す。更に図10に、出力ノードND1、ND2の電圧変化についてのシミュレーション結果を示す。
図8において、ノードSG1は、第1の電流駆動トランジスタPA1のゲートである。ノードSG2は、第2の電流駆動トランジスタPA2のゲートである。ノードSG3は、第1の差動トランジスタ対を構成するp型トランジスタPT1、PT2のソースである。
図9において、ノードSG4は、第4の電流駆動トランジスタNA4のゲートである。ノードSG5は、第3の電流駆動トランジスタNA3のゲートである。ノードSG6は、第2の差動トランジスタ対を構成するn型トランジスタNT3、NT4のソースである。
図8〜図10に示すように、0.5ボルト付近の入力信号Vinが入力された場合であっても、出力ノードND1が不定状態とならず、出力回路120を構成する第1の駆動トランジスタNTO1のゲート電圧を制御している。
以上説明したように、本実施形態によれば、入力不感帯をなくし、いわゆるrail-to-railで動作し、かつ出力回路120の貫通電流を確実に抑える制御が可能となる。これにより、大幅に低消費電力化を実現する演算増幅器を提供できる。更にAB級動作が可能となるため、液晶の印加電圧を反転させる極性反転駆動において、極性に関わらずデータ線を安定して駆動できるようになる。
2.1 電流値の調整
本実施形態における演算増幅器では、p型差動増幅回路100、n型差動増幅回路110、第1の補助回路130、及び第2の補助回路140の電流源の動作時の電流値を工夫することで、更に発振しにくくして回路の安定性を向上させることができる。
図11に、本実施形態における演算増幅器の他の構成例の回路図を示す。図11では、各電流源をトランジスタで構成している。この場合、各トランジスタのゲート電圧を制御することで、電流源の無駄な電流消費を削減できる。
本実施形態における演算増幅器の発振を防止するためには、出力回路120を構成する第1及び第2の駆動トランジスタNTO1、PTO1のドレイン電流を等しくすることが有効である。第1の駆動トランジスタNTO1のドレイン電流は、p型差動増幅回路100の第1の電流源CS1の動作時の電流値I1と、第1の補助回路130の第3の電流源CS3の動作時の電流値I3とにより定まる。第2の駆動トランジスタPTO1のドレイン電流は、n型差動増幅回路110の第2の電流源CS2の動作時の電流値I2と、第2の補助回路140の第4の電流源CS4の動作時の電流値I4とにより定まる。
ここで、電流値I1と電流値I3とが等しくないものとする。例えば電流値I1を10、電流値I3を5とする。同様に、電流値I2と電流値I4とが等しくないものとする。例えば電流値I2を10、電流値I4を5とする。
入力信号Vinの電圧が、p型差動増幅回路100と第1の補助回路130が動作する範囲の場合、第1の駆動トランジスタNTO1のドレイン電流は例えば15(=I1+I3=10+5)に相当する分が流れる。同様に、入力信号Vinの電圧が、n型差動増幅回路110と第2の補助回路140が動作する範囲の場合、第2の駆動トランジスタPTO1のドレイン電流は例えば15(=I2+I4=10+5)に相当する分が流れる。
これに対して、例えば入力信号Vinの電圧が低くなってn型トランジスタが動作しなくなると、n型差動増幅回路110と第1の補助回路130が動作しなくなる。従って、第2及び第3の電流源CS2、CS3が流れなくなる(I2=0、I3=0)。そのため、第1の駆動トランジスタNTO1のドレイン電流は例えば10(=I1)に相当する分が流れ、第2の駆動トランジスタPTO1のドレイン電流は例えば5(=I4)に相当する分が流れる。例えば入力信号Vinの電圧が高くなってp型トランジスタが動作しなくなる場合も同様である。
このように、出力回路120を構成する第1及び第2の駆動トランジスタNTO1、PTO1のドレイン電流が異なり、出力信号Voutの立ち上がり又は立ち下がりが異なると、出力が安定する時間が異なることとなり、発振し易くなる。
そこで、本実施形態における演算増幅器では、第1及び第3の電流源CS1、CS3の動作時の電流値が等しく(I1=I3)、かつ第2及び第4の電流源CS2、CS4の動作時の電流値が等しい(I2=I4)ことが望ましい。これは、第1〜第4の電流源CS1〜CS4を構成するトランジスタのチャネル長Lを共通にし、第1及び第3の電流源CS1、CS3を構成するトランジスタのチャネル幅を等しくし、かつ第2及び第4の電流源CS2、CS4を構成するトランジスタのチャネル幅を等しくすることで実現できる。
更に、第1〜第4の電流源CS1〜CS4の各電流源の動作時の電流値が等しいこと(I1=I2=I3=I4)が望ましい。この場合、設計が容易になるからである。
また第3及び第4の電流源CS3、CS4の動作時の電流値の少なくとも一方を削減することで、より低消費電力化を図ることができる。この場合、第1〜第4の電流駆動トランジスタPA1、PA2、NA3、NA4の各トランジスタの電流駆動能力を低下させることなく、第3及び第4の電流源CS3、CS4の動作時の電流値の少なくとも一方を削減する必要がある。
図12に、第4の電流源CS4の動作時の電流値を削減する構成例の説明図を示す。但し、図4、図7、図11と同一部分には同一符号を付し、適宜説明を省略する。
図12では、第4の電流源CS4の動作時の電流値を削減するために、第3及び第8の電流駆動トランジスタNA3、NS8がカレントミラー回路を構成することを利用する。第3の電流駆動トランジスタNA3のチャネル長をL、チャネル幅をWA3、第3の電流駆動トランジスタNA3のドレイン電流をINA3とし、第8の電流駆動トランジスタNS8のチャネル長をL、チャネル幅をWS8、第8の電流駆動トランジスタNS8のドレイン電流をINS8とする。このとき、INA3=(WA3/WS8)×INS8と表わすことができる。ここで、(WA3/WS8)は、第8の電流駆動トランジスタNS8の電流駆動能力に対する第3の電流駆動トランジスタNA3の電流駆動能力の比を意味する。従って、(WA3/WS8)を1より大きくすることで、第3の電流駆動トランジスタNA3の電流駆動能力を低下させることなくドレイン電流INS8を小さくでき、第4の電流源CS4の動作時の電流値I4も小さくできる。
なお図12において、第4及び第7の電流駆動トランジスタNA4、NS7がカレントミラー回路を構成することを利用してもよい。
また同様に、第3の電流源CS3の動作時の電流値を削減することが望ましい。この場合、第1及び第6の電流駆動トランジスタPA1、PS6がカレントミラー回路を構成することを利用したり、第2及び第5の電流駆動トランジスタPA2、PS5がカレントミラー回路を構成することを利用したりする。
以上のように、第6の電流駆動トランジスタPS6の電流駆動能力に対する第1の電流駆動トランジスタPA1の電流駆動能力の比、第5の電流駆動トランジスタPS5の電流駆動能力に対する第2の電流駆動トランジスタPA2の電流駆動能力の比、第8の電流駆動トランジスタNS8の電流駆動能力に対する第3の電流駆動トランジスタNA3の電流駆動能力の比、及び第7の電流駆動トランジスタNS7の電流駆動能力に対する第4の電流駆動トランジスタNA4の電流駆動能力の比のうち少なくとも1つを、1より大きくする。こうすることで、第3及び第4の電流源CS3、CS4のうち少なくとも1つの動作時の電流値を削減できる。
なお、本発明は上述した実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば表示パネルとして液晶表示パネルに適用する場合について説明したが、これに限定されるものではない。また各トランジスタをMOSトランジスタとして説明したが、これに限定されるものではない。
また演算増幅器、該演算増幅器を構成するp型差動増幅回路、n型差動増幅回路、出力回路、第1の補助回路、第2の補助回路の構成も、上述の実施形態で説明した構成に限定されず、これらの均等な種々の構成を採用できる。
また、本発明のうち従属請求項に係る発明においては、従属先の請求項の構成要件の一部を省略する構成とすることもできる。また、本発明の1の独立請求項に係る発明の要部を、他の独立請求項に従属させることもできる。
本実施形態の演算増幅器を適用した液晶装置のブロック図。 図1のデータ線駆動回路の構成例を示す図。 図1の走査線駆動回路の構成例を示す図。 本実施形態における演算増幅器の構成例を示す図。 図4に示す演算増幅器の動作説明図。 第1の電流制御回路の構成例の回路図。 第2の電流制御回路の構成例の回路図。 p型差動増幅回路及び第1の補助回路のノードの電圧変化についてのシミュレーション結果を示す図。 n型差動増幅回路及び第2の補助回路のノードの電圧変化についてのシミュレーション結果を示す図。 出力ノードの電圧変化についてのシミュレーション結果を示す図。 本実施形態における演算増幅器の他の構成例の回路図。 第4の電流源の動作時の電流値を削減する構成例の説明図。 公知の演算増幅器の構成図。 入力不感帯の説明図。
符号の説明
100 p型差動増幅回路(第1の導電型差動増幅回路)、
110 n型差動増幅回路(第2の導電型差動増幅回路)、
120 出力回路、130 第1の補助回路、132 第1の電流制御回路、
140 第2の補助回路、142 第2の電流制御回路、
VDD 高電位側の電源電圧(第1の電源電圧)、Vin 入力信号、
Vout 出力信号、VSS 低電位側の電源電圧(第2の電源電圧)、
PA1 第1の電流駆動トランジスタ、PA2 第2の電流駆動トランジスタ、
PS7、PS8、PT1、PT2、PT3、PT4 p型トランジスタ、
PS5 第5の電流駆動トランジスタ、PS6 第6の電流駆動トランジスタ、
PTO1 第2の駆動トランジスタ、
NA3 第3の電流駆動トランジスタ、NA4 第4の電流駆動トランジスタ、
NS5、NS6、NT1、NT2、NT3、NT4 n型トランジスタ、
NS7 第7の電流駆動トランジスタ、NS8 第8の電流駆動トランジスタ、
NTO1 第1の駆動トランジスタ

Claims (5)

  1. 各トランジスタのソースが第1の電流源に接続されると共に、入力信号及び出力信号が各トランジスタのゲートに入力される第1の導電型の第1の差動トランジスタ対と、前記第1の差動トランジスタ対の各トランジスタのドレイン電流を生成する第1のカレントミラー回路とを有する第1の導電型差動増幅回路と、
    各トランジスタのソースが第2の電流源に接続されると共に、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第2の導電型の第2の差動トランジスタ対と、前記第2の差動トランジスタ対の各トランジスタのドレイン電流を生成する第2のカレントミラー回路とを有する第2の導電型差動増幅回路と、
    前記入力信号及び前記出力信号に基づいて、前記第1の差動トランジスタ対を構成する2つのトランジスタのドレインである第1の出力ノード及び第1の反転出力ノードのうち少なくとも一方を駆動する第1の補助回路と、
    前記入力信号及び前記出力信号に基づいて、前記第2の差動トランジスタ対を構成する2つのトランジスタのドレインである第2の出力ノード及び第2の反転出力ノードのうち少なくとも一方を駆動する第2の補助回路と、
    前記第1の出力ノードの電圧に基づいてそのゲート電圧が制御される第2の導電型の第1の駆動トランジスタと、そのドレインが前記第1の駆動トランジスタのドレインに接続され前記第2の出力ノードの電圧に基づいてそのゲート電圧が制御される第1の導電型の第2の駆動トランジスタとを有し、前記第1の駆動トランジスタのドレインの電圧を前記出力信号として出力する出力回路とを含み、
    前記第1の補助回路が、
    各トランジスタのソースに第1の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第1の出力ノード及び前記第1の反転出力ノードに接続された第1の導電型の第1及び第2の電流駆動トランジスタと、
    前記入力信号及び前記出力信号に基づいて前記第1及び第2の電流駆動トランジスタのゲート電圧を制御する第1の電流制御回路とを含み、
    前記第1の電流制御回路が、
    一端に第2の電源電圧が供給された第3の電流源と、
    前記第3の電流源の他端に各トランジスタのソースが接続され、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第2の導電型の第3の差動トランジスタ対と、
    各トランジスタのソースに前記第1の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第3の差動トランジスタ対の各トランジスタのドレインに接続され、各トランジスタのゲート及びドレインが接続された第1の導電型の第5及び第6の電流駆動トランジスタとを含み、
    前記第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記入力信号が入力されるトランジスタのドレインが前記第2の電流駆動トランジスタのゲートに接続され、
    前記第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記出力信号が入力されるトランジスタのドレインが前記第1の電流駆動トランジスタのゲートに接続され、
    前記第2の補助回路が、
    各トランジスタのソースに前記第2の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第2の出力ノード及び前記第2の反転出力ノードに接続された第2の導電型の第3及び第4の電流駆動トランジスタと、
    前記入力信号及び前記出力信号に基づいて前記第3及び第4の電流駆動トランジスタのゲート電圧を制御する第2の電流制御回路とを含み、
    前記第2の電流制御回路が、
    一端に前記第1の電源電圧が供給された第4の電流源と、
    前記第4の電流源の他端に各トランジスタのソースが接続され、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第1の導電型の第4の差動トランジスタ対と、
    各トランジスタのソースに前記第2の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第4の差動トランジスタ対の各トランジスタのドレインに接続され、各トランジスタのゲート及びドレインが接続された第2の導電型の第7及び第8の電流駆動トランジスタとを含み、
    前記第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記入力信号が入力されるトランジスタのドレインが前記第4の電流駆動トランジスタのゲートに接続され、
    前記第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記出力信号が入力されるトランジスタのドレインが前記第3の電流駆動トランジスタのゲートに接続され、
    前記入力信号の電圧が、前記第1の電源電圧以下の電圧であり、且つ前記第1の差動トランジスタ対を構成するトランジスタのうち前記入力信号がゲートに入力されるトランジスタの閾値電圧の絶対値だけ前記第1の電源電圧より低電位の電圧より高いとき、
    前記第1の電流制御回路が、
    前記第1の出力ノード及び前記第1の反転出力ノードの少なくとも一方を駆動するように前記第1及び第2の電流駆動トランジスタのゲート電圧を制御し、
    前記入力信号の電圧が、前記第2の差動トランジスタ対を構成するトランジスタのうち前記入力信号がゲートに入力されるトランジスタの閾値電圧だけ前記第2の電源電圧より高電位の電圧以下であり、且つ前記第2の電源電圧より高いとき、
    前記第2の電流制御回路が、
    前記第2の出力ノード及び前記第2の反転出力ノードの少なくとも一方を駆動するように前記第3及び第4の電流駆動トランジスタのゲート電圧を制御し、
    前記第1及び第3の電流源の動作時の電流値が等しく、かつ前記第2及び第4の電流源の動作時の電流値が等しいことを特徴とする演算増幅器。
  2. 入力信号及び出力信号の差分を増幅する第1の導電型差動増幅回路と、
    前記入力信号及び前記出力信号の差分を増幅する第2の導電型差動増幅回路と、
    前記入力信号及び前記出力信号に基づいて、前記第1の導電型差動増幅回路の第1の出力ノード及び第1の反転出力ノードのうち少なくとも一方を駆動する第1の補助回路と、
    前記入力信号及び前記出力信号に基づいて、前記第2の導電型差動増幅回路の第2の出力ノード及び第2の反転出力ノードのうち少なくとも一方を駆動する第2の補助回路と、
    前記第1及び第2の出力ノードの電圧に基づいて前記出力信号を生成する出力回路とを含み、
    前記第1の導電型差動増幅回路が、
    一端に第1の電源電圧が供給される第1の電流源と、
    各トランジスタのソースが前記第1の電流源の他端に接続され、各トランジスタのドレインがそれぞれ前記第1の出力ノード及び前記第1の反転出力ノードに接続され、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第1の導電型の第1の差動トランジスタ対と、
    ゲート同士が互いに接続された第2の導電型の第1のトランジスタ対を有する第1のカレントミラー回路とを含み、
    前記第1のトランジスタ対を構成する各トランジスタのソースに第2の電源電圧が供給され、該各トランジスタのドレインがそれぞれ前記第1の出力ノード及び前記第1の反転出力ノードに接続され、前記第1のトランジスタ対を構成するトランジスタのうち前記第1の反転出力ノードに接続されるトランジスタのドレイン及びゲートが接続され、
    前記第2の導電型差動増幅回路が、
    一端に前記第2の電源電圧が供給される第2の電流源と、
    各トランジスタのソースが前記第2の電流源の他端に接続され、各トランジスタのドレインがそれぞれ前記第2の出力ノード及び前記第2の反転出力ノードに接続され、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第2の導電型の第2の差動トランジスタ対と、
    ゲート同士が互いに接続された第1の導電型の第2のトランジスタ対を有する第2のカレントミラー回路とを含み、
    前記第2のトランジスタ対を構成する各トランジスタのソースに第1の電源電圧が供給され、該各トランジスタのドレインがそれぞれ前記第2の出力ノード及び前記第2の反転出力ノードに接続され、前記第2のトランジスタ対を構成するトランジスタのうち前記第2の反転出力ノードに接続されるトランジスタのドレイン及びゲートが接続され、
    前記第1の補助回路が、
    各トランジスタのソースに前記第1の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第1の出力ノード及び前記第1の反転出力ノードに接続された第1の導電型の第1及び第2の電流駆動トランジスタと、
    前記入力信号及び前記出力信号に基づいて前記第1及び第2の電流駆動トランジスタのゲート電圧を制御する第1の電流制御回路とを含み、
    前記第1の電流制御回路が、
    一端に前記第2の電源電圧が供給された第3の電流源と、
    前記第3の電流源の他端に各トランジスタのソースが接続され、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第2の導電型の第3の差動トランジスタ対と、
    各トランジスタのソースに前記第1の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第3の差動トランジスタ対の各トランジスタのドレインに接続され、各トランジスタのゲート及びドレインが接続された第1の導電型の第5及び第6の電流駆動トランジスタとを含み、
    前記第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記入力信号が入力されるトランジスタのドレインが前記第2の電流駆動トランジスタのゲートに接続され、
    前記第3の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記出力信号が入力されるトランジスタのドレインが前記第1の電流駆動トランジスタのゲートに接続され、
    前記第2の補助回路が、
    各トランジスタのソースに前記第2の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第2の出力ノード及び前記第2の反転出力ノードに接続された第2の導電型の第3及び第4の電流駆動トランジスタと、
    前記入力信号及び前記出力信号に基づいて前記第3及び第4の電流駆動トランジスタのゲート電圧を制御する第2の電流制御回路とを含み、
    前記第2の電流制御回路が、
    一端に前記第1の電源電圧が供給された第4の電流源と、
    前記第4の電流源の他端に各トランジスタのソースが接続され、前記入力信号及び前記出力信号が各トランジスタのゲートに入力される第1の導電型の第4の差動トランジスタ対と、
    各トランジスタのソースに前記第2の電源電圧が供給され、各トランジスタのドレインがそれぞれ前記第4の差動トランジスタ対の各トランジスタのドレインに接続され、各トランジスタのゲート及びドレインが接続された第2の導電型の第7及び第8の電流駆動トランジスタとを含み、
    前記第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記入力信号が入力されるトランジスタのドレインが前記第4の電流駆動トランジスタのゲートに接続され、
    前記第4の差動トランジスタ対を構成するトランジスタのうちそのゲートに前記出力信号が入力されるトランジスタのドレインが前記第3の電流駆動トランジスタのゲートに接続され、
    前記出力回路が、
    前記第2の出力ノードにそのゲートが接続された第1の導電型の第2の駆動トランジスタと、
    前記第1の出力ノードにそのゲートが接続され、前記第2の駆動トランジスタのドレインにそのドレインが接続された第2の導電型の第1の駆動トランジスタとを含み、該ドレインの電圧を前記出力信号として出力し、
    前記入力信号の電圧が、前記第1の電源電圧以下の電圧であり、且つ前記第1の差動トランジスタ対を構成するトランジスタのうち前記入力信号がゲートに入力されるトランジスタの閾値電圧の絶対値だけ前記第1の電源電圧より低電位の電圧より高いとき、
    前記第1の電流制御回路が、
    前記第1の出力ノード及び前記第1の反転出力ノードの少なくとも一方を駆動するように前記第1及び第2の電流駆動トランジスタのゲート電圧を制御し、
    前記入力信号の電圧が、前記第2の差動トランジスタ対を構成するトランジスタのうち前記入力信号がゲートに入力されるトランジスタの閾値電圧だけ前記第2の電源電圧より高電位の電圧以下であり、且つ前記第2の電源電圧より高いとき、
    前記第2の電流制御回路が、
    前記第2の出力ノード及び前記第2の反転出力ノードの少なくとも一方を駆動するように前記第3及び第4の電流駆動トランジスタのゲート電圧を制御し、
    前記第1及び第3の電流源の動作時の電流値が等しく、かつ前記第2及び第4の電流源の動作時の電流値が等しいことを特徴とする演算増幅器。
  3. 請求項1又は2において、
    前記第1〜第4の電流源の各電流源の動作時の電流値が等しいことを特徴とする演算増幅器。
  4. 請求項3において、
    前記第6の電流駆動トランジスタの電流駆動能力に対する前記第1の電流駆動トランジスタの電流駆動能力の比、前記第5の電流駆動トランジスタの電流駆動能力に対する前記第2の電流駆動トランジスタの電流駆動能力の比、前記第8の電流駆動トランジスタの電流駆動能力に対する前記第3の電流駆動トランジスタの電流駆動能力の比、及び前記第7の電流駆動トランジスタの電流駆動能力に対する前記第4の電流駆動トランジスタの電流駆動能力の比のうち少なくとも1つが、1より大きいことを特徴とする演算増幅器。
  5. 複数の走査線と複数のデータ線と走査線及びデータ線により特定される画素電極とを有する電気光学装置を駆動するための駆動回路であって、
    データ線ごとに設けられる請求項1乃至4のいずれか記載の演算増幅器と、
    データ線ごとに設けられ、前記演算増幅器への入力信号としてデータ電圧を生成するデータ電圧生成回路とを含むことを特徴とする駆動回路。
JP2003412269A 2003-12-10 2003-12-10 演算増幅器及びこれを用いた駆動回路 Expired - Fee Related JP3888350B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003412269A JP3888350B2 (ja) 2003-12-10 2003-12-10 演算増幅器及びこれを用いた駆動回路
US11/008,818 US7116171B2 (en) 2003-12-10 2004-12-09 Operational amplifier and driver circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412269A JP3888350B2 (ja) 2003-12-10 2003-12-10 演算増幅器及びこれを用いた駆動回路

Publications (2)

Publication Number Publication Date
JP2005175811A JP2005175811A (ja) 2005-06-30
JP3888350B2 true JP3888350B2 (ja) 2007-02-28

Family

ID=34650467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412269A Expired - Fee Related JP3888350B2 (ja) 2003-12-10 2003-12-10 演算増幅器及びこれを用いた駆動回路

Country Status (2)

Country Link
US (1) US7116171B2 (ja)
JP (1) JP3888350B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739361B2 (ja) * 2003-02-26 2006-01-25 ローム株式会社 半導体集積回路装置
US7432762B2 (en) * 2006-03-30 2008-10-07 Agere Systems Inc. Circuit having enhanced input signal range
US8558852B2 (en) 2006-11-30 2013-10-15 Seiko Epson Corporation Source driver, electro-optical device, and electronic instrument
US7596039B2 (en) * 2007-02-14 2009-09-29 Micron Technology, Inc. Input-output line sense amplifier having adjustable output drive capability
US8174475B2 (en) 2007-10-16 2012-05-08 Seiko Epson Corporation D/A conversion circuit, data driver, integrated circuit device, and electronic instrument
JP4492694B2 (ja) 2007-12-20 2010-06-30 セイコーエプソン株式会社 集積回路装置、電気光学装置及び電子機器
US8115786B2 (en) * 2008-04-02 2012-02-14 Himax Technologies Limited Liquid crystal driving circuit
JP5486259B2 (ja) * 2009-09-29 2014-05-07 セイコーインスツル株式会社 差動増幅器
TW201223137A (en) * 2010-11-25 2012-06-01 Novatek Microelectronics Corp Operational amplifier and display driving circuit using the same
JP5623883B2 (ja) * 2010-11-29 2014-11-12 ルネサスエレクトロニクス株式会社 差動増幅器及びデータドライバ
CN102487266A (zh) * 2010-12-02 2012-06-06 联咏科技股份有限公司 运算放大器与应用其的显示驱动电路
WO2013146058A1 (ja) * 2012-03-30 2013-10-03 シャープ株式会社 表示装置
WO2014139151A1 (en) * 2013-03-15 2014-09-18 Silicon Image, Inc. Line driver with separate pre-driver for feed-through capacitance
CN109243397B (zh) * 2018-11-12 2021-03-19 惠科股份有限公司 显示控制装置以及显示设备
CN116097421A (zh) * 2021-08-31 2023-05-09 京东方科技集团股份有限公司 显示基板和显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554515A (en) * 1984-07-06 1985-11-19 At&T Laboratories CMOS Operational amplifier
US5212457A (en) * 1992-05-19 1993-05-18 At&T Bell Laboratories Input buffer with reduced offset for operational amplifiers or the like
JP3399329B2 (ja) * 1997-12-09 2003-04-21 株式会社村田製作所 演算増幅器
US6605993B2 (en) * 2000-05-16 2003-08-12 Fujitsu Limited Operational amplifier circuit
JP4744686B2 (ja) * 2000-12-06 2011-08-10 ルネサスエレクトロニクス株式会社 演算増幅器
US6586998B2 (en) * 2001-03-02 2003-07-01 Micrel, Incorporated Output stage and method of enhancing output gain
KR100542685B1 (ko) * 2001-06-18 2006-01-16 매그나칩 반도체 유한회사 출력버퍼용 연산 트랜스컨덕턴스 증폭기
JP3908013B2 (ja) 2001-11-19 2007-04-25 Necエレクトロニクス株式会社 表示制御回路及び表示装置
US6710660B1 (en) * 2002-09-17 2004-03-23 National Semiconductor Corporation Class B power buffer with rail to rail output swing and small deadband

Also Published As

Publication number Publication date
JP2005175811A (ja) 2005-06-30
US20050127998A1 (en) 2005-06-16
US7116171B2 (en) 2006-10-03

Similar Documents

Publication Publication Date Title
JP4172471B2 (ja) 駆動回路、電気光学装置及び電子機器
KR100724027B1 (ko) 소스 드라이버, 전기 광학 장치, 전자 기기 및 구동 방법
KR100682431B1 (ko) 소스 드라이버, 전기 광학 장치 및 구동 방법
KR100523883B1 (ko) 구동 회로, 및 구동 방법
US7477271B2 (en) Data driver, display device, and method for controlling data driver
JP3791354B2 (ja) 演算増幅回路、駆動回路、及び駆動方法
KR100523884B1 (ko) 연산 증폭 회로, 구동 회로, 및 구동 방법
JP2006318381A (ja) 電圧発生回路
JP3888350B2 (ja) 演算増幅器及びこれを用いた駆動回路
JP2007181026A (ja) 差動増幅器とデータドライバ及び表示装置
JP3900147B2 (ja) 演算増幅回路、駆動回路及び位相余裕の調整方法
JP5236434B2 (ja) 表示パネルの駆動電圧出力回路
JP3922261B2 (ja) データドライバ及び表示装置
JP2005284271A (ja) コモン電圧生成回路、電源回路、表示ドライバ及びコモン電圧生成方法
JP5236435B2 (ja) 表示パネルの駆動電圧出力回路
JP2007037191A (ja) 電圧生成回路、データドライバ及び表示装置
JP4293162B2 (ja) 演算増幅器
JP4858250B2 (ja) コモン電圧生成回路、電源回路、表示ドライバ及びコモン電圧生成方法
JP2012109848A (ja) 差動増幅回路および液晶表示装置
JP4729982B2 (ja) 演算増幅器、駆動回路及び電気光学装置
JP2006136004A (ja) 演算増幅回路、駆動回路及び位相余裕の調整方法
JP4386116B2 (ja) インピーダンス変換回路、ソースドライバ、電気光学装置及び電子機器
JP4882819B2 (ja) 電圧発生回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees