JP3867065B2 - 電子放出素子及び発光素子 - Google Patents

電子放出素子及び発光素子 Download PDF

Info

Publication number
JP3867065B2
JP3867065B2 JP2003155689A JP2003155689A JP3867065B2 JP 3867065 B2 JP3867065 B2 JP 3867065B2 JP 2003155689 A JP2003155689 A JP 2003155689A JP 2003155689 A JP2003155689 A JP 2003155689A JP 3867065 B2 JP3867065 B2 JP 3867065B2
Authority
JP
Japan
Prior art keywords
electrode
electron
emitter
emitting device
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003155689A
Other languages
English (en)
Other versions
JP2004228064A (ja
Inventor
幸久 武内
七瀧  努
大和田  巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003155689A priority Critical patent/JP3867065B2/ja
Priority to US10/719,596 priority patent/US7288881B2/en
Priority to EP03257434A priority patent/EP1424718A1/en
Publication of JP2004228064A publication Critical patent/JP2004228064A/ja
Application granted granted Critical
Publication of JP3867065B2 publication Critical patent/JP3867065B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of Metal-Insulator-Metal [MIM] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/32Secondary-electron-emitting electrodes

Description

【0001】
【発明の属する技術分野】
本発明は、エミッタとなる物質から放出される2次電子を出力とする電子放出素子及び発光素子に関する。
【0002】
【従来の技術】
近時、電子放出素子は、カソード電極及びアノード電極を有し、フィールドエミッションディスプレイ(FED)やバックライトのような種々のアプリケーションに適用されている。FEDに適用する場合、複数の電子放出素子を2次元的に配列し、これら電子放出素子に対する複数の蛍光体を、所定の間隔をもってそれぞれ配置するようにしている。
【0003】
この電子放出素子の従来例としては、例えば特許文献1〜5がある。また、エミッタ部を誘電体で構成することが考えられているが、誘電体からの電子放出として以下の非特許文献1〜3にて諸説が述べられている。
【0004】
【特許文献1】
特開平1−311533号公報
【特許文献2】
特開平7−147131号公報
【特許文献3】
特開2000−285801号公報
【特許文献4】
特公昭46−20944号公報
【特許文献5】
特公昭44−26125号公報
【非特許文献1】
安岡、石井著「強誘電体陰極を用いたパルス電子源」応用物理第68巻第5号、p546〜550(1999)
【非特許文献2】
V.F.Puchkarev, G.A.Mesyats, On the mechanism of emission from the ferroelectric ceramic cathode, J.Appl.Phys., vol. 78, No. 9, 1 November, 1995, p. 5633-5637
【非特許文献3】
H.Riege, Electron emission ferroelectrics - a review, Nucl. Instr. and Meth. A340, p. 80-89(1994)
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の電子放出素子においては、電子放出が安定せず、電子放出回数はたかだか数万回程度までであり、実用性に乏しいという問題がある。つまり、従来においては、エミッタ部を有する電子放出素子の効果を見出すまでには至っていない。
【0006】
本発明はこのような課題を考慮してなされたものであり、エミッタとなる物質から放出される2次電子を出力とすることにより、電子放出の長寿命化及び信頼性の向上を図ることができる電子放出素子及び発光素子を提供することを目的とする。
【0007】
また、本発明の他の目的は、様々なアプリケーションに適用することができ、電子放出素子の普及に寄与させることができる電子放出素子及び発光素子を提供することにある。
【0008】
【課題を解決するための手段】
第1の本発明に係る電子放出素子は、エミッタとなる物質に1次電子を衝突させ、前記エミッタとなる物質から2次電子を放出させ、その2次電子を出力とすることを特徴とする。この場合、前記エミッタとなる物質から放出された2次電子を、前記エミッタとなる物質上に形成された電界で加速させて電子ビームを得るようにしてもよい。
【0009】
ここで述べる2次電子は、1次電子のクーロン衝突でエネルギーを得て、エミッタとなる物質の外へ飛び出した固体内電子と、オージェ電子と、1次電子がエミッタとなる物質の表面近くで散乱したもの(反射電子)の全てを含む。
【0010】
第1の本発明においては、エミッタとなる物質から放出される2次電子を出力とすることにより、電子放出の長寿命化及び信頼性の向上を図ることができる。これは、本発明に係る電子放出素子を様々なアプリケーションに適用することができることにつながり、電子放出素子の普及に寄与することができる。
【0011】
そして、前記エミッタとなる物質は、誘電体にて構成される。この場合、前記エミッタとなる物質は、圧電材料、反強誘電体材料、電歪材料のいずれかで構成することができる。また、前記第1の電極及び前記第2の電極は、前記エミッタとなる物質の同一面上に形成されていてもよい。
【0012】
また、前記エミッタとなる物質を誘電体にて構成した場合は、前記エミッタとなる物質上に第1の電極を形成し、前記第1の電極とは別に、前記エミッタとなる物質上に第2の電極を形成し、前記第1の電極と前記第2の電極間に駆動電圧を印加して前記エミッタとなる物質を分極反転させることにより、前記1次電子を得る。
【0013】
ここで、エミッタとなる物質に誘電体を用いた本発明に係る電子放出素子の作用を説明する。まず、第1の電極と第2の電極間に駆動電圧が印加されることによって、少なくともエミッタとなる物質の一部が分極反転され、前記第2の電極よりも電位が低い前記第1の電極の近傍から1次電子が放出されることになる。即ち、この分極反転によって、第1の電極とその近傍の双極子モーメントの正極側とで局所的な集中電界が発生することにより、前記第1の電極から1次電子が引き出され、前記第1の電極から引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子が放出される。
【0014】
電子放出素子が前記第1の電極、前記エミッタとなる物質及び真空雰囲気の3重点を有する場合には、前記第1の電極のうち、3重点近傍の部分から1次電子が引き出され、前記引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子が放出される。なお、前記第1の電極の厚みが極薄(〜10nm)である場合には、該第1の電極とエミッタとなる物質との界面から電子が放出されることになる。
【0015】
このような原理によって電子が放出されることから、電子放出が安定して行われ、電子放出の回数も20億回以上を実現でき、実用性に富む。しかも、放出電子量は、第1の電極と第2の電極間に印加される電圧のレベルにほぼ比例して増加することから、放出電子量を容易に制御できるという利点もある。
【0016】
そして、第1の本発明に係る電子放出素子を例えばディスプレイの画素として利用する場合は、エミッタとなる物質の上方のうち、前記第1の電極に対向した位置に第3の電極が配置され、該第3の電極には蛍光体が塗布されることになる。この場合、放出された2次電子のほとんどは、第3の電極に導かれて蛍光体を励起し、外部に蛍光体発光として具現されることになる。もちろん、前記エミッタとなる物質に対向して、前記エミッタとなる物質との間で電界を形成するための第3の電極を配置し、該第3の電極に電子ビームを放出するようにしてもよい。
【0017】
また、第1の本発明においては、前記第1の電極と前記第2の電極間の距離をd、前記第1の電極と前記第2の電極間の電圧をVakとしたとき、前記エミッタとなる物質に印加され、かつ、E=Vak/dで表される電界Eで分極反転が行われるようにしてもよい。この場合、前記電圧Vakが前記エミッタとなる物質の絶縁破壊電圧未満であることが好ましい。このとき、前記第1の電極と前記第2の電極間の電圧Vakの絶対値が100V未満となるように、前記第1の電極と前記第2の電極間の距離dを設定することが好ましい。
【0018】
次に、第2の本発明に係る発光素子は、上述した第1の本発明に係る電子放出素子と、該電子放出素子の前記エミッタとなる物質に対向して配置され、前記エミッタとなる物質との間で電界を形成するための電極と、前記電極に形成された蛍光体とを具備し、前記エミッタとなる物質から放出される2次電子を前記蛍光体に衝突させて前記蛍光体を励起し、発光させることを特徴とする。
【0019】
これにより、エミッタとなる物質から放出される2次電子を発光源とすることにより、電子放出(発光)の長寿命化及び信頼性の向上を図ることができる。また、様々なアプリケーションに適用することができ、発光素子の普及に寄与することができる。
【0020】
【発明の実施の形態】
以下、本発明に係る電子放出素子及び発光素子の実施の形態例を図1〜図19Bを参照しながら説明する。
【0021】
まず、第1の実施の形態に係る電子放出素子10Aは、図1に示すように、板状のエミッタ部(エミッタとなる物質)16と、該エミッタ部16の表面に形成された第1の電極(カソード電極)18と、エミッタ部16の裏面に形成された第2の電極(アノード電極)14とを有する。
【0022】
カソード電極18とアノード電極14間には、パルス発生源20からの駆動電圧Vaが抵抗R1を介して印加される。図1の例では、アノード電極14を抵抗R2を介してGND(グランド)に接続することにより、該アノード電極14の電位をゼロにした場合を示しているが、もちろん、ゼロ電位以外の電位にしてもかまわない。なお、カソード電極18とアノード電極14間への駆動電圧Vaの印加は、例えば図2に示すように、カソード電極18に延びるリード電極19とアノード電極14に延びるリード電極15を通じて行われる。
【0023】
そして、この電子放出素子10Aを発光素子やディスプレイの画素として利用する場合は、カソード電極18の上方に、例えばガラスやアクリル製の透明板21が配置され、該透明板21の裏面(カソード電極18と対向する面)に例えば透明電極にて構成されたコレクタ電極22が配置され、該コレクタ電極22には蛍光体24が塗布される。なお、コレクタ電極22にはバイアス電圧源102(バイアス電圧Vc)が抵抗R3を介して接続される。
【0024】
また、第1の実施の形態に係る電子放出素子10Aは、当然のことながら、真空空間内に配置される。この電子放出素子10Aは、図1に示すように、電界集中ポイントAが存在するが、ポイントAは、カソード電極18/エミッタ部16/真空が1つのポイントに存在する3重点を含むポイントとしても定義することができる。
【0025】
そして、雰囲気中の真空度は、102〜10-6Paが好ましく、より好ましくは10-3〜10-5Paである。
【0026】
このような範囲を選んだ理由は、低真空では、▲1▼:空間内に気体分子が多いため、プラズマを生成し易く、プラズマが多量に発生され過ぎると、その正イオンが多量にカソード電極18に衝突して損傷を進めるおそれや、▲2▼:放出電子がコレクタ電極22に到達する前に気体分子に衝突してしまい、コレクタ電位(Vc)で十分に加速した電子による蛍光体24の励起が十分に行われなくなるおそれがあるからである。
【0027】
一方、高真空では、電界集中ポイントAから電子を放出し易いものの、構造体の支持、及び真空のシール部が大きくなり、小型化に不利になるという問題があるからである。
【0028】
ここで、エミッタ部16は誘電体にて構成される。誘電体は、好適には、比誘電率が比較的高い、例えば1000以上の誘電体を採用することができる。このような誘電体としては、チタン酸バリウムの他に、ジルコン酸鉛、マクネシウムニオブ酸鉛、ニッケルニオブ酸鉛、亜鉛ニオブ酸鉛、マンガンニオブ酸鉛、マグネシウムタンタル酸鉛、ニッケルタンタル酸鉛、アンチモンスズ酸鉛、チタン酸鉛、マグネシウムタングステン酸鉛、コバルトニオブ酸鉛等、又はこれらの任意の組み合わせを含有するセラミックスや、主成分がこれらの化合物を50重量%以上含有するものや、前記セラミックスに対して更にランタン、カルシウム、ストロンチウム、モリブデン、タングステン、バリウム、ニオブ、亜鉛、ニッケル、マンガン等の酸化物、もしくはこれらのいずれかの組み合わせ、又は他の化合物を適切に添加したもの等を挙げることができる。
【0029】
例えば、マグネシウムニオブ酸鉛(PMN)とチタン酸鉛(PT)の2成分系nPMN−mPT(n,mをモル数比とする)においては、PMNのモル数比を大きくすると、キュリー点が下げられて、室温での比誘電率を大きくすることができる。
【0030】
特に、n=0.85〜1.0、m=1.0−nでは比誘電率3000以上となり好ましい。例えば、n=0.91、m=0.09では室温の比誘電率15000が得られ、n=0.95、m=0.05では室温の比誘電率20000が得られる。
【0031】
次に、マグネシウムニオブ酸鉛(PMN)、チタン酸鉛(PT)、ジルコン酸鉛(PZ)の3成分系では、PMNのモル数比を大きくする他に、正方晶と擬立方晶又は正方晶と菱面体晶のモルフォトロピック相境界(MPB:Morphotropic Phase Boundary)付近の組成とすることが比誘電率を大きくするのに好ましい。例えば、PMN:PT:PZ=0.375:0.375:0.25にて比誘電率5500、PMN:PT:PZ=0.5:0.375:0.125にて比誘電率4500となり、特に好ましい。更に、絶縁性が確保できる範囲内でこれらの誘電体に白金のような金属を混入して、誘電率を向上させるのが好ましい。この場合、例えば、誘電体に白金を重量比で20%混入させるとよい。
【0032】
また、エミッタ部16は、上述したように、圧電/電歪層や反強誘電体層等を用いることができるが、エミッタ部16として圧電/電歪層を用いる場合、該圧電/電歪層としては、例えば、ジルコン酸鉛、マグネシウムニオブ酸鉛、ニッケルニオブ酸鉛、亜鉛ニオブ酸鉛、マンガンニオブ酸鉛、マグネシウムタンタル酸鉛、ニッケルタンタル酸鉛、アンチモンスズ酸鉛、チタン酸鉛、チタン酸バリウム、マグネシウムタングステン酸鉛、コバルトニオブ酸鉛等、又はこれらのいずれかの組み合わせを含有するセラミックスが挙げられる。
【0033】
主成分がこれらの化合物を50重量%以上含有するものであってもよいことはいうまでもない。また、前記セラミックスのうち、ジルコン酸鉛を含有するセラミックスは、エミッタ部16を構成する圧電/電歪層の構成材料として最も使用頻度が高い。
【0034】
また、圧電/電歪層をセラミックスにて構成する場合、前記セラミックスに、更に、ランタン、カルシウム、ストロンチウム、モリブデン、タングステン、バリウム、ニオブ、亜鉛、ニッケル、マンガン等の酸化物、もしくはこれらのいずれかの組み合わせ、又は他の化合物を、適宜、添加したセラミックスを用いてもよい。
【0035】
例えば、マグネシウムニオブ酸鉛とジルコン酸鉛及びチタン酸鉛とからなる成分を主成分とし、更にランタンやストロンチウムを含有するセラミックスを用いることが好ましい。
【0036】
圧電/電歪層は、緻密であっても、多孔質であってもよく、多孔質の場合、その気孔率は40%以下であることが好ましい。
【0037】
エミッタ部16として反強誘電体層を用いる場合、該反強誘電体層としては、ジルコン酸鉛を主成分とするもの、ジルコン酸鉛とスズ酸鉛とからなる成分を主成分とするもの、更にはジルコン酸鉛に酸化ランタンを添加したもの、ジルコン酸鉛とスズ酸鉛とからなる成分に対してジルコン酸鉛やニオブ酸鉛を添加したものが望ましい。
【0038】
また、この反強誘電体膜は、多孔質であってもよく、多孔質の場合、その気孔率は30%以下であることが望ましい。
【0039】
更に、エミッタ部16にタンタル酸ビスマス酸ストロンチウムを用いた場合、分極反転疲労が小さく好ましい。このような分極反転疲労が小さい材料は、層状強誘電体化合物で、(BiO22+(Am-1m3m+12-という一般式で表される。ここで、金属Aのイオンは、Ca2+、Sr2+、Ba2+、Pb2+、Bi3+、La3+等であり、金属Bのイオンは、Ti4+、Ta5+、Nb5+等である。
【0040】
また、圧電/電歪/反強誘電体セラミックスに、例えば鉛ホウケイ酸ガラス等のガラス成分や、他の低融点化合物(例えば酸化ビスマス等)を混ぜることによって、焼成温度を下げることができる。
【0041】
また、エミッタ部16に非鉛系の材料を使用する等により、エミッタ部16を融点もしくは蒸散温度の高い材料とすることで、電子もしくはイオンの衝突に対し損傷しにくくなる。
【0042】
ここで、カソード電極18とアノード電極14間のエミッタ部16の厚さd(図1参照)の大きさについて説明すると、カソード電極18とアノード電極14間の電圧(パルス発生源22から出力される駆動電圧Vaがカソード電極18とアノード電極14間に印加されることによって、該カソード電極18とアノード電極14間に現れる電圧)をVakとしたとき、E=Vak/dで表される電界Eで分極反転が行われるように、前記厚さdを設定することが好ましい。つまり、前記厚さdが小さいほど、低電圧で分極反転が可能となり、低電圧駆動(例えば100V未満)で電子放出が可能となる。
【0043】
カソード電極18は、以下に示す材料にて構成される。即ち、スパッタ率が小さく、真空中での蒸発温度が大きい導体が好ましい。例えば、Ar+で600Vにおけるスパッタ率が2.0以下で、蒸気圧1.3×10-3Paとなる温度が1800K以上のものが好ましく、白金、モリブデン、タングステン等がこれに該当する。また、高温酸化雰囲気に対して耐性を有する導体、例えば金属単体、合金、絶縁性セラミックスと金属単体との混合物、絶縁性セラミックスと合金との混合物等によって構成され、好適には、白金、イリジウム、パラジウム、ロジウム、モリブデン等の高融点貴金属や、銀−パラジウム、銀−白金、白金−パラジウム等の合金を主成分とするものや、白金とセラミック材料とのサーメット材料によって構成される。更に好適には、白金のみ又は白金系の合金を主成分とする材料によって構成される。また、電極として、カーボン、グラファイト系の材料、例えば、ダイヤモンド薄膜、ダイヤモンドライクカーボン、カーボンナノチューブも好適に使用される。なお、電極材料中に添加されるセラミック材料の割合は、5〜30体積%程度が好適である。
【0044】
更に、焼成後に薄い膜が得られる有機金属ペースト、例えば白金レジネートペースト等の材料を用いることが好ましい。また、分極反転疲労を抑制する酸化物電極、例えば酸化ルテニウム、酸化イリジウム、ルテニウム酸ストロンチウム、La1-xSrxCoO3(例えばx=0.3や0.5)、La1-xCaxMnO3、La1-xCaxMn1-yCoy3(例えばx=0.2、y=0.05)、もしくはこれらを例えば白金レジネートペーストに混ぜたものが好ましい。
【0045】
カソード電極18は、上記材料を用いて、スクリーン印刷、スプレー、コーティング、ディッピング、塗布、電気泳動法等の各種の厚膜形成法や、スパッタリング法、イオンビーム法、真空蒸着法、イオンプレーティング法、化学気相成長法(CVD)、めっき等の各種の薄膜形成法による通常の膜形成法に従って形成することができ、好適には、前者の厚膜形成法によって形成するとよい。
【0046】
カソード電極18の平面形状は、図2に示すように、楕円形状としてもよいし、図3に示す第1の変形例に係る電子放出素子10Aaのように、リング状にしてもよい。あるいは、図4に示す第2の変形例に係る電子放出素子10Abのように、くし歯状にしてもよい。
【0047】
カソード電極18の平面形状をリング状やくし歯状にすることによって、電界集中ポイントAでもあるカソード電極18/エミッタ部16/真空の3重点が増え、電子放出効率を向上させることができる。
【0048】
カソード電極18の厚みtc(図1参照)は、20μm以下がよく、好適には5μm以下であるとよい。従って、カソード電極18の厚みtcを100nm以下にしてもよい。特に、図5に示す第3の変形例に係る電子放出素子10Acのように、カソード電極18の厚みtcを極薄(10nm以下)とした場合には、該カソード電極18とエミッタ部16との界面から電子が放出されることになり、電子放出効率を更に向上させることができる。
【0049】
一方、アノード電極14は、カソード電極18と同様の材料及び方法によって形成されるが、好適には上記厚膜形成法によって形成する。アノード電極14の厚さも、20μm以下であるとよく、好適には5μm以下であるとよい。
【0050】
エミッタ部16、カソード電極18及びアノード電極14をそれぞれ形成するたびに熱処理(焼成処理)することで、一体構造にすることができる。なお、カソード電極18及びアノード電極14の形成方法によっては、一体化のための熱処理(焼成処理)を必要としない場合もある。
【0051】
エミッタ部16、カソード電極18及びアノード電極14とを一体化させるための焼成処理に係る温度としては、500〜1400℃の範囲、好適には、1000〜1400℃の範囲とするとよい。更に、膜状のエミッタ部16を熱処理する場合、高温時にエミッタ部16の組成が不安定にならないように、エミッタ部16の蒸発源と共に雰囲気制御を行いながら焼成処理を行うことが好ましい。
【0052】
また、エミッタ部16を適切な部材によって被覆し、エミッタ部16の表面が焼成雰囲気に直接露出しないようにして焼成する方法を採用してもよい。
【0053】
次に、電子放出素子10Aの電子放出原理について図1、図6〜図11Bを参照しながら説明する。まず、パルス発生源20から出力される駆動電圧Vaは、図6に示すように、第1の電圧Va1が出力される期間(準備期間T1)と第2の電圧Va2が出力される期間(電子放出期間T2)を1ステップとし、該1ステップが繰り返される。第1の電圧Va1は、カソード電極18の電位がアノード電極14の電位よりも高い電圧であり、第2の電圧Va2は、カソード電極18の電位がアノード電極14の電位よりも低い電圧である。駆動電圧Vaの振幅Vinは、第1の電圧Va1から第2の電圧Va2を差し引いた値(=Va1−Va2)で定義することができる。
【0054】
準備期間T1は、図7に示すように、カソード電極18とアノード電極14間に第1の電圧Va1を印加してエミッタ部16を分極する期間である。第1の電圧Va1としては、図6に示すように直流電圧でもよいが、1つのパルス電圧もしくはパルス電圧を複数回連続印加するようにしてもよい。ここで、準備期間T1は、分極処理を十分に行うために、電子放出期間T2よりも長くとることが好ましい。例えば、この準備期間T1としては100μsec以上が好ましい。これは、第1の電圧Va1の印加時の消費電力及びカソード電極18の損傷を防止する目的で、分極を行うための第1の電圧Va1の絶対値を、第2の電圧Va2の絶対値よりも小さく設定しているからである。
【0055】
また、第1の電圧Va1及び第2の電圧Va2は、各々正負の極性に分極処理を確実に行うことが可能な電圧レベルであることが好ましく、例えばエミッタ部16の誘電体が抗電圧を有する場合、第1の電圧Va1及び第2の電圧Va2の絶対値は、抗電圧以上であることが好ましい。
【0056】
電子放出期間T2は、カソード電極18とアノード電極14間に第2の電圧Va2が印加される期間である。カソード電極18とアノード電極14間に第2の電圧Va2が印加されることによって、図8に示すように、少なくともエミッタ部16の一部が分極反転される。ここで、分極反転される部位は、カソード電極18の真下部分はもちろんのこと、真上にカソード電極18を有しておらず、表面が露出した部分についても、カソード電極18の近傍では、同様に分極反転が行われる。つまり、カソード電極18の近傍で、エミッタ部16の表面が露出した部分は、分極のしみ出しが起きているからである。この分極反転によって、カソード電極18とその近傍の双極子モーメントの正極側とで局所的な集中電界が発生することにより、カソード電極18から1次電子が引き出され、カソード電極18から引き出された前記1次電子がエミッタ部16に衝突して、該エミッタ部16から2次電子が放出される。
【0057】
この第1の実施の形態のように、カソード電極18、エミッタ部16及び真空の3重点Aを有する場合には、カソード電極18のうち、3重点Aの近傍部分から1次電子が引き出され、この3重点Aから引き出された1次電子がエミッタ部16に衝突して、該エミッタ部16から2次電子が放出される。なお、カソード電極18の厚みが極薄(〜10nm)である場合には、該カソード電極18とエミッタ部16との界面から電子が放出されることになる。
【0058】
ここで、負極性の電圧Va2が印加されることによる作用を更に詳細に説明する。
【0059】
まず、カソード電極18とアノード電極14間に第2の電圧Va2が印加されることによって、上述したように、エミッタ部16から2次電子が放出されることになる。即ち、分極が反転されたエミッタ部16のうち、カソード電極18の近傍に帯電する双極子モーメントが放出電子を引き出すこととなる。
【0060】
つまり、カソード電極18のうち、エミッタ部16との界面近傍において局所的なカソードが形成され、エミッタ部16のうち、カソード電極18の近傍の部分に帯電している双極子モーメントの+極が局所的なアノードとなってカソード電極18から電子が引き出され、その引き出された電子のうち、一部の電子がコレクタ電極22(図1参照)に導かれて蛍光体24を励起し、外部に蛍光体発光として具現されることになる。また、前記引き出された電子のうち、一部の電子がエミッタ部16に衝突して、エミッタ部16から2次電子が放出され、該2次電子がコレクタ電極22に導かれて蛍光体24を励起することになる。
【0061】
ここで、2次電子の放出分布について図10を参照しながら説明する。図10に示すように、2次電子は、ほとんどエネルギーが0に近いものが大多数であり、エミッタ部16の表面から真空中に放出されると、周囲の電界分布のみに従って運動することになる。つまり、2次電子は、初速がほとんど0(m/sec)の状態から周囲の電界分布に従って加速される。このため、図1に示すように、エミッタ部16とコレクタ電極22間に電界Eaが発生しているとすると、2次電子は、この電界Eaに沿って、その放出軌道が決定される。つまり、直進性の高い電子源を実現させることができる。このような初速の小さい2次電子は、1次電子のクーロン衝突でエネルギーを得て、エミッタ部16の外へ飛び出した固体内電子である。
【0062】
ところで、図10からもわかるように、1次電子のエネルギーE0に相当するエネルギーをもった2次電子が放出されている。この2次電子は、カソード電極18から放出された1次電子がエミッタ部16の表面近くで散乱したもの(反射電子)である。そして、本明細書内で述べている2次電子は、前記反射電子やオージェ電子も含んで定義するものとする。
【0063】
カソード電極18の厚みが極薄(〜10nm)である場合、カソード電極18から放出された1次電子は、カソード電極18とエミッタ部16の界面で反射してコレクタ電極22に向かうことになる。
【0064】
ここで、図8に示すように、電界集中ポイントAでの電界の強さEAは、局所的なアノードと局所的なカソード間の電位差をV(la,lk)、局所的なアノードと局所的なカソード間の距離をdAとしたとき、EA=V(la,lk)/dAの関係がある。この場合、局所的なアノードと局所的なカソード間の距離dAは非常に小さいことから、電子放出に必要な電界の強さEAを容易に得ることができる(電界の強さEAが大きくなっていることを図8上では実線矢印によって示している)。これは、電圧Vakの低電圧化につながる。
【0065】
そして、カソード電極18からの電子放出がそのまま進行すれば、ジュール熱によって蒸散して浮遊するエミッタ部16の構成原子が前記放出された電子によって正イオンと電子に電離され、この電離によって発生した電子が更にエミッタ部16の構成原子等を電離するため、指数関数的に電子が増え、これが進行して電子と正イオンが中性的に存在すると局所プラズマとなる。なお、2次電子も前記電離を促進させることが考えられる。前記電離によって発生した正イオンが例えばカソード電極18に衝突することによってカソード電極18が損傷することも考えられる。
【0066】
しかし、この第1の実施の形態に係る電子放出素子10Aでは、図9に示すように、カソード電極18から引き出された電子が、局所アノードとして存在するエミッタ部16の双極子モーメントの+極に引かれ、カソード電極18の近傍におけるエミッタ部16の表面の負極性への帯電が進行することになる。その結果、電子の加速因子(局所的な電位差)が緩和され、2次電子放出に至るポテンシャルが存在しなくなり、エミッタ部16の表面における負極性の帯電が更に進行することになる。
【0067】
そのため、双極子モーメントにおける局所的なアノードの正極性が弱められ、局所的なアノードと局所的なカソード間の電界の強さEAが小さくなり(電界の強さEAが小さくなっていることを図9上では破線矢印によって示している)、電子放出は停止することになる。
【0068】
即ち、図11Aに示すように、カソード電極18とアノード電極14間に印加される駆動電圧Vaとして、第1の電圧Va1を例えば+50V、第2の電圧Va2を例えば−100Vとしたとき、電子放出が行われたピーク時点P1におけるカソード電極18とアノード電極14間の電圧変化ΔVakは、20V以内(図11Bの例では10V程度)であってほとんど変化がない。そのため、正イオンの発生はほとんどなく、正イオンによるカソード電極18の損傷を防止することができ、電子放出素子10Aの長寿命化において有利となる。
【0069】
ここで、エミッタ部16の絶縁破壊電圧として、少なくとも10kV/mmを有していることが好ましい。この例では、エミッタ部16の厚さdを例えば20μmとしたとき、カソード電極18とアノード電極14間に−100Vの駆動電圧を印加しても、エミッタ部16が絶縁破壊に至ることはない。
【0070】
ところで、エミッタ部16から放出された電子が再びエミッタ部16に衝突したり、エミッタ部16の表面近傍での電離等によって、該エミッタ部16が損傷を受け、結晶欠陥が誘発し、構造的にも脆くなるおそれがある。
【0071】
そこで、エミッタ部16を、真空中での蒸発温度が大きい誘電体で構成することが好ましく、例えばPbを含まないBaTiO3等にて構成するようにしてもよい。これにより、エミッタ部16の構成原子がジュール熱によって蒸散しにくくなり、電子による電離の促進を妨げることができる。これは、エミッタ部16の表面を保護する上で有効となる。
【0072】
また、コレクタ電極22のパターン形状や電位を適宜変更したり、エミッタ部16とコレクタ電極22との間に図示しない制御電極等を配置することによって、エミッタ部16とコレクタ電極22間の電界分布を任意に設定することにより、2次電子の放出軌道を制御し易くなり、電子ビーム径の収束、拡大、変形も容易になる。
【0073】
上述した直進性の高い電子源の実現、並びに2次電子の放出軌道の制御のし易さは、第1の実施の形態に係る電子放出素子10Aをディスプレイの画素として構成した場合に、画素の狭ピッチ化に有利になる。
【0074】
このように、第1の実施の形態に係る電子放出素子10Aにおいては、エミッタ部16から放出される2次電子を出力としたので、電子放出の長寿命化及び信頼性の向上を図ることができる。これは、第1の実施の形態に係る電子放出素子10Aを様々なアプリケーションに適用することができることにつながり、電子放出素子10Aの普及に寄与することができる。
【0075】
上述の例では、透明板21の裏面にコレクタ電極22を形成し、該コレクタ電極22の表面(カソード電極18と対向する面)に蛍光体24を形成するようにしたが、その他、図12の第4の変形例に係る電子放出素子10Adのように、透明板21の裏面に蛍光体24を形成し、該蛍光体24を覆うようにコレクタ電極22を形成するようにしてもよい。
【0076】
これは、CRT等で用いられる構成であって、コレクタ電極22がメタルバックとして機能する。エミッタ部16から放出された2次電子はコレクタ電極22を貫通して蛍光体24に進入し、該蛍光体24を励起する。従って、コレクタ電極22は2次電子が貫通できる程度の厚さであり、100nm以下が好ましい。2次電子の運動エネルギーが大きいほど、コレクタ電極22の厚みを厚くすることができる。
【0077】
このような構成することで以下の効果を奏することができる。
【0078】
(1)蛍光体24が導電性でない場合、蛍光体24の帯電(負)を防ぎ、2次電子の加速電界を維持することができる。
【0079】
(2)コレクタ電極22が蛍光体24の発光を反射して、蛍光体24の発光を効率よく透明板21側(発光面側)に放出することができる。
【0080】
(3)蛍光体24への過度な2次電子の衝突を防ぐことができ、蛍光体24の劣化や蛍光体24からのガス発生を防止することができる。
【0081】
次に、第2の実施の形態に係る電子放出素子10Bについて図13を参照しながら説明する。
【0082】
この第2の実施の形態に係る電子放出素子10Bは、図13に示すように、上述した第1の実施の形態に係る電子放出素子10Aとほぼ同様の構成を有するが、1つの基板12を有する点と、アノード電極14が基板12上に形成され、エミッタ部16が基板12上に、かつ、アノード電極14を覆うように形成され、更にカソード電極18がエミッタ部16上に形成されている点で異なる。
【0083】
この場合も、上述した第1の実施の形態に係る電子放出素子10Aと同様に、正イオンによるカソード電極18の損傷を防止することができ、電子放出素子10Bの長寿命化において有利となる。
【0084】
なお、基板12の上にエミッタ部16を形成する方法としては、スクリーン印刷法、ディッピング法、塗布法、電気泳動法等の各種厚膜形成法や、イオンビーム法、スパッタリング法、真空蒸着法、イオンプレーティング法、化学気相成長法(CVD)、めっき等の各種薄膜形成法を用いることができる。
【0085】
この第2の実施の形態においては、前記エミッタ部16を形成するにあたっては、スクリーン印刷法やディッピング法、塗布法、電気泳動法等による厚膜形成法が好適に採用される。
【0086】
これらの方法は、平均粒径0.01〜5μm、好ましくは0.05〜3μmの圧電セラミックスの粒子を主成分とするペーストやスラリー、又はサスペンション、エマルジョン、ゾル等を用いて形成することができ、良好な圧電作動特性が得られるからである。
【0087】
特に、電気泳動法は、膜を高い密度で、かつ、高い形状精度で形成することができることをはじめ、「電気化学および工業物理化学 Vol.53,No.1(1985),p63〜68 安斎和夫著」あるいは「第1回電気泳動法によるセラミックスの高次成形法 研究討論会 予稿集(1998),p5〜6,p23〜24」等の技術文献に記載されるような特徴を有する。また、圧電/電歪/反強誘電体をシート状に成形したもの、もしくはその積層体、もしくはこれらを他の支持基板に積層又は接着したものを用いてもよい。このように、要求精度や信頼性等を考慮して、適宜、方法を選択して用いるとよい。
【0088】
基板12は、配線等を考慮して、電気的な絶縁材料で構成するのが好ましい。従って、基板12を、ガラス、又は高耐熱性の金属、あるいはその金属表面をガラスなどのセラミック材料によって被覆したホーローのような材料により構成することができるが、セラミックスで構成するのが最適である。
【0089】
基板12を構成するセラミックスとしては、例えば、安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、スピネル、ムライト、窒化アルミニウム、窒化珪素、ガラス、これらの混合物等を使用することができる。その中でも、酸化アルミニウム及び安定化された酸化ジルコニウムが、強度及び剛性の観点から好ましい。安定化された酸化ジルコニウムは、機械的強度が比較的高いこと、靭性が比較的高いこと、カソード電極18及びアノード電極14との化学反応が比較的小さいことなどの観点から特に好適である。なお、安定化された酸化ジルコニウムとは、安定化酸化ジルコニウム及び部分安定化酸化ジルコニウムを包含する。安定化された酸化ジルコニウムでは、立方晶などの結晶構造をとるため、相転移が生じない。
【0090】
一方、酸化ジルコニウムは、1000℃前後で単斜晶と正方晶との間を相転移し、このような相転移の際にクラックが発生するおそれがある。安定化された酸化ジルコニウムは、酸化カルシウム、酸化マグネシウム、酸化イットリウム、酸化スカンジウム、酸化イッテルビウム、酸化セリウム、希土類金属の酸化物等の安定剤を、1〜30モル%含有する。なお、基板12の機械的強度を向上させるために、安定化剤が酸化イットリウムを含有すると好適である。この場合、酸化イットリウムを、好適には1.5〜6モル%、更に好適には2〜4モル%含有し、更に0.1〜5モル%の酸化アルミニウムを含有することが好ましい。
【0091】
また、結晶相を、立方晶+単斜晶の混合相、正方晶+単斜晶の混合相、立方晶+正方晶+単斜晶の混合相等とすることができるが、その中でも、主たる結晶相を、正方晶又は正方晶+立方晶の混合相としたものが、強度、靭性及び耐久性の観点から最適である。
【0092】
基板12をセラミックスから構成した場合、比較的多数の結晶粒が基板12を構成するが、基板12の機械的強度を向上させるためには、結晶粒の平均粒径を、好適には0.05〜2μmとし、更に好適には0.1〜1μmとするとよい。
【0093】
エミッタ部16、カソード電極18及びアノード電極14をそれぞれ形成するたびに熱処理(焼成処理)して基板12と一体構造にすることができ、また、これらエミッタ部16、カソード電極18及びアノード電極14を形成した後、同時に焼成処理して、これらを同時に基板12に一体に結合することもできる。なお、カソード電極18及びアノード電極14の形成方法によっては、一体化のための熱処理(焼成処理)を必要としない場合もある。
【0094】
基板12と、エミッタ部16、カソード電極18及びアノード電極14とを一体化させるための焼成処理に係る温度としては、500〜1400℃の範囲、好適には、1000〜1400℃の範囲とするとよい。更に、膜状のエミッタ部16を熱処理する場合、高温時にエミッタ部16の組成が不安定にならないように、エミッタ部16の蒸発源と共に雰囲気制御を行いながら焼成処理を行うことが好ましい。
【0095】
また、エミッタ部16を適切な部材によって被覆し、エミッタ部16の表面が焼成雰囲気に直接露出しないようにして焼成する方法を採用してもよい。この場合、被覆部材としては、基板12と同様の材料を用いることが好ましい。
【0096】
次に、第3の実施の形態に係る電子放出素子10Cについて図14〜図17Bを参照しながら説明する。
【0097】
第3の実施の形態に係る電子放出素子10Cは、図14に示すように、上述した第2の実施の形態に係る電子放出素子10Bとほぼ同様の構成を有するが、カソード電極18とアノード電極14が共に、エミッタ部16の一方の面に形成され、カソード電極18とアノード電極14間にスリット26が形成されている点で異なる。
【0098】
この第3の実施の形態に係る電子放出素子10Cにおいては、電界集中ポイントA及びBが存在するが、ポイントAは、カソード電極18/エミッタ部16/真空が1つのポイントに存在する3重点を含むポイントとしても定義することができ、ポイントBは、アノード電極14/エミッタ部16/真空が1つのポイントに存在する3重点を含むポイントとしても定義することができる。
【0099】
ここで、カソード電極18とアノード電極14間のスリット26の幅Wの大きさについて説明すると、カソード電極18とアノード電極14間の電圧をVakとしたとき、E=Vak/Wで表される電界Eで分極反転が行われるように、前記幅Wを設定することが好ましい。つまり、スリット26の幅Wが小さいほど、低電圧で分極反転が可能となり、低電圧駆動(例えば100V未満)で電子放出が可能となる。
【0100】
カソード電極18の寸法については、図15に示すように、幅W1を2mmとし、長さL1を5mmとした。カソード電極18の厚さは、20μm以下がよく、好適には5μm以下であるとよい。
【0101】
アノード電極14の厚さも、20μm以下がよく、好適には5μm以下であるとよい。また、アノード電極14の寸法については、図15に示すように、カソード電極18と同様に幅W2を2mmとし、長さL2を5mmとした。
【0102】
また、カソード電極18とアノード電極14間のスリット26の幅Wは、第3の実施の形態では、70μmとした。
【0103】
次に、電子放出素子10Cの電子放出原理について図6、図14、図16〜図17Bを参照しながら説明する。この第3の実施の形態においても、図6に示すように、上述した第1の実施の形態と同様に、第1の電圧Va1が出力される期間(準備期間T1)と第2の電圧Va2が出力される期間(電子放出期間T2)を1ステップとし、該1ステップが繰り返される。
【0104】
まず、準備期間T1において、図16に示すように、カソード電極18とアノード電極14間に第1の電圧Va1が印加されることによって、エミッタ部16が一方向に分極されることになる。この場合も、第1の電圧Va1としては、図6に示すように直流電圧でもよいが、1つのパルス電圧もしくはパルス電圧を複数回連続印加するようにしてもよい。また、準備期間T1は、分極処理を十分に行うために、電子放出期間T2よりも長くとることが好ましい。例えば、この準備期間T1としては100μsec以上が好ましい。
【0105】
その後、電子放出期間T2において、カソード電極18とアノード電極14間に第2の電圧Va2が印加されることによって、図17Aに示すように、少なくともエミッタ部16の一部(スリット26から露出する部分)が分極反転される。この分極反転によって、カソード電極18とその近傍の双極子モーメントの正極側とで局所的な集中電界が発生することにより、カソード電極18から1次電子が引き出され、カソード電極18から引き出された前記1次電子がエミッタ部16に衝突して、該エミッタ部16から2次電子が放出される。
【0106】
このように、第3の実施の形態に係る電子放出素子10Cにおいては、上述した第1の実施の形態に係る電子放出素子10Aと同様に、電子放出の長寿命化及び信頼性の向上を図ることができ、様々なアプリケーションに適用することができる。
【0107】
ところで、アノード電極14に引かれた電子は、主にアノード電極14の近傍に存在する気体又はアノード電極14を構成する原子等を、正イオンと電子とに電離する。アノード電極14の近傍に存在する該アノード電極14を構成する原子は、該アノード電極14の一部が蒸散した結果生じた原子であり、該原子はアノード電極14の近傍に浮遊している。そして、前記電離によって発生した電子が更に気体や前記原子等を電離するため、指数関数的に電子が増え、これが進行して電子と正イオンが中性的に存在すると局所プラズマとなる。
【0108】
また、アノード電極14に引かれた電子は、エミッタ部16に衝突してエミッタ部16から2次電子が放出され、上述と同様に、アノード電極14の近傍に存在する気体又はアノード電極14の近傍において蒸散して浮遊する電極原子等を正イオンと電子に電離する。
【0109】
前記電離によって発生した正イオンは、例えばカソード電極18に衝突することがあり、これによって、カソード電極18が損傷するおそれがある。
【0110】
そこで、図18に示す変形例に係る電子放出素子10Caにおいては、アノード電極14の表面に帯電膜28を形成するようにしている。
【0111】
従って、エミッタ部16から放出された2次電子の一部がアノード電極14に引かれると、図18に示すように、帯電膜28の表面が負極性に帯電することになる。これにより、アノード電極14の正極性が弱められ、アノード電極14とカソード電極18間の電界の強さEが小さくなり、瞬時に電離が停止することになる。即ち、カソード電極18とアノード電極14間に印加される駆動電圧Vaとして、図19Aに示すように、第1の電圧Va1を例えば+50V、第2の電圧Va2を例えば−100Vとしたとき、図19Bに示すように、電子放出が行われたピーク時点P1におけるカソード電極18とアノード電極14間の電圧変化ΔVakは、20V以内(図19Bの例では10V程度)であってほとんど変化がない。そのため、正イオンの発生はほとんどなく、正イオンによるカソード電極18の損傷を防止することができ、電子放出素子10Caの長寿命化において有利となる。
【0112】
そして、アノード電極14の表面に形成された帯電膜28の膜厚t1は、10nm〜100μmであることが好ましい。薄すぎると耐久性や取り扱いに問題が生じるおそれがあり、厚すぎると、カソード電極18とアノード電極14間の間隔、即ち、スリットの幅Wを狭くできなくなり、電子放出に必要な電界を得ることができなくなるおそれがあるからである。この変形例では、帯電膜28の厚みt1を45μmとした。
【0113】
帯電膜28は、圧電材料、電歪材料、反強誘電体材料又は低誘電率の材料で構成することができる。低誘電率の材料としては、例えばSiO2やMgO等の酸化物又はガラスなどを用いることができる。もちろん、帯電膜28を、エミッタ部16を構成する誘電体と同じ材料で構成するようにしてもよい。
【0114】
第3の実施の形態に係る電子放出素子10C(変形例を含む)は、第1の実施の形態に係る電子放出素子10A(変形例を含む)、第2の実施の形態に係る電子放出素子10Bと比較した場合、カソード電極18近傍のエミッタ部16の分極反転に関する形態が異なる。第1及び第2の実施の形態に係る電子放出素子10A及び10Bは、カソード電極18側に現れる双極子モーメントが正・負のいずれかのみになるため、カソード電極18との間で形成される局所的な電界を大きくとることができる。一方、第3の実施の形態に係る電子放出素子10Cは、エミッタ部16の一主面のみに電極を形成すればよいという利点を有する。
【0115】
また、第1及び第2の実施の形態に係る電子放出素子10A及び10Bは、エミッタ部の分極反転時に、カソード電極18が負極性になったとき、カソード電極18の近傍に双極子モーメントの正極のみを配置することができる。そのため、カソード電極18から1次電子を引き出すのに好ましい。
【0116】
このように、第1の実施の形態に係る電子放出素子10A(第1〜第4の変形例に係る電子放出素子10Aa〜10Adを含む)、第2の実施の形態に係る電子放出素子10B及び第3の実施の形態に係る電子放出素子10C(変形例に係る電子放出素子10Caを含む)においては、ディスプレイとしての用途のほか、電子線照射装置、光源、LEDの代替用途、電子部品製造装置に適用することができる。
【0117】
電子線照射装置における電子線は、現在普及している紫外線照射装置における紫外線に比べ、高エネルギーで吸収性能に優れる。適用例としては、半導体装置では、ウェハーを重ねる際における絶縁膜を固化する用途、印刷の乾燥では、印刷インキをむらなく硬化する用途や、医療機器をパッケージに入れたまま殺菌する用途等がある。
【0118】
光源としての用途は、高輝度、高効率仕様向けであって、例えば超高圧水銀ランプ等が使用されるプロジェクタの光源用途等がある。電子放出素子10A(10Aa〜10Ad)、10B、10C(10Ca)を光源に適用した場合、小型化、長寿命、高速点灯、水銀フリーによる環境負荷低減という特徴を有する。
【0119】
LEDの代替用途としては、屋内照明、自動車用ランプ、信号機等の面光源用途や、チップ光源、信号機、携帯電話向けの小型液晶ディスプレイのバックライト等がある。
【0120】
電子部品製造装置の用途としては、電子ビーム蒸着装置等の成膜装置の電子ビーム源、プラズマCVD装置におけるプラズマ生成用(ガス等の活性化用)電子源、ガス分解用途の電子源などがある。また、テラHz駆動の高速スイッチング素子、大電流出力素子といった真空マイクロデバイス用途もある。他に、プリンタ用部品、つまり、感光ドラムを感光させる発光デバイスや、誘電体を帯電させるための電子源としても好ましく用いられる。
【0121】
電子回路部品としては、大電流出力化、高増幅率化が可能であることから、スイッチ、リレー、ダイオード等のデジタル素子、オペアンプ等のアナログ素子への用途がある。
【0122】
また、電子放出素子10A(10Aa〜10Ad)、10B、10C(10Ca)においては、図1等に示すように、コレクタ電極22に蛍光体24を塗布してディスプレイの画素として構成した場合、以下のような効果を奏することができる。
【0123】
(1)CRTと比して超薄型(パネルの厚み=数mm)にすることができる。
【0124】
(2)蛍光体24による自然発光のため、LCD(液晶表示装置)やLED(発光ダイオード)と比してほぼ180°の広視野角を得ることができる。
【0125】
(3)面電子源を利用しているため、CRTと比して画像歪みがない。
【0126】
(4)LCDと比して高速応答が可能であり、μsecオーダーの高速応答で残像のない動画表示が可能となる。
【0127】
(5)40インチ換算で100W程度であり、CRT、PDP(プラズマディスプレイ)、LCD及びLEDと比して低消費電力である。
【0128】
(6)PDPやLCDと比して動作温度範囲が広い(−40〜+85℃)。ちなみに、LCDは低温で応答速度が低下する。
【0129】
(7)大電流出力による蛍光体の励起が可能であるため、従来のFED方式のディスプレイと比して高輝度化が可能である。
【0130】
(8)圧電体材料の分極反転特性及び膜厚により駆動電圧を制御可能であるため、従来のFED方式のディスプレイと比して低電圧駆動が可能である。
【0131】
このような種々の効果から、以下に示すように、様々なディスプレイ用途を実現させることができる。
【0132】
(1)高輝度化と低消費電力化が実現できるという面から、30〜60インチディスプレイのホームユース(テレビジョン、ホームシアター)やパブリックユース(待合室、カラオケ等)に最適である。
【0133】
(2)高輝度化、大画面、フルカラー、高精細度が実現できるという面から、顧客吸引力(この場合、視覚的な注目)に効果が大であり、横長、縦長等の異形状ディスプレイや、展示会での使用、情報案内板用のメッセージボードに最適である。
【0134】
(3)高輝度化、蛍光体励起に伴う広視野角化、真空モジュール化に伴う広い動作温度範囲が実現できるという面から、車載用ディスプレイに最適である。車載用ディスプレイとしての仕様は、15:9等の横長8インチ(画素ピッチ0.14mm)、動作温度が−30〜+85℃、斜視方向で500〜600cd/m2が必要である。
【0135】
また、上述の種々の効果から、以下に示すように、様々な光源用途を実現させることができる。
【0136】
(1)高輝度化、低消費電力化が実現できるという面から、輝度仕様として2000ルーメンが必要なプロジェクタ用の光源に最適である。
【0137】
(2)高輝度2次元アレー光源を容易に実現できることと、動作温度範囲が広く、屋外環境でも発光効率に変化がないことから、LEDの代替用途として有望である。例えば信号機等の2次元アレーLEDモジュールの代替として最適である。なお、LEDは、25℃以上で許容電流が低下し、低輝度となる。
【0138】
なお、本発明に係る電子放出素子及び発光素子は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
【0139】
【発明の効果】
以上説明したように、本発明に係る電子放出素子及び発光素子によれば、エミッタとなる物質から放出される2次電子を出力とすることにより、電子放出の長寿命化及び信頼性の向上を図ることができる。また、様々なアプリケーションに適用することができ、電子放出素子の普及に寄与することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る電子放出素子を示す構成図である。
【図2】第1の実施の形態に係る電子放出素子の電極部分を示す平面図である。
【図3】第1の実施の形態に係る電子放出素子の第1の変形例における電極部分を示す平面図である。
【図4】第1の実施の形態に係る電子放出素子の第2の変形例における電極部分を示す平面図である。
【図5】第1の実施の形態に係る電子放出素子の第3の変形例を示す構成図である。
【図6】パルス発生源から出力される駆動電圧を示す波形図である。
【図7】第1の実施の形態において、カソード電極とアノード電極間に第1の電圧を印加した際の作用を示す説明図である。
【図8】カソード電極とアノード電極間に第2の電圧を印加した際の電子放出作用を示す説明図である。
【図9】エミッタ部の表面での負極性帯電に伴って電子放出の自己停止の作用を示す説明図である。
【図10】放出された2次電子のエネルギーと2次電子の放出量の関係を示す特性図である。
【図11】図11Aは、駆動電圧の一例を示す波形図であり、図11Bは、第1の実施の形態に係る電子放出素子におけるアノード電極とカソード電極間の電圧の変化を示す波形図である。
【図12】第1の実施の形態に係る電子放出素子の第4の変形例を示す構成図である。
【図13】第2の実施の形態に係る電子放出素子を示す構成図である。
【図14】第3の実施の形態に係る電子放出素子を示す構成図である。
【図15】第3の実施の形態に係る電子放出素子の電極部分を示す平面図である。
【図16】第3の実施の形態において、カソード電極とアノード電極間に第1の電圧を印加した際の作用を示す説明図である。
【図17】図17Aは、カソード電極とアノード電極間に第2の電圧を印加した際の作用(1次電子の放出)を示す説明図であり、図17Bは、放出された1次電子に基づいて2次電子が放出される原理を示す説明図である。
【図18】第3の実施の形態に係る電子放出素子の変形例において、カソード電極とアノード電極間に第2の電圧を印加した際の作用を示す説明図である。
【図19】図19Aは、駆動電圧の一例を示す波形図であり、図19Bは、第1の実施の形態に係る電子放出素子の変形例におけるカソード電極とアノード電極間の電圧の変化を示す波形図である。
【符号の説明】
10A、10Aa〜10Ad、10B、10C、10Ca…電子放出素子
12…基板 14…アノード電極
16…エミッタ部 18…カソード電極
20…パルス発生源 22…コレクタ電極
24…蛍光体

Claims (10)

  1. 誘電体にて構成されたエミッタとなる物質と、
    前記エミッタとなる物質上に形成された第1の電極と、
    前記エミッタとなる物質上に形成された第2の電極とを有し、
    前記第1の電極と前記第2の電極間に駆動電圧が印加されることによって、少なくとも前記エミッタとなる物質の一部が分極反転されることで電子放出を行う電子放出素子であって、
    前記第1の電極及び前記第2の電極は、前記エミッタとなる物質の同一面上に形成され、
    前記第1の電極と前記第2の電極間に前記駆動電圧が印加されることによって、少なくとも前記エミッタとなる物質の一部が分極反転され、この分極反転によって、前記第1の電極の周辺に双極子モーメントの正極側が配されることで、前記第1の電極から1次電子が引き出され、前記第1の電極から引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子を放出させる駆動電圧印加手段を有することを特徴とする電子放出素子。
  2. 請求項1記載の電子放出素子において、
    前記エミッタとなる物質から放出された2次電子を、前記エミッタとなる物質上に形成された電界で加速させて電子ビームを得ることを特徴とする電子放出素子。
  3. 請求項1又は2記載の電子放出素子において、
    前記エミッタとなる物質は、圧電材料、反強誘電体材料、電歪材料のいずれかであることを特徴とする電子放出素子。
  4. 請求項1〜のいずれか1項に記載の電子放出素子において、
    前記第1の電極と前記第2の電極間の距離をd、前記第1の電極と前記第2の電極間の電圧をVakとしたとき、前記エミッタとなる物質に印加され、かつ、E=Vak/dで表される電界Eで分極反転が行われることを特徴とする電子放出素子。
  5. 請求項記載の電子放出素子において、
    前記電圧Vakが前記エミッタとなる物質の絶縁破壊電圧未満であることを特徴とする電子放出素子。
  6. 請求項又は記載の電子放出素子において、
    前記第1の電極と前記第2の電極間の電圧Vakの絶対値が100V未満となるように、前記第1の電極と前記第2の電極間の距離dが設定されていることを特徴とする電子放出素子。
  7. 請求項1〜のいずれか1項に記載の電子放出素子において、
    前記第1の電極と前記第2の電極間に前記駆動電圧が印加されることによって、少なくとも前記エミッタとなる物質の一部が分極反転され、前記第2の電極よりも電位が低い前記第1の電極の近傍から前記1次電子が放出されることを特徴とする電子放出素子。
  8. 請求項1〜のいずれか1項に記載の電子放出素子において、
    前記第1の電極、前記エミッタとなる物質及び真空雰囲気の3重点を有し、
    前記第1の電極のうち、3重点近傍の部分から前記1次電子が引き出され、
    前記引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から前記2次電子が放出されることを特徴とする電子放出素子。
  9. 請求項1〜のいずれか1項に記載の電子放出素子において、
    前記エミッタとなる物質に対向して、前記エミッタとなる物質との間で電界を形成するための第3の電極が配置され、前記第3の電極へ電子ビームを放出することを特徴とする電子放出素子。
  10. 請求項1〜のいずれか1項に記載の電子放出素子と、
    前記電子放出素子の前記エミッタとなる物質に対向して配置され、前記エミッタとなる物質との間で電界を形成するための電極と、
    前記電極に形成された蛍光体とを具備し、
    前記エミッタとなる物質から放出される2次電子を前記蛍光体に衝突させて前記蛍光体を励起し、発光させることを特徴とする発光素子。
JP2003155689A 2002-11-29 2003-05-30 電子放出素子及び発光素子 Expired - Fee Related JP3867065B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003155689A JP3867065B2 (ja) 2002-11-29 2003-05-30 電子放出素子及び発光素子
US10/719,596 US7288881B2 (en) 2002-11-29 2003-11-21 Electron emitter and light emission element
EP03257434A EP1424718A1 (en) 2002-11-29 2003-11-25 Electron emitter and light emission element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002348900 2002-11-29
JP2002348916 2002-11-29
JP2002348908 2002-11-29
JP2003155689A JP3867065B2 (ja) 2002-11-29 2003-05-30 電子放出素子及び発光素子

Publications (2)

Publication Number Publication Date
JP2004228064A JP2004228064A (ja) 2004-08-12
JP3867065B2 true JP3867065B2 (ja) 2007-01-10

Family

ID=32303635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155689A Expired - Fee Related JP3867065B2 (ja) 2002-11-29 2003-05-30 電子放出素子及び発光素子

Country Status (3)

Country Link
US (1) US7288881B2 (ja)
EP (1) EP1424718A1 (ja)
JP (1) JP3867065B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936972B2 (en) 2000-12-22 2005-08-30 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US7379037B2 (en) 2003-03-26 2008-05-27 Ngk Insulators, Ltd. Display apparatus, method of driving display apparatus, electron emitter, method of driving electron emitter, apparatus for driving electron emitter, electron emission apparatus, and method of driving electron emission apparatus
US7474060B2 (en) 2003-08-22 2009-01-06 Ngk Insulators, Ltd. Light source
US7719201B2 (en) * 2003-10-03 2010-05-18 Ngk Insulators, Ltd. Microdevice, microdevice array, amplifying circuit, memory device, analog switch, and current control unit
US7336026B2 (en) 2003-10-03 2008-02-26 Ngk Insulators, Ltd. High efficiency dielectric electron emitter
JP2005116232A (ja) 2003-10-03 2005-04-28 Ngk Insulators Ltd 電子放出素子及びその製造方法
JP2005183361A (ja) * 2003-10-03 2005-07-07 Ngk Insulators Ltd 電子放出素子、電子放出装置、ディスプレイ及び光源
US7528539B2 (en) 2004-06-08 2009-05-05 Ngk Insulators, Ltd. Electron emitter and method of fabricating electron emitter
US20060012282A1 (en) * 2004-07-15 2006-01-19 Ngk Insulators, Ltd. Dielectric device
JP4678832B2 (ja) 2004-07-27 2011-04-27 日本碍子株式会社 光源
WO2006070446A1 (ja) * 2004-12-28 2006-07-06 Ngk Insulators, Ltd. 電子放出素子、電子放出装置、ディスプレイ及び光源
CN1856857A (zh) * 2004-12-28 2006-11-01 日本碍子株式会社 光源
WO2007007472A1 (ja) * 2005-07-07 2007-01-18 Sharp Kabushiki Kaisha 表示装置
US7402194B2 (en) * 2005-07-27 2008-07-22 International Business Machines Corporation Carbon nanotubes as low voltage field emission sources for particle precipitators
US10921362B1 (en) * 2019-08-01 2021-02-16 United States Of America As Represented By The Secretary Of The Navy Sensor for measurement of electrostatic potential without current loading and without mechanical chopping

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164433A (en) * 1966-02-17 1969-09-17 Lucas Industries Ltd Key-Operated Switches
JPS4426125B1 (ja) 1967-03-20 1969-11-04
JPS4620944B1 (ja) 1968-01-20 1971-06-12
US3995190A (en) * 1974-09-19 1976-11-30 Butler, Binion, Rice, Cook & Knapp Mobile ion film memory
JPS59208587A (ja) 1983-05-12 1984-11-26 東芝ライテック株式会社 表示装置
JPS63150837A (ja) 1986-12-16 1988-06-23 Canon Inc 電子放出装置
JP2622842B2 (ja) 1987-10-12 1997-06-25 キヤノン株式会社 電子線画像表示装置および電子線画像表示装置の偏向方法
JP2608295B2 (ja) 1987-10-21 1997-05-07 キヤノン株式会社 電子放出素子
JP2654571B2 (ja) 1988-06-10 1997-09-17 キヤノン株式会社 電子放出素子及びそれを用いた電子放出装置並びに発光装置
FR2639151B1 (fr) 1988-06-28 1994-02-18 Riege Hans Procedes et appareils pour engendrer rapidement de forts changements de polarisation dans des materiaux ferro-electriques
IL87341A (en) 1988-08-04 1992-11-15 Yeda Res & Dev Amorphous electron multiplier
DE3833604A1 (de) 1988-10-03 1990-04-05 Riege Hans Gepulste teilchenquelle auf der basis schnell umpolarisierbarer ferroelektrika
DE3938752A1 (de) 1989-11-23 1991-05-29 Riege Hans Kathode zur grossflaechigen erzeugung von intensiven, modulierten ein- oder mehrkanal-elektronenstrahlen
JP3126158B2 (ja) * 1991-04-10 2001-01-22 日本放送協会 薄膜冷陰極
US6313815B1 (en) 1991-06-06 2001-11-06 Canon Kabushiki Kaisha Electron source and production thereof and image-forming apparatus and production thereof
US5448083A (en) * 1991-08-08 1995-09-05 Kabushiki Kaisha Toshiba Insulated-gate semiconductor device
US5382867A (en) 1991-10-02 1995-01-17 Sharp Kabushiki Kaisha Field-emission type electronic device
JP3184296B2 (ja) 1992-05-26 2001-07-09 松下電器産業株式会社 強誘電体冷陰極
JP3168353B2 (ja) 1992-06-17 2001-05-21 キヤノン株式会社 画像表示装置
JPH07147131A (ja) 1993-11-24 1995-06-06 Tdk Corp 冷陰極電子源の製造方法
US5453661A (en) 1994-04-15 1995-09-26 Mcnc Thin film ferroelectric flat panel display devices, and methods for operating and fabricating same
JP3214256B2 (ja) 1994-10-12 2001-10-02 松下電器産業株式会社 電子パルス放出装置および表示装置
US5508590A (en) 1994-10-28 1996-04-16 The Regents Of The University Of California Flat panel ferroelectric electron emission display system
JP2932250B2 (ja) 1995-01-31 1999-08-09 キヤノン株式会社 電子放出素子、電子源、画像形成装置及びそれらの製造方法
US5561340A (en) * 1995-01-31 1996-10-01 Lucent Technologies Inc. Field emission display having corrugated support pillars and method for manufacturing
US5747926A (en) 1995-03-10 1998-05-05 Kabushiki Kaisha Toshiba Ferroelectric cold cathode
JPH08264105A (ja) 1995-03-27 1996-10-11 Kanebo Ltd 強誘電体電子放出冷陰極
US5657054A (en) * 1995-04-26 1997-08-12 Texas Instruments Incorporated Determination of pen location on display apparatus using piezoelectric point elements
JP3174999B2 (ja) 1995-08-03 2001-06-11 キヤノン株式会社 電子放出素子、電子源、それを用いた画像形成装置、及びそれらの製造方法
US5656887A (en) * 1995-08-10 1997-08-12 Micron Display Technology, Inc. High efficiency field emission display
US5666019A (en) 1995-09-06 1997-09-09 Advanced Vision Technologies, Inc. High-frequency field-emission device
JPH0990882A (ja) 1995-09-20 1997-04-04 Komatsu Ltd 発光表示素子
KR100369066B1 (ko) 1995-12-29 2003-03-28 삼성에스디아이 주식회사 강유전성에미터를적용한음극구조체및이를적용한전자총과음극선관
US5729094A (en) 1996-04-15 1998-03-17 Massachusetts Institute Of Technology Energetic-electron emitters
JP2907113B2 (ja) 1996-05-08 1999-06-21 日本電気株式会社 電子ビーム装置
US5726524A (en) 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
JPH1027539A (ja) 1996-07-10 1998-01-27 Sharp Corp 強誘電体冷陰極及びその駆動方法
DE19651552A1 (de) 1996-12-11 1998-06-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Kaltkathode für Entladungslampen, Entladungslampe mit dieser Kaltkathode und Betriebsweise für diese Entladungslampe
US6274881B1 (en) 1997-01-10 2001-08-14 Matsushita Electric Industrial Co., Ltd. Electron emission element having semiconductor emitter with localized state, field emission type display device using the same, and method for producing the element and the device
JP2950274B2 (ja) 1997-01-28 1999-09-20 日本電気株式会社 電界放出型冷陰極素子の駆動方法及び電界放出型冷陰極電子銃
JPH10223129A (ja) 1997-02-12 1998-08-21 Sharp Corp 強誘電体冷陰極
US5990605A (en) 1997-03-25 1999-11-23 Pioneer Electronic Corporation Electron emission device and display device using the same
JP3570864B2 (ja) 1997-08-08 2004-09-29 パイオニア株式会社 電子放出素子及びこれを用いた表示装置
US6025819A (en) 1997-10-03 2000-02-15 Motorola, Inc. Method for providing a gray scale in a field emission display
JPH11185600A (ja) 1997-12-22 1999-07-09 Minolta Co Ltd 電子放出デバイス及び画像表示装置
JPH11213866A (ja) 1998-01-22 1999-08-06 Sony Corp 電子放出装置及びその製造方法並びにこれを用いた表示装置
JP3408147B2 (ja) 1998-04-03 2003-05-19 キヤノン株式会社 画像形成装置
JP3305283B2 (ja) 1998-05-01 2002-07-22 キヤノン株式会社 画像表示装置及び前記装置の制御方法
JP3075535B2 (ja) 1998-05-01 2000-08-14 キヤノン株式会社 電子放出素子、電子源及び画像形成装置の製造方法
EP0986084A3 (en) 1998-09-11 2004-01-21 Pioneer Corporation Electron emission device and display apparatus using the same
JP3293571B2 (ja) 1998-10-28 2002-06-17 日本電気株式会社 電界放出型冷陰極素子及びその駆動方法並びにそれらを用いた画像表示装置
US6492769B1 (en) 1998-12-25 2002-12-10 Canon Kabushiki Kaisha Electron emitting device, electron source, image forming apparatus and producing methods of them
FR2789223B1 (fr) 1999-01-29 2001-03-23 Univ Nantes Corps de cathode ferroelectrique pour la production d'electrons
FR2789221B1 (fr) 1999-01-29 2001-04-06 Univ Nantes Corps de cathode pour l'emission d'electrons
JP3382172B2 (ja) 1999-02-04 2003-03-04 株式会社日立製作所 横型絶縁ゲートバイポーラトランジスタ
JP4114264B2 (ja) 1999-03-16 2008-07-09 株式会社村田製作所 強誘電体電子放出冷陰極
JP2000285801A (ja) 1999-03-31 2000-10-13 Canon Inc 電子放出素子の製造方法、該電子放出素子を用いた電子源および画像形成装置
JP2000285792A (ja) 1999-03-31 2000-10-13 Canon Inc 電子放出素子及びそれを用いた画像形成装置
JP3561176B2 (ja) 1999-05-14 2004-09-02 株式会社東芝 電子放出素子およびその製造方法
US6198225B1 (en) 1999-06-07 2001-03-06 Symetrix Corporation Ferroelectric flat panel displays
JP3051930B1 (ja) 1999-07-02 2000-06-12 工業技術院長 ガス励起装置
US6514891B1 (en) 1999-07-14 2003-02-04 Lg Electronics Inc. Thick dielectric composition for solid state display
US6420822B1 (en) * 1999-07-15 2002-07-16 Northrop Grumman Corporation Thermionic electron emitter based upon the triple-junction effect
US6359383B1 (en) 1999-08-19 2002-03-19 Industrial Technology Research Institute Field emission display device equipped with nanotube emitters and method for fabricating
DE10057072A1 (de) 1999-11-19 2001-05-23 Gen Electric Ferroelektrischer Emitter
US6479924B1 (en) 2000-08-11 2002-11-12 Samsung Electronics Co., Ltd. Ferroelectric emitter
JP3639808B2 (ja) 2000-09-01 2005-04-20 キヤノン株式会社 電子放出素子及び電子源及び画像形成装置及び電子放出素子の製造方法
JP2002169507A (ja) 2000-11-30 2002-06-14 Fujitsu Ltd プラズマディスプレイパネル及びその駆動方法
WO2002052600A1 (fr) 2000-12-22 2002-07-04 Ngk Insulators, Ltd. Element d'emission electronique et utilisation dans un affichage a emission de champ
US6897620B1 (en) * 2002-06-24 2005-05-24 Ngk Insulators, Ltd. Electron emitter, drive circuit of electron emitter and method of driving electron emitter

Also Published As

Publication number Publication date
US20040113561A1 (en) 2004-06-17
EP1424718A1 (en) 2004-06-02
US7288881B2 (en) 2007-10-30
JP2004228064A (ja) 2004-08-12

Similar Documents

Publication Publication Date Title
US7230371B2 (en) Light source
JP3867065B2 (ja) 電子放出素子及び発光素子
US20040061431A1 (en) Light emission device and field emission display having such light emission devices
US7307383B2 (en) Electron emitter and method of producing the same
US7187114B2 (en) Electron emitter comprising emitter section made of dielectric material
US6975074B2 (en) Electron emitter comprising emitter section made of dielectric material
US7071628B2 (en) Electronic pulse generation device
JP3822551B2 (ja) 発光素子及びそれを具えるフィールドエミッションディスプレイ
US7129642B2 (en) Electron emitting method of electron emitter
EP1403897A2 (en) Light emitting device
US20060214557A1 (en) Light source
JP3869819B2 (ja) 電子放出素子
JP2005183361A (ja) 電子放出素子、電子放出装置、ディスプレイ及び光源
JP3839792B2 (ja) 電子放出素子の電子放出方法
US7067970B2 (en) Light emitting device
JP3829127B2 (ja) 電子放出素子
JP3829128B2 (ja) 電子放出素子
US20040104669A1 (en) Electron emitter
JP2005142134A (ja) 電子放出素子
US20050062400A1 (en) Electron emitter
US20040104688A1 (en) Electron emitting method of electron emitter
WO2006070446A1 (ja) 電子放出素子、電子放出装置、ディスプレイ及び光源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees